9 research outputs found

    An Unsupervised Approach to Modelling Visual Data

    Get PDF
    For very large visual datasets, producing expert ground-truth data for training supervised algorithms can represent a substantial human effort. In these situations there is scope for the use of unsupervised approaches that can model collections of images and automatically summarise their content. The primary motivation for this thesis comes from the problem of labelling large visual datasets of the seafloor obtained by an Autonomous Underwater Vehicle (AUV) for ecological analysis. It is expensive to label this data, as taxonomical experts for the specific region are required, whereas automatically generated summaries can be used to focus the efforts of experts, and inform decisions on additional sampling. The contributions in this thesis arise from modelling this visual data in entirely unsupervised ways to obtain comprehensive visual summaries. Firstly, popular unsupervised image feature learning approaches are adapted to work with large datasets and unsupervised clustering algorithms. Next, using Bayesian models the performance of rudimentary scene clustering is boosted by sharing clusters between multiple related datasets, such as regular photo albums or AUV surveys. These Bayesian scene clustering models are extended to simultaneously cluster sub-image segments to form unsupervised notions of “objects” within scenes. The frequency distribution of these objects within scenes is used as the scene descriptor for simultaneous scene clustering. Finally, this simultaneous clustering model is extended to make use of whole image descriptors, which encode rudimentary spatial information, as well as object frequency distributions to describe scenes. This is achieved by unifying the previously presented Bayesian clustering models, and in so doing rectifies some of their weaknesses and limitations. Hence, the final contribution of this thesis is a practical unsupervised algorithm for modelling images from the super-pixel to album levels, and is applicable to large datasets

    Investigation of new learning methods for visual recognition

    Get PDF
    Visual recognition is one of the most difficult and prevailing problems in computer vision and pattern recognition due to the challenges in understanding the semantics and contents of digital images. Two major components of a visual recognition system are discriminatory feature representation and efficient and accurate pattern classification. This dissertation therefore focuses on developing new learning methods for visual recognition. Based on the conventional sparse representation, which shows its robustness for visual recognition problems, a series of new methods is proposed. Specifically, first, a new locally linear K nearest neighbor method, or LLK method, is presented. The LLK method derives a new representation, which is an approximation to the ideal representation, by optimizing an objective function based on a host of criteria for sparsity, locality, and reconstruction. The novel representation is further processed by two new classifiers, namely, an LLK based classifier (LLKc) and a locally linear nearest mean based classifier (LLNc), for visual recognition. The proposed classifiers are shown to connect to the Bayes decision rule for minimum error. Second, a new generative and discriminative sparse representation (GDSR) method is proposed by taking advantage of both a coarse modeling of the generative information and a modeling of the discriminative information. The proposed GDSR method integrates two new criteria, namely, a discriminative criterion and a generative criterion, into the conventional sparse representation criterion. A new generative and discriminative sparse representation based classification (GDSRc) method is then presented based on the derived new representation. Finally, a new Score space based multiple Metric Learning (SML) method is presented for a challenging visual recognition application, namely, recognizing kinship relations or kinship verification. The proposed SML method, which goes beyond the conventional Mahalanobis distance metric learning, not only learns the distance metric but also models the generative process of features by taking advantage of the score space. The SML method is optimized by solving a constrained, non-negative, and weighted variant of the sparse representation problem. To assess the feasibility of the proposed new learning methods, several visual recognition tasks, such as face recognition, scene recognition, object recognition, computational fine art analysis, action recognition, fine grained recognition, as well as kinship verification are applied. The experimental results show that the proposed new learning methods achieve better performance than the other popular methods

    Multimodal learning from visual and remotely sensed data

    Get PDF
    Autonomous vehicles are often deployed to perform exploration and monitoring missions in unseen environments. In such applications, there is often a compromise between the information richness and the acquisition cost of different sensor modalities. Visual data is usually very information-rich, but requires in-situ acquisition with the robot. In contrast, remotely sensed data has a larger range and footprint, and may be available prior to a mission. In order to effectively and efficiently explore and monitor the environment, it is critical to make use of all of the sensory information available to the robot. One important application is the use of an Autonomous Underwater Vehicle (AUV) to survey the ocean floor. AUVs can take high resolution in-situ photographs of the sea floor, which can be used to classify different regions into various habitat classes that summarise the observed physical and biological properties. This is known as benthic habitat mapping. However, since AUVs can only image a tiny fraction of the ocean floor, habitat mapping is usually performed with remotely sensed bathymetry (ocean depth) data, obtained from shipborne multibeam sonar. With the recent surge in unsupervised feature learning and deep learning techniques, a number of previous techniques have investigated the concept of multimodal learning: capturing the relationship between different sensor modalities in order to perform classification and other inference tasks. This thesis proposes related techniques for visual and remotely sensed data, applied to the task of autonomous exploration and monitoring with an AUV. Doing so enables more accurate classification of the benthic environment, and also assists autonomous survey planning. The first contribution of this thesis is to apply unsupervised feature learning techniques to marine data. The proposed techniques are used to extract features from image and bathymetric data separately, and the performance is compared to that with more traditionally used features for each sensor modality. The second contribution is the development of a multimodal learning architecture that captures the relationship between the two modalities. The model is robust to missing modalities, which means it can extract better features for large-scale benthic habitat mapping, where only bathymetry is available. The model is used to perform classification with various combinations of modalities, demonstrating that multimodal learning provides a large performance improvement over the baseline case. The third contribution is an extension of the standard learning architecture using a gated feature learning model, which enables the model to better capture the ‘one-to-many’ relationship between visual and bathymetric data. This opens up further inference capabilities, with the ability to predict visual features from bathymetric data, which allows image-based queries. Such queries are useful for AUV survey planning, especially when supervised labels are unavailable. The final contribution is the novel derivation of a number of information-theoretic measures to aid survey planning. The proposed measures predict the utility of unobserved areas, in terms of the amount of expected additional visual information. As such, they are able to produce utility maps over a large region that can be used by the AUV to determine the most informative locations from a set of candidate missions. The models proposed in this thesis are validated through extensive experiments on real marine data. Furthermore, the introduced techniques have applications in various other areas within robotics. As such, this thesis concludes with a discussion on the broader implications of these contributions, and the future research directions that arise as a result of this work

    GEO-REFERENCED VIDEO RETRIEVAL: TEXT ANNOTATION AND SIMILARITY SEARCH

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Novel image descriptors and learning methods for image classification applications

    Get PDF
    Image classification is an active and rapidly expanding research area in computer vision and machine learning due to its broad applications. With the advent of big data, the need for robust image descriptors and learning methods to process a large number of images for different kinds of visual applications has greatly increased. Towards that end, this dissertation focuses on exploring new image descriptors and learning methods by incorporating important visual aspects and enhancing the feature representation in the discriminative space for advancing image classification. First, an innovative sparse representation model using the complete marginal Fisher analysis (CMFA-SR) framework is proposed for improving the image classification performance. In particular, the complete marginal Fisher analysis method extracts the discriminatory features in both the column space of the local samples based within class scatter matrix and the null space of its transformed matrix. To further improve the classification capability, a discriminative sparse representation model is proposed by integrating a representation criterion such as the sparse representation and a discriminative criterion. Second, the discriminative dictionary distribution based sparse coding (DDSC) method is presented that utilizes both the discriminative and generative information to enhance the feature representation. Specifically, the dictionary distribution criterion reveals the class conditional probability of each dictionary item by using the dictionary distribution coefficients, and the discriminative criterion applies new within-class and between-class scatter matrices for discriminant analysis. Third, a fused color Fisher vector (FCFV) feature is developed by integrating the most expressive features of the DAISY Fisher vector (D-FV) feature, the WLD-SIFT Fisher vector (WS-FV) feature, and the SIFT-FV feature in different color spaces to capture the local, color, spatial, relative intensity, as well as the gradient orientation information. Furthermore, a sparse kernel manifold learner (SKML) method is applied to the FCFV features for learning a discriminative sparse representation by considering the local manifold structure and the label information based on the marginal Fisher criterion. Finally, a novel multiple anthropological Fisher kernel framework (M-AFK) is presented to extract and enhance the facial genetic features for kinship verification. The proposed method is derived by applying a novel similarity enhancement approach based on SIFT flow and learning an inheritable transformation on the multiple Fisher vector features that uses the criterion of minimizing the distance among the kinship samples and maximizing the distance among the non-kinship samples. The effectiveness of the proposed methods is assessed on numerous image classification tasks, such as face recognition, kinship verification, scene classification, object classification, and computational fine art painting categorization. The experimental results on popular image datasets show the feasibility of the proposed methods

    Improving Deep Representation Learning with Complex and Multimodal Data.

    Full text link
    Representation learning has emerged as a way to learn meaningful representation from data and made a breakthrough in many applications including visual object recognition, speech recognition, and text understanding. However, learning representation from complex high-dimensional sensory data is challenging since there exist many irrelevant factors of variation (e.g., data transformation, random noise). On the other hand, to build an end-to-end prediction system for structured output variables, one needs to incorporate probabilistic inference to properly model a mapping from single input to possible configurations of output variables. This thesis addresses limitations of current representation learning in two parts. The first part discusses efficient learning algorithms of invariant representation based on restricted Boltzmann machines (RBMs). Pointing out the difficulty of learning, we develop an efficient initialization method for sparse and convolutional RBMs. On top of that, we develop variants of RBM that learn representations invariant to data transformations such as translation, rotation, or scale variation by pooling the filter responses of input data after a transformation, or to irrelevant patterns such as random or structured noise, by jointly performing feature selection and feature learning. We demonstrate improved performance on visual object recognition and weakly supervised foreground object segmentation. The second part discusses conditional graphical models and learning frameworks for structured output variables using deep generative models as prior. For example, we combine the best properties of the CRF and the RBM to enforce both local and global (e.g., object shape) consistencies for visual object segmentation. Furthermore, we develop a deep conditional generative model of structured output variables, which is an end-to-end system trainable by backpropagation. We demonstrate the importance of global prior and probabilistic inference for visual object segmentation. Second, we develop a novel multimodal learning framework by casting the problem into structured output representation learning problems, where the output is one data modality to be predicted from the other modalities, and vice versa. We explain as to how our method could be more effective than maximum likelihood learning and demonstrate the state-of-the-art performance on visual-text and visual-only recognition tasks.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113549/1/kihyuks_1.pd

    Robust low-dimensional structure learning for big data and its applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Describing Human Activities in Video Streams

    Get PDF
    corecore