9 research outputs found

    Intelligent adaptive underwater sensor networks

    Get PDF
    Autonomous Underwater Vehicle (AUV) technology has reached a sufficient maturity level to be considered a suitable alternative to conventional Mine Countermeasures (MCM). Advantages of using a network of AUVs include time and cost efficiency, no personnel in the minefield, and better data collection. A major limitation for underwater robotic networks is the poor communication channel. Currently, acoustics provides the only means to send messages beyond a few metres in shallow water, however the bandwidth and data rate are low, and there are disturbances, such as multipath and variable channel delays, making the communication non-reliable. The solution this thesis proposes using a network of AUVs for MCM is the Synchronous Rendezvous (SR) method --- dynamically scheduling meeting points during the mission so the vehicles can share data and adapt their future actions according to the newly acquired information. Bringing the vehicles together provides a robust way of exchanging messages, as well as means for regular system monitoring by an operator. The gains and losses of the SR approach are evaluated against a benchmark scenario of vehicles having their tasks fixed. The numerical simulation results show the advantage of the SR method in handling emerging workload by adaptively retasking vehicles. The SR method is then further extended into a non-myopic setting, where the vehicles can make a decision taking into account how the future goals will change, given the available resource and estimation of expected workload. Simulation results show that the SR setting provides a way to tackle the high computational complexity load, common for non-myopic solutions. Validation of the SR method is based on trial data and experiments performed using a robotics framework, MOOS-IvP. This thesis develops and evaluates the SR method, a mission planning approach for underwater robotic cooperation in communication and resource constraint environment

    TAR: Trajectory adaptation for recognition of robot tasks to improve teamwork

    Get PDF
    One key to more effective cooperative interaction in a multi-robot team is the ability to understand the behavior and intent of other robots. Observed teammate action sequences can be learned to perform trajectory recognition which can be used to determine their current task. Previously, we have applied behavior histograms, hidden Markov models (HMMs), and conditional random fields (CRFs) to perform trajectory recognition as an approach to task monitoring in the absence of commu- nication. To demonstrate trajectory recognition of various autonomous vehicles, we used trajectory-based techniques for model generation and trajectory discrimination in experiments using actual data. In addition to recognition of trajectories, we in- troduced strategies, based on the honeybee’s waggle dance, in which cooperating autonomous teammates could leverage recognition during periods of communication loss. While the recognition methods were able to discriminate between the standard trajectories performed in a typical survey mission, there were inaccuracies and delays in identifying new trajectories after a transition had occurred. Inaccuracies in recog- nition lead to inefficiencies as cooperating teammates acted on incorrect data. We then introduce the Trajectory Adaptation for Recognition (TAR) framework which seeks to directly address difficulties in recognizing the trajectories of autonomous vehicles by modifying the trajectories they follow to perform them. Optimization techniques are used to modify the trajectories to increase the accuracy of recognition while also improving task objectives and maintaining vehicle dynamics. Experiments are performed which demonstrate that using trajectories optimized in this manner lead to improved recognition accuracy.Ph.D

    Control of Networked Robotic Systems

    Get PDF
    With the infrastructure of ubiquitous networks around the world, the study of robotic systems over communication networks has attracted widespread attention. This area is denominated as networked robotic systems. By exploiting the fruitful technological developments in networking and computing, networked robotic systems are endowed with potential and capabilities for several applications. Robots within a network are capable of connecting with control stations, human operators, sensors, and other robots via digital communication over possibly noisy channels/media. The issues of time delays in communication and data losses have emerged as a pivotal issue that have stymied practical deployment. The aim of this dissertation is to develop control algorithms and architectures for networked robotic systems that guarantee stability with improved overall performance in the presence of time delays in communication. The first topic addressed in this dissertation is controlled synchronization that is utilized for networked robotic systems to achieve collective behaviors. Exploiting passivity property of individual robotic systems, the proposed control schemes and interconnections are shown to ensure stability and convergence of synchronizing errors. The robustness of the control algorithms to constant and time-varying communication delays is also studied. In addition to time delays, the number of communication links, which prevents scalability of networked robotic systems, is another challenging issue. Thus, a synchronizing control with practically feasible constraints of network topology is developed. The problem of networked robotic systems interacting with human operators is then studied subsequently. This research investigates a teleoperation system with heterogeneous robots under asymmetric and unknown communication delays. Sub-task controllers are proposed for redundant slave robot to autonomously achieve additional tasks, such as singularity avoidance, joint angle limits, and collision avoidance. The developed control algorithms can enhance the efficiency of teleoperation systems, thereby ameliorating the performance degradation due to cognitive limitations of human operator and incomplete information about the environment. Compared to traditional robotic systems, control of robotic manipulators over networks has significant advantages; for example, increased flexibility and ease of maintenance. With the utilization of scattering variables, this research demonstrates that transmitting scattering variables over delayed communications can stabilize an otherwise unstable system. An architecture utilizing delayed position feedback in conjunction with scattering variables is developed for the case of time-varying communication delays. The proposed control architecture improves tracking performance and stabilizes robotic manipulators with input-output communication delays. The aforementioned control algorithms and architectures for networked robotic systems are validated via numerical examples and experiments

    Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    Get PDF
    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments

    Advances in Robot Navigation

    Get PDF
    Robot navigation includes different interrelated activities such as perception - obtaining and interpreting sensory information; exploration - the strategy that guides the robot to select the next direction to go; mapping - the construction of a spatial representation by using the sensory information perceived; localization - the strategy to estimate the robot position within the spatial map; path planning - the strategy to find a path towards a goal location being optimal or not; and path execution, where motor actions are determined and adapted to environmental changes. This book integrates results from the research work of authors all over the world, addressing the abovementioned activities and analyzing the critical implications of dealing with dynamic environments. Different solutions providing adaptive navigation are taken from nature inspiration, and diverse applications are described in the context of an important field of study: social robotics

    Development Approaches Coupled with Verification and Validation Methodologies for Agent-Based Mission-Level Analytical Combat Simulations

    Get PDF
    This research investigated the applicability of agent-based combat simulations to real-world combat operations. An agent-based simulation of the Allied offensive search for German U-Boats in the Bay of Biscay during World War II was constructed, extending the state-of-the-art in agent-based combat simulations, bridging the gap between the current level of agent-like combat simulations and the concept of agent-based simulations found in the broader literature. The proposed simulation advances agent-based combat simulations to “validateable” mission-level military operations. Simulation validation is a complex task with numerous, diverse techniques available and levels of validation differing significantly among simulations and applications. This research presents a verification and validation taxonomy based on face validity, empirical validity, and theoretical validity, extending the verification and validation knowledge-base to include techniques specific to agent-based models. The verification and validation techniques are demonstrated in a Bay of Biscay case study. Validating combat operations pose particular problems due to the infrequency of real-world occurrences to serve as simulation validation cases; often just a single validation comparison can be made. This means comparisons to the underlying stochastic process are not possible without significant loss of statistical confidence. This research also presents a statistical validation methodology based on re-sampling historical outcomes, which when coupled with the traditional nonparametric sign test, allows comparison between a simulation and historic operation providing an improved validation indicator beyond the single pass or fail test
    corecore