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SUMMARY

One key to more effective cooperative interaction in a multi-robot team is the

ability to understand the behavior and intent of other robots. Observed teammate

action sequences can be learned to perform trajectory recognition which can be used

to determine their current task. Previously, we have applied behavior histograms,

hidden Markov models (HMMs), and conditional random fields (CRFs) to perform

trajectory recognition as an approach to task monitoring in the absence of commu-

nication. To demonstrate trajectory recognition of various autonomous vehicles, we

used trajectory-based techniques for model generation and trajectory discrimination

in experiments using actual data. In addition to recognition of trajectories, we in-

troduced strategies, based on the honeybee’s waggle dance, in which cooperating

autonomous teammates could leverage recognition during periods of communication

loss. While the recognition methods were able to discriminate between the standard

trajectories performed in a typical survey mission, there were inaccuracies and delays

in identifying new trajectories after a transition had occurred. Inaccuracies in recog-

nition lead to inefficiencies as cooperating teammates acted on incorrect data. We

then introduce the Trajectory Adaptation for Recognition (TAR) framework which

seeks to directly address difficulties in recognizing the trajectories of autonomous

vehicles by modifying the trajectories they follow to perform them. Optimization

techniques are used to modify the trajectories to increase the accuracy of recognition

while also improving task objectives and maintaining vehicle dynamics. Experiments

are performed which demonstrate that using trajectories optimized in this manner

lead to improved recognition accuracy.

xviii



Acronyms

AxV - Autonomous Vehicles with the x standing in for U - underwater, G - ground,

A - air, and S - surface.

ASV - Autonomous Surface Vehicle which operates on the surface of a body of water.

AGV - Autonomous Ground Vehicle

AAV - Autonomous Air Vehicle

AUV - Autonomous Underwater Vehicle

UAV - Unmanned Aerial Vehicle

UMS - Unmanned Maritime Systems can be defined as unmanned vehicles that

displace water at rest and include two subcategories: UUV and USV.

UAS - Unmanned Aerial Systems

UUV - Unmanned Underwater Vehicles

USV - Unmanned Surface Vehicles

1



CHAPTER I

INTRODUCTION

The primary contribution of this dissertation is the adaptation of autonomous ve-

hicle trajectories for improved recognition by autonomous teammates. The Trajec-

tory Adaptation for Recognition (TAR) framework is introduced which is capable of

adapting trajectories based on desired task properties, adhering to vehicle dynamics,

and increasing recognition accuracy. Such capabilities are especially useful for au-

tonomous vehicle team cooperation through task recognition. This dissertation begins

by presenting foundational work by performing trajectory recognition of autonomous

teammates with simulated and actual data while introducing strategies on how an

observing teammate can perform such recognition. Circumstances in which recogni-

tion of an autonomous teammate are useful include when operating in environments

where communication is intermittent or unavailable and when teammates are mal-

functioning or have nefarious intent. Subsequently, further foundational experiments

are performed in which robot teams leverage trajectory-based signaling, inspired by

the honeybee “waggle” dance, enabling one autonomous vehicle to signal another to a

location of interest. In this cooperation, an autonomous vehicle signals with an Infin-

ityPattern while an observer performs recognition and visits the location of interest

when it perceives the correct pattern. The TAR framework directly addresses the

difficulty in creating or adapting trajectories for trajectory-based task recognition or

signaling, which was performed in the foundational work as tedious manual iterations

to achieve acceptable recognition accuracy. The framework automates the adapta-

tion of trajectories for improved recognition accuracy while maintaining common task

goals.
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Figure 1: General Robot Autonomy Sense-Plan-Act. Robot sensing includes gather-
ing information about the world though different sensors, such as a camera or sonar,
as well as through communications, such as radio or acoustic modem. Robot plan-
ning includes creating world models and plans of action given the sensed information.
Robot acting is the execution of a plan such as following a trajectory. While the gen-
eral sense-plan-act paradigm considers each step separately, the reality is that there
is overlap between all the areas.

1.1 Research Questions

The sense-plan-act paradigm is a general formulation of robot autonomy in which to

situate the work in this dissertation [2]. The cycle begins with an autonomous robot

gathering information about the world via sensors such as a camera and through

communicating with other robots or operators. The plan step is where the robot

creates a model of the world with the gathered information and formulates a plan

of action. The act step is the execution of the plan produced in the previous step.

While the sense-plan-act paradigm is a general formulation, the reality is that there

are overlaps and integration between the three areas, depicted in Figure 1. Within

the three major areas of the sense-plan-act paradigm there are subareas, depicted in

Figure 2, such as camera calibration for sensing and trajectory tracking for acting.

In this work, the focus in the area of sensing is recognition. Recognition can focus
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Figure 2: Subareas of Sense-Plan-Act. Relevant to the work presented in this dis-
sertation are the subareas of recognition in sensing, team strategies in planning, and
trajectory adaptation or creation in acting.

on objects, locations, or team plans. Specifically, recognition in this work focuses on

trajectories created by autonomous vehicles such as cars, aircraft, and marine vehicles.

The planning area can incorporate different world models and strategies. In particular

this work focuses on the formulation of team strategies for cooperating robots. In

the acting area there are several methods for generating trajectories and tracking

generated trajectories. The focus of this work is that of trajectory adaptation. The

first intersection that is addressed, as seen in Figure 3, is that of recognition of

common trajectories to perform tasks such as search. The second focus of this work

is the intersection of trajectory recognition and team strategies in which recognition

of common task trajectories is leveraged for cooperation between two autonomous

vehicles. The third focus is the intersection of trajectory recognition, team strategies,

and trajectory creation in which trajectories are adapted for improved recognition

which can be leveraged for team cooperation. Research questions addressed in this

dissertation revolve around autonomous vehicle team coordination during periods of

intermittent or denied communication.
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1. Can trajectories for robots on a team be adapted to improve recognition such

that the acting vehicle can perform them and yet still accomplish their desired

task?

(a) How should trajectories be described to support task accomplishment and

recognition?

(b) What are appropriate cost functions to achieve or maintain common au-

tonomous vehicle tasks?

2. At what accuracy is it possible to recognize the common trajectories of au-

tonomous vehicles?

3. What team strategies can be used to leverage trajectory recognition by au-

tonomous vehicle team members?

1.2 Contributions

The following are contributions presented in this dissertation along with citations if

previously published.

1. TAR: A methodology for evolving trajectories that simultaneously enables them

to be separately recognizable while accomplishing their intended purpose [36].

2. Strategies for leveraging trajectory recognition for autonomous vehicle teams

[35, 41, 38].

3. Expressing desired task using cost functions for common tasks.

4. Impact of strategies of an observing robot, stationary vs track and trail, on

recognition accuracy [43].

5. Experimental results supporting TAR’s ability to improve recognition accuracy

while adhering to task objectives [37].
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Novitzky, M. and Balch, T. R., “Towards trajectory adaptation for recognition (TAR),” ICRA 2015: Workshop PAAR, 2015. 
Novitzky, M., Balch, T., and Weiss, L., “Optimizing robot behavior for improved recognition by teammates,” DARS, 2014.  

CONTRIBUTION 

14 

Novitzky, et al., “AUV behavior recognition using behavior histograms, HMMs, and CRFs,” Journal ROBOTICA, 2014.  
Novitzky, et al., “Behavior recognition of an AUV using a forward-looking sonar,” in Workshop on Marine Robotics at RSS 2011.  
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Novitzky, M., “Improvement of multi-AUV cooperation through teammate verification,” in Workshop PAMR at AAAI, 2011.  

Figure 3: Big Picture Contribution. The figure displays the intersections of the
sense-plan-act subareas of recognition-team strategy-creation addressed in this dis-
sertation. A corresponding list of previously published work appears in break out
boxes. The top-most light blue set of citations are previously published work in the
area of trajectory recognition of common tasks performed by autonomous vehicles
through simulation and various sensors. The bottom-most dark blue citations cor-
respond to previously published work of leveraging trajectory recognition for team
cooperation. The middle orange list of citations correspond to the TAR framework in
which trajectories are adapted for improved recognition while still achieving common
tasks.

6. Recognition of autonomous vehicle trajectories in simulation, actual sonar data,

and ASV data [39, 40, 42, 43].

Figure 3 depicts where these contributions and their previously published citations

fit in the subareas of the sense-plan-act paradigm.

1.3 Thesis Statement

Trajectory adaptation enables more effective task recognition while preserving task

completion.
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1.4 Dissertation Outline

The remainder of the dissertation is organized as follows. Chapter 2 contains the

related work including multi-robot coordination strategies, recognition of robot tasks

and trajectories, and the leveraging of recognition for robot team coordination. Chap-

ter 3 describes the common tasks and trajectories used to perform them for both

manned and unmanned vehicles. Chapter 4 describes foundational work using vari-

ous recognition methods on common trajectories. Chapter 5 describes foundational

work on leveraging trajectory recognition for multi-robot cooperation. Chapter 6

contains the description of the TAR Framework and experiments demonstrating its

effectiveness on common tasks. Chapter 7 contains concluding remarks.
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CHAPTER II

RELATED WORK

In some circumstances, autonomous vehicles should be able to recognize the task of

another autonomous teammate simply through observation. This would be useful

if a teammate needs to verify another member’s current assigned task. This allows

for the correction of an erroneous teammate or one that has nefarious purposes.

Another scenario where task recognition can be useful is when RF communications

are intermittent or unavailable. This is the type of environment in which marine

robots find themselves as both radio frequency (RF) and acoustic communications

can be difficult. Multi-robot teams rely heavily on stable communication so that

efficiency is achieved by not repeating tasks. Task recognition would help in these

environments, since one member could observe another is performing a task and

therefore know to move on to another. Since most robot task recognition schemes

focus solely on improving recognition capability, the schemes neglect that the actor

can modify the paths or trajectories followed. An analogy for this work is two SCUBA

divers about to dive in the water. Before the dive, they discuss on the boat which

hand gestures they will use to communicate underwater. Because these gestures vary

by country or organization, it takes some repetition and negotiation to come to an

agreement on which gestures will be used and what they indicate.

This chapter will present background and relevant work in the areas of multi-robot

coordination, recognition of robot activity, and leveraging robot task recognition for

team cooperation. Section 2.1 will cover robot coordination schemes. Section 2.2 will

cover activity or task recognition. Section 2.3 will cover robot trajectory creation.

Section 2.4 will cover trajectory creation/recognition schemes. Section 2.5 covers how

8



activity recognition is leveraged for multi-robot coordination.

2.1 Multi-Robot Coordination

Multi-robot teams, in comparison with single robot solutions, can offer solutions

that are more economical, robust to failure, and more efficient than single robot

solutions [14, 9]. A team of robots can work on tasks in parallel, perform distributed

sensing, and operate in multiple locations at once. Furthermore, multiple robots

add redundancy to the system. Unfortunately, a tradeoff is that these teams must

communicate and work together with the added uncertainty regarding the behaviors

of other robots. For instance, a team member may have trouble cooperating due

to communication errors, because they are busy performing other tasks, or have

conflicting goals [2].

Many different methods for performing distributed cooperation exist, including

centralized optimization algorithms and game theoretic techniques. A centralized

method requires at least one agent or a home base to make task or role assignments.

Although this may be optimal when communication links are reliable, its efficacy de-

generates with intermittent communication, and a central organizer makes the whole

system come to a halt if it fails. Thus, a decentralized approach is much more viable

because it is more robust to failures of communication. Auction-based algorithms gen-

erally have low communication requirements (where agents coordinate tasks through

bid messages). Therefore, they can be well suited to environments with communi-

cation constraints. Auctions can perform computations in parallel and the methods

take advantage of the local information known to each agent [12, 18].

However, auction-based methods can still degrade in overall efficiency as com-

munication deteriorates [54]. Poor communication environments are encountered by

autonomous underwater vehicles (AUVs) using traditional acoustic modems for un-

derwater communication. The effectiveness of acoustic communications deteriorates
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in the presence of surface reflections, bottom reflections, ambient noise, and noise

sources within the water column, such as emissions from other vessels. Sotzing and

Lane [58] have demonstrated that using teammate prediction improves overall per-

formance of a cooperative AUV system. However, this type of system still needs

communication in order to avoid degradation as task predictions accumulate error

over time without correction from teammates. Novitzky [35] proposed a multi-robot

cooperation framework that combines the flexibility and robustness of an auction-

based method similar to [54], the prediction of tasks of [58], along with the addition

of task verification. During periods of low prediction confidence, an autonomous

robot could go to a task area and perform task/activity recognition of a teammate.

If a teammate was performing the appropriate task then the robot would move on to

another task in the team’s queue. However, if the teammate was not in the area or

was performing the wrong task, then the erroneously performed task would be placed

back in the tasks to be performed queue. This dissertation focuses on the ability

to recognize an autonomous vehicle’s task as a step towards implementing such a

system.

2.2 Robot Task/Trajectory Recognition

There are several distinctions that are made in order to categorically study the recog-

nition of teammate behaviors [60], including plan, activity, goal, and intent recog-

nition. There are several approaches to activity recognition including logic-based,

topologically invariant, and control theoretic techniques [61, 22, 11]. Probabilistic

graphical models such as Hidden Markov Models (HMMs) and Conditional Random

Fields (CRFs) are popular as they are useful for pattern recognition and have proven

robust to uncertainty in many areas including speech recognition [48, 31] and hand-

written script recognition [33].

The most prevalent use of behavior recognition with robots has been through the

10



use of an overhead sensor, such as a camera. Original work was presented by Han and

Veloso [20] in which an agent’s behavior was recognized using a Hidden Markov Model

(HMM). The authors discretized input from a vision system overseeing a Robocup

small-sized league robot interacting with a ball. The vision system reported the

location and velocity of both the agent and the ball to several concurrent HMMs.

A limitation of this system is that if an HMM was started at the wrong moment, it

could miss the appropriate activation of the initial states. To alleviate this problem

the authors ran an HMM for a specific behavior at intervals in order to capture the

correct linear order of events.

Of specific importance to this work is that performed by Vail et al. [65] in which

the authors compared the accuracy of CRFs and HMMs for activity recognition on

robot systems. Their chosen domain was simulated robot Tag. In their simulation,

two robots were passively moving from waypoint to waypoint while a third was the

Seeker searching for a robot to Tag. As part of the analysis of CRFs and HMMs, the

authors tested the accuracy with different observations such as raw positions only,

including velocities, and chasing features. The authors also examined the effect of

incorporating features which violate the independence assumptions between observa-

tions. The results showed that a discriminatively trained CRF performed as well as

or better than an HMM in their robot Tag domain.

Vail and Veloso [64] used CRFs for analyzing roles in multi-robot domains. The

authors experimented with two approaches to feature selection and applied these

methods to data recorded during RoboCup soccer small-size league games. The goal

of their work was to create a classifier that can provide useful information to robots

that are playing against a team whose roles are being classified. They found that

using feature selection can dramatically reduce the number of features required by

CRFs to achieve error rates that are close to or identical to the error rate achieved

by the model with its full complement of features. Reducing the number of features
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dramatically speeds up online classification and training.

Focusing on autonomous mobile robots in the marine domain, Baxter et al. [5] per-

formed behavior recognition using HMMs on post-mission analysis of self-localization

provided by an AUV. The post-mission analysis converted GPS pose trajectories to

low-level actions such as track-west and left u-turn east. The main drawback of this

method is that it claimed to be agnostic to the environment yet still required the use

of cardinal direction, which in itself is still somewhat constraining to the compass

orientation within an environment. The authors improved upon their discretization

methods where they also enhanced HMMs to deal with behavior sequences of vari-

able length [6]. They began with AUV location information from simulated sonar

data. These trajectories were fed into a maneuver-recognition algorithm capable of

identifying an AUV’s actions such as straight and veer-left, thus making it more envi-

ronmentally agnostic. While the algorithm was attempting to recognize top-level goals

such as mine-countermeasure (MCM), mine-countermeasure inspection (MCMI), and

point inspection (PI), it further divided the top-level goals into recognizable sub-goals

which included dive, track, right u-turn, and left u-turn along with inspection. Their

results also included the observation that top-level goals are achieved via the AUV

performing sub-goal behaviors.

As this dissertation focuses on enabling a multi-robot team to work without the use

of traditional methods of communication, it uses insect communication as inspiration.

Insects use many modalities of communication: tactile, chemical, acoustic, and visual.

The modality of particular interest is that of the honey bee’s “waggle dance” [66].

During the waggle dance, as seen in Fig. 17b, a sequence of motions occur: arcing

right, waggling, and arcing left. Waggling is when the dancing bee walks in a straight

line while oscillating its torso left and right. Current research indicates that the

orientation of the waggle portion of the dance represents the angle between a food

source and the sun. The length of the waggle indicates the energy required to reach
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the food source. While the waggle dance is a tactile form of communication between

honeybees, scientists use computer vision techniques to aid biologists studying their

behavior [16, 44, 4]. The typical workflow for these computer vision techniques is

to label primitive actions which in turn make up a behavior. Oh et al. [44] used

labeled tracks of a honeybee performing the “waggle dance” so that a parametric

switching linear dynamic system could learn and then accurately label each primitive

motion. Work by Feldman and Balch [16] used a technique in which kernel regression

labeled the primitive motions of a bee’s trajectory. A Hidden Markov Model (HMM)

was used to smooth the labeled sequence and subsequently identify the most likely

behavior such as dancer or active bee.

2.3 Robot Trajectory Creation

There are many methods for creating robot trajectories. In particular we note the

work of Ratliff et al. [52] who introduced the Covariant Hamiltonian Optimization

for Motion Planning (CHOMP) motion planning algorithm. CHOMP is based on

covariant gradient descent and is able to construct trajectories which optimize over

a variety of dynamic and task-based criteria. The second work to note is that of

Kalakrishnan et al. [27] who introduced Stochastic Trajectory Optimization for Mo-

tion Planning (STOMP). STOMP is a stochastic trajectory optimization framework

which allows for a combination of costs that do not have gradient information. More

recently, Schulman et al. [56] introduced TrajOpt which is a trajectory optimization

algorithm which incorporates collision avoidance. TrajOpt uses sequential convex

optimization techniques with penalties for constraints. The work presented in this

dissertation aligns more in the spirit of STOMP as a stochastic search method is used

in the TAR framework in order to allow for flexible and general cost functions.
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2.4 Trajectory Creation/Recognition Schemes

In this work we focus on not only recognizing autonomous robot tasks but also on

potentially modifying their execution in order to be more easily recognized. Thus,

a particular topic of interest is action/recognition schemes that are capable of both

creating trajectories and recognizing them in the same framework. Mirror neurons

have been a source of inspiration in the action/recognition area. Mirror neurons

fire both during the generation and the observation of goal-directed actions [53, 17].

Goal-directed is described when an action is directed towards an object. This dis-

covery indicates that mirror neurons are the circuitry used by the motor system to

both recognize and generate actions. Inamura et al. [24] use mimesis theory from

cognitive science which describes the existence of “mirror neurons” as evidence that

behavior generation and behavior cognition are not independent. The authors pro-

pose a “mimesis model” that is a mathematical model that abstracts the whole-body

motions as symbols, generates motion patterns from the symbols, and distinguishes

motion patterns based on the symbols. An observer views a motion pattern of a

performer and acquires a symbol of the motion pattern. The observer can generate

the motion by performing it themselves. Hidden Markov Models (HMMs) are used

for this mathematical framework for both recognition and generation.

One action/recognition scheme which is popular is the use of dynamic movement

primitives (also called dynamic motor primitives, DMPs). In general, DMPs gener-

ate trajectories using a spring-damper system with a goal location as an endpoint

and Gaussian basis functions as forcing functions along the motion [55]. Akgun et

al. [1] studied how actions can both be recognized and generated by a Dynamic

Movement Primitive (DMP) for online action recognition. The authors were able

to demonstrate that their modified DMPs were capable of online action recognition

with approximately the first one-third of the observed action with a success rate of

over 90%. Akgun et al. used neural networks as their function approximators. The
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TAR framework is similar to DMPs in that trajectories are approximated with radial

basis functions (RBFs), explained in detail in Section 6.2. This allows for trajectory

recognition to occur by comparing the weights of a template trajectory to that of

a sample trajectory. The same RBF weights can be used to produce the trajectory

that an autonomous robot should follow to perform a task. Trajectory adaptation

can also be performed in the RBF weight space as perturbations of the weights create

different trajectories.

2.5 Action Recognition for Robot Team Coordination

Lynne E. Parker [46] published work as early as 1995 investigating the impact of robot

awareness of team member actions and its effect on cooperative team performance.

The task investigated was a puck moving mission. Variations in the experiment

include number of teammates (team size) and the level of teammate awareness of

each other’s actions. The metrics used for evaluation were time and energy. The

results show that team performance varies by the size of the team, level of awareness,

the amount of work available per robot, and the cost of replicated actions. Robot

awareness is the same as recognition of team member actions through passive action

recognition. The robots are required to locate the pucks, move them to a goal location,

while reporting progress to human operators. Parker used the ALLIANCE software

architecture which is a behavior-based, fully distributed architecture which allows

for adaptive action selection to achieve fault tolerant cooperative control in robot

missions. For this work, ALLIANCE was modified to have a consistent update by

each robot through broadcast communication. This was the surrogate that later

could be replaced by the use of passive action recognition. The five variations of the

move puck experiment were: two robot team with full awareness, three-robot team

with full awareness, two-robot team with no awareness, three-robot team with no

awareness, and a single robot operator. Each experimental condition was run ten
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times while recording action selection and duration. Energy required was calculated

by assuming that a robot at rest consumed no energy but any sort of actuator use

equaled a unit of quantity of energy per unit time. The worst time requirement was

the single robot scenario. Even adding robots to the team without awareness helps

reduce the time required for this task. Overall, the three-robot team completed the

task faster than the two-robot team regardless of awareness level. In both cases,

the action aware teams performed better than the teams without awareness. It is

interesting to consider why a three-robot team without awareness would perform

better than a two-robot team with awareness. The answer is in the type of task

being investigated. The pucks that are removed from the environment can be sensed

without communication. the time requirement to move the puck is stable across both

awareness and no awareness variations. The portions of the task that are sped up

with awareness are find-locations and report-progress. If the cost of replicating these

portions of the task is low then a non-aware team has less impact. With regards to

energy usage, teams with no awareness are prone to duplicate tasks and thus waste

energy. The larger the team without awareness, the greater the chance for needless

duplication of tasks. Awareness increases energy efficiency as it reduces duplicated

tasks. Overall, the puck moving experiments shows us that if the effects of a task

cannot be sensed through the world, such as a puck removed, lack of awareness causes

an increase in energy use. The more robots to a team without awareness means an

increase in duplicate actions.

The most similar work to that presented in this dissertation is by Kuniyoshi [30]

in which the author used binocular vision for teammate and resource observation.

Kuniyoshi coined the term Cooperation by Observation, defined as “Observing other

agent’s action, and choosing appropriate actions regarding the observed action and the

current task situation.” In essence, the author extends a behavior-based architecture

to allow for dynamic matching of behavior resources and behavior types. Kuniyoshi

16



tested this framework on three tasks: posing, unblocking, and passing. In each task, a

teammate was observed along with a common resource. For example in the unblocking

task, robot i is pushing a block and robot j determines an obstacle is in robot i′s

path. Robot j then moves the obstacle so that robot i can deliver its block to the

appropriate location.

Dragan et al. [13] concentrate on human-robot collaboration. It is important

for seamless collaboration that the robot make its intentions clear to the human

collaborator. This is similar to our own work in the sense that Dragan et al. have

termed that a robot’s motion be legible. The authors distinguish between motion

properties of predictability and legibility with a formal mathematical framework. As

an example, the authors use the task of collaboratively clearing a table. Predictable

motion is motion that is expected (observer knowing the goal action matches what

they would predict to happen). Legible motion is intent-expressive (observer predict

the goal based on the motion). The human observer watches a humanoid robot’s

motion trajectory and is modeled as running an inference trying to predict the robot’s

goal. A legible motion is one that a human observer can watch and determine the

goal in the shortest amount of time. The authors give the robot a kinesthetic form

of communication - intent through motion. They used a model based on the theory

of action interpretation in psychology. This model allows for evaluating how legible a

motion trajectory is and correlates with legibility in practice. In addition to being able

to model/evaluate how legible a motion trajectory can be to a human, the authors

also introduced a method of motion trajectory generation so that a human properly

infers the robot’s goal. “Trust region” of predictability limits the exaggeration of the

humanoid robot’s motion trajectory so that it is still predictable. Placing our work in

context with that of Dragan et al. [13], we too are searching for motion trajectories

that are legible. The difference is that the observer in our case is not a human but

another robot. In our work, we assume the robot is limited by its sensor model
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and viewpoint of its teammate performing a legible motion trajectory. In our task

we are not trying to max the P (G|trajectory), or probability of the goal given the

trajectory. Our goal is to recognize our teammate’s task which can be either search,

reach a waypoint, or loiter while waiting for a command.

Raghunathan and Baillieul have approached gesturing to signaling between mobile

robots in a control theoretic manner [3, 49, 50, 51]. The work decomposed signaling

into two parts: ability of the gesturing agent to generate a gesture as a motion and

ability of the receiving agent to perceive the gesturing and perceive it according to

a set. The work of Raghunathan and Baillieul [49] consider the relative motion of

two Dubins’ (two wheeled non-holonomic robots) vehicles in a plane and analyze the

transmission of a signal. The authors formulate the two tasks as a pair of nonlinear

control problems. The transmitting robot is required to track the states of the receiv-

ing robot and overlay the transmitted signal on the other motion mode for the receiver

robot. This way the receiver robot can sense the transmitted signal with an onboard

range sensor. The sensors considered are sonar, lidar, etc. and that the distance min

and max are set and the relative motion of the transmitter is within these bounds.

Between two robots, the transmitting robot must keep up with the receiver while

also trying to send a space curve signal. In the analysis of this setup they assume

the receiver only travels along the positive x-direction. The transmitting signals were

required to be spatially periodic and not of infinite duration and bounded so that

the separation between transmitter and receiver does not diverge. The transmitting

robot was assumed to traverse the entire spatial signal in finite time. The authors

do account for the gesturing limitations based on the dynamics of the non-holonomic

robots. The slope of the function in which signaling occurs cannot exceed the velocity

limits of the transmitting robot. A curve, C, is a feasible trajectory for the variable

speed Dubbins vehicle if there exists a control law pair in velocity and angular rate

which can steer it along C with no error. A finite extent curve C is observable under
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an observation model if one can reconstruct C perfectly after observing it using the

observation model for a finite duration. The types of curves studied were sinusoidal

signals [49], Fourier cosine series [50], and Chebyshev polynomials of the first kind

[51].

An important facet of this work is the ability to distinguish signals between each

other. Raghunathan and Baillieul [50] use the Euclidean distance (L2 norm) between

relative distances between two vehicles throughout a specific length trajectory. Then

define a lower-bound between the distance between two signals that the receiver can

identify under perfect observation and imperfect but bounded tracking control. This

is all accomplished without noisy observations.

Raghunathan and Baillieul [51] extended their previous work to a fully distributed

strategy. The system first requires a motion based signaling protocol which is a se-

quence of pre-determined motions. The next requirement is a signaling control law

to achieve the signaling protocol. They explore several scenarios, including signaling

to a stationary receiver. Other scenarios include two robots traveling inline and the

modulation of distance of the trailing vehicle. A third scenario is a trailing trans-

mitter trailing at an angle. At first a syncing period starts where the transmitting

robot follows in parallel without any modulation. After this pre-specified time, the

transmitter will modulate their trajectory to signal which will be followed by another

purely parallel track to indicate termination of the signal. In this work the authors

introduced that the receiver acknowledge, through some motion, to the transmitter

that it has seen the herald (also called synching). The authors use a codebook β

composed of a finite number of polynomials from the set of Chebyshev polynomials

of the first kind. The polynomials have a desired property that guarantees bounds

on the minimum and maximum separation between the two agents. The polynomials

are scaled to ensure proper tracking performance which is determined by certain cur-

vature and slope bounds. This work is improved over their own previous literature in
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that it concatenated 4 polynomials together rather than just one signal.

The work of Raghunathan and Baillieul is looking at specifically signaling between

two robots using relative motion. They are not also attempting to perform a task such

as search or circle loiter. Additionally, their formulation only specifies single valued

functions. Any curve that can have two values along the x-axis is not available. For

example, in our work we have a circle loiter as a task which is not capable of being

represented.

Jones and Anderson [26] introduced control policies for trajectories that optimized

a joint expression of control energy and robustness to observation noise for the linear

time invariant case. The authors look at several aspects of such a system. The cost of

transmission of a symbol is the energy of a control signal. They define the expected

cost of transmission for the set of symbols as the summation of the cost to transmit

a signal multiplied by the probability of transmitting that signal for all signals. The

distinguishability of two symbols is the integrated euclidean distance between each

timestep. Based on their formulation they assume that the two symbols are of equal

duration. They use the L2 (Euclidean) norm. The total distinguishability then is

the summation of every pair of distinguishability measures. The authors formulate

the optimal control problem as minimizing the control input with weights emphasiz-

ing the importance of minimizing the expected control energy and maximizing the

distinguishability. The authors use LQR framework to find minimum energy and

maximum separation trajectories for encoding signals in motion. They do note that

the LQR framework is limited in the number of symbols it can support. There was

no observation noise and the trajectories were assumed to be fully controllable and

fully observable.

This dissertation not only seeks to recognize trajectories for different tasks but

also to modify them for improved recognition accuracy. We will use intended recogni-

tion as described by Kanno et al. [28] as occurring when the observed agent is aware
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of the observer and actively cooperates. The modification of trajectories is similar

to state of the art in human gesture recognition schemes such as MAGIC 2.0 [29].

MAGIC allows designers and users to introduce and modify gestures for improved

recognition accuracy. The MAGIC 2.0 system can even recommend alternative ges-

tures to a human designer based on new gesture confusion. In a similar fashion, a

team of autonomous vehicles will begin with a set of template trajectories that ac-

complish a set of tasks. If there is need for recognition accuracy improvement, then

our framework will adapt those trajectories so that they are capable of being followed,

still perform desired tasks, and increase recognition accuracy.
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CHAPTER III

PROTOTYPICAL TASKS

The types of trajectories or behaviors used in this work are standard for manned,

unmanned, and autonomous vehicles. In particular, we focus on maneuvers performed

during Search and Rescue (SAR) and Intelligence Surveillance and Reconnaissance

(ISR) missions. The standard for search and rescue is the International Aeronautical

and Maritime Search and Rescue Manual (IAMSAR) [45] which is published by both

the International Maritime Organization (IMO) and the International Civil Aviation

Organization (ICAO). The IAMSAR is supplemented by organizations such as the

U.S. National Search and Rescue Committee [57] and the U.S. Coast Guard [19].

Military branches also publish their own SAR procedures such as the NAVY’ Search

and Rescue Tactical Information Document (SAR TACAID) [34]. These documents

outline the procedures for coordinating search and rescue operations which includes

different search patterns based on target type and last location information along

with the sensors being deployed including the number and type of searching vehicles.

Of concern in this work are the search patterns performed by one vehicle such as

parallel track search, seen in Figure 4, and creeping line search. The parallel track

search pattern is used when the search area is large and the goal is uniform coverage.

The creeping line pattern is performed when the search area is narrow and the target

is assumed to be close to the closest start point. It is important to keep in mind that

search patterns are also referred to as survey or broad-area coverage. These search

patterns are standard and have been used for Anti-Submarine Warfare (ASW) as well

[23]. For example, in addition to be used for search to conduct a radar/FLIR/MAD

search, the same patterns can be used to lay down sonobuoys. In addition to search

22



SEARCH PAT TERNS (Cont.)

PAR AL LEL SEARCH PAT TERNS

Par al lel pat terns are nor mally used in the mar i time re gion when the 
search area is large, only the ap prox i mate po si tion of the tar get is
known, and a uni form cov er age is de sired.
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Figure 4: Parallel Track Search Pattern credit Navy SAR [34]

patterns we also use the loiter maneuver. In general, loitering is a maneuver that

involves the vehicle cruising for a certain duration over a small region. In general

aviation, loitering is a phase of flight that typically occurs at the end of a flight while

the vehicle is waiting for clearance to land. In a military context, a loiter may occur

over a known target location or during a search operation depending on the type of

target and sensors involved.

Unmanned and autonomous vehicles have adopted the standard SAR and ISR ma-

neuvers. The NATO Standardization Agreement (STANAG) 4586 [10] has standard-

ized the way in which current and future UAVs in NATO Combined/Joint Services

operational environments communicate with each other and their required capabili-

ties. These capabilities include the standard communications and tracking of search

patterns and loiter patterns such as circle, racetrack, figure 8, figure 8 with a bearing,

racetrack with a bearing, etc. Example loiter patterns implemented in STANAG 4586

are seen in Figure 5. Loitering is of particular importance for autonomous aerial ve-

hicles as it is one of their strengths that they can stay at station longer than manned

vehicles while performing area overwatch. AUVs loiter for specific reasons due to their

environment including difficulties in communication [68]. If an AUV were to simply

stop its motion then the current may move the vehicle from its intended resting po-

sition. Additionally, an AUV may be neutrally buoyant at different depths making
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Figure 5: Implemented Loiter Patterns credit STANAG 4586 [10]
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recovery more difficult if it stops moving and then drifts away. Loitering can be per-

formed because it has been commanded and so that data transfer or further mission

parameters can be communicated. When a mission aborts and is not required to im-

mediately surface. Also, loitering occurs upon mission completion. During a mission,

there may be several loiter locations based on time outs towards a waypoint. For ex-

ample, a vehicle may not make it to a waypoint within 5 minutes and thus will switch

into loiter at a specific location. The loitering at these specified locations allow for

the mission not to be totally abandoned and allows for new mission parameters to be

received from the control station. Beyond certain waypoints having a failsafe loiter

location, segments of a trajectory may also have a loiter location specified. This al-

lows for the AUV to switch to loitering in the shortest amount of time as the loitering

points are themselves close to the current segment being travelled. This additionally

allows command and control to quickly determine at which point in the mission the

AUV was in based on the loiter point.
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CHAPTER IV

FOUNDATIONAL WORK: RECOGNITION OF

TEAMMATE TRAJECTORIES

In this chapter we present experiments in recognizing teammate trajectories from dif-

ferent sensors and team coordination strategies. The ability to recognize robot team-

mate tasks would be beneficial in communication denied environments [35]. This work

is drawn from previous publications [39, 40, 42, 43]. While this foundational work

demonstrates trajectory recognition of common autonomous vehicles tasks, there are

situations in which the recognition accuracy is below an acceptable level for deploy-

ment. It is exactly these situations that motivate the concept of adapting the acting

vehicle’s trajectories for improved recognition accuracy. This is directly addressed

with the introduction of the trajectory adaptation for recognition (TAR) framework

in Chapter 6.

4.1 Introduction

This chapter focuses on trajectory recognition in an underwater application as a

substitute for communicating through acoustic transmissions, which can be unreli-

able. The importance of this work is that sensor information regarding other agents

can be leveraged to perform trajectory recognition, which is activity recognition of

robots performing specific programmed behaviors, and task-assignment. This work

illustrates the use of Behavior Histograms, Hidden Markov Models (HMMs), and

Conditional Random Fields (CRFs) to perform trajectory recognition. We present

challenges associated with using each recognition technique along with results on in-

dividually selected test trajectories, from simulated and real sonar data, and real-time
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recognition through a simulated mission.

Figure 6: An AUV using its forward-looking sonar to Track & Trail a leader AUV in
order to perform trajectory recognition.

The motivation for this work is the need for multiple small AUVs to perform

autonomous research operations in underwater environments such as Georgia Tech

Research Institute’s Yellowfin AUV [67] research platform, seen in Figure 7. Because

of the vehicle’s size, power constraints, and operating environment, communication

bandwidth is limited. We envision a cooperation system similar to that proposed by

Novitzky [35] which will utilize auction-based methods augmented with prediction of

teammate tasks during periods of degraded communication. If the confidence in a

prediction of a teammate’s task is low, then an AUV can perform prediction verifica-

tion, illustrated in Figure 6, through trajectory recognition, as suggested by Baxter

et al. [5]. Additionally, this handles the situation where an AUV may have been

assigned a task only to discover another agent already performing the task but not

communicating. The work in this chapter specifically focuses on whether trajectory

recognition of an AUV is possible using Behavior Histograms, Hidden Markov Models

(HMMs), or Conditional Random Fields (CRFs) and which is more suitable for the

system described above.

Unlike previous trajectory recognition work in the AUV domain, our work does
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Figure 7: Yellowfin Autonomous Underwater Vehicle - designed to be man-portable
for oceanographic observation.

not rely on trajectories provided through post-mission analysis nor only through sim-

ulation. Furthermore, it performs trajectory recognition of an AUV through the use

of a simple discretization method, resulting in only one feature, on both simulated

trajectories and actual sonar data comparing the results of a method using Behavior

Histograms, HMMs, and a CRF.

While this work uses high-frequency sonar data to validate the ability to perform

trajectory recognition of autonomous underwater vehicles, it is feasible to use other

sensor modalities. Airborne LIDAR has been used for bathymetry, underwater mine

detection from helicopters, and shallow underwater target detection from surface

vessels [25, 32, 63]. Thus, it is feasible that Airborne LIDAR could be used by a

heterogenous teammate in the form of an autonomous aerial platform to detect the
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Figure 8: In (a) an AUV’s location over time is used to determine its global yaw.
The change in global yaw from one time step to the next is encoded as an integer
value which represents a given range, as seen in (b). The three trajectory recogni-
tion methods are Behavior Histograms, Hidden Markov Models, and a Conditional
Random Field, as seen in (c), (d), and (e), respectively.

location of an AUV. Another source of teammate localization data underwater is

through the use of hydrophone arrays which have been capable of localizing targets

and AUVs [15]. Thus, a teammate capable of interfacing with a hydrophone array

can perform trajectory recognition from a remote location.

4.2 Trajectory Discretization

The encoding method used is agnostic to any environment. The only measurement

required is the location x = (x, y) coordinates of an AUV in a fixed 2D plane, as seen

in Figure 8a. The motion model of the AUV is assumed to be non-holonomic and

always moving with a forward motion similar to a tricycle model. The yaw of the

AUV is calculated from the vector of motion from one measurement to the next.

∆x(t−1,t) = xt − xt−1 (1)

θt = arctan(∆x(t−1,t)) (2)
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∆θt = θt − θt−1 (3)

The encoding used in this research is the change in yaw between measurements.

Possible changes in yaw are discretized according to bins, as seen in Figure 8b. Each

bin corresponds to a range of values. Bin 3, for example, represents a change in yaw

between -0.12 and +0.12 rad. As seen in Figure 8b, an AUV moving straight ahead

is observed as having no change in yaw and thus encoded as a 3 while one turning by

0.26 rad is encoded as a 2. A series of these encodings are combined into a trajectory

string for input into the Behavior Histograms, Hidden Markov Models (HMMs), or

the Conditional Random Field (CRF).

4.3 Recognition Methods

This chapter focuses on trajectory recognition of an AUV performing the trajectories

GoToWaypoint, Loiter, and SearchPattern, which can be seen in Figure 9. The Go-

ToWaypoint is the simplest of the three trajectories as the AUV proceeds from its

current location to a defined waypoint. The Loiter trajectory is performed while wait-

ing for instructions and is created by the AUV following a set of waypoints placed

along the perimeter of an octagon. The SearchPattern trajectory is typically per-

formed while trying to cover a rectangular area by following waypoints placed along

evenly separated segmenting lines. In this chapter, we assume the trajectories are

performed atomically, meaning no other behaviors are running in parallel. In general,

observations are labeled as Z = {z1, ..., zT} where the index represents successive

time steps. In our domain zt contains an integer value of the change in yaw of the

AUV, described above. In the HMM method each hidden state H may not have an

explicit definition. In the CRF method the labels Lt are drawn from one of the three

trajectory labels. Trajectory recognition is the ability for each method to determine

one of the three trajectories as the most likely being observed. Accuracy is defined

as the recognition method properly identifying the trajectory being observed.
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4.3.1 Histogram Matching

The baseline recognition method uses histogram matching. After a given trajectory

is discretized, as described previously, a histogram is created from the possible en-

codings. As an example, if a trajectory is discretized into five possible changes in

yaw then a histogram of that trajectory will have five bins, as seen in Figure 8c. The

height of each bin will reflect the frequency of that change in yaw throughout the

trajectory. Each histogram is normalized.

4.3.1.1 Template Histogram

A template histogram is made for each trajectory that we wish to recognize. A

training set of trajectory instances are discretized and a normalized histogram is

made for each trajectory. A template histogram is then created by taking the mean

of all the training instances for each bin.

4.3.1.2 Recognition using Histogram Intersection

Histogram intersection is used to determine the match value for each template tra-

jectory histogram Bj to a given trajectory instance histogram Bk:

Intersection : Bj, Bk =
n∑
i=1

min(Bj(i), Bk(i)) (4)

where each histogram has n total bins. A score of 1 means both histograms are an

exact match, while a score of 0.5 is a partial match, and a score of 0 is a total mis-

match. Trajectory recognition is performed by taking the intersection of a trajectory

instance with each template histogram. The given trajectory instance is classified as

the template histogram resulting with the highest histogram intersection.

4.3.2 Hidden Markov Model

In this approach to the recognition problem, each trajectory is modeled using a sep-

arate Hidden Markov Model (HMM). Each HMM is first trained on example tra-

jectories of a specific behavior. The trained HMM is then given test trajectories to
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determine the log-likelihood that the test trajectory was generated by that trajectory.

4.3.2.1 Training

The Hidden Markov Model (HMM), as seen in Figure 8d, is composed of hidden states

and observations [48]. In Figure 8d the hidden states are labeled with H1...Hn while

the observations are labeled z1...zt. A random process can be in any one of the hidden

states and can emit any one of the observations. In this work the observations consist

of the labeled changes in yaw, ∆θ. The number of hidden states for each HMM are

empirically determined. An HMM must learn the transition probabilities between

hidden states, ai,j = P (ht+1 = j|ht = i), the probabilities that a hidden state may

produce an observation, bj,k = P (zt = k|ht = j), and the initial state distribution,

πj = P (h1 = j). The compact notation λ = (A,B, π) represents the complete param-

eter set of an HMM. The Baum-Welch algorithm estimates the maximum likelihood

of the parameters, λ, when given a corpus of training data, Z, λ̄ = maxλP (Z|λ).

4.3.2.2 Testing

The probability of an observation sequence, Z, given an HMM trained on a trajectory,

λ,

P (Z|λ) =
∑
allH

P (Z|H,λ)P (Z|λ) (5)

is efficiently produced by the forward algorithm [48]. This produces a log-likelihood

that a test trajectory instance was produced by the trajectory it was trained upon

[48]. A trial consists of an instance of a trajectory being tested against each possible

HMM. At each trial, the HMM producing the maximum log-likelihood is determined

as the representative trajectory of the trial. If the representative trajectory matches

the true test instance label, then it is logged as a positive identification. The accuracy

of each trained HMM is the number of positive identifications over the entire corpus

of similarly labeled instances.

32



4.3.3 Conditional Random Field

As seen in Figure 8e, conditional random fields (CRFs) are undirected graphical

models and are commonly used for structured classification [31]. CRFs are built from

a vector of weights and a vector of features. Features take the form fi(t, lt−1, lt, Z)

where i is an index into the feature vector f and t is an offset into the sequence, lt−1

and lt are values of the label pair at time t− 1 and t, respectively. Z represents the

entire observation sequence across all values of t. In both the following subsections,

ΦZ =
∑
L

T∏
t=1

exp(wTf(t, lt−1, lt, Z)) (6)

is a normalizing constant.

4.3.3.1 Training

Training of CRFs is performed by finding a weight vector w∗ that maximizes the

conditional log-likelihood of labeled training data:

L(L|Z;w) = wTf(t, lt−1, lt, Z)− log(ΦZ) (7)

w∗ = arg max
w
L(L|Z;w) (8)

4.3.3.2 Testing

The conditional probability of a label sequence given an observation sequence is com-

puted from the weighted sum of the features as:

P (L|Z) =
1

ΦZ

T∏
t=1

exp(wTf(t, lt−1, lt, Z)) (9)

The most likely trajectory label l is assigned to each observation for each test instance

presented to the trained CRF.

4.4 Experiments

We performed experiments in two scenarios: a stationary observer and a Tracking &

Trailing observer that followed the vehicle of interest. The stationary experiments
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(a) Noisy SearchPattern. (b) Noisy Loiter. (c) Noisy GoToWaypoint.

Figure 9: Noisy versions of the template trajectories are depicted in (a), (b), and (c).

were first performed using trajectory data gathered through simulation and then

using a stationary forward-looking sonar. In order to test our method with two

AUVs, trajectory data was gathered in simulation with one Tracking & Trailing a

leader vehicle. The final set of experiments was performed with the three trajectory

recognition techniques receiving data in real time from a simulated mission.

4.4.1 Stationary Observer

4.4.1.1 Simulation

MOOS-IvP, a widely used behavioral architecture for real and simulated AUVs, is

used to generate the simulated trajectory data [8]. The trajectories GoToWay-

point, Loiter, and SearchPattern are run within iMarineSim and viewed through

pMarineViewer, which are tools included in MOOS-IvP. The locations of the AUVs

are recorded as each trajectory is executed, providing a template trajectory. In or-

der to create more realistic results, the template trajectories undergo rotation and

translation transformations and are injected with Gaussian noise. Variations of each

trajectory template are created as they undergo a random assignment of transfor-

mations, including changes in rotation and translation along with an injection of

cumulative Gaussian noise with random assignments of standard deviation ranging

from 0 to 0.25, as seen in 19a, 19b, and 19c. This will demonstrate that our methods

are agnostic to the environment as they are robust to rotations and translations and

environmental noise. The global change in yaw for these experiments is discretized
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into seven bins with a spread of four degrees per bin.

4.4.1.2 Real Sonar Data

For our real sonar data experiments, a surrogate vehicle called the VideoRay ROV is

used instead of the Yellowfin AUV due to space limitations in our testing tank, the

Acoustic Water Tank facility of the Georgia Tech Woodruff School of Mechanical En-

gineering. The testing tank is 7.62 meters deep, 7.62 meters wide, and 10.36 meters

(a) VideoRay ROV. (b) Inverted Sonar Image.

Figure 10: The VideoRay ROV is seen in (a). An inverted sonar image of the Video-
Ray ROV along with false positive noise is seen in (b). The largest object is assumed
to be the target ROV while the smaller objects are noise.

long. The VideoRay is a modified Pro 4 model ROV from Video Ray LLC. which in-

cludes the addition of Yellowfin subsystems such as the WHOI acoustic micro-modem

and a BlueView forward looking sonar, as seen in Figure 10a. The experiments were

conducted with a BlueView forward-looking sonar positioned statically in a corner

while it recorded the location of a human piloted VideoRay ROV. Throughout the

experiment, the VideoRay ranged between 1 to 10 meters from the BlueView sonar.

For these experiments, the perception algorithm makes the simplifying assumptions

that there is only one relevant object in the scene, the VideoRay, and that it will

always be in the FOV of the sonar. The VideoRay operators were asked to perform

multiple runs of three trajectories, GoToWaypoint, Loiter, and SearchPattern.
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(a) Sonar SearchPattern. (b) Sonar Loiter. (c) Sonar GoToWaypoint.

Figure 11: Real trajectories captured by a BlueView forward-looking sonar of an
AUV performing SearchPattern, Loiter, and GoToWaypoint are seen in (a), (b), and
(c), respectively.

The BlueView forward-looking sonar provides an image with intensity values cor-

responding to the acoustic response of a surface, as seen in Figure 10b. The more

intense a pixel, the more likely that an object exists at that location. In order to

smooth the ROV’s trajectory, only every ith frame is used, here i = 10. This reduces

the number of outliers significantly as the sonar data is extremely noisy. Edges are

found in the sonar image which are used to create contours. The contour with the

largest area is assumed to be the ROV, as we assume that only the ROV is in the

image and the smaller contours are noise. The API of the BlueView sonar then pro-

duces the range and bearing of the center pixel relative to the sonar itself. Range and

bearing are then converted to x and y coordinates to produce trajectories, as seen

in Figure 11. In this form, the discretization process converts location to global yaw

then to change in yaw as described above. In this experiment, the global change in

yaw is discretized into five bins with a spread of four degrees each.

4.4.2 Track & Trail

In order to test our methods with a non-stationary observer, testing was performed

on simulated data with one AUV performing Track & Trail of a leader performing a

trajectory, as seen in Figure 6. As in the experiments above, the MOOS-IvP simulator

is used to generate template trajectories of a leading AUV performing GoToWaypoint,
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Loiter, and SearchPattern while an observing AUV performs Track & Trail.

In order to use the change in yaw method of encoding, the template trajectories

of each vehicle are used to produce the pose (x, y, θ) of the trailing vehicle along with

range and bearing to the lead vehicle. Using this information allows the trailing AUV

to reconstruct the leading AUV’s trajectory which will be discretized for use in trajec-

tory recognition. In order to create more realistic results, the original measurements

of the trailing AUV’s location (x, y, θ) along with range and bearing to the leader

AUV are injected with Gaussian noise, similar to those seen in 19a, 19b, and 19c.

This more accurately represents the uncertainty an AUV will have of its own location

and the uncertainty of the location of the target AUV present in sonar data. In this

experiment, the global change in yaw is discretized into seven bins with a spread of

four degrees each.

4.4.3 Real-Time Recognition

In order to test our methods performing recognition in real-time, an example survey

mission was simulated in MOOS-IvP, as seen in Figure 12. The mission consisted of

an AUV performing a repeated survey of an area. First, the AUV performs the Loi-

ter trajectory as it awaits the start mission order. In transit to the survey location,

the AUV performs the GoToWaypoint trajectory. Once it arrives at the appropriate

coordinates, the AUV begins the SearchPattern trajectory of the area. At the termi-

nation of the SearchPattern trajectory, the AUV performs GoToWaypoint trajectory

to return to the start of the survey coordinates to perform a second SearchPattern

trajectory.

Each trajectory recognition method had slight modifications for real-time recog-

nition. The CRF produces a histogram of each behavior ID and if a single trajectory

was above a threshold of 70% then it was labelled as that trajectory. If no trajectory

was above 70% then the CRF system returned no label. The HMM method produces
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Figure 12: Simulated survey mission in which the AUV loiters, proceeds to a location,
and then performs SearchPattern of a specific area. The three trajectory recognition
techniques label the trajectories in real-time.
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a negative log-likelihood that a learned trajectory HMM produced the trajectory

found in the trajectory window. The larger the negative log-likelihood, closer to zero,

the more likely that trajectory template produced the trajectory seen in the window.

The HMM method was sensitive to the number of hidden states used to represent

a trajectory. A manual tuning process resulted in all the HMMs having the same

number of states. The behavior histogram method produced an intersection value

for each trained trajectory. A value of one meant that the trajectory in the window

was a perfect match for the behavior histogram and anything less meant it was less

like the trained behavior histogram. In the simulated survey mission each trajectory

was labelled by hand, including an extra label for transitions between trajectory.

The results for the real-time trajectory recognition experiments are the percentage of

correctly labeled trajectories versus those incorrectly labeled.

4.5 Results

The results of three different sources of data are analyzed and presented below. The

accuracy of the Behavior Histogram, Hidden Markov Model (HMM), and Conditional

Random Field (CRF) methods are considered for each data source. Accuracy is

defined as the trajectory recognition method correctly identifying the trajectory with

its true label.

4.5.1 Stationary Observer

4.5.1.1 Simulation

As seen in Table 1, each method was trained on a specific trajectory using a corpus

of 600 instances of trajectories generated by running the behavior offline. A total

of 400 trajectories from each template, for a total of 1200 instances, were presented

to the three methods for classification. The trajectories were generated by inserting

Gaussian noise with a standard deviation of 0.25 on the location. As is seen in Table 1,

the Behavior Histogram method was able to achieve an accuracy of 84.25%, 99.25%,
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and 65% for SearchPattern, Loiter, and GoToWaypoint, respectively. The HMMs

performed well for SearchPattern, Loiter, and GoToWaypoint as they were able to

accurately discriminate trials by 100%, 99.25%, and 96%, respectively. The CRF had

100% accuracy on all three trajectories. As seen in Table 2, the confusion matrix for

the Behavior Histogram shows that 63 instances of SearchPattern were confused with

GoToWaypoint, while GoToWaypoint was confused with SearchPattern and Loiter.

For the three trajectories, the HMM method had the most difficulty in discriminating

GoToWaypoint, recognizing 16 instances of that trajectory as SearchPattern.

Table 1: Accuracy of Simulated Stationary Trajectory Recognition.

Trajectory Training Testing Histogram HMM CRF
SearchPattern 600 400 84.25% 100.00% 100.00%
Loiter 600 400 92.25% 99.25% 100.00%
GoToWaypoint 600 400 65.00% 96.00% 100.00%

Table 2: Confusion Matrices Simulated Stationary Data.

Recognized Trajectory
SearchPattern Loiter GoToWaypoint

Histogram

A
ct

u
al

T
ra

je
ct

or
y

SearchPattern 337 0 63
Loiter 31 369 0
GoToWaypoint 121 19 260

HMM
SearchPattern 400 0 0
Loiter 0 397 3
GoToWaypoint 16 0 384

CRF
SearchPattern 400 0 0
Loiter 0 400 0
GoToWaypoint 0 0 400

4.5.1.2 Sonar Data

As seen in Table 3, each method was trained on real sonar data while an ROV

performed a specific trajectory using a corpus of 21 instances for SearchPattern, 23

instances for Loiter, and 14 instances for GoToWaypoint. A total of 38 instances
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were presented to each method for testing. The HMM discrimination method had

the best accuracy of 100%, 68.75% and 100%, respectively. The Behavior Histogram

method had an accuracy of 75%, 68.75%, and 90%. The CRF performed worse than

both the other methods with recognition of SearchPattern, Loiter, and GoToWay-

point with accuracy of 75%, 68.75%, and 80%, respectively. As seen in Table 4, the

Behavior Histogram method misidentified one instance of SearchPattern with Loiter

and two as GoToWaypoint. Its worst performance was misidentifying four instances

of Loiter as SearchPattern and one instance as GoToWaypoint. The HMM method

only had errors in recognizing Loiter with five instances being identified as SearchPat-

tern. The CRF method performed similarly to the HMM method in misinterpreting

Loiter as SearchPattern. Additionally, the CRF method identified one instance of

SearchPattern as Loiter and two instances as GoToWaypoint. The CRF method’s

best performance on the real sonar data was in recognizing GoToWaypoint as it only

mis-identified two instances as Loiter.

Table 3: Accuracy of Sonar Trajectory Recognition.

Trajectory Training Testing Histogram HMM CRF
SearchPattern 21 12 75.00% 100.00% 75.00%
Loiter 23 16 68.75% 68.75% 68.75%
GoToWaypoint 14 10 90.00% 100.00% 80.00%

4.5.2 Track & Trail

As seen in Table 5, using the change in yaw of the leading vehicle as a discretization

method resulted in sufficient accuracy as most of the accuracy was above 90%. The

results are from inserting Gaussian noise with a standard deviation of 0.75 on the lo-

cation (x, y, θ) of the trailing vehicle, range and bearing to the leader. The Behavior

Histogram method had an accuracy of 97.5%, 96.25%, and 56.25% of SearchPattern,
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Table 4: Confusion Matrices Stationary Sonar Data.

Recognized Trajectory
SearchPattern Loiter GoToWaypoint

Histogram

A
ct

u
al

T
ra

je
ct

or
y

SearchPattern 9 1 2
Loiter 4 11 1
GoToWaypoint 1 0 9

HMM
SearchPattern 12 0 0
Loiter 5 11 0
GoToWaypoint 0 0 10

CRF
SearchPattern 9 1 2
Loiter 5 11 0
GoToWaypoint 0 2 8

Loiter, and GoToWaypoint, respectively. The HMM discrimination method had accu-

racy of 97.25% with SearchPattern, 94.75% with Loiter, and 95.25% with GoToWay-

point. The CRF discrimination method had the best accuracy of discrimination of

SearchPattern, Loiter, and GoToWaypoint with accuracy of 99.50%, 99.75%, and

99.75%, respectively. As seen in Table 6, the CRF method only had at the worst

case two mis-recognitions of SearchPattern versus the HMM method which had a

best case of only 11 mis-recognitions and the Behavior Histogram method had 175

mis-recognitions of GoToWaypoint.

Table 5: Accuracy of Simulated Track & Trail Trajectory Recognition.

Trajectory Training Testing Histogram HMM CRF
SearchPattern 600 400 97.50% 97.25% 99.50%
Loiter 600 400 96.25% 94.75% 99.75%
GoToWaypoint 600 400 56.25% 95.25% 99.75%

4.5.3 Real-Time Recognition

As seen in Tables 7, 8, 9, and 10, the three trajectory recognition methods were

able to recognize the behaviors in real-time during the simulated survey mission with

varying success. The discretization of the change in yaw for each run was performed

every two seconds with nine bins each representing eight degrees of change in yaw.

Experiments were performed with varying trajectory window sizes. In Table 7, all
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Table 6: Confusion Matrices Simulated Track & Trail Data.

Recognized Trajectory
SearchPattern Loiter GoToWaypoint

Histogram

A
ct

u
al

T
ra

je
ct

or
y

SearchPattern 390 0 10
Loiter 8 385 7
GoToWaypoint 116 59 225

HMM
SearchPattern 389 0 11
Loiter 1 379 20
GoToWaypoint 13 6 381

CRF
SearchPattern 398 2 0
Loiter 1 399 0
GoToWaypoint 0 1 399

three trajectory recognition techniques were tested with a trajectory window size

of 40 observations. The HMM method fared the worst of the three methods as

it was unable to recognize the GoToWaypoint behavior while also only recognizing

75.46% of the Loiter trajectory. The CRF performed better as it was able to identify

93.14%, 86.79%, and 50.97% of SearchPattern, Loiter, and GoToWaypoint behaviors,

respectively. The behavior histogram method fared the best overall as it was above

90.0% accuracy for both the SearchPattern and Loiter trajectories but only had a

65.05% accuracy for the GoToWaypoint trajectory. Increasing the trajectory window

size to 55 observations for all three methods decreased their performance across the

board, as seen in Table 8.

The HMM method proved to be fragile in relation to the trajectory window size.

Several experiments were performed with varying trajectory window sizes for each

behavior HMM. As seen in Table 9, by adjusting the trajectory window size of the

trajectory presented to the SearchPattern, Loiter, GoToWaypoint HMMs to 70, 70,

and 25, respectively, increased the accuracy of the HMM method in recognizing Go-

ToWaypoint from 0.0% to 32.91%. The accuracy in determining the GoToWaypoint

trajectory increased to 49.71% by decreasing the trajectory window size even more to

10 observations, as seen in Table 10. There was a slight decrease in the accuracy of
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the HMM method in recognizing both SearchPattern and Loiter in the 70,70,25 and

70,70,10 window size conditions compared to 40 and 55 window sizes which is a reflec-

tion of the window size and interplay between the negative log-likelihood produced

by each behavior HMM.

Table 7: Percentage Confusion Matrices Real-Time Simulated Survey Mission (Win-
dow Size 40, HMM with 7 states).

Recognized Trajectory
SearchPattern Loiter GoToWaypoint NoLabel

Histogram

A
ct

u
al

T
ra

je
ct

or
y

SearchPattern 91.49 0.00 8.51 0.00
Loiter 8.16 90.31 0.00 1.53
GoToWaypoint 8.74 26.21 65.05 0.00
Transition 61.46 0.00 0.00 38.54

HMM

SearchPattern 95.82 0.00 0.00 4.18
Loiter 21.63 75.46 0.00 2.91
GoToWaypoint 52.43 2.52 0.00 45.05
Transition 58.33 0.00 0.00 41.67

CRF

SearchPattern 93.14 0.36 5.21 1.29
Loiter 4.80 86.79 0.00 8.42
GoToWaypoint 14.47 24.85 50.97 9.71
Transition 53.33 4.90 0.00 41.77

4.6 Discussion

The work presented here demonstrates the ability of the three trajectory recognition

systems to work relatively well when static testing data is provided. The Hidden

Markov Models (HMM) method resulted in sufficient performance with static data as

most of the recognition accuracy was above 90%. Using Behavior Histograms resulted

in the worst performance of the three methods in both the simulated stationary data

and the simulated Track & Trail data while performing slightly better than the CRF

method in the sonar data. It is not surprising that the baseline method, Behavior

Histogram, is the worst performer when compared to the other two methods as it

only takes the frequency of the changes in yaw into account making it less suitable

for time series data. Using the Conditional Random Field method resulted in better
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Table 8: Percentage Confusion Matrices Real-Time Simulated Survey Mission (Win-
dow Size 55, HMM 7 states).

Recognized Trajectory
SearchPattern Loiter GoToWaypoint NoLabel

Histogram

A
ct

u
al

T
ra

je
ct

or
y

SearchPattern 86.08 0.00 13.92 0.00
Loiter 5.10 85.71 0.00 9.18
GoToWaypoint 15.53 35.92 48.54 0.00
Transition 61.46 0.00 0.00 38.54

HMM

SearchPattern 94.33 0.00 0.00 5.67
Loiter 22.55 66.94 0.00 10.51
GoToWaypoint 42.14 1.75 0.00 56.12
Transition 55.52 0.00 0.00 44.48

CRF

SearchPattern 84.90 0.00 10.88 4.23
Loiter 4.80 78.47 1.33 15.41
GoToWaypoint 16.89 24.56 41.94 16.60
Transition 47.29 0.00 2.92 49.79

Table 9: Percentage Confusion Matrix Real-Time HMM 7 States Variable Window
Sizes 70,70,25

Recognized Trajectory
SearchPattern Loiter GoToWaypoint NoLabel

A
ct

u
al

SearchPattern 92.73 0.00 0.08 7.19
Loiter 20.87 60.97 0.00 18.16
GoToWaypoint 31.07 0.87 32.91 35.15
Transition 58.54 0.00 0.00 41.46

performance than the HMM method when there was ample training data available,

as in the simulated stationary observer data or the simulated Track & Trail data.

However, the CRF method performed poorly in discrimination of the real sonar data.

Due to the small sample size of real sonar data it may be an indication of under-

training the CRF. However, all the methods struggled with discriminating the Loiter

trajectory in the real sonar data set. It is possible that the sonar-captured Loiter

trajectory should be further separated into counter-clockwise and clockwise Loiter as

that could be the reason for the methods performing poorly. This is in contrast to

the simulated Loiter trajectories which only performed them in the counter-clockwise

direction.

45



Table 10: Percentage Confusion Matrix Real-Time HMM 7 States Variable Window
Sizes 70,70,10

Recognized Trajectory
SearchPattern Loiter GoToWaypoint NoLabel

A
ct

u
al

SearchPattern 90.75 0.00 4.51 4.74
Loiter 20.87 60.97 0.00 18.16
GoToWaypoint 28.93 0.87 49.71 20.49
Transition 56.35 0.00 2.19 41.46

The three trajectory recognition techniques did not fare as well during real-time

recognition experiments as an ideal system would have above 90% accuracy for all

the trajectories. In general, the behavior histogram method performed the best.

This may be due to the lack of noise in the simulated mission trajectory. Both the

CRF and HMM methods poorly recognized the GoToWaypoint trajectory. When

using one trajectory window size for all trajectories, the CRF method performed

with more accuracy overall than the HMM method. In general, the HMM method

is more difficult to tune because the number of hidden states must be determined in

conjunction with the trajectory window size for each trajectory for best performance.

The poor overall results for all the trajectory recognition methods may be due to

the method in which the simulated mission trajectory is labelled. The real-time data

was labelled according to which trajectory the vehicle was running at the time of

discretization. This does not correspond to what a human can distinguish by looking

at the trajectory window. This will be a focus of our future research.

Discretization parameters for the change in yaw observations play a crucial role

in the success of trajectory recognition in these experiments. For example, an ex-

periment that discretizes the global change in yaw with five bins each with a spread

of four degrees has a limited resolution. Any change in yaw greater than six or less

than negative six degrees is placed into bins one and five, respectively. Thus, if a cru-

cial distinction between two trajectories occurs beyond these terminal edge bins they

will not be properly discriminated. The discretization parameters were empirically
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determined for each experiment. While simple, global changes of yaw by time as an

observation method is very susceptible to changes in speed. Alternatives are to use

an observation of changes in yaw by distance or describe higher level primitives such

as straight, left turn, and right turn as observations for our trajectory recognition

methods.

Future work includes further investigation of discretization and trajectory recog-

nition methods along with a larger data set. It may be possible that each trajectory

recognition method requires different change in yaw discrimination parameters for

improved accuracy. Alternatively, higher level motion primitives may increase ac-

curacy and robustness. Alternative recognition methods may be more appropriate.

Handwriting recognition has similarities with trajectory recognition with a long his-

tory and may yield improved methods [47]. Recognition should be verified with more

trajectories than the ones used in these experiments, as they are a small sample

representation. Future research will include adding noise to the simulated real-time

missions and a real-time mission with data gathered from actual vehicles.

4.7 Conclusion

This chapter demonstrates the use of Behavior Histograms, HMMs, and CRFs for

recognizing common trajectories performed by autonomous marine vehicles. The

common trajectories or tasks are SearchPattern, Loiter, and GoToWaypoint, which

can be seen through sonar data in Figure 11. The three trajectory recognition meth-

ods were compared on simulated trajectories and on actual sonar data. Two observing

teammate strategies were explored. The first was a static observing teammate which

had an overwatch of its acting teammate. The second strategy is the observing team-

mate performing Track&Trail of the acting teammate. Both strategies are plausible

given different sensing and teammate capabilities. While the experiments in this chap-

ter demonstrate the feasibility of performing trajectory recognition of teammates, it
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only focuses on the parameters and methods of the recognition algorithms. The ex-

periments in which the recognition algorithms have lower than preferred recognition

accuracy are what motivate the concept of adapting trajectories for improved recog-

nition performance. The trajectory adaptation for recognition (TAR) framework is

introduced in Chapter 6.
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CHAPTER V

FOUNDATIONAL WORK: ROBOT COOPERATION

THROUGH TRAJECTORY-BASED COMMUNICATION

This chapter explores the use of trajectory-based communication. Similar to the Hon-

eybee’s waggle dance, autonomous robots can signal a location of interest through a

performed trajectory. Recognition of these location signals can then be leveraged by

an observing autonomous teammate for continued mission success even in sporadic

communication. This work is drawn from previous publications [41, 38]. This foun-

dational work on leveraging recognition for trajectory-based communication demon-

strates the feasibility of such a team strategy. The difficulty though is that the

trajectory used for communicating the location of interest is created by a tedious

manual process. The cycle consists of manual adaptation of the trajectory, training

of the trajectory recognition method, and analysis of the results. The first issue with

the newly adapted trajectory is that the autonomous vehicle could not track the de-

sired waypoints due to either the vehicle dynamics or waypoint tracking parameters.

The second issue is that the adapted trajectory would not achieve the desired recog-

nition accuracy. These issues motivated the autonomous adaptation of trajectories

for improved recognition using the TAR framework which is described in detail in

Chapter 6.

5.1 Introduction

This chapter focuses on enabling multi-robot teams to cooperatively perform tasks

without the use of radio or acoustic communication. One key to more effective co-

operative interaction in a multi-robot team is the ability to understand the task and
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intent of other robots. This is similar to the honey bee “waggle dance” in which a bee

can communicate the orientation and distance of a food source, seen in Figure 17b.

In this similar manner, our heterogenous multi-robot team uses a specific trajectory

to indicate the location of mine-like objects (MLOs). Observed teammate action se-

quences can be learned to perform trajectory recognition and task-assignment in the

absence of communication. We apply Hidden Markov Models (HMMs) and Condi-

tional Random Fields (CRFs) to perform trajectory recognition as an approach to

task monitoring in the absence of communication in a challenging underwater envi-

ronment. In order to demonstrate the use of trajectory recognition of an Autonomous

Underwater Vehicle (AUV) in a cooperative task, we use trajectory-based techniques

for model generation and trajectory discrimination in experiments using simulated

scenario data. Results are presented demonstrating heterogenous teammate cooper-

ation between an AUV and an Autonomous Surface Vehicle (ASV) using trajectory

recognition rather than radio or acoustic communication in a mine clearing task.

The purpose of this research is to enable robot teams to cooperate in environ-

ments without communications. Many current decentralized coordination methods,

such as auctions or self-assignment, require teammates to broadcast their self-assigned

task/roles along with costs. By defining a task/role as a robot performing a trajectory

in a certain location, trajectory recognition can be used as task/role identification.

In the previous chapter, we have demonstrated the ability to perform trajectory

recognition of a limited number of static trajectories using simulation and real sonar

data. The research presented in this chapter extends our previous work by focusing

on a mine clearing task which includes teammate trajectory recognition so that im-

plicit communication can be leveraged. Similarly to honey bees performing a “waggle

dance” to indicate the direction and distance to a food source, our AUV will per-

form it’s own dance trajectory called the InfinityPattern to indicate the location of
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Figure 13: A Kingfisher ASV using its sonar to observe a Yellowfin AUV. The ASV
can use these observations to perform trajectory recognition of the AUV.

a mine-like object (MLO). Instead of traditional communications, the AUV uses in-

tended recognition [28] with the InfinityPattern trajectory, shown in Figure 18a, to

communicate the location of an MLO.

The goal of this work is to create a system that can efficiently operate with as

little explicit communication as possible. This chapter investigates the feasibility of

an ASV performing trajectory recognition of an AUV through a sonar, as illustrated

in Figure 13. Although [6] has used simulated sonar data and [5] has used post-

mission GPS trajectory analysis of an actual AUV for trajectory verification, little

or no research has attempted to perform cooperative behaviors based on trajectory

recognition in the underwater domain. Our method is presented using a simulation

of an Autonomous Surface Vehicle (ASV) performing cooperative trajectories by us-

ing trajectory recognition, with an HMM and CRF, of an Autonomous Underwater

Vehicle (AUV) in a mine-clearing task.
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Figure 14: Yellowfin Autonomous Underwater Vehicle - designed to be man-portable
for oceanographic observation.

5.2 Hardware Platform

The motivation for this work is the need for multiple small AUVs and ASVs to per-

form autonomous research operations in underwater environments. For example, the

Georgia Tech Research Institute (GTRI) has developed the Yellowfin AUV research

platform, as seen in Figure 14, and because of the vehicle’s size, power constraints,

and operating environment, communication bandwidth is limited.

The heterogeneous teammate of the Yellowfin AUV is the Kingfisher M100 ASV

made by Clearpath Robotics. The Kingfisher, as seen in Figure 17a, is designed

for environmental and civil engineers to be quickly deployable. It weighs 30 kg and

its dimensions are 1.27x1.27x0.52 meters. While they are not the fastest vehicles,

with a max speed of two meters a second, they do provide a stable platform capable

of keeping a station over a specified location. In addition, their size does allow for

a 11.5 lbs payload which is used by more capable sensors. In these experiments a

Garmin GPS module is used for localization and a Bullet WiFi system is used for

communications.

The autonomy software leverages the open-source MOOS-IvP software suite [8].

MOOS-IvP allows for rapid deployment of autonomous vehicles. The MOOS por-

tion, also called the MOOSDB, is a centralized database scheme for message passing
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between separate modules or programs. The IvP portion contains all the modules

needed for autonomy. These IvP modules includes the IvP-Helm which is responsible

for coordinating active behaviors. Other modules in the IvP tree include modules for

interfacing with the Kingfisher hardware such as the GPS, compass, and motors.

The base station for our experiments is a shoreside computer running the MOOS-

IvP module pMarineViewer [7]. The pMarineViewer displays a geo-referenced image

along with the locations of the autonomous vehicles. From the GUI, messages can be

sent to the IvP module of each vessel.

5.3 Methods

5.3.1 Trajectory Discretization

The encoding method used is agnostic to any environment. The only measurement

required is the location x = (x, y) coordinates of an AUV in a fixed 2D plane, as seen

in Figure 8a. The motion model of the vehicle is assumed to be non-holonomic and

always moving with a forward motion similar to a tricycle model. The yaw of the

vehicle is calculated from the vector of motion from one time-step to the next.

∆x(t−1,t) = xt − xt−1 (10)

θt = arctan(∆x(t−1,t)) (11)

∆θt = θt − θt−1 (12)

The encoding used in this research is the change in yaw between measurements.

Possible changes in yaw are discretized according to bins. Each bin corresponds to

a range of values. Bin 3 in our example represents a change in yaw between -0.12

and +0.12 rad. For instance, as seen in Figure 8b, an AUV moving straight ahead is

observed as having a 0 rad change in yaw and thus encoded as a 3 while one turning

by .26 rad is encoded as a 2. A series of these encodings are combined into a trajectory

string for input into the HMM or CRF.
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5.3.2 Recognition Methods

In this work we compare the performance of a Hidden Markov Model (HMM) method

and a Conditional Random Field (CRFs).

5.3.3 Hidden Markov Model

In this approach to the recognition problem, each trajectory is modeled using a sep-

arate Hidden Markov Model (HMM), seen in Figure 8d. Each HMM is first trained

on example trajectories of a specific trajectory template. The trained HMM is then

given test trajectories to determine the log-likelihood that the test trajectory was gen-

erated by that template trajectory. The Hidden Markov Model (HMM) is composed

of hidden states and observations [48]. In Figure 8d the hidden states are labeled

with H1...Hn while the observations are labeled z1...zt. A random process can be in

any one of the hidden states and can emit any one of the observations. In this work

the observations consist of the labeled changes in yaw, ∆θ. The number of hidden

states for each HMM are empirically determined. An HMM must learn the transition

probabilities between hidden states, ai,j = P (ht+1 = j|ht = i), the probabilities that

a hidden state may produce an observation, bj,k = P (zt = k|ht = j), and the initial

state distribution, πj = P (h1 = j). The compact notation λ = (A,B, π) represents

the complete parameter set of an HMM. The Baum-Welch algorithm estimates the

maximum likelihood of the parameters, λ, when given a corpus of training data, Z,

λ̄ = maxλP (Z|λ). The probability of an observation sequence, Z, given an HMM

trained on a behavior, λ,

P (Z|λ) =
∑
allH

P (Z|H,λ)P (Z|λ) (13)

is efficiently produced by the forward algorithm [48]. This produces a log-likelihood

that a test trajectory instance was produced by the trajectory template it was trained

upon [48]. A trial consists of an instance of an instance trajectory being tested
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against each possible HMM. At each trial, the HMM producing the maximum log-

likelihood is determined as the representative trajectory template of the trial. If the

representative trajectory matches the true test instance label, then it is logged as a

positive identification. The accuracy of each trained HMM is the number of positive

identifications over the entire corpus of similarly labeled instances.

5.3.4 Conditional Random Field

Conditional random fields (CRFs) are undirected graphical models for structured

classification [31], seen in Figure 8e. CRFs are built from a vector of weights, w, and

a vector of features, f . Features take the form fi(t, xt−1, xt, Y ) where i is an index

into the feature vector f and t is an offset into the sequence, xt−1 and xt are values of

the label pair at time t− 1 and t respectively. X represents all the output variables

for a sequence, in this work the trajectory labels. Y represents the entire observation

sequence across all values of t, which in this work are the sequence of changes in yaw.

T is the termination time index for a given sequence. ZY is a normalizing constant

required to have an actual probability distribution:

ZY =
∑
X′

T∏
t=1

exp(wTf(t, x
′

t−1, x
′

t, Y )) (14)

Training of CRFs is performed by finding a weight vector w∗ that maximizes the

conditional log-likelihood of labeled training data:

l(X|Y ;w) = wTf(t, xt−1, xt, Y )− log(ZY ) (15)

w∗ = arg max
w

l(X|Y ;w) (16)

The conditional probability of a label sequence given an observation sequence is

computed from the weighted sum of the features as:

P (X|Y ) =
1

ZY

T∏
t=1

exp(wTf(t, xt−1, xt, Y )) (17)

The most likely trajectory label x is assigned to each observation in a test sequence

presented to the trained CRF.
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5.3.5 Real-time Trajectory Recognition

Real-time trajectory recognition, as was used in [41], is an extension of instance

testing. As a vehicle performs a task, only a limited portion of the trajectory is

presented to the trajectory recognition methods, called the trajectory window. Each

method produces a trajectory label, the label with the largest conditional probability,

for each observation in the trajectory window. The trajectory label at the head of

the trajectory window is logged as the trajectory which has the greatest percentage

representation in the trajectory window, as long as it is above a threshold. Starting at

t = windowsize the entire trajectory label is logged as the trajectory window frame

moves along it.

5.3.6 Trajectory Label Smoothing

The real-time trajectory recognition described above and used in our previous work

[41] resulted in poor trajectory recognition accuracy on the actual ASV data and thus

needed to be extended. Instead of only recording the label of the most represented

trajectory in the trajectory window at position t, each time the trajectory position

t is in the trajectory window and receives a trajectory label from the recognition

method it was saved. This results in the position t in the trajectory to receive a

total of windowsize labels from the recognition method. The trajectory label logged

for position t is the label with the highest frequency. This essentially allows the

observation to have votes counted toward its trajectory label each time the trajectory

recognition method produced a label.

5.3.7 MLO Location Estimation

The InfinityPattern was created to convey 1) the location of an object of interest

and 2) be distinguishable from the other normal trajectories performed by maritime

vehicles during a survey mission. Ideally, as the ASV performs the InfinityPattern,

the intersection of the pattern is directly over the MLO. A teammate estimates the
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Figure 15: Simulated trajectories of an AUV performing SearchPattern, Loiter, Go-
ToWaypoint, and InfinityPattern are seen in (a), (b), (c), and (d), respectively.

location of an MLO by calculating the center of a segment labelled as InfinityPattern.

5.4 Experiment I: Simulation

The simulation environment for our experiments is provided by iMarineSim and

pMarineViewer which are part of the MOOS-IvP open source autonomy package

[8]. The pMarineViewer module is a GUI-based tool, as seen in Figure 16b, that

renders 2D overhead maps of the vehicles performing behaviors. The iMarineSim is

a single-vehicle simulator that updates vehicle state based on actuator values. Ac-

tuator values are produced by the IvP Helm, which is a coordinator over activated

behaviors. The simulator tools allow for verification of vehicle behaviors and in-

teractions. The experiments are performed using trajectory data gathered through

simulation. The only behavior employed is the go to waypoint behavior which allows

Behavior)
Recognizer)

pMarineViewer)

iMarineSim)

(a) Simulation workflow.
(b) An example mission running in
pMarineViewer.

Figure 16: Simulation Experiment Setup
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for the specification of trajectories using multiple waypoints. The trajectories Go-

ToWaypoint, Loiter, SearchPattern, and InfinityPattern are run within iMarineSim

and viewed through pMarineViewer which shares its plotted trajectories with our

trajectory recognition module, as seen in Figure 16a. The locations of the AUVs

are recorded as each trajectory is performed. For these experiments, the perception

algorithm makes the simplifying assumptions that there is only one relevant object

in the scene, the Yellowfin, and that it will always be in the FOV of the sonar.

In this mine-clearing scenario, our heterogenous team consists of a Yellowfin AUV

and our Kingfisher ASV, as described above. While the Yellowfin quickly performs a

SearchPattern behavior over the designated area of operation, the Kingfisher watches

silently. The Yellowfin AUV is quick and therefore can cover a large area much

faster than the Kingfisher ASV. However, due to Yellowfin’s dynamics it must be

continuously in motion lest it sink to the bottom. As it moves quickly through the

water column, it uses its BlueView forward-looking sonar to detect mine-like objects

(MLOs). Because acoustic communications are restricted, the Yellowfin communi-

cates the potential discovery of an (MLO) by performing an InfinityPattern, where

the center of the infinity marks the spot of the MLO. Once the Kingfisher observes

the InfinityPattern it quickly calculates the center of the trajectory and proceeds to

investigate whether the MLO is truly a mine to be cleared. Ten trials are performed,

results are seen in Table 11, of an MLO in a different location in a 40 meter by 40

meter area. In each of the trials, elapsed time is measured from a Yellowfin AUV

detecting an MLO to the time when a Kingfisher ASV arrives at it’s location.

5.4.1 Results

Training

Training of the CRF was performed with 600 static trajectories of each template

trajectory: SearchPattern, Loiter, GoToWaypoint, and InfinityPattern, as seen in
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Figure 15. After training, the CRF was verified against static trajectories of each

template trajectory. The CRF was able to distinguish each trajectory with 100%

accuracy.

Testing

As seen in Table 12, it took the Kingfisher ASV an average of 42.5 seconds to reach

the MLO after being detected by the Yellowfin AUV when using acoustic communi-

cation. This includes the time for the Yellowfin to communicate the MLO’s location

and travel time of the Kingfisher ASV to that location. In the no acoustic commu-

nication with trajectory recognition scenario, it took the ASV an average of 201.5

seconds to identify the InfinityPattern trajectory and travel to the MLO’s location.

The time between the Yellowfin AUV detecting an MLO and the Kingfisher rec-

ognizing the InfinityPattern varied. This variation occurred due to the location of

the MLO with respect to the SearchPattern. If the SearchPattern smoothly transi-

tioned into the InfinityPattern then recognition was quick. If the transition required

a turn or a loop before initiating the InfinityPattern then recognition took longer.

As examples, the quickest recognition of the InfinityPattern took 127 seconds while

the longest recognition time took 238 seconds. In general, the InfinityPattern was

recognized on its first iteration. However, in one trial it took two full iterations of

Table 11: Arrival time of the Kingfisher ASV.

Trial w/ Comms w/ Beh. Rec.
1 32 158
2 34 203
3 40 195
4 43 167
5 45 177
6 51 207
7 55 219
8 44 279
9 46 205
10 35 205
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the InfinityPattern before it was recognized. This is all due to the fact that there

was varying amounts of confusion while the Yellowfin AUV was transitioning to the

InfinityPattern. If the transition between SearchPattern and InfinityPattern occurred

during a long leg of the SearchPattern then confusion would result with the leg be-

ing identified as GoToWaypoint. If a small loop was required to transition between

SearchPattern and InfinityPattern then there would be confusion with Loiter or even

SearchPattern. However, these confusions would resolve themselves as more of the

InfinityPattern would appear. If the transition between trajectories naturally looked

like it could have come from an InfinityPattern then recognition was quick. On the

other hand, if the transition was in stark contrast then it would require a second iter-

ation of the InfinityPattern so that only that pattern was observable to the algorithm.

If the observation window was too small the InfinityPattern was mistakenly identified

as the Loiter trajectory as only a portion of the infinity is visible. At certain points

during the InfinityPattern the trajectory recognition algorithm also detected portions

of GoToWaypoint.

5.4.2 Simulation Conclusion

The work presented in this section demonstrates the feasibility of performing heteroge-

nous cooperation without explicit communication through trajectory recognition. In

this implementation, the trajectory of importance being recognized was the Infinity-

Pattern which was used to indicate the location of a mine-like object (MLO) which

is comparable to the honey bee’s “waggle dance” to indicate food. While it is much

faster for the heterogeneous team in these experiments to communicate an MLO’s

Table 12: Average arrival time of the Kingfisher ASV.

w/ Comms w/ Traj. Rec.
Average 42.5 201.5
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location acoustically, that may not be feasible in a communication restricted environ-

ment. The most restrictive portion of the no communication/trajectory recognition

arrival time was the length of time required to recognize the InfinityPattern as in

each trial the trip time for the ASV was the same. This indicates that the Infinity-

Pattern may not be the best trajectory to indicate the location of an MLO. Future

work includes further investigation of more optimal parameters for both discretiza-

tion and for the trajectory CRF as accuracy can be improved. This may include the

use of more features than just the change in yaw of the Yellowfin AUV. Ultimately,

these methods should be verified with more trajectories than the ones used in these

experiments, as they are a small sample representation. In order to verify that this

method scales, experiments in simulation will include a larger number of ASVs and

AUVs. We are currently gathering real GPS trajectories produced by the Kingfisher

ASV performing the above mentioned behaviors so that the presented technique can

be tested on real-world data.

5.5 Experiment II: Real ASV Data

In this experiment we demonstrate the approach using real autonomous surface ve-

hicles (ASVs) operating in a marine environment. The mission performed by the

ASVs is more realistic and therefore more complex than experiments in the previous

section. We compare Hidden Markov Models (HMMs) and a Conditional Random

Field (CRF) approach with trajectory-based features for model generation and tra-

jectory discrimination. Results from experiments using ASVs on the Charles River

demonstrate the feasibility of the approaches.

In this experiment, we extend our previous trajectory recognition work [41] which

is reported in the previous section using trajectory-based communication in a mine

clearing task. In normal operations, an AUV would communicate via radio or acous-

tic modem to its teammates the location of an MLO so that they may safely verify
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(a) Kingfisher M100 (b) Honeybee Waggle Dance

Figure 17: Clearpath Robotics’ Kingfisher M100 ASV, seen in (a), is designed for
environmental and civil engineers and is easily deployable. In (b) the honeybee can
be seen performing its “waggle dance.”

and dispose if necessary. Instead of traditional communications, the AUV uses in-

tended recognition [28] with the InfinityPattern behavior, shown in Figure 18a, to

communicate the location of an MLO. Here we extend our scenario to actual ASV

data gathered through self-reported GPS localization and a more complicated mission

with seven MLOs, seen in Figure 18b. The repeated trajectory transitions between

SearchPattern and InfinityPattern created poor trajectory recognition accuracy in

our original algorithm from [41]. Our key contributions of this research are that we:

• demonstrate our methods on real data gathered by autonomous robots instead

of synthetic data
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(a) Basic Mission.
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Figure 18: The ASV performing SearchPattern, GoToWaypoint, InfinityPattern, and
inTransition, have been hand-labelled, for ground truth, and are colored red, blue,
green, and black, respectively. In (a), is an example of the ASV searching and finding
an MLO. In (b), the entire mission can be seen.

62



−20 0 20 40 60 80 100 120 140 160 180
−160

−140

−120

−100

−80

−60

−40

−20

0

Student Version of MATLAB

(a) SearchPattern.

Student Version of MATLAB

(b) Loiter.
−50 0 50 100

−60

−50

−40

−30

−20

−10

0

10

Student Version of MATLAB

(c) GoToWaypoint.
40 50 60 70 80 90 100 110 120

−60

−55

−50

−45

−40

−35

−30

−25

−20

Student Version of MATLAB

(d) InfinityPattern.

Figure 19: Overlaid GPS trajectories, not to scale, of the Kingfisher ASVs performing
SearchPattern, Loiter, GoToWaypoint, and InfinityPattern are seen in (a), (b), (c),
and (d), respectively.

• extend our previous trajectory recognition algorithm to apply to realistic, com-

plex and dynamic missions

The current experiment uses GPS data as a surrogate for other sensor modalities,

since perception is not the focus, but it is feasible to use other sensor modalities

such as Airborne LIDAR [25, 32, 63] or hydrophone arrays [15]. A teammate capable

of interfacing with either of these sensors can perform trajectory recognition from a

remote location.

Data was gathered by deploying the Kingfisher ASV on the Charles River off of

the MIT Sailing Pavilion1. A base station consisting of an onshore computer running

MOOS-IvP’s pMarineViewer [7] module connected to the Kingfisher ASV via a Bullet

WiFi system. The base station has a drop-down menu which sends appropriate

behavior commands to the IvP-Helm module running on the ASV. For all of the

experiments, the trajectory of each Kingfisher ASV is recorded via a Garmin GPS18X-

5hz with a typical accuracy of 3 meters. The training trajectories of SearchPattern,

Loiter, GoToWaypoint, and InfinityPattern are seen in Figure 19. To gather data for

our mock mine-clearing scenario, the base station was modified so that a user could

simulate the detection of a mine-like object (MLO) by triggering an InfinityPattern

centered at the location of a mouse-click on the pMarineViewer’s map. Once the

1courtesy of the Center for Ocean Engineering at MIT

63



Table 13: Confusion matrix for the smoothed HMM trajectory recognition method.

NoLabel SearchPattern Loiter GoToWaypoint Infinity

A
ct

u
al

SearchPattern 0% 81.00% 0% 0.70% 18.30%
GoToWaypoint 0% 3.90% 0% 96.00% 0%

Infinity 0% 13.00% 0% 0% 87.00%
InTransition 0% 53.00% 0% 0.87% 46.00%

ASV had performed the InfinityPattern twice, it would return to its SearchPattern

trajectory at the location where it had diverged to perform the InfinityPattern.

To test the capability of our methods on a more complicated mission than in [41]

and reported in the previous section, two and a half complete tracks of SearchPattern

were collected in which a total of seven InfinityPatterns were performed. As seen in

Figure 18b, the trajectory was hand-labeled, to be used as ground truth, into the four

trajectories and a fifth label inTransition was used when the ASV was interrupting a

trajectory to start another. Figure 18a illustrates the hand labelled trajectory of the

ASV performing SearchPattern and transitioning to InfinityPattern. The final mine-

clearing trajectory data was normalized to account for the fact that the training data

was collected from vessels traveling at a speed of 1.7 m/s while the mock mine-clearing

mission data was collected from a vessel traveling at a speed of 1.4 m/s.

5.5.1 Results

The results presented here are obtained using a trajectory with each observation per-

formed every two seconds of runtime. Our original algorithms from [41] and reported

in the previous section had poor trajectory recognition results with the real ASV data,

described above, and thus needed to be extended with trajectory label smoothing.

Hidden Markov Model Labels The HMM method is sensitive to the number

of states used for each behavior. In the results reported here each trajectory HMM

had two states. Other HMMs with more states had better labeling accuracy yet they

had more false positives in MLO locations. The HMM method is also sensitive to

the trajectory window size for each behavior HMM. The results presented below have
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trajectory window sizes of 35, 60, 30, and 30 for SearchPattern, Loiter, GoToWay-

point, and InfinityPattern, respectively. As seen in Table 13, the HMM method had

a trajectory recognition accuracy of 81% for SearchPattern which was confused with

InfinityPattern for 18.30%. GoToWaypoint had the highest accuracy with 96% and

a small amount of confusion with SearchPattern of 3.9%. The InfinityPattern, which

is of utmost importance in this work, had a recognition accuracy of 87% while being

confused with SearchPattern for 13%.

Conditional Random Fields Labels The CRF results here are obtained with a

trajectory window size of 50 observations, a number empirically determined but large

enough to encompass an entire InfinityPattern, which represents 100 seconds of oper-

ation time. The confusion matrix for the smoothed behavior labels is seen in Table 14.

The accuracy of recognizing SearchPattern is 96.13%. GoToWaypoint a low recogni-

tion accuracy of 41.17% while being mis-identified as SearchPattern for 58.82%. The

InTransition label is identified, in decreasing order, as SearchPattern, GoToWaypoint,

and Infinity. The accuracy of InfinityPattern is important to this work since each

segment labelled InfinityPattern indicates the location of an MLO. The CRFs recog-

nition accuracy of InfinityPattern is 89.07% and confused with SearchPattern for

only 10.92%. As seen in Figure 20b, the CRF produces much better trajectory label-

ing results with SearchPattern colored correctly in red and InfinityPattern correctly

colored green.

Estimated MLO Location The proposed system would have teammates re-

spond to every segment that is identified as an InfinityPattern. Of the seven actually

Table 14: Confusion matrix for the smoothed CRF trajectory recognition method.

NoLabel SearchPattern Loiter GoToWaypoint Infinity

A
ct

u
al

SearchPattern 0% 96.13% 0% 0.70% 3.16%
GoToWaypoint 0% 58.82% 0% 41.17% 0%

Infinity 0% 10.92% 0% 0% 89.07%
InTransition 0 % 40.86% 0% 29.56% 29.56%
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Figure 20: The trajectory labelled SearchPattern and InfinityPattern are colored red
and green, respectively. The HMM labels, seen in (a), demonstrate errors in labeling
as a segment of SearchPattern is green and a segment of InfinityPattern is red. The
CRF labels, seen in (b), show improvement, where SearchPattern and InfinityPattern
are labelled properly.

performed by the ASV they were all properly labelled. However, both methods only

properly segmented the first five InfinityPatterns. The sixth and seventh InfinityPat-

tern trajectories were correctly labeled as InfinityPattern but the two were performed

within close proximity of each other. This proximity did not allow for the transition-

ing segment to be labelled to something other than InfinityPattern. This resulted

in the two InfinityPatterns labelled as one segment and the estimated MLO loca-

tion was in the middle of the two MLOs. The HMM method would incorrectly label

a segment of SearchPattern as InfinityPattern just prior to an actual performance

of InfinityPattern, as seen in 20a. A teammate visiting an MLO’s location based

on these errors would go to a location shifted by the error of labeling a portion of

SearchPattern as InfinityPattern. The CRF method, seen in 20b, more consistently

labelled InfinityPattern for better MLO location estimation.
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5.5.2 Real ASV Data Conclusion

The goal of this work was to use trajectories as a method of communication among

autonomous cooperative robots. Using alternative methods of communication be-

yond radio or acoustics is applicable where communications are denied by active or

natural interference. In our presented mock mine clearing mission an ASV searches

an AO for MLOs. When the ASV spots an MLO it would normally signal a team-

mate more suited to deal with the MLO through acoustic or radio communications.

In our work, the ASV instead uses intended recognition by performing a maneuver

so that a teammate can cooperate by observation. The teammate, using trajectory

recognition, can distinguish the intended maneuver and extract information from it.

This is similar to that of the honey bee “waggle dance” which indicates the location

of a food source to other bees. In this context, the corresponding dance is the Infin-

ityPattern which indicates the potential location of a mine. We presented how our

algorithms were extended for use with an actual ASV and a much more complicated

and realistic mission. The results demonstrate the feasibility of using a trajectory

recognition system with either an HMM or CRF for communication with maritime

vehicle data. The CRF had higher recognition accuracy for SearchPattern and Infin-

ityPattern but the HMM had a higher recognition accuracy for GoToWaypoint. The

estimated MLO locations provided by the HMM labelled segments for InfinityPattern

were offset by a false labeling of trajectories prior as InfinityBehavior. The improved

CRF trajectory labeling increased the accuracy of the estimated MLO location based

on InfinityPattern labelled segments. Both recognition methods failed to segment two

InfinityPatterns which were performed too close to each other and both of them were

labelled as one continuous segment with a teammate then estimating the location of

one MLO in-between the two MLOs. The major conclusion is that these preliminary

tests show promise for this approach, but more work must be performed to achieve
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robust performance. Using cooperation by observation and intended recognition al-

lows at least one robot to actively use vehicle motion to communicate information to

an observing teammate. This is useful if other communication modalities are tem-

porarily or permanently unavailable. Future work includes experimenting on how

this trajectory-based communications algorithm scales to the number of observers or

“dancers” along with the size of the AO.

5.6 Conclusion

This chapter demonstrates the use of trajectory-based communication on both simu-

lated and real ASV data. Similar to the Honeybees waggle dance, autonomous robots

can signal a location of interest through a performed trajectory. Recognition of these

location signals can then be leveraged by an observing autonomous teammate for

continued mission success even in sporadic communication. This foundational work

on leveraging recognition for trajectory-based communication highlighted issues with

manually creating a trajectory. The trajectories manually created were prone to

tracking error as the vehicle might not be able to follow waypoints without looping.

This was due to either the vehicle dynamics or waypoint tracking parameters. The

second issue is that the adapted trajectory would not achieve the desired recognition

accuracy. As described in this chapter, the InfinityPattern would be mis-identified

based on the acting vehicle’s entry vector to initiate the trajectory. Lower than de-

sired recognition accuracy and the difficulty in manually adjusting trajectories to also

cope with vehicle dynamics lead to the concept of automatically adjusting trajectories

and the introduction of the TAR framework which is described in detail in Chapter

6.
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CHAPTER VI

TRAJECTORY ADAPTATION FOR TEAMMATE

RECOGNITION

Autonomous robots should be able to recognize the task being performed by their

autonomous robot teammates. Such task recognition capabilities would assist in task

verification, which might be needed if a teammate is reporting one task but perceived

to be doing another whether due to error or due to deliberate misrepresentation.

Additionally, this capability would help when communications are sporadic or not

available. Typically, recognition of robot trajectories or tasks requires the tuning

of parameters to get acceptable accuracy by the observer. Experiments in Chap-

ter 4 demonstrated that although different methods are employed and parameters

tuned, recognition accuracy can still be below acceptable rates. Experience in man-

ually creating trajectories for trajectory-based signaling in Chapter 5 proved tedious

and time-consuming as the newly adapted trajectory waypoints were difficult for the

autonomous vehicle to follow or still had below acceptable trajectory recognition ac-

curacy. In this chapter, we consider the ability to automatically modify the trajectory

of the actor. We introduce a novel negotiation framework named TAR: Trajectory

Adaptation for Recognition. The trajectories that an actor performs during a task is

negotiated between the observer and actor which allows for the consideration of the

acting vehicle’s dynamics, task requirements, sensor properties and recognition algo-

rithms of the observer. We present results of one example instantiation of our TAR

framework. Some of this work draws from previously published material [36, 37].
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6.1 Introduction

In some circumstances, autonomous vehicles should be able to recognize the task of

another autonomous teammate simply through observation. This would be useful

if a teammate needs to verify another member’s current assigned task. This allows

for the correction of an erroneous teammate or one that has nefarious purposes.

Another scenario where task recognition can be useful is when RF communications

are intermittent or unavailable. This is the type of environment in which marine

robots find themselves as both radio frequency (RF) and acoustic communications

can be difficult. Multi-robot teams rely heavily on stable communication so that

efficiency is achieved by not repeating tasks. Task recognition would help in these

environments, since one member could observe another is performing a task and

therefore know to move on to another. Since most robot task recognition schemes

focus solely on improving recognition capability, the schemes neglect that the actor

can modify the paths or trajectories followed. An analogy for this work is two SCUBA

divers about to dive in the water. Before the dive, they discuss on the boat which

hand gestures they will use to communicate underwater. Because these gestures

vary by country or organization, it takes some repetition and negotiation to come

to an agreement on which gestures will be used and what they indicate. Using such

an analogy as inspiration we introduce the Trajectory Adaptation for Recognition

(TAR) Framework.

The overall idea of the TAR Framework can be seen in Figure 21. In this simplified

figure the axes represent two parameters that can encode a space of trajectories. For

example, width and length of an oval. A single trajectory in this figure is represented

as a red dot. Let us assume trajectory recognition were to use these two parameters.

In order to get the highest recognition accuracy for two different trajectories then

we would want them to be as far away as possible in this space. For example, one

trajectory would have the parameters as 0,0 or the origin while the second trajectory
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would be at the upper right hand corner. Because any vehicle is restricted by its

dynamics, represented as a blue oval projection onto this space, a trajectory chosen

must also be viable. We also must make sure that any trajectory performed by the

actor will be perceptible by the observer. The projection of the sensor’s properties

onto the trajectory space is shown as a white oval in the figure. Requiring that a

trajectory be identifiable means that any trajectory we chose must not only be viable

for the actor but perceptible by the observer. The last consideration we will apply is

that of task properties. For example, we may require that a trajectory cover a search

area. The task properties for a trajectory are represented as brown ovals in the figure.

In essence, we require for the TAR Framework to automatically find trajectories that

are highly recognizable given the observer’s sensor, viable for the actor to perform,

and conform to the task properties.

The TAR framework, seen in Figure 22, relies on teammates performing trajectory

negotiation as part of a locker room agreement [59]. The term locker room agreement

was coined by Peter Stone and is described

“as set by the team when it is able to privately synchronize. It defines the

flexible teamwork structure and the inter-agent communication protocols,

if any.”

Before a mission starts, the teammates that will use the TAR framework will begin

by exchanging important information. The observer must have a description of its

sensor characteristics and a trajectory recognition method. The actor must have a set

of template trajectories, a way to describe (if not simulate) its own vehicle dynamics,

and task requirements which the template trajectories should fulfill. The trajectory

adaptation process begins with a simulation of the actor performing a trajectory. This

trajectory is then passed through a simulation of the observer’s sensor. Recognition is

then performed on the trajectory that the observer has sensed. Acceptable results are

determined by the recognition accuracy and the task requirements. If the results are
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Figure 21: In the simplified big picture, trajectories, shown as red dots, are defined by
a set of parameters, for ease of clarity the w1 and w2 axis. The w parameters are used
for trajectory following, modification, and recognition. The actor is an autonomous
vehicle and therefore is constrained by its dynamic model, which is represented as a
blue oval. The sensor model of the observer is represented by a white oval. The task
requirements or properties are represented by brown ovals. The problem is to find
the trajectories that are most recognizable by the observer and that the actor can
actually perform while still meet the task properties.
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Figure 22: The General Trajectory Adaptation for Recognition (TAR) Framework.
The TAR Framework begins with a locker room agreement exchange of the actor
and observer information, depicted as dashed green boxes. This allows for trajectory
adaptation to loop through simulated dynamics, sensing, recognition, and refinement
until acceptable results are obtained.
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acceptable, then the mission may start using any multi-robot coordination strategy. If

the results are not acceptable, then the trajectory(s) are refined according to a chosen

process. Trajectory refinement accounts for the vehicle’s dynamics and presents an

achievable trajectory(s) to the simulator so the process can begin another loop. The

TAR framework is flexible in that this entire process can be performed on a central

server, on just one of two teammate robots, or iteratively between two robots.

Every module of the framework is flexible in that different parts can be imple-

mented according to requirements. For example, one simulator can perform both

the vehicle dynamics and the sensing. Trajectory recognition can use any number of

algorithms from probabilistic graphical models to more geometric approaches. The

refinement can be performed with gradient descent or evolutionary algorithms. These

decisions can be made to be centralized or decentralized based on the autonomous

vehicles and mission at hand.

6.2 Canonical Representation

In the following notation a scalar is denoted as a lower case letter, x. A column vector

is denoted by a bold lowercase letter x with a matrix denoted by a bold capital letter

X. A transpose is indicated by an apostrophe ′. The column vector of ones is denoted

by 1.

The original trajectory Xo is an n × 2 matrix where n is the number of points

in the trajectory. x and y are column vectors representing the x and y coordinates,

x = [x1 . . . xn]′, y = [y1 . . . yn]′, then Xo = [x,y]. The empirical mean for each

dimension of the trajectory is calculated using, x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi.

The trajectory is transformed to the origin by subtracting the empirical means for

each dimension for each point in the trajectory using,

Xc = Xo − 1[x̄, ȳ]. (18)
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The eigenvectors and eigenvalues of the Xc matrix are found using SVD where

Xc = USV′. Here U and V are unitary matrices and S is a diagonal matrix contain-

ing the singular values. The columns of U and V are eigenvectors corresponding to

eigenvalues in S. The eigenvectors and eigenvalues of Xc are rearranged in descend-

ing order. The trajectory Xc is rotated using the ordered eigenvectors so that the

trajectory has its dominant variance along the x-axis,

Xcr = XcV. (19)

The trajectory is shifted into a positive frame by first finding the minimum for both

x and y column vectors using xmin = min(x) and ymin = min(y). Subtract these to

place the trajectory into a positive frame using,

Xp = Xcr − 1[xmin, ymin]. (20)

Each dimension of the trajectory is analyzed individually. Let li be arc length up

to index i, where

li =
n−1∑
j=1

‖Xp
j , X

p
j+1‖. (21)

Here ln will be the total arc length of the trajectory. We then perform analysis on

X∗ given by augmenting Xp,

X∗ = [Xp, l] = [xp, yp, l], (22)

where l is a normalized column vector of arc lengths, normalized using total arc length

ln. This will allow us to later compare trajectories of varying arc lengths.

A form of trajectory representation must be selected. Originally, waypoints were

selected as a representation. However, given two waypoints that represent a straight

line, their perturbation still produces a straight line. Thus, a representation is chosen

that allows for a description of the trajectory with parameters. Approximations
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of trajectories can be performed with Fourier basis or Cheybyshev polynomials, as

examples. In these experiments we use radial basis functions (RBFs) to approximate

each dimension in the trajectory. A general radial basis function based on a Gaussian

is denoted as φ(r) = e−(εr)
2

where r is the euclidean distance metric from a point

to the center, r = ‖x − center‖. We specifically use the radial basis e−(
(x−mean)2

2∗variance
).

Radial basis functions were chosen because they allow for local control of perturbing

a trajectory with the modification of one corresponding weight.

In order to fit each dimension of the trajectory, radial basis functions are spread

along the normalized arc length evenly starting with one RBF centered at 0 and then

evenly spaced until the last RBF is located centered at 1. The variance is chosen so

that there is enough support to approximate the trajectory. For example, if we have

only two RBFs to approximate a straight line and their variance is too narrow then

the approximation will not fit a line well as there will be a dip or curve to the line.

In practice, a minimum of four RBF means were required to approximate common

trajectories within acceptable error. The following experiments varied the number of

radial basis means starting with a minimum of six for flexibility.

The matrix Φ is an n × b matrix where n is the number of points in the original

trajectory and b is the number of RBF means, or centers, along the normalized arc

length [0,1] of the trajectory. The location Φ(i, j) in the matrix represents the value

of the jth radial basis function with respect to the ith position along the trajectory

defined as,

Φ(i, j) = e−(
(xi−centerj)

2

2∗variance
). (23)

The original trajectory can be approximated using the general form y(x) =
∑b

i=1 ωiφ(r)

where ωi is a weight corresponding to the ith RBF. Because these weights are linear

with respect to φ we can find them using the pseudo inverse, wY = (ΦTΦ)−1Φx∗
′

and

wX = (ΦTΦ)−1Φy∗
′
. In the reverse direction, given the weights the trajectory can
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be approximated and reconstructed with the original Φ matrix using y∗ = ΦwY and

x∗ = ΦwX .

6.3 Recognition

Recognition of trajectories can be performed with the weights of the approximating

radial basis functions (RBFs), described in the previous section. The weights of

template trajectories are compared to the weights of a new sample trajectory with

a distance measure of choice, as seen in Figure 23. The new sample trajectory is

labelled as one of the templates if it is the closest, in weight space, and only if within

a threshold. Using a threshold removes the issues of some false positives. Just because

a template trajectory is the closest, in weight space, to a sample trajectory among

all the other templates does not indicate that it is the correct label. The overall

trajectory recognition algorithm using radial basis functions is seen in Algorithm 1.

Algorithm 1: Trajectory Recognition with Radial Basis Functions

Input: k Template Trajectories (T), Sample Trajectory (S), Number of Basis
Centers(M), Variance for Each Basis(V)

Output: Sample Trajectory Label
THRESHOLD = 0.1?;
// All trajectories are in x,y form:

for i← 1 to k do
Wi ← findRadialBasisFunctionWeights(Ti,M, V );

Ws ← findRadialBasisFunctionWeights(S,M,V);
// Measure distance of sample trajectory to all templates

d ←∞;
labels ← ‘no label’;
for i← 1 to k do

temp ← distance(Wi, Ws);
if temp < d && temp < THRESHOLD then

d = temp;
labels ← i;

In order to determine the recognition accuracy of all the trajectories together, a

simulated mission is performed. During the simulation, as the autonomous vehicle
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Figure 23: Trajectory recognition with DMP weights. Template trajectories are cre-
ated during the negotiation process, are represented as green dots. A new trajectory,
represented as a yellow dot, is performed by the actor. The L1 norm or manhattan
distance is used in order to determine which trajectory it most resembles, within a
threshold.

(a) Trajectory Labelling (b) Recognition Error

Figure 24: In (a) trajectory recognition is performed by presenting a portion of a
simulated mission to the recognition algorithm. The closest trajectory template in
weight space is given a label if it is within a threshold. Recognition error is the
mis-identification of a trajectory in the window such as in (b).
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performs each of the trajectories, it labels them for ground truth. Then the recogni-

tion algorithm uses a trajectory window to scan over the simulated mission, as seen

in Figure 24a. Using Algorithm 1, the entire mission is labelled automatically. The

results of the recognition algorithm can be displayed as a confusion matrix, seen in

Table 15. The rows are the trajectory that has been performed, also known as ground

truth labels, and the columns represent the labels produced by the algorithm. Ideally,

the confusion matrix should look like an identity matrix in that the only entries in

the matrix that have numbers are the diagonals and the off-diagonal entries are zeros.

For clarity, Table 15 has the diagonal entries which indicate accuracy are highlighted

grey and the off-diagonal entries which indicate incorrect labels are in white. Incor-

rect labels are the result of recognition error, seen in Figure 24b, and are what the

TAR framework aims to reduce.

6.4 Task Objectives

Desired properties of common trajectories must be expressed in terms of cost func-

tions of that trajectory or set of trajectories. For example, a prominent task that

autonomous vehicles perform is search of an area. Ensuring that a trajectory still

properly searches an area must be put in terms of a cost so that the optimization

mechanism can produce trajectories that in this case maximize the search coverage.

The following are task objectives expressed as cost functions. The task costs are

clamped between zero and one so that they are all on the same scale. As the system

Table 15: Example Confusion Matrix. Correct Labels are highlighted grey and white
signifies error

Label
SearchPattern Loiter GoToWaypoint NoLabel

A
ct

u
al

SearchPattern 92.73 0.00 0.08 7.19
Loiter 20.87 60.97 0.00 18.16
GoToWaypoint 31.07 0.87 32.91 35.15
Transition 58.54 0.00 0.00 41.46
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is minimizing the costs, a one indicates the worst possible value or threshold and a

zero represents the best possible value.

Within Area: It is desirable to keep a trajectory within a specified area, other-

wise the trajectory may occupy a space that is larger than even the operating area.

As seen in Figure 25a, in order to achieve this objective the bounding box of the

trajectory is calculated. The total area is then linearized between zero and one based

on the smallest acceptable area and the largest acceptable area.

Min Distance First and Last Point: Some tasks require that the start and

end location be sufficiently close, such as most loiter patterns. For this objective,

the distance between the first and last point of a trajectory is calculated, as seen

Figure 25b. The distance is linearized between zero and one based on the smallest

and largest, respectively, acceptable distance.

Orientation Similarity Between First and Last Pose: For repeating trajec-

tories, such as loiters, it is desired to have the final orientation of the vehicle align with

the initial orientation which facilitates repetition, as seen in Figure 25c. The direction

of the first position is the difference between the second location in the trajectory and

the first. The direction of the last location is the difference between the last location

and the one prior. The cosine between the two orientations is calculated using the

dot product of the two vectors divided by the multiplication of each vector’s norm.

This produces the cosine value between the two orientations which range between -1

and 1. The cosine value is 1 if the orientations are aligned, a zero if orthogonal, and

-1 of opposite.

Within Radii: In order to maintain a circle loiter a trajectory is rewarded with

a lower cost if it’s points are within a radius of the center of the bounding box of the

trajectory. In order for the system to have some latitude, a minimum and maximum

radius are defined, see in Figure 25d. The distance for each point in the trajectory

from the center is calculated. One minus the ratio of points within the radii versus
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(b) Min Distance First and Last Point
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(c) Orientation Similarity (d) Within Radii

(e) Mark Spot (f) Sensor Coverage
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DTW

(g) Actionability (DTW)

Figure 25: Example Task Objectives
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the entire trajectory is calculated,

cost = 1− pts within radii

total num pts
. (24)

This corresponds to a value between zero if all the points are within the radii and a

one if none of the points are within the radii.

Mark Spot: In this team cooperation framework, some trajectories have been

used to indicate an important location. The location was indicated using a figure 8

loiter where the important location is the intersection of the trajectory in the middle.

The goal is to find a trajectory with the highest density of trajectory visits at the

location of interest and when not close to the location to spread the density of the

trajectory points to as low as possible, an example is seen in Figure 25e. The bounding

box of the trajectory is discretized. The bin with the most trajectory points is marked

as the location of interest. Then the average of all the points in the remaining bins in

the discretization is calculated. The score for this objective is the ratio of the average

number of points remaining divided by the number of points in the interest location.

In some cases the MarkSpot task objective is called MaxPoints.

Sensor Coverage: Sensor coverage is an important objective for most autonomous

vehicle applications. A sensor’s field of view is simulated along the robot’s trajectory.

As seen in Figure 25f, the area covered by the sensor is depicted in grey and the area

not covered is in white. The cost is one minus the ratio of covered area divided by

the total area of the trajectory’s bounding box.

Actionability: To ensure that an autonomous vehicle can follow a trajectory

some measure must be employed. In this work dynamic time warping (DTW) is

used to measure the difference between the ordered trajectory and the one actually

followed by the autonomous vehicle, illustrated in Figure 25g. DTW calculates an

optimal match between two sequences [62]. The distance between each point in

the commanded trajectory and each point in the trajectory followed is calculated.

Starting at the first two points, the cumulative distance to get to a corresponding
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point pair is calculated by adding the minimum distance to get to the pair of points

and the distance between them. The final cumulative distance value calculated for the

final two points is the distance required to make perturbations between corresponding

points so that the two trajectories match exactly. It is this final distance that is used

as a similarity measure between the commanded trajectory and that followed by the

autonomous vehicle. The lower the measure indicates that the vehicle is closer to

following the ordered trajectory. A zero indicates a perfect reproduction while a

larger number reflects a poor following. This is important as some trajectories are

difficult for an autonomous vehicle to follow and may make loops in order to visit

waypoints it may have missed due to dynamics earlier.

6.5 Total Cost

The total cost is,

C = R + A+O (25)

where R is the sum of the recognition error, A is the actionability cost, and O is

the sum of the different task objectives. The recognition error, rec error, is the

summation of the off-diagonal entries of the confusion matrix, described in Section

6.3. The actionability cost in all of these experiments is the dynamic time warping

(DTW) cost between the commanded trajectory and that followed by the autonomous

vehicle, described in Section 6.4. The objectives or task properties, O, may include

any of the objectives described above, i.e. sensor area coverage, within a radius of

the center, and min area.

6.6 Objective Weights

In general, the total cost is a linear combination of costs that each have a value

between zero and one. Zero indicates the best possible value and a one represents the

worst possible value. In certain cases it became difficult to maintain or induce the
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desired properties for a given task. In such cases, a weighting function was applied to

a cost to give it a higher priority. The desired properties of the weighting function are

that it start at the origin, be piece wise continuous, and positive between the domain

of zero to one. An example weighting function is a quadratic: w(x) = ax2, where a

is a positive coefficient and x is the original cost between zero and one. The total

cost remains a linear combination of costs but some of them might be prioritized by

a weighting function indicated by w as in the following example:

C = R + A+ w1(O1) +O2 (26)

which equates to

C = R + A+ a1(O1)
2 +O2. (27)

Where task objective two O2 was not weighted and kept its range of zero to one but

task objective one O1 was prioritized by a quadratic weight function, w1.

6.7 Optimization

In general, the TAR Framework allows for any choice of optimization algorithm. Be-

cause it was desired to be as flexible as possible, an evolutionary strategy was chosen.

This allows for the use of task objectives to be specified as cost functions without

the need for explicit derivatives. Additionally, an evolutionary algorithm allows for

the exploration of a complex fitness landscape. In these experiments trajectory ex-

ploration was performed using Covariance Matrix Adaptation - Evolution Strategy

(CMA-ES) [21]. CMA-ES is an evolutionary algorithm for non-linear non-convex

black-box optimization. It is a second-order approach estimating a covariance matrix

within an iterative procedure. CMA-ES does not compute just the best set of param-

eters per iteration. It in fact calculates a mean and covariance matrix of possible best

trajectories. It does this through repeated iterations with several samples at each

iteration. For this work, the parameters for each sample were the radial basis func-

tion weights for the trajectory to be adapted. The fitness score of each sample was
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the total cost which is a linear combination of the recognition error and the objective

functions for each task, as described in Section 6.5.

6.8 Experiments

This section describes the experimental results of the Trajectory Adaptation for

Recognition (TAR) Framework. The first experiments, reported in Section 6.8.3,

demonstrate the TAR Framework’s ability to modify trajectories for the purpose of

improving recognition accuracy. Simply modifying trajectories for recognition im-

provement does not ensure that the commanded trajectory is the one followed by the

autonomous vehicle. Therefore an actionable objective is added to the overall cost

function which helps guide the TAR Framework to produce trajectories that a spe-

cific vehicle can accomplish, reported in Section 6.8.4. This then leads to individual

experiments, reported in Section 6.8.5, attempting to produce commonly performed

tasks in the autonomous vehicle domain including sensor coverage and cirlce loiter to

ensure that the task objectives are appropriate measures for maintaining task prop-

erties. Following common maneuvers, creating a mark the spot task is attempted,

reported in Section 6.8.6, which is important to the type of autonomous vehicle coop-

eration described in Chapter 5. Once these objectives have been validated they are

attempted on more complex scenarios. The first is a common scenario found in the

autonomous underwater vehicle domain in which the same circle loiter is performed

for various states of the vehicle such as waiting for commands, error, and mission

termination. In order to disambiguate these states, the TAR Framework attempts

to perturb them for improved recognition accuracy while maintaining a maneuver

similar to a circle loiter, reported in Section 6.8.7. The final experiments, reported

in Section 6.8.8, push the expressive power of the TAR Framework by attempting to

start from simple shapes into maneuvers that accomplish tasks such as sensor cov-

erage, circle loiter, and mark the spot while improving recognition accuracy. Key
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insights from these experiments include the efficacy of certain task objectives to ac-

complishing tasks, balancing many tasks in one optimization with the use of priority

weighting functions, the number of parameters to represent the trajectories, and the

impact of varying initial starting locations for improved task objective success.

6.8.1 Experimental Setup

The simulation environment for our experiments is provided by iMarineSim and

pMarineViewer which are part of the MOOS-IvP open source autonomy package

[8]. The pMarineViewer module is a GUI-based tool, as seen in Fig. 16b, that ren-

ders 2D overhead maps of the vehicles performing behaviors. The iMarineSim is a

single-vehicle simulator that updates vehicle state based on actuator values. Actuator

values are produced by the IvP Helm, which is a coordinator over activated behaviors.

The simulator tools allow for verification of vehicle behaviors and interactions. The

experiments are performed using trajectory data gathered through simulation. The

trajectories are run within iMarineSim and viewed through pMarineViewer which

shares its plotted trajectories with our trajectory recognition module. The locations

of the AUVs are recorded as each trajectory is performed.

6.8.2 Measures of Success

There are many different criteria for termination of trajectory exploration. A gener-

ally accepted terminating condition is when the total cost falls bellow a certain user

defined threshold. Because CMA-ES is a stochastic process, it can get stuck in local

minima and thus the cost does not vary and plateaus. Such a situation calls for a

termination when the cost does not vary more than a threshold for a period of iter-

ations. Although this termination criteria may inadvertently stop the optimization

process from locally perturbing to an improved total cost. A third criteria is when

the algorithm reaches a predetermined number of iterations. A strategy for such

evolutionary algorithms is to run repeated experiments in order to find the resulting
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evolution with the lowest cost or qualitative properties.

Measures of success depend on the task and can be either quantitative or qual-

itative. For example, when only recognition accuracy is the requirement then once

the desired recognition accuracy has been reached then the system terminates. If

the system terminates for multiple runs without reaching the desired cost then it is

considered a failure. On the other hand, in tasks such as mark the spot, the TAR

Framework will terminate runs and a user may decide that qualitatively the resulting

trajectories are not desirable. This begs the question of whether the appropriate cost

objectives to reach their desired tasks are included.

6.8.3 Recognition Improvement

In order to demonstrate that the TAR framework can increase recognition accuracy by

modifying a trajectory, an experiment starting with two straight lines is performed.

Starting from two similar trajectories demonstrates the worst possible recognition

error.

Experiment 1 Setup

Table 16: Experiment 1 Setup

Task Initial Trajectory Perturb Cost Functions
1) Straight Line Straight Line N N/A
2) Adapted Line Straight Line Y R

# RBFs Per Dim:12 Initial Sigma: 2

In this experiment the TAR Framework begins with two straight lines, as seen

in Figure 26, and modifies one of them to improve the recognition accuracy. The

experimental setup is contained in Table 16. The trajectories are approximated by

12 radial basis functions (RBFs) per dimension. The initial mean for the CMA-ES

optimization algorithm is a concatenated vector of the RBF weights corresponding

to the trajectory being adapted. The total cost is defined as,

C = R (28)
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(a) Trajectory 1.
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(b) Trajectory 2.

Figure 26: Initial set of trajectories to be recognized for experiment 1. Both trajectory
one and two, seen in (a) and (b), have been initialized as straight lines to induce
recognition confusion. The TAR Framework will perturb the second trajectory in
order to reduce recognition error.

Table 17: Experiment 1 Iteration and Cost

iteration 0 6 53 58 77 92
cost 1.23 0.798 0.709 0.647 0.617 0.485

where R is defined as,

R =

p∑
i=1

recognition error(i). (29)

Results The evolution of the second trajectory is seen in Figure 27. Figure 28a

displays the best cost per iteration throughout the experiment. Table 17 contains

highlighted iteration costs seen starting at 1.23 and ending at 0.485 on iteration 92.

Table 18 contains the confusion matrices for the highlighted iterations. The off diag-

onals of the confusion matrix for the ith row corresponds to the recognition error(i)

for the ith trajectory. The original confusion matrix in Table 18a demonstrates that

there is a lack of recognition accuracy as they are all below 90%. By Iteration 53 the

confusion matrix demonstrates that the accuracy for both trajectories is about 90%

as seen in Table 18d. At iteration 92 the overall cost or recognition error has reduced

for all labels however it has reduced the recognition accuracy for the first trajectory

below 80%, as seen in Table 18f. The set of trajectories to be recognized at iteration
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Figure 27: Experiment 1 Trajectory Adaptation. The TAR Framework is designed
to improve recognition accuracy by modifying trajectories. The two trajectories are
initialized as straight lines, seen in (a). The first trajectory remains a straight line
yet the second trajectory is allowed to be adapted and it’s evolution can be seen in
(b), (c), (d), (e), and (f).
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Figure 28: Experiment 1 Illustrative Figures
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92 are seen in Figure 29.

Discussion

The improvement of the total cost or in this case only recognition error is seen in

Figure 28a. It is important to note the use of recognition error for all the possible

labels. By iteration 58 the accuracy for both trajectories has improved over 90% for

both labels. However, there is labelling error for when the vehicle is in transition by

being labelled as either Trajectory 1 or 2. This error in labelling transitions as either

trajectory is improved in iteration 92. However, this improvement in NoLabel for

Transitions decreases the accuracy for labelling trajectory 1 below 80%. This raises an

important point about which error to include for recognition accuracy improvement.

In some situations the accuracy of recognizing just one of the trajectories is most

important and reducing the confusion error for just that trajectory is vital. In such a

situation the recognition error may only need to be the summation of the off diagonals

for the row and column corresponding to that one important trajectory. It is a balance

between the relevant recognition for the task.

A second important observation is the evolution of the single trajectory. As seen

in Figure 28b there is a difference between the commanded waypoints in red and the

actual trajectory followed by the autonomous vehicle in blue. The error in tracking

the commanded waypoints is a combination of autonomy behavior parameters and

vehicle dynamics. For example, the behavior-based autonomy in MOOS-IvP has a

parameter called capture radius. The capture radius being too large accounts for

gaps between the red trajectory and the blue. The error in tracking also stems from

the vehicle dynamics. The end of the commanded trajectory in Figure 28b has a

sharp hook. Even if the capture radius was small, the vehicle dynamics would allow

it to reach the tip of the hook but not be able to track tightly the curve to the end.

Instead, the vehicle would have performed a loop to return in the direction needed to

track the last waypoints, such as the loops found in the later iterations.
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(a) Trajectory 1.
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(b) Trajectory 2.

Figure 29: The final set of trajectories to be recognized at iteration 92 in experiment
1. Both trajectory one and two were initialized as straight lines. In order to reduce
recognition error, the TAR Framework adapted trajectory two, seen in (b), and kept
trajectory one stable, seen in (a).

Conclusion

Although trajectory recognition accuracy was improved, the commanded trajec-

tories were not well followed. This leads to the inclusion of an actionable objective

to the trajectory which is investigated in the next experiment.
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Table 18: Experiment 1 Confusion Matrices

Label
NoLabel GoToWaypoint AdaptedTraj

A
ct

u
al Transition 23.70 46.20 30.10

GoToWaypoint 0.00 89.40 10.60
AdaptedTraj 0.00 35.70 64.30

(a) Iteration 0.

Label
NoLabel GoToWaypoint AdaptedTraj

A
ct

u
al Transition 31.30 48.20 20.50

GoToWaypoint 0.00 100.00 0.00
AdaptedTraj 0.00 11.10 88.90

(b) Iteration 6.

Label
NoLabel GoToWaypoint AdaptedTraj

A
ct

u
al Transition 41.30 52.80 6.74

GoToWaypoint 10.20 89.80 0.00
AdaptedTraj 0.00 1.15 98.90

(c) Iteration 53

Label
NoLabel GoToWaypoint AdaptedTraj

A
ct

u
al Transition 40.90 44.30 14.80

GoToWaypoint 4.08 95.90 0.00
AdaptedTraj 0.00 1.49 98.50

(d) Iteration 58

Label
NoLabel GoToWaypoint AdaptedTraj

A
ct

u
al Transition 40.20 42.70 17.10

GoToWaypoint 1.96 98.00 0.00
AdaptedTraj 0.00 0.00 100.00

(e) Iteration 77

Label
NoLabel GoToWaypoint AdaptedTraj

A
ct

u
al Transition 73.70 17.50 8.77

GoToWaypoint 22.20 77.80 0.00
AdaptedTraj 0.00 0.00 100.00

(f) Iteration 92
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6.8.4 Recognition Improvement and Actionable

In the previous experiment, the TAR Framework was modifying trajectories without

regard to whether or not a vehicle could follow them which resulted in commanded

trajectory tracking errors. In order to address this issue, an objective is added called

actionable (Act). This objective encourages the TAR framework to produce trajecto-

ries that the autonomous vehicle can track within acceptable limits. The actionable

(Act) objective is implemented in these experiments using Dynamic Time Warping

(DTW) comparing the commanded waypoints to the trajectory actually followed by

the autonomous vehicle. DTW gives a measure between two trajectories in the form

of what changes of distance would need to be made between points in one trajectory

to match the points in another. For example, two identical trajectories will result

in a DTW cost of zero. As two trajectories differ more and more the DTW cost

increases. A second task objective is added to the total cost called Within Area,

which is designed to keep the trajectories within a reasonable operating area. More

importantly, the Within Area objective keeps the trajectories from growing too large

to be useful. The following experiments will both have the same cost function but

will only differ in the turn rate of each simulated vehicle. A vehicle that has a higher

turn rate can produce more intricate trajectories in a smaller area than a vehicle with

a lower turn rate. It is predicted that by including the Within Area and Act task

costs will encourage the TAR Framework to produce trajectories that are recogniz-

able and actionable based on each vehicle’s dynamics in a small operating area. In

these experiments the cost function is defined as,

C = R + Act+ Area (30)

where R is defined as,

R =

p∑
i=1

recognition error(i). (31)

Experiment 2 Setup
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Table 19: Experiment 2 Setup

Task Initial Trajectory Perturb Cost Functions
Straight Line Straight Line N N/A
Adapted Line Straight Line Y R + Act+ Area

# RBFs Per Dim: 12 Initial Sigma: 2
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(b) Trajectory 2.

Figure 30: Initial set of trajectories to be recognized for experiment 2. Both trajectory
one and two, seen in (a) and (b), have been initialized as straight lines to induce
recognition confusion. The TAR Framework will perturb the second trajectory in
order to reduce recognition error while maintaining vehicle dynamics and keeping
within an area.

In this experiment the TAR Framework begins with two straight lines, seen in Fig-

ure 30, and modifies one of them to improve the recognition accuracy while ensuring

the autonomous vehicle can perform the commanded trajectory. Table 19 contains

the experimental setup information. The trajectories are approximated by 12 radial

basis functions (RBFs) per dimension. The initial mean for the CMA-ES optimiza-

tion algorithm is a concatenated vector of the RBF weights corresponding to the

trajectory being adapted. In this experiment the total cost is defined in Equation 30.

The key difference between this and the following experiment is that the simulated

vehicle has a turn rate that is set to 100. Such a turn rate allows the vehicle to be

more maneuverable. The combination of including the Act and Area task costs along
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(b) Iteration 115.
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(d) Worst DTW.

Figure 31: Experiment 2 Trajectory Adaptation. In (a) the initial trajectory is seen.
The trajectories in red and blue are the commanded trajectories and actual vehicle
trajectories, respectively. As the TAR Framework attempts to improve recognition,
it is also keeping the trajectories ordered within the capability of the acting vehicle.
The adapted trajectories for iteration 115 and 425 are seen in (b) and (c), respectively.
The commanded trajectory in (d) has the worst Act (DTW) cost as it is too difficult
for the vehicle to follow given it has a jagged edge in the middle.

with recognition accuracy in the total cost function should produce commanded tra-

jectories that the vehicle can track with little error and be performed within a small

operating area.

Results The evolution of the trajectory is seen in Figure 31. Table 20 contains the

highlighted iteration costs seen starting at an initial recognition error cost of 1.979

and improving to 0.3802 at iteration 425. Figure 32 contains graphs of iterations

vs various costs. It is fascinating to see that the Max and Min DTW cost, seen in

Figures 32a and 32b, begin to level out between 0.4 and 0.25 between iterations 300

and 400. This indicates that the system has found a local minima which is supported

by the iteration by total cost, seen in Figure 32d. The final set of trajectories to be
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Table 20: Experiment 2 Iteration and Costs

Iteration R Act Area Total
0 1.979 0.091 0.000 2.071

115 0.504 0.284 0.035 0.824
425 0.380 0.252 0.000 0.632

recognized at iteration 425 can be seen in Figure 33.

Discussion This is the most responsive vehicle that these experiments simulate in

MOOS-IvP with a turn rate parameter of 100. Therefore, it is not surprising that the

vehicle can follow a commanded trajectory with a sharp right turn, as seen in Figure

31c. However, there is at least some tracking error in Figure 31d with a sharp jagged

bump in the middle. More extreme turns may be attempted by the TAR Framework

if the operating area was even further reduced in size.

Conclusion This vehicle is responsive to the commanded trajectory. We expect

to see worse tracking error in the following experiment as the turn rate will be reduced

and therefore the simulated vehicle will be less able to follow sharp changes in the

commanded trajectory.
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(b) Iteration vs Min DTW.
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(d) Iteration vs Total Cost.

Figure 32: Experiment 2 Iterations vs Various Costs.
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Figure 33: The final set of trajectories to be recognized at iteration 425 in experiment
2. Both trajectory one and two were initialized as straight lines. In order to reduce
recognition error, the TAR Framework adapted trajectory two while maintaining
vehicle dynamics and keeping within a specified area. Trajectory one and two at
iteration 425 are seen in (a) and (b), respectively.
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(a) Trajectory 1.
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(b) Trajectory 2.

Figure 34: Initial set of trajectories to be recognized for experiment 3. Both trajectory
one and two, seen in (a) and (b), have been initialized as straight lines to induce
recognition confusion. The TAR Framework will perturb the second trajectory in
order to reduce recognition error while maintaining vehicle dynamics and keeping
within an area.

Experiment 3 Setup

Table 21: Experiment 3 Setup

Task Initial Trajectory Perturb Cost Functions
Straight Line Straight Line N N/A
Adapted Line Straight Line Y R + Act+ Area

# RBFs Per Dim: 12 Initial Sigma: 2

Similarly to the previous experiment, experiment 3 begins with two straight lines,

as seen in Figure 34, and modifies one of them to improve the recognition accuracy

while ensuring the autonomous vehicle can perform the commanded trajectory. The

experimental setup is contained in Table 21. The trajectories are approximated by

12 radial basis functions (RBFs) per dimension. The initial mean for the CMA-ES

optimization algorithm is a concatenated vector of the RBF weights corresponding

to the trajectory being adapted. The total cost is defined in Equation 30, which

is the same cost function as the previous experiment. The key difference between

this and the previous experiment is that the simulated vehicle has a turn rate that

is set to 50. Such a turn rate reduces the maneuverability of the simulated vehicle.
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Figure 35: Experiment 3 results. The trajectories in red and blue are the commanded
trajectories and actual vehicle trajectories, respectively. As the system attempts to
improve recognition, it is also keeping the trajectories ordered within the capability
of the acting vehicle. The initial trajectory is seen in (a) where the commanded red
trajectory is overlaid by the blue actual trajectory. The adapted trajectories are seen
at iterations 274 and 605 in (b) and (c), respectively. The commanded waypoints in
the red trajectory shown in (d) is too close for the vehicle to follow given its slow
turn rate and thus produces a trajectory with many oscillations as the vehicle misses
a waypoint due to the vehicle dynamics and circles around.

The combination of including the Act and Area task costs along with recognition

accuracy in the total cost function should produce commanded trajectories that the

vehicle can track with little error and be performed within a small operating area.

As in the previous experiment, the TAR Framework starts with two straight line

trajectories and only adapts the second trajectory.

Results The evolution of the trajectory can be seen in Figure 35. Various plots

of iterations by different costs is seen in Figure 36. The modifiable trajectory begins

as a straight line at iteration 0, seen in Figure 35a, and can be seen to be modified at

iterations 274 and 605 in Figures 35b and 35c, respectively. The trajectory attempted
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Table 22: Experiment 3 Iteration and Costs

Iteration R Act Area Total
0 1.627 0.000 0.000 1.627

274 1.026 0.000 0.000 1.026
605 0.434 0.074 0.000 0.509

by the TAR framework with the worst DTW cost occurred on iteration 9, seen in

Figure 35d. Table 22 contains the highlighted iterations and their respective costs.

Overall, the total cost per highlighted iteration lowers starting at 1.627 at the initial

iteration to 0.509 at iteration 605. The final set of trajectories to be recognized are

seen in Figure 37.

Discussion As can be seen in Figure 35 the trajectories favored by the TAR

framework for this low turn rate vehicle are smoother than the previous experiment.

The commanded trajectory with the worst DTW cost has obvious tracking errors

with oscillations in attempts to recover missed waypoints.

Conclusion The DTW cost is a useful measure for whether or not a simulated

autonomous vehicle can follow a commanded trajectory. As can be seen by the

different outcomes for the different simulated turn rate vehicles, the TAR framework

favors trajectories that produce the lower overall cost. As with the vehicle with a 50

turn rate, it produces trajectories that are more amenable to a smoother slope. The

100 run rate simulated vehicle, on the other hand, produces a trajectory that has a

sharp right hand turn.
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Figure 36: Experiment 3 Iterations vs Various Costs.
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Figure 37: The final set of trajectories to be recognized at iteration 605 in experiment
3. Both trajectory one and two were initialized as straight lines. In order to reduce
recognition error, the TAR Framework adapted trajectory two while maintaining
vehicle dynamics and keeping within a specified area. Trajectory one and two at
iteration 605 are seen in (a) and (b), respectively.
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(a) Trajectory 1.
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Figure 38: Initial set of trajectories to be recognized for experiment 4. Both trajectory
one and two, seen in (a) and (b), have been initialized as straight lines to induce
recognition confusion. The TAR Framework will perturb the second trajectory in
order to reduce recognition error while maintaining vehicle dynamics, keeping within
an area, and increasing area coverage.

6.8.5 Common Task Objectives

In the following experiments, various task or trajectory objectives are implemented in

the form of cost functions. For example, the cost function for a search task is sensor

coverage. The cost function for maintaining a circle loiter is the within radii cost. The

following experiments are performed in order to determine that the formulations of

the task objectives as cost functions is appropriate. The elements of the cost function

from the previous experiments remain such as recognition error, actionability, and

min area.

Experiment 4 Setup

Table 23: Experiment 4 Setup

Task Initial Trajectory Perturb Cost Functions
Straight Line Straight Line N N/A
Search Straight Line Y Cover

# RBFs Per Dim: 12 Initial Sigma: 2

In experiment 4, the TAR framework begins with two straight lines, as seen in

Figure 38, and adapts one of them for improved recognition and for improved sensor
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coverage. The experimental setup is contained in Table 23. While the list of cost func-

tions for the adapted trajectory only displays Cover, it does include R+Act+Area

but is not displayed for brevity. The trajectories are approximated by 12 radial basis

functions (RBFs) per dimension. The initial mean for the CMA-ES optimization al-

gorithm is a concatenated vector of the RBF weights corresponding to the trajectory

being adapted. In this experiment the TAR framework is augmented with the inclu-

sion of a new task cost: sensor coverage. The sensor of choice in this experiment is

a simulated sonar. It is simulated as a simple triangle directed in the orientation of

the autonomous vehicle. The sensor coverage objective, was previously described in

Section 6.4, is defined as, 1− covered pixels
total pixels

. The total cost is defined as,

C = R + Act+ Area+ Cover. (32)

It is predicted that the inclusion of the sensor coverage objective will create trajecto-

ries that cover an operating area as thoroughly as possible while keeping recognition

error low.
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(c) Iteration 161.
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Figure 39: Experiment 4 results. The top row figures are the trajectories performed by the autonomous vehicle in blue and on
the bottom row are their corresponding simulated sonar coverage. The TAR framework starts with two straight lines and is
allowed to modify the second trajectory with the objectives: recognition error, within an area, and maximizing sensor coverage.
The initial trajectory is seen in (a) with improvements in sensor coverage seen in (b) with a cost of 0.711 and (c) with a cost
of 0.6512. An important thing to note is that in (d) the best sensor coverage is found at iteration 173 with a cost of 0.4655.
However, it is also one of the worst trajectories at tracking the commanded waypoints as seen on the top of (d) with the red
trajectory as the commanded one and the blue trajectory as the one executed by the autonomous vehicle.
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Table 24: Experiment 4 Iteration and Coverage Cost

Iteration Coverage Cost
48 0.711

161 0.651

Results The evolution of the trajectory is seen in Figure 39. The top row of Figure

39 displays the lowest cost trajectory per highlighted iteration while the bottom

row displays each iteration’s corresponding simulation of sensor coverage. Table 24

displays the coverage costs per highlighted iteration. Figure 40 displays iterations

vs various costs. As this experiment begins with the trajectory as a straight line,

Figure 39a displays the simulated sensor covering a straight line trajectory. As the

trajectory is modified, its coverage of the area is improved and seen in Figure 39b.

By Iteration 161, seen in Figure 39c, the modified trajectory has begun to look more

like a search pattern seen performed by manned and unmanned vehicles. The final

set of trajectories to be recognized are seen in Figure 41.

Discussion The inclusion of the sensor coverage objective is successful in cre-

ating a trajectory that covers an operating area. The fascinating discovery is that

this task objective in particular will be the most successful at creating the desired

task properties. However, it should be noted that this task objective will not always

produce a trajectory that is as neat in its coverage. For example, in this result the

coverage proceeds neatly from one end of the operating area to the other. In exper-

iments presented further below, the coverage will be successful but may have loops

in the trajectory. An important insight that continues from previous experiments

is the importance of including the Actionable (Act) objective. As seen in Figure

39d, Iteration 173 produced a fantastic sensor coverage with a coverage cost as low

as 0.4655. Although that particular trajectory covered the area well, it was due to

tracking error produced by a combination of vehicle dynamics and autonomy with

the desired trajectory in red and performed trajectory in blue. The Act cost thus
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Figure 40: Experiment 4 Iterations vs Various Costs
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Figure 41: The final set of trajectories to be recognized at iteration 161 in exper-
iment 4. Both trajectory one and two were initialized as straight lines. The TAR
Framework adapted trajectory two in order to reduce recognition error and increase
sensor coverage while maintaining vehicle dynamics and keeping within a specified
area. Trajectory one and two at iteration 161 are seen in (a) and (b), respectively.

offset the improved sensor coverage cost and kept Iteration 173 out of contention for

a viable trajectory.

Conclusion The sensor coverage objective is successful at producing trajectories

that cover an operating area. The continued inclusion of the actionable (Act) ob-

jective is crucial to producing trajectories the autonomous vehicle can perform with

little tracking error.
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(a) Trajectory 1.
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Figure 42: Initial set of trajectories to be recognized for experiment 5. Both trajectory
one and two, seen in (a) and (b), have been initialized as straight lines to induce
recognition confusion. With the goal of creating a circle loiter-like trajectory, the
TAR Framework will perturb the second trajectory in order to reduce recognition
error while maintaining vehicle dynamics, keeping within an area, keeping within
radii, and minimizing the distance between the first and last points.

Experiment 5 Setup

Table 25: Experiment 5 Setup

Task Initial Trajectory Perturb Cost Functions
Straight Line Straight Line N N/A
Circle Loiter Straight Line Y Radii+DFirstLast

# RBFs Per Dim: 12 Initial Sigma: 2

In experiment 5, the TAR framework begins with two straight lines, as seen in

Figure 42, and adapts one of them for improved recognition and to produce a circle

loiter-like shape. The experimental setup is contained in Table 25. While the list

of cost functions for the adapted trajectory only displays Raddi + DFirstLast, it

does include R + Act + Area but is not displayed for brevity. The trajectories are

approximated by 12 radial basis functions (RBFs) per dimension. The initial mean

for the CMA-ES optimization algorithm is a concatenated vector of the RBF weights

corresponding to the trajectory being adapted. In order to produce trajectories that

resemble or maintain a circle loiter, two new task objectives are implemented for
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Table 26: Experiment 5 Iteration and New Task Costs

Iteration 0 56 60 72 78 237 661 696
Radii 0.892 0.818 0.634 0.618 0.764 0.830 0.512 0.575
DFirstLast 0.892 0.000 0.069 0.003 0.000 0.071 0.005 0.001

experiment five. Circle loiter is a common task performed by both manned and

unmanned vehicles. In particular, autonomous underwater vehicles (AUVs) perform

circle loiters for various mission states such as holding for commands, error state, and

mission completion. The first new cost is within radius (Radii), which was described

in Section 6.4, which is defined as, 1− pts w/in radius
total pts

. This cost is designed to encourage

the trajectory to be within a radius of the center. The second new cost is distance

between first and last point (DFirstLast). DFirstLast is required and useful for any

trajectory which is desired to be repeatable. The closer the first and last trajectory

waypoints are from each other the sooner the autonomous vehicle can reproduce that

trajectory. The cost function for this experiment is,

C = R + Act+ Area+Radii+DFirstLast. (33)

Results The evolution of the trajectory is seen in Figure 43. Figure 44 displays

figures of Iteration vs various costs. Table 26 contains the within radius and distance

between first and last points costs for each highlighted iteration. The highlighted

iterations display the best, lowest, total cost along the optimization process. The

objective of distance between start and stop points is obviously seen in the highlighted

trajectories as the beginning and end of the trajectories are within a close proximity.

The within radius objective is harder to visually observe in Figure 43 until the very

final highlighted iterations of 661 and 696, seen in 43g and 43h, respectively. The

overall improvement of Radii objective cost is clearly seen in Table 26 starting at 0.89

at iteration 0 and ending at 0.575 at iteration 696. The final set of trajectories for

recognition is seen in Figure 45.

Discussion It is important to note that the within radius objective does not
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Figure 43: Experiment 5 results. The TAR framework begins with two straight
lines as seen in (a). Adaptation occurs which improves recognition accuracy and for
trajectory 2, ensures the trajectory is within a specified set of radii. The second
trajectory is seen iterating in (a), (b), (c), (d), (e) (f), (g), and (h).
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Figure 44: Experiment 5 Iteration vs Various Costs

require that the sequential points in the trajectory produce a strict circle. Only that

the points individually are within a specified radius. It is interesting that starting

from a straight line can produce a circle loiter. Although it is not a strict circle it

does accomplish the desirable properties of a circle loiter for an autonomous vehicle

such as maintain motion so as not to fall out of the sky or sink to the bottom while

within a small task space. If the purpose of this circle loiter was to maintain an

orthogonal sensor towards a target in the center of the loiter, then the objective cost

would increase the cost of the circle loiter produced in iterations 661 and 696 because

of the dip inwards seen at the bottom of those loiters.

Conclusion The combination of minimizing the distance between the first and

last point (DFirstLast) and points within specified radii (Radii) can produce a circle

loiter like trajectory starting from a straight line. The circle loiter produced is not a

perfect circle due to the nature of the cost function chosen.
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(a) Trajectory 1.
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(b) Trajectory 2.

Figure 45: The final set of trajectories to be recognized at iteration 696 in experiment
5. Both trajectory one and two were initialized as straight lines. In order to reduce
recognition error while creating a circle loiter-like trajectory, the TAR Framework
adapted trajectory two while maintaining vehicle dynamics, keeping with a specified
area, keeping within two radii, and minimizing the distance between starting and
stoping locations. Trajectory one and two at iteration 696 are seen in (a) and (b),
respectively.
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6.8.6 Mark The Spot

Previous work, presented in Chapter 5, has demonstrated the use of autonomous

vehicle trajectories to communicate pertinent information to a teammate during in-

terrupted communication. In particular, we have demonstrated the use of a figure 8

loiter to indicate the location of an important object during autonomous team coop-

eration. The following experiments attempt to automatically create trajectories that

concentrate the autonomous vehicle’s trajectory over a specific location. Ideally, these

trajectories would be figure 8 loiter-like yet that is not necessary. Such results would

indicate that the designed cost function is appropriate for maintaining a trajectory

with such a task objective.

Experiment 6 Setup

Table 27: Experiment 6 Setup

Task Initial Trajectory Perturb Cost Functions
Straight Line Straight Line N N/A
Mark Spot Straight Line Y DFirstLast+MarkSpot

# RBFs Per Dim: 12 Initial Sigma: 2

In experiment 6, the TAR framework begins with two straight lines, seen in Figure

46, and adapts one of them for improved recognition and to mark the spot of a

location of interest. The experimental setup is contained in Table 27. While the list

of cost functions for the adapted trajectory only displays DFirstLast + MarkSpot,

it does include R + Act+ Area but is not displayed for brevity. The trajectories are

approximated by 12 radial basis functions (RBFs) per dimension. The initial mean

for the CMA-ES optimization algorithm is a concatenated vector of the RBF weights

corresponding to the trajectory being adapted. In order to produce a trajectory

that can mark the spot of interest, experiment six introduces a new task objective

called Mark the Spot (MarkSpot). MarkSpot, described in Section 6.4, encourages a

trajectory to increase the points in a certain descritized location along a trajectory
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(a) Trajectory 1.
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(b) Trajectory 2.

Figure 46: Initial set of trajectories to be recognized for experiment 6. Both trajectory
one and two, seen in (a) and (b), have been initialized as straight lines to induce
recognition confusion. The TAR Framework will perturb the second trajectory in
order to reduce recognition error while maintaining vehicle dynamics, keeping within
an area, minimizing the distance between the first and last points, while attempting
to mark a spot of interest.

Table 28: Experiment 6 Iteration and Costs

Iteration 0 118 310
MarkSpot 0.113 0.050 0.048
DFirstLast 1.000 0.000 0.000

while minimizing the average points throughout the rest of the trajectory locations.

It is predicted that such a task objective will produce trajectories with crossings such

as in a figure 8 loiter. In this experiment the total cost is defined as,

C = R + Act+ Area+DFirstLast+MarkSpot. (34)

Results The evolution of the trajectory is seen in Figure 47. Figure 48 displays

various figures of iteration vs various costs. Notice that the introduction of the

MarkSpot cost results do form a trajectory similar to a figure 8 when starting from

a straight line. However, the starting and ending locations, while close, are not

oriented in such a way that repetition is easy. In fact, the starting and ending location

orientations are in opposite directions. Table 28 contains the costs for MarkSpot

and DFirstLast per highlighted iterations. The DFirstLast cost starts at a value
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(a) Iteration 0.
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(b) Iteration 118.
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(c) Iteration 310.
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(d) Best Mark Spot.

Figure 47: Experiment 6 results. The TAR framework begins with two straight line
trajectories, seen in (a). The framework improves recognition accuracy and adapts
trajectory 2 ensuring the trajectory is maximizing the points in one location of the
trajectory while lowering the average points in the rest of the trajectory. It is hoped
this will produce a trajectory that will mark the spot of a location of interest. The
second trajectory is seen evolving in (a), (b), and (c). The best MarkSpot score is
achieved in (d) even though it is due to an tracking error.

116



0 100 200 300 400 500
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Iteration

C
o

s
t

Iteration vs Min Max Location Pts Cost

(a) Iteration vs Mark Spot Cost

0 100 200 300 400 500
1

1.5

2

2.5

3

3.5

4

4.5

Iteration

C
o

s
t

Iteration vs Total Cost

(b) Iteration vs Total Cost

Figure 48: Experiment 6 Iterations vs Various Costs

of 1 and then proceeds to zero as the trajectories produced begin to loop so that

the starting and ending locations are close. The MarkSpot cost is seen starting at

0.1139 for iteration 0 and reduced to 0.04806 at iteration 310. The lowest MarkSpot

cost occurred during iteration 3 with a value of 0.02216 in which a loop occurred

in a specific location driving the max points high and the average points elsewhere

low as the rest of the trajectory is roughly straight line segments, seen in Figure

47d. However, the circle at the spot was a combination of vehicle dynamics and

autonomy tracking error between the desired trajectory and the commanded one

with an actionable (Act) cost of 1. The final recognition set of trajectories is seen in

Figure 49.

Discussion The MarkSpot cost can produce a figure 8 loiter-like trajectory start-

ing from a straight line. Although it must be noted that this objective cost, as it

is implemented, can produce trajectories that have multiple crossings, as is seen in

both Figure 47b and Figure 47c. This indicates that a team of cooperative agents will

need more than just an intersection in a trajectory to mark the location of interest.

Repeatedly, the results demonstrate the importance of including the actionable (Act)

task objective, as seen in Figure 47d. As the commanded trajectory is in red and the
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(a) Trajectory 1.
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(b) Trajectory 2.

Figure 49: The final set of trajectories to be recognized at iteration 310 in experi-
ment 6. Both trajectory one and two were initialized as straight lines. In order to
create a trajectory that indicates a location of interest, the TAR Framework adapted
trajectory two to reduce recognition error while maintaining vehicle dynamics, keep-
ing within an area, minimizing the distance between first and last locations while
attempting to mark the spot. Trajectory one and two at iteration 310 are seen in (a)
and (b), respectively.

tracked trajectory is in blue indicate the trajectory maximizing the one location the

best out of the possible trajectories was created out of tracking error. Subsequently,

the Act objective cost was high and that trajectory was not included in the viable set

by cost. While the DFirstLast cost ensured that the first and last point in the tra-

jectory were close for ease of repetition, the orientation of the autonomous vehicle at

those locations were opposite and therefore the vehicle would need to circle around to

initiation a repetition. A new objective will need to be introduced so that the orien-

tations are as similar as possible to ensure smooth and repeatable trajectories. Such

an objective may also aid in reducing the last two intersections that occur towards

the top of iteration 310, seen in Figure 47c.

Conclusion The MarkSpot cost can produce trajectories that are figure 8 loiter-

like when starting from a straight line. A new task objective should be introduced

to ensure that the starting and ending orientations of the autonomous vehicle are

similar to ensure repetition without much correction.
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(a) Trajectory 1.
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Figure 50: Initial set of trajectories to be recognized for experiment 7. Both trajectory
one and two, seen in (a) and (b), have been initialized as straight lines to induce
recognition confusion. The TAR Framework will perturb the second trajectory in
order to reduce recognition error while maintaining vehicle dynamics, keeping within
an area, minimizing the distance and orientation difference between the first and last
locations, while attempting to mark a spot of interest.

Experiment 7 Setup

Table 29: Experiment 7 Setup

Task Initial Trajectory Perturb Cost Functions
Straight Line Straight Line N N/A
Mark Spot Straight Line Y DFirstLast+MarkSpot+

MinTheta

# RBFs Per Dim: 12 Initial Sigma: 2

In experiment 7, the TAR framework begins with two straight lines, seen in Figure

50, and adapts one of them for improved recognition and to mark the spot of a

location of interest. The experimental setup is contained in Table 29. While the list

of cost functions for the adapted trajectory only displays DFirstLast+MarkSpot+

MinTheta, it does include R + Act + Area but is not displayed for brevity. The

trajectories are approximated by 12 radial basis functions (RBFs) per dimension.

The initial mean for the CMA-ES optimization algorithm is a concatenated vector of

the RBF weights corresponding to the trajectory being adapted. In order to correct

the differing orientations of the initial and final locations of the autonomous vehicle
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from the previous experiment, a new task objective is introduced which minimizes

the theta difference between the first and last orientations (MinTheta). The total

cost is the same as the previous experiment except with the addition of MinTheta,

C = R + Act+ Area+DFirstLast+MarkSpot+MinTheta. (35)

As previously, it is predicted that the MarkSpot cost will create a trajectory in which

the autonomous vehicle visits a specific location more than the rest of the trajectory

which will be figure 8 loiter-like. The inclusion of the task objective to minimize the

distance between the start and end locations will allow for producible repetitions.

The new task objective for this experiment, MinTheta, should encourage the TAR

Framework to produce a trajectory in which the autonomous vehicle will begin and

end a trajectory with the same orientation which will aid in trajectory repetitions.
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(b) Iteration 102.
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(c) Iteration 671.
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(d) Best Theta Start Stop.

Figure 51: Experiment 7 results. The TAR framework begins with two straight line trajectories. The framework adapts the
second trajectory to improve recognition accuracy and ensures the trajectory is maximizing the points in one location of the
trajectory while lowering the average points in the rest of the trajectory. It is hoped this will produce a trajectory that will
mark the spot of a location of interest. The top row illustrates the followed trajectory while the bottom row illustrates the
discretization in green and the cell with the max points in red which is used to calculate the MarkSpot cost. The second
trajectory is seen iterating in (a), (b), and (c). The most similar starting and ending orientation is seen in (d).
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Results The evolution of the trajectory can be seen in Figure 51. The top row

demonstrates the best trajectory produced by each highlighted iteration while the

bottom row displays the results of the MarkSpot cost with the discretizations in

green and the points of the cell with the max points are in red. The trajectories

demonstrate that the inclusion of both the DFirstLast and the new MinTheta costs

create trajectories with starting and ending points that are close together and have

similar orientations, as was predicted. Figure 52 contains figures displaying iteration

vs various costs. As seen in Figures 52b and 52c the costs of minimizing the distance

between the starting and stopping locations (DFirstLast) and minimizing the differ-

ence in the starting and stoping orientations (MinTheta) quickly drop off to close to

zero by iteration 300. The task objective which varies is the MarkSpot cost, as seen

in Figure 52b. The MarkSpot objective begins to plateau around iteration 700. The

final set of trajectories for recognition is seen in Figure 53.

Discussion It is evident that the inclusion of the MinTheta task objective does

indeed create starting and stoping orientations that are similar. The inclusion of both

DFirstLast and MinTheta has produced a trajectory that is easily repeatable without

needing to travel much. The important thing to note is that it was predicted that

the MarkSpot task objective would produce a figure 8 loiter-like trajectory. Which

in this case it does resemble a figure 8 loiter. What it lacks is that the intersection

is in the middle of the trajectory. Additionally, it was predicted that the location of

the maximum points of the trajectory would be at an intersection. This is not the

case as can be seen in Figure 51. For example, the maximum descritized locations in

iteration 671, seen in Figure 51c is the top looping portion of the trajectory instead

of the intersection.

Conclusion The inclusion of MinTheta task objective does produce trajectories

in which the orientation between the starting and ending position of the trajectory

are similar.
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Figure 52: Experiment 7 Iterations vs Various Costs
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(a) Trajectory 1.
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Figure 53: The final set of trajectories to be recognized at iteration 671 in experiment
7. Both trajectory one and two were initialized as straight lines. In order to create
a trajectory that indicates a location of interest, the TAR Framework adapted tra-
jectory two to reduce recognition error while maintaining vehicle dynamics, keeping
within a specified area, minimizing the distance and orientation difference between
the first and last location while attempting to mark the spot. Trajectory one and two
at iteration 671 are seen in (a) and (b), respectively.
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(a) Trajectory 1.

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

x (m)

y 
(m

)

Iteration 0

(b) Trajectory 2.

Figure 54: Initial set of trajectories to be recognized for experiment 8. Both trajectory
one and two, seen in (a) and (b), have been initialized as straight lines to induce
recognition confusion. The TAR Framework will perturb the second trajectory in
order to reduce recognition error while maintaining vehicle dynamics, keeping within
an area, minimizing the distance and orientation difference between the first and last
locations, while attempting to mark a spot of interest.

Experiment 8 Setup

Table 30: Experiment 8 Setup

Task Initial Trajectory Perturb Cost Functions
Straight Line Straight Line N N/A
Mark Spot Straight Line Y DFirstLast+MarkSpot+

MinTheta

# RBFs Per Dim: 12 Initial Sigma: 2

In experiment 8, the TAR framework begins with two straight lines, seen in Figure

54, and adapts one of them for improved recognition and to mark the spot of a

location of interest. The experimental setup is contained in Table 30. While the list

of cost functions for the adapted trajectory only displays DFirstLast+MarkSpot+

MinTheta, it does include R + Act + Area but is not displayed for brevity. The

trajectories are approximated by 12 radial basis functions (RBFs) per dimension.

The initial mean for the CMA-ES optimization algorithm is a concatenated vector

of the RBF weights corresponding to the trajectory being adapted. The cost for the
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TAR Framework is the exact same as the previous experiment,

C = R + Act+ Area+DFirstLast+MarkSpot+MinTheta. (36)

This combination of task objectives is predicted to create a trajectory in which a

location in the trajectory will be highlighted and that the start and ending location

will be close with similar orientation.
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(b) Iteration 168.
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(c) Iteration 280.
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(d) Iteration 559.

Figure 55: Experiment 8 results. The TAR framework starts with two straight lines and adapts the second trajectory ensuring
the trajectory is maximizing the points in one location of the trajectory while lowering the average points in the rest of the
trajectory. It is hoped this will produce a trajectory that will mark the spot of a location of interest. The second trajectory
is seen iterating in (a), (b), (c), and (d). The top row of the figures are the trajectories produced by the autonomous vehicle
while the bottom row are the corresponding descritizations by the MarkSpot cost in which the cell with the most trajectory
locations are indicated in red.
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Figure 56: Experiment 8 Iteration vs Total Cost

Results The evolution of the trajectory can be seen in Figure 55. The top row

contains the best, minimum cost, trajectory produced at highlighted iterations while

the bottom row contains the MarkSpot task objective with the discretization of the

trajectory displayed in green and the cell with the maximum points displayed in red.

In this trial of MarkSpot, a trajectory that is very similar to figure 8 loiter is produced

by iteration 168, seen in Figure 55b. By iteration 280 the desired intersection in the

trajectory becomes the location with the most points, as seen in Figure 55c. However,

this iteration has introduced a half loop which is undesirable as there will be two

intersections if the trajectory is repeated. Figure 56 displays the cost per iterations

and it demonstrates that the total cost levels out around iteration 300. The final set

of trajectories for recognition are seen in Figure 57.

Discussion The MarkSpot cost is able to create a figure 8 loiter-like trajectory.

The inclusion of both MinTheta and DFirstLast costs does create the desired starting

and stopping distance along with similar orientations which is conducive for repetitive

trajectories. However, in this trial, the trajectories with lower cost starting at iteration

280 all the way to iteration 559 have introduced a half loop which will create a second

trajectory intersection if repeated. This is an artifact of the TAR Framework not

checking repetitions of a trajectory for unwanted features.

Conclusion Experiments 6, 7, and 8 have demonstrated the importance of the
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(a) Trajectory 1.
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Figure 57: The final set of trajectories to be recognized at iteration 559 in experiment
8. Both trajectory one and two were initialized as straight lines. In order to create
a trajectory that indicates a location of interest, the TAR Framework adapted tra-
jectory two to reduce recognition error while maintaining vehicle dynamics, keeping
within a specified area, minimizing the distance and orientation difference between
the first and last location while attempting to mark the spot. Trajectory one and two
at iteration 559 are seen in (a) and (b), respectively.

various task objectives. By itself, the MarkSpot cost can produce figure 8 loiter-like

trajectories. However, the starting and ending location and orientations may not be

conducive to repetitive trajectories in which it is desirable for the trajectory to easily

repeat as soon as it terminates. Therefore, introducing the objectives DFirstLast and

MinTheta encourage the TAR Framework to produce trajectories that have starting

and ending locations with close proximity and similar orientations. It is important

to note that the stochastic nature of the search algorithm does not guarantee a figure

8 loiter-like trajectory. A strategy is to run multiple copies of the optimization and

choose the one that produces the best results.
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6.8.7 Common AUV Mission: Many Circle Loiters

This section explores the ability of the TAR Framework to simultaneously optimize

trajectories for recognition and task objectives in more complicated scenarios. These

experiments involve a common mission encountered by autonomous underwater vehi-

cles ( AUVs) in which it performs a search mission with circle loiters performed while

the vehicle is waiting for commands, in an error state, or upon mission completion.
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(a) Trajectory 1.
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(b) Trajectory 2.
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Figure 58: Initial set of trajectories to be recognized for experiment 9. Trajectory
one, seen in (a), has been initialized as a search leg. Trajectories two and three, seen
in (b) and (c), have been initialized as circle loiters to induce recognition confusion
and reflect a common scenario where a circle loiter is performed for multiple AUV
states. The TAR Framework will perturb the third trajectory in order to reduce
recognition error but keeping a circle loiter-like trajectory by maintaining vehicle
dynamics, keeping within an area, minimizing the distance between the first and last
locations, while staying within a set of radii.

Experiment 9 Setup

Table 31: Experiment 9 Setup

Task Initial Trajectory Perturb Cost Functions
Search Search N N/A
Circle Loiter 1 Circle Loiter N N/A
Circle Loiter 2 Circle Loiter Y DFirstLast+ w(Radii)

# RBFs Per Dim: 6 Initial Sigma: 2

In this experiment an autonomous vehicle performs a search mission in which it

performs circle loiter during states of error and mission completion. In this setup, the

TAR framework only modifies the second circle loiter trajectory with the total cost

defined as,

C = R + Act+ Area+DFirstLast+ w(Radii). (37)

Previously attempted circle loiter adaptations failed to maintain a circle loiter shape.

In order to prioritize maintaining a circle loiter-like trajectory a priority weighting

function was applied to the Radii cost, which is indicated with w(Radii). It is pre-

dicted that a combination of a priority weighted Radii cost will favor maintaining
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Table 32: Experiment 9 Iteration and Costs

Iteration 0 317 345
Rec 2.598 1.811 1.811
Radii 0.000 0.001 0.001
Total Cost 4.656 3.961 3.96

a circle loiter-like trajectory and that recognition error would help perturb the sec-

ond circle loiter within. In experiment 9, the TAR framework begins with a search

trajectory and two circle loiter trajectories, seen in Figure 58, and adapts only one

of them for improved recognition and to ensure it maintains a circle loiter-like tra-

jectory. The experimental setup is contained in Table 31. While the list of cost

functions for the adapted trajectory only displays DFirstLast + w(Radii), it does

include R + Act + Area but is not displayed for brevity. The trajectories are ap-

proximated by 6 radial basis functions (RBFs) per dimension. The initial mean for

the CMA-ES optimization algorithm is a concatenated vector of the RBF weights

corresponding to the trajectory being adapted.

Results The evolution of the second circle loiter is seen in Figure 59. The corre-

sponding iterations and task objective costs are seen in Table 32. The initial circle

loiter is seen in Figure 59a and the perturbations are seen in Figure 59b and Figure

59c for iterations 317 and 345, respectively. Figure 61 displays various costs per iter-

ations. An important task objective cost to observe are the recognition error which

starts at 2.598 at the start and reduces to 1.811 by iteration 317. The corresponding

confusion matrices per highlighted iterations are seen in Table 33. Although recogni-

tion accuracy improves from the initial iteration, the recognition accuracy does not

rise above 80% for any one of the labels. As the desired property is that the perturbed

trajectory maintain a circle loiter-like pattern the next important task objective cost

is the priority weighted Radii which begins at 0 and ends at 0.0007741 at iteration

345. The worst Radii objective cost was produced in iteration 1, seen in Figure 59e,

with a weighted value of 7,741. The final set of trajectories for recognition are seen
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Figure 59: Experiment 9 results. The TAR framework starts with a search pattern
and two identical circle loiters. The framework adapts the second circle loiter while
improving recognition accuracy and ensuring the trajectory is within a specified set
of radii. The second circle loiter is seen iterating in (a), (b), and (c). The best
recognition error is seen in (d). The worst and best Raddi cost are seen in (e) and
(f), respectively. The best starting and stopping distance is seen in (g). The variation
with the lowest area cost is seen in (h).
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(a) Trajectory 1.

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

x (m)

y 
(m

)

Iteration 0

(b) Trajectory 2.

−2 0 2 4 6 8 10
−2

0

2

4

6

8

10

x (m)

y 
(m

)

Iteration 345

(c) Trajectory 3.

Figure 60: The final set of trajectories to be recognized at iteration 345 in experiment
9. Trajectory one was a static search leg, as seen in (a), throughout the experiment.
Trajectories two and three were initialized as circle loiters with trajectory two re-
maining static, as seen in (b), while trajectory three was perturbed by the TAR
Framework, seen in (c). Trajectory three was perturbed to reduce recognition er-
ror while maintaining a circle loiter-like trajectory by maintaining vehicle dynamics,
keeping within a specified area, minimizing the distance between the first and last
locations, while staying with a set of radii.

in Figure 60.

Discussion The use of a priority weighted Radii cost is successful in maintaining

a circle loiter-like trajectory when optimizing among a more complicated scenario

of one search pattern and two circle loiters. The recognition score is improved as

desired yet still preferring a circle loiter-like trajectory. Note that the task objectives

of DFirstLast or MinTheta are only clamped between 0 and 1. By not using priority

weighting functions for DFirstLast or MinTheta, it allows the TAR Framework to

flex within a circle loiter-like radius but not require the first and last position to be

close nor have similar orientations. Unfortunately, the overall recognition accuracy

for any one of the labels does not rise above 80%.

Conclusion Using a priority weighted Radii task objective did keep the perturbed

trajectory within a circle loiter-like radius. Recognition accuracy did improve yet non

of the labels improved beyond 80%.
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Figure 61: Experiment 9 Iterations vs Various Costs
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Table 33: Experiment 9 Confusion Matrices

Label
NoLabel Search Circle Loiter 1 Circle Loiter 2

A
ct

u
al Transition 23.00 33.30 57.50 6.90

Search 0.00 74.80 11.70 13.60
Circle Loiter 1 0.00 65.10 11.60 23.30
Circle Loiter 2 0.00 0.00 48.50 51.50

(a) Iteration 0

Label
NoLabel Search Circle Loiter 1 Circle Loiter 2

A
ct

u
al Transition 3.49 11.60 20.90 64.00

Search 0.00 75.70 3.88 20.40
Circle Loiter 1 0.00 0.00 62.80 37.20
Circle Loiter 2 0.00 0.00 23.10 76.90

(b) Iteration 317

Label
NoLabel Search Circle Loiter 1 Circle Loiter 2

A
ct

u
al Transition 3.49 11.60 20.90 64.00

Search 0.00 75.70 3.88 20.40
Circle Loiter 1 0.00 0.00 62.80 37.20
Circle Loiter 2 0.00 0.00 23.10 76.90

(c) Iteration 345
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Experiment 10 Setup

Table 34: Experiment 10 Setup

Task Initial Trajectory Perturb Cost Functions
Search Search N N/A
Circle Loiter 1 Circle Loiter N N/A
Circle Loiter 2 Circle Loiter Y w(DFirstLast) + w(Radii)+

w(MinTheta)
Circle Loiter 3 Circle Loiter Y w(DFirstLast) + w(Radii)+

w(MinTheta)

# RBFs Per Dim: 6 Initial Sigma: 2

The autonomous vehicle performing a search scenario is made more challenging

by including three circle loiter modes: loiter for commands, error state, and mission

completion for a total of four trajectory labels. The TAR Framework modifies two of

the circle loiters with both tasks having the same objectives of Radii, DFirstLast,

MinTheta, and Area. The total cost function is defined as,

C = R + Act3 + Area3 + w(DFirstLast3) + w(Radii3) + w(MinTheta3)+

Act4 + Area4 + w(DFirstLast4) + w(Radii4) + w(MinTheta4). (38)

The subscript for each cost corresponds to the id number of the trajectory. For ex-

ample, Raddi3 corresponds to the Raddi cost for the third trajectory which in this

experiment is Circle Loiter 2. In order to ensure that the two trajectories maintain

the most semblance to circle loiter, a priority weighting function of w(x) = 15, 000x6

is applied to the Radii, DFirstLast, and MinTheta costs individually. This should

restrict the trajectories from opening up from their circle, such as was seen in the

previous experiment. In experiment 10, the TAR framework begins with a search tra-

jectory and three circle loiter trajectories, seen in Figure 62, and adapts two of them

for improved recognition and to ensure they maintain a circle loiter-like trajectory.

The experimental setup is contained in Table 34. While the list of cost functions

for the adapted trajectories only displays DFirstLast+Radii+MinTheta, they do
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(c) Trajectory 3.
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(d) Trajectory 4.

Figure 62: Initial set of trajectories to be recognized for experiment 10. Trajectory
one, seen in (a), has been initialized as a search leg. Trajectories two, three, and
four, seen in (b), (c), and (d), respectively, have been initialized as circle loiters to
induce recognition confusion and reflect a common scenario where a circle loiter is
performed for multiple AUV states. The TAR Framework will perturb the third and
fourth trajectories in order to reduce recognition error while maintaining circle loiter-
like trajectories by maintaining vehicle dynamics, keeping within an area, minimizing
the distance and orientation difference between the first and last locations, while
staying within a set of radii.
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(d) CircleLoiter3 Iteration 588.

Figure 63: Experiment 10 results. The TAR framework starts with a search pattern
and three identical circle loiters. The framework improves recognition accuracy while
ensuring that circle loiters two and three maintain circle loiter-like trajectories. Circle
loiter two can be seen adapting in (a) and (c). Circle loiter three can be seen adapting
in (b) and (d).

include R + Act + Area but they are not displayed for brevity. The trajectories are

approximated by 6 radial basis functions (RBFs) per dimension. The initial mean

for the CMA-ES optimization algorithm is a concatenated vector of the RBF weights

corresponding to the trajectories being adapted.

Results The evolution of the two circle loiters are seen in Figure 63. Circle

loiter two is seen in Figures 63a and 63c for iterations 0 and 588, respectively. Circle

loiter three is seen in Figures 63b and 63d for iterations 0 and 588, respectively.

Qualitatively it can be seen that both modified circle loiters have starting and ending

positions that are close together and have similar orientations. Circle loiter two
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appears to favor the inner specified radius, seen in Figure 63c. Circle loiter three

appears to have slight bulges at the upper left and lower right corners, seen in Figure

63d. Figure 64 displays the total cost per iteration of the experiment. Table 35

contains the confusion matrices for iteration 0 and 588. As can be seen, the recognition

accuracy for the search trajectory remains at 74.8%. Unfortunately, the recognition

accuracy for the circle loiter one remains below 12% starting at 11.6% at the beginning

and even becoming worse at iteration 588 with an accuracy of 6.98%. Interestingly,

the circle loiter two improves in recognition accuracy starting at 51.5% to 69.6% by

iteration 588. The trajectory with the best recognition accuracy improvement is circle

loiter three. It begins at 0% recognition accuracy and improves to 85.7%. The final

set of trajectories for recognition is seen in Figure 65.

Discussion The TAR Framework is capable of increasing the recognition accuracy

in a complicated search mission with three types of circle loiters by modifying two

circle loiters. Introducing priority weighting functions for the Radii, DFirstLast, and

MinTheta does keep the trajectories produced by the TAR Framework to resemble

circle loiters when the initial trajectories start as circle loiters. While the recognition

accuracy is improved, only one of the trajectory labels improves above 80%. The

first circle loiter continues to have a recognition accuracy below 15% regardless of

improvement. The second and third circle loiters do improve their recognition accu-

racy. A possible way to improve the recognition accuracy of the first circle loiter is

to additionally include it for adaptation by the TAR Framework. Ultimately though,

it is a complicated scenario which pushes recognition accuracy when the three circle

loiters are desired to maintain similar shapes to their initial configuraiton.

Conclusion The TAR Framework can improve the recognition accuracy of tra-

jectories performed in a complicated search mission with three possible circle loiters.

Using priority weighting functions on the Radii, DFirstLast, and MinTheta task ob-

jectives does keep the trajectories being modified close to a circle loiter-like shape.
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Figure 64: Experiment 10 Iteration vs Total Cost

Unfortunately, the recognition accuracy never improves beyond 12% for the first circle

loiter. This may indicate a limit in this implementation of the TAR Framework or it

may indicate that including the first circle loiter as a trajectory that can be adapted

is necessary to have overall improvement.

Table 35: Experiment 10 Confusion Matrices

Label
NoLabel Search Circle Loiter 1 Circle Loiter 2 Circle Loiter 3

A
ct

u
al

Transition 1.89 36.80 55.70 5.66 0.00
Search 0.00 74.80 11.70 13.60 0.00
Circle Loiter 1 0.00 65.10 11.60 23.30 0.00
Circle Loiter 2 0.00 48.50 0.00 51.50 0.00
Circle Loiter 3 0.00 0.00 72.70 27.30 0.00

(a) Iteration 0

Label
NoLabel Search Circle Loiter 1 Circle Loiter 2 Circle Loiter 3

A
ct

u
al

Transition 3.81 7.62 4.76 67.60 16.20
Search 0.00 74.80 0.00 10.70 14.60
Circle Loiter 1 0.00 0.00 6.98 58.10 34.90
Circle Loiter 2 0.00 0.00 8.70 69.60 21.70
Circle Loiter 3 0.00 0.00 0.00 14.30 85.70

(b) Iteration 588
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(d) Trajectory 4.

Figure 65: The final set of trajectories to be recognized at iteration 588 in experiment
10. Trajectory one was a static search leg, as seen in (a), throughout the experiment.
Trajectories two, three, and four were initialized as circle loiters with trajectory two
remaining static, as seen in (b). Trajectories three and four were perturbed by the
TAR Framework, seen in (c) and (d), respectively, to reduce recognition error while
attempting to maintain circle loiter-like trajectories. This was achieved by maintain-
ing vehicle dynamics, keeping within a specified area, minimizing the distance and
orientation difference between the first and last locations, while staying within a set
of radii.
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Experiment 11 Setup

Table 36: Experiment 11 Setup

Task Initial Trajectory Perturb Cost Functions
Search Search N N/A
Circle Loiter 1 Circle Loiter N N/A
Circle Loiter 2 Circle Loiter Y w(DFirstLast) + w(Radii)+

w(MinTheta)
Circle Loiter 3 Circle Loiter Y w(DFirstLast) + w(Radii)+

w(MinTheta)

# RBFs Per Dim: 6 Initial Sigma: 2

This experiment is an exact replication of the previous one. In experiment 11, the

TAR framework begins with a search trajectory and three circle loiter trajectories,

as seen in Figure 66, and adapts two of them for improved recognition and to ensure

they maintain a circle loiter-like trajectory. The experimental setup is contained in

Table 36. While the list of cost functions for the adapted trajectories only displays

w(DFirstLast) + w(Radii) + w(MinTheta), they do include R + Act + Area but

they are not displayed for brevity. The total cost function is defined as,

C = R + Act3 + Area3 + w(DFirstLast3) + w(Radii3) + w(MinTheta3)+

Act4 + Area4 + w(DFirstLast4) + w(Radii4) + w(MinTheta4). (39)

The subscript for each cost corresponds to the id number of the trajectory. For

example, Raddi3 corresponds to the Raddi cost for the third trajectory which in this

experiment is Circle Loiter 2. A priority weighting function of w(x) = 15, 000x6 is

applied to the Radii, DFirstLast, and MinTheta costs individually. The trajectories

are approximated by 6 radial basis functions (RBFs) per dimension. The initial mean

for the CMA-ES optimization algorithm is a concatenated vector of the RBF weights

corresponding to the trajectories being adapted.

Results The evolution of the two circle loiters can be seen Figure 67. Circle loiter

two is seen in Figures 67a and 67c for the initial and iteration 1000, respectively.
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(c) Trajectory 3.
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(d) Trajectory 4.

Figure 66: Initial set of trajectories to be recognized for experiment 11. Trajectory
one, seen in (a), has been initialized as a search leg. Trajectories two, three, and
four, seen in (b), (c), and (d), respectively, have been initialized as circle loiters to
induce recognition confusion and reflect a common scenario where a circle loiter is
performed for multiple AUV states. The TAR Framework will perturb the third
and fourth trajectories in order to reduce recognition error while still maintaining
circle loiter-like trajectories by maintaining vehicle dynamics, keeping within an area,
minimizing the distance and orientation difference between the first and last locations,
while staying within a set of radii.
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(c) CircleLoiter2 Iteration 1000.
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(d) CircleLoiter3 Iteration 1000.

Figure 67: Experiment 11 results. The TAR framework begins with a search pattern
and three circle loiters. The framework improves recognition accuracy while ensuring
circle loiters two and three maintain their circle loiter-like trajectories. Circle loiter
two can be seen evolving in (a) and (c). Circle loiter three can be seen evolving in
(b) and (d).
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Figure 68: Experiment 11 Iteration vs Total Cost

By iteration 1000, the circle loiter two has a bulge at the bottom of the trajectory

and a larger one on the top. Circle loiter three is seen in Figures 67b and 67d. By

iteration 1000, the circle loiter three tends to hug the inner radius with 4 slight bulges

evenly spaced around the trajectory. Figure 68 displays the minimum total cost per

each iteration. It can be seen that the initial trajectories have total costs above

600 but quickly reduce onwards. Table 37 contains the confusion matrices for the

initial configuration and iteration 1000. The label accuracy for Search increases from

74.8% to 78.6%. In this replicant, the circle loiter one does see a slight improvement

in recognition accuracy starting at 11.6% and ending in 18.6%. The recognition

accuracy of circle loiter two does improve from 51.5% to 80%. The most dramatic

improvement in recognition accuracy occurs with circle loiter three starting at 0%

accuracy and increasing to 75% accuracy. The final set of trajectories for recognition

are seen in Figure 69.

Discussion

As a replicant of the previous experiment, the slight differences in the results

demonstrate the stochastic nature of this implementation of the TAR Framework.

As previously, the priority weighted Radii, DFirstLast, and MinTheta costs ensure

that the TAR Framework produces trajectories that still resemble circle loiter-like.

An important issue arises as to whether the proper balance of priority weighting
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functions are utilized. For example, if recognition accuracy improvement was the

most important desired outcome then a priority weighting function should be applied

to it rather than to the other three circle loiter objectives of Radii, DFirstLast, and

MinTheta. This combination would most likely result in trajectories that produce

high recognition accuracy yet no longer resemble circle loiters. It is possible that

maybe a combination of weighting functions for all the task objectives would keep

the trajectories circle loiter-like and obtain higher recognition accuracy.

Conclusion The second replicant having similar results, although slightly better,

in recognition accuracy improvement supports that this scenario may be pushing

the limits of this implementation of the TAR Framework. Results may be improved

by including the first circle loiter in the group of trajectories to be modified or by

applying different priority weighting functions to all of the costs.

Table 37: Experiment 11 Confusion Matrices

Label
NoLabel Search Circle Loiter 1 Circle Loiter 2 Circle Loiter 3

A
ct

u
al

Transition 1.89 36.80 55.70 5.66 0.00
Search 0.00 74.80 11.70 13.60 0.00
Circle Loiter 1 0.00 65.10 11.60 23.30 0.00
Circle Loiter 2 0.00 48.50 0.00 51.50 0.00
Circle Loiter 3 0.00 0.00 72.70 27.30 0.00

(a) Iteration 0

Label
NoLabel Search Circle Loiter 1 Circle Loiter 2 Circle Loiter 3

A
ct

u
al

Transition 3.77 7.55 0 7.55 81.10
Search 0.00 78.60 0.00 6.80 14.60
Circle Loiter 1 0.00 0.00 18.60 37.20 44.20
Circle Loiter 2 0.00 0.00 0.00 80.00 20.00
Circle Loiter 3 0.00 0.00 0.00 25.00 75.00

(b) Iteration 1000
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Figure 69: The final set of trajectories to be recognized at iteration 1,000 in ex-
periment 11. Trajectory one was a static search leg, as seen in (a), throughout the
experiment. Trajectories two, three, and four were initialized as circle loiters with
trajectory two remaining static, as seen in (b). Trajectories three and four were per-
turbed by the TAR Framework, seen in (c) and (d), respectively, to reduce recognition
error while attempting to maintain circle loiter-like trajectories. This was achieved
by maintaining vehicle dynamics, keeping within a specified area, minimizing the dis-
tance and orientation difference between the first and last locations, while staying
within a set of radii.
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6.8.8 Evolve Common Tasks: Simultaneously

This section presents experiments in which the TAR Framework attempts to simulta-

neously adapt trajectories that perform four common manned and unmanned vehicle

tasks while improving their recognition accuracy. The four common tasks are straight

line, search, circle loiter, and figure 8 loiter. The first experiment begins with the tra-

jectories as straight lines and they simultaneously adapt into their respective tasks.

The second experiment introduces the concept of individually evolving trajectories

for their given tasks separately and then combining them all to continue adapting

simultaneously for recognition accuracy improvement. The third experiment starts

with each modifiable trajectory as circles and then simultaneously evolving them to

their respective tasks.

Experiment 12 Setup

Table 38: Experiment 12 Setup

Task Initial Trajectory Perturb Cost Functions
Straight Line Straight Line N N/A
Search Straight Line Y Cover
Circle Loiter Straight Line Y DFirstLast+Radii+

MinTheta
Mark Spot Straight Line Y DFirstLast+MarkSpot+

MinTheta

# RBFs Per Dim: 6 Initial Sigma: 5

In experiment 12, the TAR Framework simultaneously evolves four common au-

tonomous vehicle tasks starting from four straight lines, seen in Figure 70. Table 38

contains the experimental setup. The trajectories are approximated by 6 radial basis

functions (RBFs) per dimension. The initial mean for the CMA-ES optimization al-

gorithm is a concatenated vector of the RBF weights corresponding to the trajectories

being adapted. The first trajectory is GoToWaypoint which does not get modified

while the other three which are modified are Search, Circle Loiter, and Mark the

Spot. All three trajectories share the basic task objectives of Recognition, Act, and

149



−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

x (m)

y 
(m

)
Iteration 0

(a) Trajectory 1.
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(b) Trajectory 2.
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(c) Trajectory 3.
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(d) Trajectory 4.

Figure 70: Initial set of trajectories to be recognized for experiment 12. All four
trajectories have been initialized as straight lines, as seen in (a), (b), (c), and (d).
The TAR Framework will perturb the second, third, and fourth trajectories in order
to create trajectories that search, maintain circle loiter-like shape, and mark a spot,
respectively. The objectives for all the trajectories is to reduce recognition error while
maintaining vehicle dynamics and keeping the trajectories within a specified area. The
final objective for trajectory three is maximize search coverage. Because trajectories
three and four are designed for repetition, they both include the objectives to minimize
the distance and orientation difference between the first and last locations. The final
objectives for trajectories three and four are stay within two radii and mark the spot,
respectively.

150



Area, which are omitted from the table for brevity. The search pattern trajectory has

the additional task objective of sensor coverage. The circle loiter trajectory has the

additional task objectives of DFirstLast, MinTheta, and Radii. The Mark the Spot

has the additional task objectives of DFirstLast, MinTheta, and MarkSpot. The task

objectives are all clamped between zero and 1 meaning there are no priority weighting

functions associated with them. For brevity, the task objectives that are shared in

common will have indices to them. The total cost function is defined as,

C = R + Act2 + Area2 + Cover2 + Act3 + Area3 +DFirstLast3+

Radii3 +MinTheta3 + Act4 + Area4 +DFirstLast4+

MarkSpot4 +MinTheta4. (40)

The subscript for each cost corresponds to the id number of the trajectory. For

example, Raddi3 corresponds to the Raddi cost for the third trajectory which in this

experiment is Circle Loiter.

Results The evolution of the trajectories is seen in Figure 71. Qualitatively, the

second trajectory is tasked with sensor coverage of an area and progressively improves

its area coverage starting evolving from iteration 0, to iteration 178, and ending at

iteration 2658, seen Figures 71a, 71d, and 71g, respectively. The third trajectory

is tasked with creating a circle loiter-like trajectory and can be seen evolving from

iteration 0, 178, and 2658 in Figures 71b, 71d, and71h, respectively. Qualitatively,

the third trajectory does not evolve into a circle loiter-like trajectory. However, it

does improve the cost of the Radii task objective by ensuring that the points of the

trajectory are within the specified radii. The fourth trajectory is tasked with marking

the spot or figure 8 loiter and is seen evolving at iterations 0, 178, and 2658 in

Figures 71c, 71f, and 71i, respectively. Qualitatively, trajectory four does not appear

to be figure 8 loiter-like nor is it visually apparent that any one of the intersections

marks the spot of interest. Table 39 contains the confusion matrices for the various
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Figure 71: Experiment 12 results. The TAR framework begins with four straight line
trajectories. The framework improves recognition accuracy while ensuring the task
objectives of search, circle loiter, and mark the spot. Trajectory 2 is tasked with
sensor coverage and is seen iterating in (a), (d), and (g). Trajectory 3 is tasked with
maintaining a circle loiter-like trajectory and is seen iterating in (b), (e), and (h).
Trajectory 4 is tasked with marking the spot through and is seen iterating in (c), (f),
and (i).
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highlighted iterations starting with the initial setup through iterations 178 and 2658.

The initial recognition accuracy for all four trajectories is low with GoToWaypoint,

Search, Circle Loiter, and Mark the Spot having recognition accuracies of 47.5%,

39.3%, 0%, and 0%, respectively. By iteration 178, the recognition accuracy for

trajectory 1, GoToWaypoint, decreases from 47.5% to 20.6%. Trajectory 2, search,

also decreased from 39.3% in the initial setup to 12.5%. Trajectory 3, circle loiter,

improves from 0% to 32.1%. Trajectory 4, mark the spot, makes a dramatic jump from

0% accuracy to 82.8%. By iteration 2658 the first trajectory reduces its recognition

accuracy further to 14.5%. Trajectory 2, search, increases in recognition accuracy to

24.2%. The third trajectory, circle loiter, reduces its recognition accuracy to 22.6%.

The fourth trajectory continues to increase its recognition accuracy reaching 84.2%.

The final set of trajectories for recognition are seen in Figure 72.

Discussion Unfortunately, starting from straight lines and adapting all four tra-

jectories simultaneously to achieve respective task objectives while also improving

recognition accuracy does not seem to qualitatively or quantitatively produce sat-

isfiable results. Visually, the only modified trajectory that seems to accomplish its

task is trajectory 2 which is supposed to search an area. The other two modified

trajectories did not adapt into circle or figure 8 loiter-like trajectories. Additionally,

from a recognition accuracy perspective the results were very low. The only way the

recognition accuracy results would be acceptable is if the only required task to rec-

ognize well is trajectory 4 at an 80% accuracy rate then it would suffice. Otherwise,

the final confusion matrix for iteration 2658 seen in Table 39c demonstrates that the

other three trajectories had recognition accuracies below 30%. These results raise the

question of whether or not priority weighting functions should have been applied to

the different task objectives. In this case, because recognition accuracy was so low a

priority weighting function applied to R may improve the results.

Conclusion Attempting to adapt four common tasks simultaneously starting
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from straight lines to their respective task objectives while also improving recognition

accuracy does not produce the desired results. The only task objective that worked

well was sensor coverage. The recognition accuracy was below 30% for all but the

fourth trajectory which achieved an 84.2% recognition accuracy.

Table 39: Experiment 12 Confusion Matrices

Label
NoLabel GoToWayPoint Search Circle Loiter Mark Spot

A
ct

u
al

Transition 0.51 98.00 1.53 0.00 0.00
GoToWayPoint 0.00 47.50 52.50 0.00 0.00
Search 0.00 60.70 39.30 0.00 0.00
Circle Loiter 0.00 38.10 61.90 0.00 0.00
Mark Spot 0.00 70.00 30.00 0.00 0.00

(a) Iteration 0

Label
NoLabel GoToWayPoint Search Circle Loiter Mark Spot

A
ct

u
al

Transition 4.14 17.20 1.78 51.50 25.40
GoToWayPoint 3.17 20.60 1.59 1.59 73.00
Search 0.00 5.68 12.50 12.50 69.30
Circle Loiter 0.00 25.00 0.00 32.10 42.90
Mark Spot 0.00 13.80 0.00 3.45 82.80

(b) Iteration 178

Label
NoLabel GoToWayPoint Search Circle Loiter Mark Spot

A
ct

u
al

Transition 4.29 17.20 2.45 55.20 20.90
GoToWayPoint 8.06 14.50 0.00 3.23 74.20
Search 0.00 0.00 24.20 14.70 61.10
Circle Loiter 0.00 16.10 0.00 22.60 61.30
Mark Spot 0.00 10.50 0.00 5.26 84.20

(c) Iteration 2658
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Figure 72: The final set of trajectories to be recognized at iteration 2658 in experiment
12. All four trajectories were initialized as straight lines with trajectory one remaining
static, as seen in (a). Trajectory two was tasked with search, seen in (b), trajectory
three was tasked with maintaining a circle loiter-like shape, seen in (d), and trajectory
four was tasked with marking a spot, seen in (c). The TAR Framework perturbed all
of the trajectories with the objectives of reducing recognition error while maintaining
vehicle dynamics and performing trajectories within a specified area. Trajectory two’s
final objective was to maximize sensor coverage. Because trajectory three and four are
meant to be repetitive, they both included the objectives of minimizing the distance
and orientation difference between the start and end locations. The final objectives of
trajectories three and four were stay within two radii and mark the spot, respectively.
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Experiment 13

Table 40: Experiment 13 Setup

Task Initial Trajectory Perturb Cost Functions
Straight Line Straight Line N N/A
Search PO Search Y Cover
Circle Loiter PO Circle Loiter Y DFirstLast+Radii+

MinTheta
Mark Spot PO Mark Spot Y DFirstLast+MarkSpot+

MinTheta

# RBFs Per Dim: 12 Initial Sigma: 2

Table 40 contains the experimental setup. In this experiment the TAR Framework

uses previously individually optimized trajectories as an initial point for simultaneous

evolution, seen in Figure 73. Previously optimized trajectories are indicated with the

initials PO in Table 40. The individual tasks were optimized for search, circle loiter,

and mark the spot by themselves and then combined into one large optimization. The

trajectories are approximated by 12 radial basis functions (RBFs) per dimension. The

initial mean for the CMA-ES optimization algorithm is a concatenated vector of the

RBF weights corresponding to the trajectories being adapted. All three trajectories

share the basic task objectives of Recognition, Act, and Area, which are omitted

from the table for brevity. The total cost is identical to the previous experiment and

defined as,

C = R + Act2 + Area2 + Cover2 + Act3 + Area3 +DFirstLast3+

Radii3 +MinTheta3 + Act4 + Area4 +DFirstLast4+

MarkSpot4 +MinTheta4. (41)

The subscript for each cost corresponds to the id number of the trajectory. For

example, Raddi3 corresponds to the Raddi cost for the third trajectory which in this

experiment is Circle Loiter.
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(a) Trajectory 1.
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(c) Trajectory 3.
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(d) Trajectory 4.

Figure 73: Initial set of trajectories to be recognized for experiment 13. Trajectory
one was initialized as a straight line, seen in (a), and will remain static throughout the
experiment. Trajectories two, three, and four are initialized from previously optimized
trajectories for search, circle loiter, and mark the spot, respectively and can be seen in
(b), (c), and (d). The TAR Framework will continue to perturb trajectories two, three,
and four in order to improve recognition accuracy while maintaining search, circle
loiter, and mark the spot, respectively. The common objectives for all three perturbed
trajectories are to lower recognition error while maintaining vehicle dynamics and
performed within a specified area. Trajectory two’s final objective is to maximize
sensor coverage area. Because trajectories three and four are repetitive, they both
had the objectives of minimizing the distance and orientation difference between the
first and last location. The final objectives for trajectory three and four were stay
within two radii and mark the spot, respectively.
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(i) Mark Spot Iteration 1960.

Figure 74: Experiment 13 results. The TAR framework begins with trajectories
that were previously individually optimized for search, circle loiter, and mark the
spot. The framework improves recognition accuracy while simultaneously ensuring
the task objectives of search, circle loiter, and mark the spot. Search is seen adapting
in (a), (d), and (g). Circle loiter is seen adapting in (b), (e), and (h). Mark the spot
is seen adapting in (c), (f), and (i).
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Results The adaptation of the trajectories is seen in Figure 74. The individu-

ally optimized trajectories all started as straight lines. Trajectory 2 was previously

optimized for sensor coverage to the trajectory seen in Figure 74a. The third trajec-

tory was previously optimized to be circle loiter-like to the trajectory seen in Figure

74b. The fourth trajectory was previously optimized to be mark the spot or figure 8

loiter-like to the trajectory seen in Figure 74c. Trajectory 2 is seen improving its area

coverage in iterations 578 and 1960, in Figures 74d and 74g, respectively. Trajectory

three begins as a circle loiter-like trajectory at iteration 0, seen in Figure 16, and

proceeds to overlap itself within the circle Radii as seen in Figures 74e and 74h at

iterations 578 and 1960, respectively. The fourth trajectory begins the simultaneous

adaptation process as a figure 8 loiter-like trajectory in the initial setup, seen in Fig-

ure 74c, and then proceeds to introduce more intersections than the original as seen

in Figures 74f and 74i corresponding to iterations 578 and 1960, respectively. Figure

75 displays the minimum total cost per iteration. Table 41 contains the confusion

matrices for the initial setup, iteration 578, and iteration 1960. It is important to note

that the recognition accuracy for each trajectory label is above 47%. By iteration 578,

seen in Table 16, all the trajectories have a recognition accuracy label above 80% with

two trajectories having 100% accuracy. The final recognition accuracy at iteration

1960 is 86.9%, 100%, 94%, and 100% for GoToWaypoint, Search, Circle Loiter, and

Mark Spot, respectively. The final set of trajectories for recognition is seen in Figure

76.

Discussion Starting from previously optimized trajectory per respective task

does produce desired results. In particular, the recognition accuracy at iteration 1960

is above 85% for all four trajectory labels. This is more impressive because circle

loiter has a 94% accuracy and both search and mark the spot have 100% accuracy.

In addition, qualitatively the search and circle loiter trajectories have continued to

evolve into the desired trajectories. Only the fourth trajectory which had as its
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Figure 75: Experiment 13 Iteration vs Total Cost

task objective MarkSpot to create mark the spot or a figure 8 loiter-like trajectory

strayed from the desired shape. However, the trajectory is able to concentrate many

intersections within a four by four meter space which could be used to mark a spot

of interest.

Conclusion Individually optimizing trajectories so that they accomplish their

respective tasks and then combining them to simultaneously improve recognition

accuracy while still accomplishing their respective tasks is successful. Recognition

accuracy improves from and initial accuracy of 525̇%, 60.7%, 78.6% and 47.7% to

86.9%, 100%, 94%, and 100% for GoToWaypoint, Search, Circle Loiter, and Mark

The Spot, respectively. Additionally, the trajectories improve their overall recognition

accuracy while still maintaining their task objectives.
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Figure 76: The final set of trajectories to be recognized at iteration 1960 in experiment
13. Trajectory one was initialized as a straight line, seen in (a), and remained static
throughout the experiment. Trajectories two, three, and four were initialized from
previously optimized search, circle loiter, and mark the spot experiments. The TAR
Framework improved recognition accuracy while maintaining search, circle loiter, and
mark the spot for trajectories two, three, and four, respectively, which can be seen at
iteration 1960 in (b), (c), and (d).

161



Table 41: Experiment 13 Confusion Matrices

Label
NoLabel GoToWaypoint Search Circle Loiter Mark Spot

A
ct

u
al

Transition 21.60 19.90 18.70 17.00 22.80
GoToWaypoint 0.00 52.50 44.30 0.00 3.28
Search 0.00 7.14 60.70 26.80 5.36
Circle Loiter 0.00 14.30 7.14 78.60 0.00
Mark Spot 6.82 20.50 6.82 18.20 47.70

(a) Iteration 0

Label
NoLabel GoToWaypoint Search Circle Loiter Mark Spot

A
ct

u
al

Transition 62.00 32.30 1.90 1.90 1.90
GoToWaypoint 13.10 86.90 0.00 0.00 0.00
Search 0.00 0.00 100.00 0.00 0.00
Circle Loiter 0.00 6.15 0.00 93.80 0.00
Mark Spot 0.00 0.00 0.00 0.00 100.00

(b) Iteration 578

Label
NoLabel GoToWaypoint Search Circle Loiter Mark Spot

A
ct

u
al

Transition 62.20 32.70 2.56 1.28 1.28
GoToWaypoint 13.10 86.90 0.00 0.00 0.00
Search 0.00 0.00 100.00 0.00 0.00
Circle Loiter 0.00 5.97 0.00 94.00 0.00
Mark Spot 0.00 0.00 0.00 0.00 100.00

(c) Iteration 1960
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Experiment 14 Setup

Table 42: Experiment 14 Setup

Task Initial Trajectory Perturb Cost Functions
Straight Line Straight Line N N/A
Search Circle Loiter Y Cover
Circle Loiter Circle Loiter Y DFirstLast+Radii+

MinTheta
Mark Spot Circle Loiter Y DFirstLast+MarkSpot+

MinTheta

# RBFs Per Dim: 6 Initial Sigma: 2

In experiment 14 the initial trajectories are one straight line and three identical

circle loiters, seen in Figure 77. Table 42 contains the experimental setup. The

trajectories are approximated by six radial basis functions (RBFs) per dimension. The

initial mean for the CMA-ES optimization algorithm is a concatenated vector of the

RBF weights corresponding to the trajectories being adapted. All three trajectories

share the basic task objectives of Recognition, Act, and Area, which are omitted

from the table for brevity. In this experiment four common tasks are optimized

for: GoToWaypoint, Search, Circle loiter, and Mark the Spot. There are no priority

weighting functions applied to the task objectives, meaning they are all clamped

between 0 and 1. All four trajectories are simultaneously adapted but the three

modifiable trajectories costs remain the same as the previous experiment,

C = R + Act2 + Area2 + Cover2 + Act3 + Area3 +DFirstLast3+

Radii3 +MinTheta3 + Act4 + Area4 +DFirstLast4+

MarkSpot4 +MinTheta4. (42)

The subscript for each cost corresponds to the id number of the trajectory. For

example, Raddi3 corresponds to the Raddi cost for the third trajectory which in this

experiment is Circle Loiter.

Results The evolution of the trajectories can be seen in Figure 78. The second
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Figure 77: Initial set of trajectories to be recognized for experiment 14. Trajectory
one was initialized as a straight line, seen in (a), and will remain static throughout
the experiment. Trajectories two, three and four are initialized as circle loiters and
can be seen in (b), (c), and (d). The TAR Framework will continue to perturb trajec-
tories two, three, and four in order to improve recognition accuracy while maintaining
search, circle loiter, and mark the spot, respectively. The common objectives for all
the trajectories are minimize recognition error while maintaining vehicle dynamics
and performing them within a specified area. The final objective for trajectory two
is maximizing the search coverage. Because trajectory three and four were repetitive,
they both included the objectives for minimizing the distance and orientation differ-
ence between the start and stop locations. The final objectives for trajectories three
and four were stay within two radii and mark the spot, respectively.
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Figure 78: Experiment 14 results. The TAR framework begins with one straight
line and three circle trajectories. The framework improves recognition accuracy while
ensuring task objectives of search, circle loiter, and mark the spot. Trajectory 2,
seen in (a) and (d), is ensuring sensor coverage. Trajectory 3, seen in (b) and (e), is
ensuring a circle loiter-like trajectory. Trajectory 4, seen in (c) and (f), is marking
the spot.
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trajectory is tasked with sensor coverage and can be seen as an initial circle loiter

in Figure 78a and its final trajectory in Figure 78d at iteration 526. The third

trajectory is tasked with maintaining a circle loiter and is seen in its initial state in

Figure 78b and final state in Figure 78e at iteration 526. The fourth trajectory is

tasked with marking the spot of interest and is initialized as a circle loiter, seen in

Figure 78c, and accomplishes a mark the spot/figure 8 loiter at iteration 526, seen

in Figure 78f. Figure 79 displays the minimum total cost per iteration. Table 43

contains the confusion matrices for the initial trajectory setup and for the final at

iteration 1000. The initial recognition accuracy begins at 64.5%, 78.4%, 0%, and 0%

for GoToWaypoint, Search, Circle Loiter, and Mark the spot, respectively. At the

final iteration, each trajectory label has increased to a final accuracy of 83.3%, 81.5%,

72.2%, and 86.5%, respectively. The final set of trajectories for recognition can be

seen in Figure 80.

Discussion Simultaneously evolving trajectories for four common tasks in which

the initial modifiable trajectories begin as circle loiters can improve each task objective

and recognition accuracy. It is interesting to note that in this simultaneous adaptation

that the circle loiter breaks into a partial circle loiter, seen in Figure 78e. Although

visually it is no longer circle loiter-like it still satisfies the Radii task objective as

the points of the trajectory are within the two specified radii. The second trajectory

does improve its sensor coverage task yet not as well as in previous experiments. The

MarkSpot task objective does adapt from a circle into a visually appealing mark the

spot of figure 8 loiter-like trajectory.

Conclusion Initializing modifiable trajectories as circle loiters can produce tra-

jectories that accomplish the tasks of Search, Circle Loiter, and Mark the Spot while

improving recognition accuracy.
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Table 43: Experiment 14 Confusion Matrices

Label
NoLabel GoToWaypoint Search Circle Loiter Mark Spot

A
ct

u
al

Transition 0.00 22.80 77.20 0.00 0.00
GoToWaypoint 0.00 64.50 35.50 0.00 0.00
Search 0.00 21.60 78.40 0.00 0.00
Circle Loiter 0.00 38.70 61.30 0.00 0.00
Mark Spot 0.00 34.40 65.60 0.00 0.00

(a) Iteration 0

Label
NoLabel GoToWaypoint Search Circle Loiter Mark Spot

A
ct

u
al

Transition 3.89 28.30 10.60 50.60 6.67
GoToWaypoint 0.00 83.30 0.00 16.70 0.00
Search 0.00 3.70 81.50 14.80 0.00
Circle Loiter 0.00 27.80 0.00 72.20 0.00
Mark Spot 0.00 13.50 0.00 0.00 86.50

(b) Iteration 1000
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Figure 80: The final set of trajectories to be recognized at iteration 526 in experi-
ment 14. Trajectory one was initialized as a straight line, seen in (a), and remained
static throughout the experiment. Trajectories two, three, and four were initialized
as circle loiters. The TAR Framework improved recognition accuracy while main-
taining search, circle loiter, and mark the spot for trajectories two, three, and four,
respectively, which can be seen at iteration 526 in (b), (c), and (d).
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6.9 Conclusion

These experiments have demonstrated the feasibility of the TAR framework in gener-

ating and modifying trajectories that an autonomous vehicle can track with minimal

error, accomplishes task objectives, and improves recognition accuracy. The first ex-

periment demonstrated that in a simple scenario of comparing two trajectories the

TAR framework can improve recognition accuracy. Although it improved recognition

accuracy, the actual commanded trajectory had tracking errors by the vehicle from

either the autonomy or vehicle dynamics or a combination of the two. Therefore, the

following experiments included an objective for actionability (Act) as a measure for

error in tracking. Adding such an objective encourages the TAR Framework to favor

trajectories that the autonomous vehicle can follow with little error. Subsequent ex-

periments demonstrated that given simple common tasks that TAR Framework can

improve recognition accuracy while adhering to tasks objectives such as sensor cover-

age and maintaining a circle loiter. A more difficult task is autonomously generating

a mark the spot or figure 8 loiter-like trajectory. In order to produce trajectories that

could be leveraged for cooperative tasks the three objectives MarkSpot, DFirstLast,

and MinTheta were introduced. Theses experiments demonstrated the stochastic

nature of the search algorithm CMA-ES. CMA-ES can favor a local minima that pro-

duce trajectories that do not have the desired trajectory properties. More difficult

scenarios were tackled such as that commonly encountered by AUVs in a search mis-

sion. During the search mission, an AUV will use multiple instances of circle loiter for

different purposes such as wait for commands, error state, and mission completion.

These experiments demonstrated the need to use priority weighting functions for the

different task objectives in order to maintain circle loiter-like trajectories. Addition-

ally, the difficulty of the scenario increased as more and more similar trajectories were

included for recognition and modification, potentially demonstrating the limit of this

instantiation of the TAR framework. The final set of experiments demonstrated the
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TAR framework’s ability to generate or modify four common tasks simultaneously

ensuring task objectives were met along with improving recognition accuracy. These

experiments demonstrated the efficacy of starting in different portions of the state

space of trajectories: straight lines, circle loiters, or previously optimized trajectories.
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CHAPTER VII

CONCLUSION

The primary contribution of this dissertation is the adaptation or modification of tra-

jectories performed by autonomous vehicles so that trajectory recognition accuracy

increases while still maintaining task objectives. The insight to adapt trajectories

for improved recognition was motivated by experiments in recognizing the common

trajectories performed by autonomous vehicles in Chapter 4. That foundational work

demonstrated trajectory recognition of common autonomous vehicle tasks using vari-

ous trajectory recognition methods. Even though various methods were employed and

parameters tuned for improved recognition accuracy, there were situations in which

the recognition accuracy was below an acceptable level for deployment. Experiments

in Chapter 5 introduced the multi-robot cooperation strategy of using trajectory-

based signaling similar to that of the honeybee “waggle” dance. The InfinityPattern

trajectory was used to indicate a location of interest to a teammate during periods of

intermittent or denied communications. While that foundational work explored us-

ing trajectory-based signaling for autonomous vehicle cooperation, there were issues

with the manually created trajectories to indicate the location of interest. In par-

ticular, the manually created trajectories were often not viable for the autonomous

vehicle to track without error. If the manually created trajectory had little tracking

error, it often did not improve the trajectory recognition accuracy to a desired level.

This motivated the insight of exploring a method to automatically adapt trajecto-

ries such that their combined recognition accuracy improved, were actionable by the

autonomous vehicles, and yet still performed the desired tasks. The introduction of

the Trajectory Adaptation for Recognition (TAR) framework in Chapter 6 directly
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addresses this adaptation process.

The experiments in Chapter 6 demonstrated TAR’s ability to improve trajec-

tory recognition while still enabling the trajectories to perform task objectives. Cost

functions were designed to address the common autonomous vehicle tasks such as

search pattern and circle loiter, which were originally recognized in Chapter 4. These

cost functions ensured that the trajectories still performed their desired tasks. In

order to address using a trajectory for trajectory-based signaling, originally studied

in Chapter 5, a Mark the Spot cost function was introduced. An important facet of

the TAR framework is the inclusion of whether an autonomous vehicle can follow a

commanded trajectory. This is important because the TAR framework may adapt a

trajectory for an improvement in recognition accuracy but if the autonomous vehicle

can not follow the trajectory with little error then it is not viable. Dynamic time

warping (DTW) was used to measure if commanded trajectories were actionable by

the simulated autonomous vehicles. Once the cost functions for maintaining task

objectives were verified, the TAR framework applied to more complicated scenarios.

The first complicated scenario was a search mission often performed by autonomous

underwater vehicles in which identical circle loiter patterns are employed for one of

many states such as holding patter, error state, and mission completion. The experi-

ments demonstrated that the TAR framework could modify the circle loiters for better

distinguishability with some limitations. The final set of experiments demonstrated

that the TAR framework can simultaneously adapt trajectories to fulfill common au-

tonomous vehicle tasks such as search, circle loiter, and mark the spot while improving

recognition accuracy.

The TAR framework is an initial attempt at jointly adapting autonomous vehi-

cle trajectories for improved recognition accuracy while maintaining task objectives.

There are several areas of research to pursue. The choice was made to have the recog-

nition and trajectory modification representation be the same with the use of radial
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basis functions. Alternative basis functions may be appropriate for different tasks

such as Fourier basis or Chebyshev polynomials. This is especially the case when

trajectories have repeating global properties such as the search task. Alternatively, a

disconnect can be made between the representation for recognition and modification.

For example, a probabilistic graphical model can be employed for recognition such as

a CRF while still using basis functions to approximate and modify the trajectories.

The exploration of the possible trajectories was performed with the evolutionary al-

gorithm CMA-ES so that cost functions for the task objectives could be as general

as possible. An area of exploration is applying gradient-based optimization methods

and corresponding cost functions. A natural extension of these experiments is the

inclusion of sensor simulation for the observing autonomous vehicle. Inclusion of a

sensor will increase the complexity of the optimization process. For example, the lo-

cation that acting vehicle performs its trajectories in relation to the observer must be

accounted for as there may be increased error with distance or angle. The resulting

trajectories may improve recognition accuracy and inform the team strategy that the

observer must be within certain bounds around the actor. While the TAR framework

is an initial attempt, experiments demonstrated its ability to improve recognition

accuracy while maintaining task objectives. Such a framework paves the way for en-

abling autonomous teammates to automatically adapt their motions so that they are

more easily recognizable by each other while still accomplishing their intended tasks.
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