188 research outputs found

    A unified approach to sparse signal processing

    Get PDF
    A unified view of the area of sparse signal processing is presented in tutorial form by bringing together various fields in which the property of sparsity has been successfully exploited. For each of these fields, various algorithms and techniques, which have been developed to leverage sparsity, are described succinctly. The common potential benefits of significant reduction in sampling rate and processing manipulations through sparse signal processing are revealed. The key application domains of sparse signal processing are sampling, coding, spectral estimation, array processing, compo-nent analysis, and multipath channel estimation. In terms of the sampling process and reconstruction algorithms, linkages are made with random sampling, compressed sensing and rate of innovation. The redundancy introduced by channel coding i

    A New Regularized Adaptive Windowed Lomb Periodogram for Time-Frequency Analysis of Nonstationary Signals With Impulsive Components

    Get PDF
    This paper proposes a new class of windowed Lomb periodogram (WLP) for time-frequency analysis of nonstationary signals, which may contain impulsive components and may be nonuniformly sampled. The proposed methods significantly extend the conventional Lomb periodogram in two aspects: 1) The nonstationarity problem is addressed by employing the weighted least squares (WLS) to estimate locally the time-varying periodogram and an intersection of confidence interval technique to adaptively select the window sizes of WLS in the time-frequency domain. This yields an adaptive WLP (AWLP) having a better tradeoff between time resolution and frequency resolution. 2) A more general regularized maximum-likelihood-type (M-) estimator is used instead of the LS estimator in estimating the AWLP. This yields a novel M-estimation-based regularized AWLP method which is capable of reducing estimation variance, accentuating predominant time-frequency components, restraining adverse influence of impulsive components, and separating impulsive components. Simulation results were conducted to illustrate the advantages of the proposed method over the conventional Lomb periodogram in adaptive time-frequency resolution, sparse representation for sinusoids, robustness to impulsive components, and applicability to nonuniformly sampled data. Moreover, as the computation of the proposed method at each time sample and frequency is independent of others, parallel computing can be conveniently employed without much difficulty to significantly reduce the computational time of our proposed method for real-time applications. The proposed method is expected to find a wide range of applications in instrumentation and measurement and related areas. Its potential applications to power quality analysis and speech signal analysis are also discussed and demonstrated.published_or_final_versio

    Data-Driven Image Restoration

    Get PDF
    Every day many images are taken by digital cameras, and people are demanding visually accurate and pleasing result. Noise and blur degrade images captured by modern cameras, and high-level vision tasks (such as segmentation, recognition, and tracking) require high-quality images. Therefore, image restoration specifically, image deblurring and image denoising is a critical preprocessing step. A fundamental problem in image deblurring is to recover reliably distinct spatial frequencies that have been suppressed by the blur kernel. Existing image deblurring techniques often rely on generic image priors that only help recover part of the frequency spectrum, such as the frequencies near the high-end. To this end, we pose the following specific questions: (i) Does class-specific information offer an advantage over existing generic priors for image quality restoration? (ii) If a class-specific prior exists, how should it be encoded into a deblurring framework to recover attenuated image frequencies? Throughout this work, we devise a class-specific prior based on the band-pass filter responses and incorporate it into a deblurring strategy. Specifically, we show that the subspace of band-pass filtered images and their intensity distributions serve as useful priors for recovering image frequencies. Next, we present a novel image denoising algorithm that uses external, category specific image database. In contrast to existing noisy image restoration algorithms, our method selects clean image “support patches” similar to the noisy patch from an external database. We employ a content adaptive distribution model for each patch where we derive the parameters of the distribution from the support patches. Our objective function composed of a Gaussian fidelity term that imposes category specific information, and a low-rank term that encourages the similarity between the noisy and the support patches in a robust manner. Finally, we propose to learn a fully-convolutional network model that consists of a Chain of Identity Mapping Modules (CIMM) for image denoising. The CIMM structure possesses two distinctive features that are important for the noise removal task. Firstly, each residual unit employs identity mappings as the skip connections and receives pre-activated input to preserve the gradient magnitude propagated in both the forward and backward directions. Secondly, by utilizing dilated kernels for the convolution layers in the residual branch, each neuron in the last convolution layer of each module can observe the full receptive field of the first layer

    Transient and steady-state component separation for audio signals

    Get PDF
    In this work the problem of transient and steady-state component separation of an audio signal was addressed. In particular, a recently proposed method for separation of transient and steady-state components based on the median filter was investigated. For a better understanding of the processes involved, a modification of the filtering stage of the algorithm was proposed. This modification was evaluated subjectively by listening tests and objectively by an application-based comparison. Also some extensions to the model were presented in conjunction with different possible applications for the transient and steady-state decomposition in the area of audio editing and processing

    Bayes meets Bach: applications of Bayesian statistics to audio restoration

    Get PDF
    Memoryless nonlinear distortion can be present in audio signals, from recording to reproduction: bad quality or amateurishly operated equipments, physically degraded media and low quality reproducing devices are some examples where nonlinearities can naturally appear. Another quite common defect in old recordings are the long pulses, caused in general by the reproduction of disks with deep scratches or severely degraded magnetic tapes. Such defects are characterized by an initial discontinuity in the waveform, followed by a low-frequency transient of long duration. In both cases audible artifacts can be created, causing an unpleasant experience to the listener. It is then important to develop techniques to mitigate such defects, having at hand only the degraded signal, in a way to recover the original signal. In this thesis, techniques to deal with both problems are presented: the restoration of nonlinearly degraded recordings is tackled in a Bayesian context, considering both autoregressive models and sparsity in the DCT domain for the original signal, as well as through a deterministic solution also based on sparsity; for the suppression of long pulses, a parametric approach is revisited with the addition of an efficient initialization procedure, and a nonparametric modeling via Gaussian process is also presented.Distorções não-lineares podem aparecer em sinais de áudio desde o momento da sua gravação até a posterior reprodução: equipamentos precários ou operados de maneira indevida, mídias fisicamente degradadas e baixa qualidade dos aparelhos de reprodução são somente alguns exemplos onde não-linearidades podem aparecer de modo natural. Outro defeito bastante comum em gravações antigas são os pulsos longos, em geral causados pela reprodução de discos com arranhões muito profundos ou fitas magnéticas severamente degradadas. Tais defeitos são caracterizados por uma descontinuidade inicial na forma de onda, seguida de um transitório de baixa frequência e longa duração. Em ambos os casos, artefatos auditivos podem ser criados, causando assim uma experiência ruim para o ouvinte. E importante então desenvolver técnicas para mitigar tais efeitos, tendo como base somente uma versão do sinal degradado, de modo a recuperar o sinal original não degradado. Nessa tese são apresentadas técnicas para lidar com esses dois problemas: o problema de restaurar gravações corrompidas com distorções não-lineares é abordado em um contexto bayesiano, considerando tanto modelos autorregressivos quanto de esparsidade no domínio da DCT para o sinal original, bem como por uma solução determinística também em usando esparsidade; para a supressão de pulsos longos, uma abordagem paramétrica é revisitada, junto com o acréscimo de um eficiente procedimento de inicialização, sendo também apresentada uma abordagem não-paramétricausando processos gaussianos

    Roadmap on signal processing for next generation measurement systems

    Get PDF
    Signal processing is a fundamental component of almost any sensor-enabled system, with a wide range of applications across different scientific disciplines. Time series data, images, and video sequences comprise representative forms of signals that can be enhanced and analysed for information extraction and quantification. The recent advances in artificial intelligence and machine learning are shifting the research attention towards intelligent, data-driven, signal processing. This roadmap presents a critical overview of the state-of-the-art methods and applications aiming to highlight future challenges and research opportunities towards next generation measurement systems. It covers a broad spectrum of topics ranging from basic to industrial research, organized in concise thematic sections that reflect the trends and the impacts of current and future developments per research field. Furthermore, it offers guidance to researchers and funding agencies in identifying new prospects.AerodynamicsMicrowave Sensing, Signals & System
    corecore