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Summary

The explosive growth of data in the era of big data has presented great challenges to

traditional machine learning techniques, since most of them are difficult to apply for

handling large-scale, high-dimensional and dynamically changing data. Moreover,

most of the current low-dimensional structure learning methods are fragile to the

noise explosion in high-dimensional regime, data contamination and outliers, which

however are ubiquitous in realistic data. In this thesis, we propose deterministic

and online learning methods for robustly recovering the low-dimensional structure of

data to solve the above key challenges. These methods possess high efficiency, strong

robustness, good scalability and theoretically guaranteed performance in handling

big data, even in the presence of noises, contaminations and adversarial outliers. In

addition, we also develop practical algorithms for recovering the low-dimensional and

informative structure of realistic visual data in several computer vision applications.

Specifically, we first develop a deterministic robust PCA method for recovering

low-dimensional subspace of high-dimensional data, where the dimensionality of

each datum is comparable or even larger than the number of data. The DHRPCA

method is tractable, possesses maximal robustness, and asymptotic consistent in

the high-dimensional space. More importantly, by smartly suppressing the affect

of outliers in a batch manner, the method exhibits significantly high efficiency for

handling large-scale data. Second, we propose two online learning methods, OR-

PCA and online RPCA, to further enhance the scalability for robustly learning the

low-dimensional structure of big data, under limited memory and computational cost

budget. These two methods handle two different types of contaminations within the
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data: (1) OR-PCA is for the data with sparse corruption and (2) online RPCA

is for the case where a few of the data are completely corrupted. In particular,

OR-PCA introduces a matrix factorization reformulation of nuclear norm which

enables alternative stochastic optimization to be applicable and converge to the

global optimum. Online RPCA devises a randomized sample selection mechanism

which possesses provable recovering performance and robustness guarantee under

mild condition. Both of these two methods process the data in a streaming manner

and thus are memory and computationally efficient for analyzing big data.

Third, we devise two low-dimensional learning algorithms for visual data and

solve several important problems in computer vision: (1) geometric pooling which

generates discriminative image representation based on the low-dimensional struc-

ture of the object class space, and (2) auto-grouped sparse representation for discov-

ering low-dimensional sub-group structure within visual features to generate better

feature representations. These two methods achieve state-of-the-art performance

on several benchmark datasets for the image classification, image annotation and

motion segmentation tasks.

In summary, we develop robust and efficient low-dimensional structure learn-

ing algorithms which solve several key challenges imposed by big data for current

machine learning techniques and realistic applications in computer vision field.
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Chapter 1

Introduction

Both research and industry areas (such as engineering, computer science and eco-

nomics) are currently generating terabytes (1012 bytes) or even petabytes (1015

bytes) of data in the observations, numerical simulations and experiments. More-

over, the emergence of e-commerce and web search engines has led us to confront the

challenges of even larger scale of data. To be concrete, Google, Microsoft, and other

social media companies (e.g., Facebook, YouTube, Twitter) have data on the order

of exabytes (1018 bytes) or beyond. Exploring the succinct and relational structure

of the data removes the redundant and noisy information, and thus provides us

with deeper insights into the information contained in the data which benefits our

decision making, users behavior analyzing and prediction.

Actually, analysis of the information contained in these data sets have already

led to major breakthroughs in fields ranging from economics to computer science

and to the development of new information-based industries. However, traditional

methods of analysis have been based largely on the assumption that analysts (e.g.,

the learning and inference algorithms) can work with data within the their limited

computing resources, but the growth of “big data” is imposing great challenges to

them.

More specifically, the challenges raised by “big data” for the machine learning

methods mainly lie on the following two aspects. First, the large scale of the data

causes great storage and computational burdens on the modern sophisticated ma-
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chine learning, inference and optimization algorithms. Many of existing standard

learning algorithms, though they are statistically performing well, are hindered by

their high computational complexity and do not scale well to the big data. Secondly,

the real data usually contain contamination, which may come from the inherent

noises, corruptions in the measuring or sampling process or even malicious contam-

ination. Such noises and corruptions require the learning methods to possess strong

robustness in order for yielding accurate inference results.

This thesis focuses on the problem of low-dimensional structure learning for big

data analysis. In particular, we investigate and contribute to handling the noise

explosion in the high-dimensional regime and the outliers within the data. Second,

we apply the online learning algorithms to efficiently process the large-scale data

under the limited budget of computational resources. Finally, we demonstrate two

applications of the low-dimensional structure learning methods in object recognition

and image classification.

1.1 Background and Related works

1.1.1 Low-dimensional Structure Learning

Low-dimensional structure represents a more succinct representation of the observed

massive data than their original representation. Finding the low-dimensional struc-

ture of the massive observed data is able to remove the noisy or irrelevant informa-

tion, identify the essential structure of the data and provide us with deeper insight

into the information contained within the data. Moreover, with the help of the

low-dimensional structure mining, we can more conveniently visualize, process and

analyze the data.

Among the traditional low-dimensional structure learning methods, Principal

Component Analysis (PCA) [57] is arguably the most popular one. PCA finds a

low-dimensional subspace which is able to closely fit the observed data, in the sense

of minimizing the square residual error. Following PCA, many other low-dimensional

structure learning methods have been developed based on different criterion in ex-
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plaining the data. For instance, Locality Preserving Projections (LPP) [122] is pro-

posed to preserve the local relationships among the data after dimension reduction.

Besides linear methods, some non-linear low-dimensional manifold learning meth-

ods are proposed to discover the underlying manifold structure of the data. Typical

examples of those methods include ISOMAP [123], LLE [124], and Laplacian Eigen-

map [125]. Some methods also explore the discriminative low-dimensional structure.

For example, Linear Discriminative Analysis (LDA) [126], or called Fisher Discrimi-

native Analysis (FDA), pursues a linear projection of the data belonging to different

classes in order to maximize the class separability after the linear projection.

Besides pursuing an explicit linear or nonlinear transformation of the data into

low-dimensional structure, some matrix decomposition based method has been pro-

posed to implicitly find the underlying low-dimensional structure. A typical method

is factorizing the data matrix as a low-rank matrix plus a noisy explaining matrix,

where the low-rank factor matrix corresponds to the low-dimensional subspace of

the data [44].

Generally, the methods are batch based and need to load all the data into

memory to perform the inference. This incurs huge storage cost for processing

big data. Moreover, though PCA and other linear methods admit streaming pro-

cessing scheme, it is well known that they are quite fragile to outliers and have weak

robustness.

1.1.2 Robustness in Structure Learning

As discussed above, noises are ubiquitous in realistic data. Traditional low-dimensional

structure learning methods are able to handle the noise with small magnitude in

relatively low-dimensional regime. However, along with the development of mod-

ern data generation and acquisition technologies, the dimensionality of realistic data

keeps increasing. For example, images of much higher resolutions than before can be

acquired rather conveniently. DNA microarray data, financial data, consumer data

also possess quite high dimensionality. In dealing with such high-dimensional data,

the dimensionality explosion is inevitable. However, traditional structure learning
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methods may fail in this high-dimensional regime [36, 20, 52, 30, 19, 20, 29], due

to their breakdown point being inversely proportional to the dimensionality, or the

unaffordable computational complexity.

Besides the existence of noise in realistic data, some samples or certain dimension

of the data may be corrupted, due to the sensor error or malicious contamination.

The outliers will contaminate the data and manipulate the learning results. In fact,

many of existing low-dimensional structure learning methods, e.g., standard PCA,

are shown to be quite fragile to the outliers. Even one outlier can make the results

arbitrarily bad.

Robustifying the traditional machine learning algorithms becomes a hot and

quite valuable research topic, especially for processing the realistic data with con-

tamination. In particular, many robust learning methods have been proposed for

learning the low-dimensional structure of data [36, 20, 52, 30, 19, 20, 29]. Tradi-

tional machine learning algorithms are generally robustified by employing certain

robust statistics which have high breakdown point. For instance, some of the ex-

isting RPCA methods adopt M-estimator, S-estimator Minimum Covariance Deter-

minant (MCD) estimator to obtain the robust estimation of the sample covariance

matrix. Robust regression based on the robust counterpart of vector inner product

to enhance the robustness, even though there is contamination on the both design

matrix and response variables [127]. Another line of the robust learning is to ex-

plicitly model the added noise on the samples, with certain structural prior, such

as gross though sparse error used in the PCP robust PCA algorithm [44]. In this

thesis, we focus on proposing robust structural learning methods, which can well

handle both the noise in high-dimensional regime and the outliers. In this thesis, we

propose several robust learning methods which are proved to achieve the maximal

robustness.

1.1.3 Online Learning

Online learning is developed for solving the problems where the data are revealed

incrementally over time, and the learner needs to make prediction only based on the
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data revealed to now, without any knowledge about the coming data in the future.

Online learning originates from game theory, but has been studied in many other

research fields, including information theory and machine learning. Online learning

also becomes of great interest to practitioners due to the recent emergence of large

scale applications such as online advertisement placement and online web ranking.

More formally, online learning is performed in a sequence of consecutive rounds,

where at round t the learner is given a question, xt, taken from an instance domain

X , and is required to provide an answer to this question, which we denote by pt.

After predicting an answer, the correct answer, yt, taken from a target domain Y,

is revealed and the learner suffers a loss, l(pt, yt), which measures the discrepancy

between its answer and the correct one. The target of the learner is thus to minimize

the cumulative loss
∑

t l(pt, yt) or expected loss EX l(pt, yt).

Online learning obviously has the advantages of cheap memory cost in learning

from big data. The online learner only loads one datum or a small batch of the data

into the memory at each time instance, and does not need to re-explore the previous

data in the learning process. In contrast, batch based machine learning algorithms

require to load all the observed data into the memory to perform the parameter

learning and inference. This imposes huge computational burden, especially storage

burden, on the learners and prevents the learners from scaling to big data.

Though they have appealing efficiency advantages, online learning methods often

have quite weak robustness. This is because that the usage of robust statistics for

robustifying the learning methods generally requires statistics over all the data. It

is difficult for the online learning methods which only have a partial observation of

the data to obtain such robust statistics. In this thesis, we investigate and propose

robust online learning algorithms for processing big realistic data.

1.2 Thesis Focus and Main Contributions

In this thesis, we focus on robust and efficient low-dimensional structure learning

for big data analysis. The main motivations are as follows:
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1. For more efficient batch high-dimensional RPCA algorithm. Big data often

have high dimensionality. In the high-dimensional regime, noise explosion will

destroy the signal and fail many existing low-dimensional subspace learning

method. A strategy to handle the noise and outliers is to introduce randomness

on the sample selection. However, such method is quite inefficient as only at

most one sample is removed in each optimization iteration. A deterministic

method is desired for providing high efficiency.

2. With limited budget of memory, how to handle the large-scale dataset. For

common users, the computational budget is usually limited. However, tra-

ditional machine learning methods are generally batch based, which require

to load all the data into memory. This is the bottleneck for processing big

data. Therefore, an online learning algorithm which processes the data in a

streaming manner and meanwhile preserves the desired property of the batch

methods is required.

3. We are also interested in the application of the low-dimensional structure

learning method in real applications. In particular, we focus on solving the

problem of object recognition in computer vision research field. The discovered

low-dimensional structure is able to convey more essential and discriminative

information for classification. Thus, based on such structure, more discrim-

inative image representations can be obtained which are more beneficial for

image classification and/or object recognition.

In this thesis, the robust low-dimensional structure learning method, especially

for the low-dimensional subspace learning, is proposed. Furthermore, we successfully

scale the method to big data regime via proposing the online learning method. We

also apply the low-dimensional learning method on computer vision applications.

More specifically, we conduct research on the following aspects:

1. Deterministic high-dimensional robust PCA method. We first develop a deter-

ministic robust PCA method for recovering low-dimensional subspace of high-
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dimensional data, where the dimensionality of each datum is comparable or

even larger than the number of data. The DHRPCA method is tractable, pos-

sesses maximal robustness, and asymptotic consistent in the high-dimensional

space. More importantly, by smartly suppressing the affect of outliers in a

batch manner, the method exhibits significantly high efficiency for handling

large-scale data.

2. Online robust PCA methods.

Second, we propose two online learning methods, OR-PCA and online RPCA,

to further enhance the scalability for robustly learning the low-dimensional

structure of big data, under limited memory and computational cost bud-

get. These two methods handle two different types of contaminations within

the data: (1) OR-PCA is for the data with sparse corruption and (2) online

RPCA is for the case where a few of the data are completely corrupted. In

particular, OR-PCA introduces a matrix factorization reformulation of nuclear

norm which enables alternative stochastic optimization to be applicable and

converge to the global optimum. Online RPCA devises a randomized sample

selection mechanism which possesses provable recovering performance and ro-

bustness guarantee under mild condition. Both of these two methods process

the data in a streaming manner and thus are memory and computationally

efficient for analyzing big data.

3. The applications in computer vision tasks. Furthermore, we devise two low-

dimensional learning algorithms for visual data and solve several important

problems in computer vision: (1) geometric pooling which generates discrim-

inative image representation based on the low-dimensional structure of the

object class space, and (2) auto-grouped sparse representation for discover-

ing low-dimensional sub-group structure within visual features to generate

better feature representations. These two methods achieve state-of-the-art

performance on several benchmark datasets for the image classification, image

annotation and motion segmentation tasks.
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1.3 Structure of The Thesis

In Chapter 2, we propose a deterministic robust PCA method for learning the low-

dimensional structure of data in high-dimensional regime. Then in Chapter 3 and

Chapter 4, we propose two different online robust PCA methods to handle data

with different corruption models. Finally, we demonstrate two applications of the

low-dimensional structure learning in object recognition and image annotation tasks

in Chapter 5 and Chapter 6.
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Chapter 2

Robust PCA in High-dimension:

A Deterministic Approach

In this chapter, we propose our robust PCA method for handing the data with

quite high dimensionality and meanwhile a subset of the data is corrupted to be

outliers. We propose a deterministic algorithm which is much more efficient than

its randomized counterpart yet possesses the maximal robustness.

2.1 Introduction

This chapter is about robust principal component analysis (PCA) for high-dimensional

data, a topic that has drawn surging attention in recent years. PCA is one of the

most widely used data analysis methods [57]. It constructs a low-dimensional sub-

space based on a set of principal components (PCs) to approximate the observations

in the least-square sense. Standard PCA computes PCs as eigenvectors of the sam-

ple covariance matrix. Due to the quadratic error criterion, PCA is notoriously

sensitive and fragile, and the quality of its output can suffer severely in the face of

even few corrupted samples. Therefore, it is not surprising that many works have

been dedicated to robustifying PCA [52, 20, 44].

Analyzing high dimensional data – data sets where the dimensionality of each

observation is comparable to or even larger than the number of observations – has
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become a critical task in modern statistics and machine learning [6]. Practical high

dimensional data, such as DNA microarray data, financial data, consumer data, and

climate data, easily have dimensionality ranging from thousand to billions. Partly

due to the fact that extending traditional statistical tools (designed for the low

dimensional case) into this high-dimensional regime are often unsuccessful, tremen-

dous research efforts have been made to design fresh statistical tools to cope with

such “dimensionality explosion”.

The work in [61] is among the first to analyze robust PCA algorithms in the high-

dimensional setup. They identified three pitfalls, namely diminishing breakdown

point, noise explosion and algorithmic intractability, where previous robust PCA

algorithms stumble. They then proposed the high-dimensional robust PCA (HR-

PCA) algorithm that can effectively overcome these problems, and showed that

HR-PCA is tractable, provably robust and easily kernelizable. In particular, in

contrast to standard PCA and existing robust PCA algorithms, HR-PCA is able

to robustly estimate the PCs in the high-dimensional regime even in the face of

a constant fraction of outliers and extremely low Signal Noise Ratio (SNR) – the

breakdown point of HR-PCA is 50%, 1 which is the highest breakdown point can ever

be achieved, whereas other existing methods all have breakdown points diminishing

to zero. Indeed, to the best of our knowledge, HR-PCA appears to be the only

algorithm having these properties in the high-dimensional regime.

Briefly speaking, HR-PCA is an iterative method which in each iteration per-

forms standard PCA, and then randomly remove one point in a way that outliers

are more likely to be removed, so that the algorithm converges to a good output.

Because in each iteration, only one point is removed, the number of iterations re-

quired to find a good solution is at least as much as the number of outliers. This,

combined with the fact that PCA is computationally expensive itself, prevents HR-

PCA from effectively handling large-scale data-sets with many outliers. In addition,

the performance of HR-PCA depends on the ability of the built-in random removal

1Breakdown point is a robustness measure defined as the percentage of corrupted points that
can make the output of the algorithm arbitrarily bad.
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to eliminate outliers correctly, which is only guaranteed in a probabilistic manner.

To address these two issues, we propose a deterministic high dimensional robust

PCA algorithm (DHR-PCA). Specifically, instead of removing one point, the pro-

posed algorithm decreases the weights of all observations in each iteration, in a way

that the total weight of the outliers will decrease faster than that of the true samples.

We show that DHR-PCA inherits all desirable theoretical properties of HR-PCA,

including tractability, kernelizability, the maximal breakdown point, provable per-

formance guarantee and asymptotical optimality. Moreover, DHR-PCA can be much

more computationally efficient than (randomized) HR-PCA. As we show below, the

number of iterations for DHR-PCA to converge is nearly constant, in sharp contrast

to HR-PCA whose number of iterations required increases linearly with the number

of outliers. Simulations in Section 2.4 show that for any fixed number of iterations,

the solution to DHR-PCA is at least as good as HR-PCA, and is significantly better

when the number of iterations is small. This is very appealing in practice, as both

algorithms are “any-time” algorithms, i.e., one can terminate the algorithms at any

time and obtain the best solution so-far.

2.2 Related Work

Besides HR-PCA, there have been abundant works on robust PCA, which we briefly

discuss in this section. Robust PCA algorithms focusing on the low-dimensional

setup [e.g., 36, 20, 52] can be roughly categorized into two groups. The first group of

algorithms pursue robust estimation of the covariance matrix, e.g., M -estimator [32],

S-estimator [37], and Minimum Covariance Determinant (MCD) estimator [36].

These algorithms generally provide more robust results, but their applicability is

severely limited to small or moderate dimensions, as there are not enough observa-

tions to robustly estimate a high-dimensional covariance matrix. The second group

of algorithms directly maximize certain robust estimation of univariate variance for

the projected observations and then obtain maximizers as the candidate principal

components [30, 19, 20, 29]. These algorithms inherit the robustness characteristics
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of the adopted estimators and are qualitatively robust. However, all of these algo-

rithms run into unsolvable issues in the high dimensional regime incurred by the

curse of dimensionality as stated in the followings.

The targeted high-dimensional regime poses three main challenges to existing

robust PCA methods. First, some robust PCA algorithms have breakdown point

inversely proportional to the dimensionality, e.g., M -estimator [32], in the high-

dimensional regime their breakdown points will diminish and the results will be

arbitrarily bad in presence of even few outliers. Second, widely used outlyingness

indicators, including Mahalanobis distance and Stahel-Donoho outlyingness [5] are

no longer valid, due to a phenomenon termed – “noise explosion” [61]. This causes

the algorithms relying on such outlyingness measures [52] to collapse. The third

problem is that the dimensionality may be larger than the number of data points

and thus some robust estimators including Minimum Volume Ellipsoid (MVE) and

Minimum Covariance Determinant (MCD) [36] become degenerated. Furthermore,

the extremely high computational complexity of these estimators and projection

pursuit methods for high dimensional data prevents them from being tractable.

Finally, we discuss recent works addressing robust PCA using low-rank tech-

nique. [44] developed a framework to perform robust PCA using low-rank matrix

decomposition. Yet, their method focuses on the scenario that random entries of

the observation matrix are arbitrarily corrupted, which differs from our setup where

one corrupted data point may change the whole column of the observation matrix.

The later setup is then investigated in Xu et al. [16]. While their proposed method

performs well under a small fraction of outliers, it breaks down for larger fraction of

outliers – in particular, the breakdown point is far from 50%. Moreover, the perfor-

mance scales unfavorably with the magnitude of noise, which makes it not suitable

for the high-dimensional setup, due to “noise-explosion”.
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2.3 The Algorithm

In this section, we first formally state the problem setup of the high dimensional

robust PCA. Then we provide the details of the proposed DHR-PCA algorithm

and finally present the main theoretic results on the performance guarantees of the

algorithm.

2.3.1 Problem Setup

In this subsection, we present the formal problem description of PCA for the high

dimensional data with contamination. Our setup, detailed below for completeness,

largely follows the pervious work in [61].

Given n observations, there are t observations not corrupted, called authentic

samples. The authentic samples zi ∈ Rm are generated through a linear mapping:

zi = Axi+ni. Here, noise ni is sampled from normal distribution N (0, Im); and the

signal xi ∈ Rd are i.i.d. samples of a random variable x with mean zero and variance

Id. The matrix A ∈ Rm×d and the distribution µ of x are unknown. We assume µ

is absolutely continuous w.r.t. the Borel measure and spherically symmetric. And

µ has light tails, i.e., there exist constants K,C > 0 such that Pr(‖x‖ ≥ x) ≤

K exp(−Cx) for all x ≥ 0. We are interested in the case where n ≈ m� d, i.e., the

dimensionality of observations is much larger than that of signals and of the same

order as the number of observations.

The outliers (the corrupted data) are denoted as o1, . . . ,on−t ∈ Rm and they are

with arbitrary values. We only require that n − t ≤ t, i.e., the number of outliers

are not more than that of authentic samples. Let λ , (n − t)/n be the fraction of

corrupted points. We observe the contaminated dataset

Y , {y1, . . . ,yn} = {z1, . . . , zt}
⋃
{o1, . . . ,on−t},

and aim to recover the principal components ofA, i.e., the top eigenvectors w̄1, . . . , w̄d

of AAT . That is, we seek a collection of orthogonal vectors w1, . . . ,wd, that maxi-
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mize the following performance metric called the Expressed Variance (E.V.):

E.V.(w1, . . . ,wd) ,

∑d
j=1 wT

j AA
Twj∑d

j=1 w̄T
j AA

T w̄j

.

The E.V. represents the portion of signal Ax being expressed by w1, . . . ,wd. Thus,

1 − E.V. is the reconstruction error of the signal. The E.V. is a commonly used

evaluation metric for the PCA algorithms [61, 21]. It is always less than one, with

equality achieved by a perfect recovery, i.e., the vectors w1, . . . ,wd have the same

span as the true principal components {w̄1, . . . , w̄d}.

The distribution µ affects the performance of the algorithms through its tail.

We hence adapt the following tail weight function V : [0, 1]→ [0, 1] from [61], which

essentially represents how the tail of µ̄ contributes to its variance,

V(α) ,
∫ cα

−cα
x2µ̄(dx),

where µ̄ is the one-dimensional margin of µ and cα is such that µ̄ ([−cα, cα]) = α.

Notice that V(0) = 0,V(1) = 1, and V(·) is continuous.

2.3.2 Deterministic HR-PCA Algorithm

Our main algorithm is given in Algorithm 1. Here, a Robust Variance Estimator

(RVE) V̄t̂(·) is adopted to identify the candidate principal components. For w ∈ Sm,

the RVE is defined as V̄t̂(w) , 1
n

∑t̂
i=1 |wTy|2(i), where the subscript (·) denotes a

non-decreasing order of the variables. And it can be seen that the RVE stands for

the following statistics: project yi onto the direction w, replace the furthest n − t̂

samples by 0, and then compute the variance. If the variance is large, it is likely that

a correct principal component direction is found. Otherwise, a number of points with

largest variance may be corrupted. Notice that the RVE is always performed on the

original observed set Y. We find that RVE coincides with the robust L-estimator,

which is defined as a linear combination of order statistics: Tn =
∑n

i=1 anih(x(i)) for

some function h.
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Algorithm 1 DHR-PCA.

Input: Contaminated sample set Y = {y1, . . . ,yn} ⊂ Rm, parameters d, t̂.
Output: Recovered PCs: w∗1, . . . ,w

∗
d.

Initialize ŷi := yi, αi = 1,∀i = 1, . . . , n; Opt := 0.
repeat

1. Compute the empirical variance matrix

Σ̂ :=
1

n

n∑
i=1

αiŷiŷ
T
i ;

2. Perform PCA on Σ̂. Let w1, . . . ,wd be the d principle components of Σ̂;

3. If
∑d

j=1 V̄t̂(wj) > Opt, then let Opt :=
∑d

j=1 V̄t̂(wj) and let w∗j := wj

for j = 1, . . . , d;

4. Calculate

η = min
i

1∑d
j=1

(
wT
j ŷi

)2 ,∀i : αi 6= 0.

5. Update the sample weight αi := αi − ∆αi, ∀i : αi 6= 0, where ∆αi =

ηαi
∑d

j=1

(
wT
j ŷi

)2
;

until Convergence

We now explain our innovation compared to HR-PCA, and its intuition. In

HR-PCA, steps 4 and 5 are replaced by a random removal – the probability ŷi

being removed is proportional to
∑d

j=1

(
wT
j ŷi

)2
. It has been shown in [61] that in

expectation (and in probability), either the number of outliers will decrease faster,

or the algorithm will find a good solution. Since in each iteration, only one point

is removed, the number of iterations required to find a satisfactory output depends

linearly on the number of outliers.

Instead of resorting to a random mechanism, DHR-PCA deterministically reduce

the effect of corrupted data points. In particular, Moreover, DHR-PCA operates on

all the data points in each iteration, which decouples the dependence of the com-

putational cost on the number of outliers and enhances the efficiency significantly

compared with HR-PCA. We consider an artificial example to illustrate this: as-

sume both HR-PCA and DHR-PCA requires M iterations for a data-set Y0. Now

suppose a new data-set Y contains J identical copies of data-set Y0. Then the

number of iterations for DHR-PCA remains unchanged, while HR-PCA requires
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JM iterations. Simulation results for more realistic setups, reported in Section 2.4,

also demonstrate that the deterministic algorithm provides higher efficiency than

HR-PCA.

Theorem 1 and Theorem 2 below show that the proposed algorithm achieves the

same performance guarantees as HR-PCA. The proofs are shown in Section 3.5.

Theorem 1. (Finite Sample Performance) Let the Algorithm 1 output {w1, . . . ,wd}.

Fix a κ > 0, and let τ = max(m/n, 1). There exists a universal constant c0 and a

constant C which can possibly depend on t̂/t, λ, d, µ and κ, such that for any γ < 1,

if n/ log4 n ≥ log6(1/γ), then with probability 1− γ the following holds

E.V.{w1, . . . ,wd}

≥

V
(

1− λ(1+κ)
(1−λ)κ

)
(1 + κ)

×
V

(
t̂
t −

λ
1−λ

)
V
(
t̂
t

)


−

8
√
c0τd

V
(
t̂
t

)
 (trace(AAT )

)−1/2

−

 2c0τ

V
(
t̂
t

)
 (trace(AAT )

)−1 − C log2 n log3(1/γ)√
n

.

We also consider the asymptotic performance of the proposed algorithm when the

dimension and the number of data points grow together to infinity. Our asymptotic

setting is similar to [61]. Suppose there exists a sequence of sample sets {Y(j)} =

{Y(1),Y(2), . . .}, where Y(j), n(j),m(j), A(j), d(j), etc., denote the corresponding

values of the quantities defined above, the following must hold for some positive

constants c1, c2:

lim
j→∞

n(j)

m(j)
= c1; d(j) ≤ c2;m(j) ↑ +∞;

trace
(
A(j)TA(j)

)
↑ ∞. (2.1)

While trace
(
A(j)TA(j)

)
↑ ∞, if it scales slowly than

√
m(j), the SNR will asymp-

totically decrease to zero.
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The last three terms in Theorem 1 go to zero as the dimension and number of

points scale to infinity, i.e., as n and m→∞. Therefore, we immediately obtain:

Theorem 2. (Asymptotic Performance) Given a sequence of {Y(j)}, if the asymp-

totic scaling in Expression (2.1) holds, and lim supλ(j) ≤ λ∗, then the following

holds in probability when j ↑ ∞ (i.e., when n and m ↑ ∞),

lim inf
j

E.V.{w1(j), . . . ,wd(j)}

≥ max
κ

V
(

1− λ∗(1+κ)
(1−λ∗)κ

)
(1 + κ)

×
V

(
t̂
t −

λ∗

1−λ∗
)

V
(
t̂
t

)
 . (2.2)

Observe that when λ∗ = 0, i.e., the number of outliers scales sublinearly, the

right-hand-side converges to 1 by taking κ(j) =
√
λ(j), implying that the algorithm

is asymptotically optimal. On the other hand, for any λ < 0.5, the right hand

side is strictly positive (picking κ large enough), implying that the breakdown point

converges to 50%.

For small λ, we can make use of the light tail condition on µ̄, to establish the

following bound that simplifies (2.2). The proof is deferred to the supplementary

material.

Corollary 1. Under the settings of the above theorem, the following holds in prob-

ability when j ↑ ∞ (i.e., when n, p ↑ ∞),

lim inf
j

E.V.{w1(j), . . . ,wd(j)} ≥ 1−
C ′
√
αλ∗ log(1/λ∗)

V(0.5)
.

Before concluding this section, we remark that DHR-PCA is easily kerneliz-

able. Specifically, given a mapping function φ(·) : Rm → H and kernel function

k(·, ·) satisfying k(x,y) = 〈φ(x), φ(y)〉 for all x,y ∈ Rm, we can perform dimension

reduction without requiring the explicit form of φ(·) in the kernel PCA [14]. In

particular, for the centered mapped features {φ(y1), · · · , φ(yn)}, the output PCs

can be represented as

wq =

n∑
j=1

aj(k)φ(ŷj).

31



And the feature projection can be calculated by

〈wq, φ(v)〉 =
n∑
j=1

aj(q)k(ŷj ,v),

where a(q) is the qth eigenvector of the kernel matrix. Note that Algorithm 1 only

involves calculating 〈wq, φ(yi)〉 (in RVE evaluation) and 〈wq, φ(
√
αiyi)〉 (in decreas-

ing values of αi’s). Since the kernelization of both these two steps are obtained, the

DHR-PCA algorithm can be kernelized easily.

2.4 Simulations

We devote this section to experimentally comparing the proposed DHR-PCA with

HR-PCA. Since HR-PCA has shown superior robustness (against the dimensionality

and number of outliers) over several robust PCA algorithms and standard PCA [61],

we skip simulations for them here.

The numerical study is aimed to illustrate that DHR-PCA is much more efficient

than HR-PCA, and meanwhile it achieves competitive performance. Here, we report

the results for d = 1. We follow the data generation method in [61] to randomly

generate an m×1 matrix and then scale its leading singular value to σ. A λ fraction

of outliers are generated on a line with a uniform distribution over [−σ ·mag, σ ·mag].

Thus, “mag” represents the ratio between the magnitude of the outliers and that of

the signal Axi and is fixed as 10. The value of t̂ is set as (1 − λ)n, if λ is known

exactly. Otherwise, t̂ can be simply set as 0.5n. For each parameter setup, we report

the average result of 20 tests and standard deviation.

Figure 2.1 shows the results for m = 100, 1000 and 10000 cases respectively with

σ = 5. From the figure, we can make following observations. Firstly, DHR-PCA

converges much faster than HR-PCA, especially for a large number of outliers. For

example, when m = 10000 and λ = 0.4, the proposed algorithm converges using

less than 2 iterations in average while HR-PCA needs more than 4000 iterations

to converge. Secondly, the computational time for DHR-PCA in each iteration is
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Figure 2.1: DHR-PCA (red line) vs. HR-PCA (black line) with σ = 5. Upper panel:
m = n = 100, middle panel: m = n = 1000 and bottom panel: m = n = 10000.
The horizontal axis is the iteration and the vertical axis is the expressive variance
value. Please refer to the color version.

always in the same order as HR-PCA. These results well demonstrate that DHR-

PCA is much more efficient than HR-PCA.

As for the performance, i.e., the E.V. of the recovered PCs, Figure 2.1 shows

that DHR-PCA performs competitively to HR-PCA. For all the cases, the E.V. of

final solution of DHR-PCA is always larger than that of HR-PCA. Moreover, if we

terminate both algorithms at any early iteration, DHR-PCA always perform better

than HR-PCA. This is appealing in practice, as we can terminate DHR-PCA at any

time and obtain a satisfactory result in practical implementation. In addition, both

DHR-PCA and HR-PCA perform quite well even in presence of varying number of

outliers (λ = 0.05 to 0.4) and small signal magnitude (σ = 5), which coincides with

the results in [61].

We then investigate the relationship between the number of iterations before
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convergence and the number of outliers for the two methods. As shown in Figure 2.2,

the number of iterations taken by HR-PCA is approximately proportional to the

number of corrupted points. This is not surprising, since in each iteration HR-PCA

removes at most one outlier. In a stark contrast, the number of required iterations

of DHR-PCA remains nearly constant, shown by the flat curve in the figures. This

demonstrates that DHR-PCA has good scalability and can potentially be applied to

large real applications. We provide more simulations from Figure 2.3 to Figure 2.14.

In the following figures, we provide more simulation results for comparison between
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Figure 2.2: DHR-PCA (red line) vs. HR-PCA (black line) on the iterative steps
taken by them before convergence with σ = 5 and different dimensionality. The
horizontal axis λn is number of corrupted data points and the vertical axis is the
number of steps. Please refer to the color version.

DHR-PCA and HR-PCA.

2.5 Proof of Theorem 1

In this section, we sketch the proof of Theorem 1. In what follows, we let d,m/n, λ, t̂/t,

and µ be fixed. We can fix a λ ∈ (0, 0.5) w.l.o.g. due to the fact that if a result

is shown to hold for λ, then it holds for λ′ < λ. The letter c is used to represent

a constant, and ε is a constant that decreases to zero as n and m increase to in-

finity. Let w1(s), . . . ,wd(s) be the candidate solution at stage s. Let Z and O be

the sets of indices of authentic samples and corrupted samples respectively. We let

Bd , {w ∈ Rd|‖w‖ ≤ 1}, and Sd be its boundary. Here Theorems 3 and 4 are

directly adapted from [61].
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Figure 2.3: DHR-PCA (red line) vs. HR-PCA (black line). m = n = 100, σ = 2.
The horizontal axis is the iteration and the vertical axis is the expressive variance
value. Please refer to the color version.

2.5.1 Validity of the Robust Variance Estimator

We first show that the following condition holds with high probability. The detailed

proof can be found in [61].

Condition 1. There exists ε1, ε2, c̄ such that (I)supw∈Sd

∣∣∣1t ∑t′

i=1

∣∣wTx
∣∣2
(i)
− V

(
t′

t

)∣∣∣ ≤
ε1; (II) supw∈Sd

∣∣∣1t ∑t
i=1

∣∣wTxi
∣∣2 − 1

∣∣∣ ≤ ε2; (III) supw∈Sm
1
t

∑t
i=1

∣∣wTni
∣∣2 ≤ c̄.

Theorem 3. Fix any η < 1. With probability at least 1 − 3γ, Condition 1 holds

uniformly for all t′ ≤ ηt, with c̄ = cτ(1 + log(1/γ)
n ), ε2 = c log2 n log3(1/γ)/

√
n, and

ε1 = c

√
logn+log(1/γ)

n + c log2.5 n log3.5(1/γ)
n , for a constant c possibly depends on d, µ

and η.

Under Condition 1, RVE is a good estimator.
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Figure 2.4: DHR-PCA (red line) vs. HR-PCA (black line). m = n = 100, σ = 3.
The horizontal axis is the iteration and the vertical axis is the expressive variance
value. Please refer to the color version.

Theorem 4. Let t′ ≤ t. Suppose Condition 1 holds. Then for all w ∈ Sm the

following holds:

(1− ε1)‖wTA‖2V
(
t′

t

)
− 2‖wTA‖

√
(1 + ε2)c̄

≤ 1

t

t′∑
i=1

|wT z|2(i)

≤ (1 + ε1)‖wTA‖2V
(
t′

t

)
+ 2‖wTA‖

√
(1 + ε2)c̄+ c̄.

From the above theorem, we can immediately obtain the following corollary.

Corollary 2. Let t′ ≤ t. Suppose Condition 1 holds. Then for all any w1, · · · ,wd ∈
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Figure 2.5: DHR-PCA (red line) vs. HR-PCA (black line). m = n = 100, σ = 10.
The horizontal axis is the iteration and the vertical axis is the expressive variance
value. Please refer to the color version.

Sm the following holds:

(1− ε1)V
(
t′

t

)
H(w)− 2

√
(1 + ε2)c̄dH(w)

≤
d∑
j=1

1

t

t′∑
i=1

|wT
j z|2(i)

≤ (1 + ε1)V
(
t′

t

)
H(w) + 2

√
(1 + ε2)c̄dH(w) + c̄,

and

(1− ε)H(w)− 2
√

(1 + ε)c̄dH(w)

≤
d∑
j=1

1

t

t∑
i=1

|wT
j zi|2

≤ (1 + ε)H(w) + 2
√

(1 + ε)c̄dH(w) + c̄,
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Figure 2.6: DHR-PCA (red line) vs. HR-PCA (black line). m = n = 100, σ = 20.
The horizontal axis is the iteration and the vertical axis is the expressive variance
value. Please refer to the color version.

where H(w) ,
∑d

j=1 ‖wT
j A‖2.

2.5.2 Finite Steps for a Good Solution

In this step, we show that the algorithm finds a good solution in a small number

of steps. Proving this involves showing that at any given step, either the algorithm

finds a good solution, or the weight adjusting step decreases weights of corrupted

points more than the authentic points. Let α
(s)
i denote the weight of the ith data

point in the sth stage. These points are a good solution if the variance of the points

projected onto their span is mainly due to the authentic samples rather than the

corrupted points. We denote this “good output event at step s” by E(s), defined as:

E(s) =

{∑
i∈Z

α
(s)
i vi(s) ≥

1

κ

∑
i∈O

α
(s)
i vi(s)

}
,
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Figure 2.7: DHR-PCA (red line) vs. HR-PCA (black line). m = n = 1000, σ = 2.
The horizontal axis is the iteration and the vertical axis is the expressive variance
value. Please refer to the color version.

where the variance vi(s) =
∑d

j=1

(
wj(s)

Tyi
)2

. The intuition is that there cannot

be too many steps without finding a good solution, since too many weights of the

corrupted points will have been decreased to zero.

Theorem 5. The event E(s) is true for some 1 ≤ s ≤ s0, where s0 ≤ λn(1+κ)
κ .

The proof of the above theorem is provided in the supplementary material. We

compare Theorem 5 with its randomized counterpart, Theorem 9 of [61]. The latter

states that for HR-PCA, E(s) succeeds with high probability for some s ≤ (1 +

ε)(1 + κ)λn/κ, where ε depends on κ and λ, and decreases to 0 when n ↑ ∞ (for

fixed κ and λ). Thus, the advantage of Theorem 5 is two-fold: it is deterministic as

opposed to probabilistic, and it does not require the decreasing ε.
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Figure 2.8: DHR-PCA (red line) vs. HR-PCA (black line). m = n = 1000, σ = 3.
The horizontal axis is the iteration and the vertical axis is the expressive variance
value. Please refer to the color version.

2.5.3 Bounds on the Solution Performance

Let w̄1, . . . , w̄d be the eigenvectors corresponding to the d largest eigenvalues of

AAT , namely the optimal solution, w∗1, . . . ,w
∗
d be the output of the Algorithm 1 and

w1(s), . . . ,wd(s) be the candidate solution at stage s. We define H(w1, . . . ,wd) ,∑d
j=1 ‖wT

j A‖2, and for notational simplification, let H̄ , H(w̄1, . . . , w̄d), Hs ,

H(w1(s), . . . ,wd(s)), and H∗ , H(w∗1, . . . ,w
∗
d).

The statement of the finite-sample and asymptotic theorems (Theorem 1 and

Theorem 2, respectively) lower bound the expressed variance, E.V., which is the

ratio H∗/H̄. The final part of the proof accomplishes this in two main steps. First,

we lower bound Hs in terms of H̄ where s is some step for which E(s) is true, i.e.,

the principal components found by the sth step of the algorithm are “good”. By

Theorem 5, we know that there is a “small” such s. Based on the true E(s) and the
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Figure 2.9: DHR-PCA (red line) vs. HR-PCA (black line). m = n = 1000, σ = 10.
The horizontal axis is the iteration and the vertical axis is the expressive variance
value. Please refer to the color version.

algorithm definition, we can conclude the bound via some algebraic manipulations.

The final output of the algorithm, however, is only guaranteed to have a high value

of the robust variance estimator, V̄ - that is, even if there is a “good” solution at

some intermediate step s, we do not necessarily have a way of identifying it. Thus,

the next step lower bounds the value of H∗ in terms of the value H of any output

w′1, . . . ,w
′
d that has a smaller value of the robust variance estimator. The details of

these two steps are deferred to the supplementary material. Combining the results

of above two steps, we can obtain the following theorem providing a lower bound of

the ratio H∗/H̄, i.e., the expressed variance.

Theorem 6. If
⋃s0
s=1 E(s) is true, and there exist ε1 < 1, ε2, c̄ such that

sup
w∈Sd

∣∣∣∣∣1t
t−s0∑
i=1

|wTx|2(i) − V
(
t− s0

t

)∣∣∣∣∣ ≤ ε1
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Figure 2.10: DHR-PCA (red line) vs. HR-PCA (black line). m = n = 1000, σ = 20.
The horizontal axis is the iteration and the vertical axis is the expressive variance
value. Please refer to the color version.

and Condition 1 holds, then

H∗

H̄
≥

(1− ε1)2V
(
t̂
t −

λ
1−λ

)
V
(
t−s0
t

)
(1 + ε1)(1 + ε2)(1 + κ)V

(
t̂
t

)
−

[
(D1 +D2)

√
(1 + ε2)c̄d

(1 + ε1)(1 + ε2)(1 + κ)

]
(H̄)−1/2 (2.3)

−

(1− ε1)V
(
t̂
t −

λ
1−λ

)
c̄+ (1 + ε2)c̄

(1 + ε1)(1 + ε2)V
(
t̂
t

)
 (H̄)−1,

where D1 = (2κ+ 4)(1− ε1)V
(
t̂
t −

λ
1−λ

)
and D2 = 4(1 + ε2)(1 + κ).

By bounding all diminishing terms in the right hand side of (2.5), it reduces to

Theorem 1. And Theorem 2 follows immediately. The proofs of Theorem 7 and

Theorem 1 are similar to those in [61] and we omit it here.
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Figure 2.11: DHR-PCA (red line) vs. HR-PCA (black line). m = n = 10000, σ = 2.
The horizontal axis is the iteration and the vertical axis is the expressive variance
value. Please refer to the color version.

2.6 Proof of Corollary 1

Lemma 1. For any ε > 0 and κ ∈ [ε, 1], we have V(κ)− V(κ− ε) ≤ Cαε log2(1/ε).

Proof. By monotonicity, it suffices to prove that result for κ = 1. Notice that for

K ≥ 2α,

V(1)− V(1− ε)

≤ εK2 + Ex∼µ̄
(
x2 · 1(x > K)

)
= εK2 +

∫ ∞
K2

Pr
x∼µ̄

(x2 > z)dz

≤ εK2 +

∫ ∞
K2

exp(1−
√
z/α)dz

= εK2 + e0

∫ ∞
K2/4α2

exp(−2
√
z)dz

(a)

≤ εK2 + 2e0 exp(−
√
z)|K2/4α2

∞

= εK2 + exp(1 + ln 2−K/2α),
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Figure 2.12: DHR-PCA (red line) vs. HR-PCA (black line). m = n = 10000, σ = 3.
The horizontal axis is the iteration and the vertical axis is the expressive variance
value. Please refer to the color version.

where (a) holds because when z ≥ 1, we have exp(−
√
z) ≤ 1/

√
z, which implies

exp(−2
√
z) ≤ d(2 exp(−

√
z))

dz . Pick K = 2α log(1/ε), we have that

V(1)− V(1− c) ≤ Cαε log2(1/ε).

Corollary 3. 1 Under the settings of the above theorem, the following holds in

probability when j ↑ ∞ (i.e., when n, p ↑ ∞),

lim inf
j

E.V.{w1(j), . . . ,wd(j)} ≥ 1−
C ′
√
αλ∗ log(1/λ∗)

V(0.5)
.

Proof. We bound the right-hand-side of Equation (2) to establish the corollary.
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Figure 2.13: DHR-PCA (red line) vs. HR-PCA (black line). m = n = 10000, σ = 10.
The horizontal axis is the iteration and the vertical axis is the expressive variance
value. Please refer to the color version.

Notice that

V
(

1− λ∗(1+κ)
(1−λ∗)κ

)
(1 + κ)

×
V

(
t̂
t −

λ∗

1−λ∗
)

V
(
t̂
t

)


(a)

≥

V(1)− Cαλ
∗(1+κ)

(1−λ∗)κ log2
(

(1−λ∗)κ
λ∗(1+κ)

)
(1 + κ)

×
V

(
t̂
t

)
− Cα λ∗

1−λ∗ log2
(

1−λ∗
λ∗

)
V
(
t̂
t

)


(b)

≥
[

1

1 + κ
− Cαλ∗

(1− λ∗)κ
log2

(
(1− λ∗)κ
λ∗(1 + κ)

)]
×

1−
Cα λ∗

1−λ∗ log2
(

1−λ∗
λ∗

)
V
(
t̂
t

)


(c)

≥
[
1− κ− 2Cαλ∗

κ
log2

(
1

λ∗

)]
×

[
1−

2Cαλ∗ log2
(

1
λ∗

)
V(0.5)

]

≥ 1− κ− C ′αλ∗

κ
log2

(
1

λ∗

)
−
C ′αλ∗ log2

(
1
λ∗

)
V(0.5)

(d)

≥ 1− κ− 2C ′αλ∗

κV(0.5)
log2

(
1

λ∗

)
.

Here, (a) is due to Lemma 1; (b) is due to V(1) = 1; (c) holds because 1
1+κ ≥ 1− κ,
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Figure 2.14: DHR-PCA (red line) vs. HR-PCA (black line). m = n = 10000, σ = 20.
The horizontal axis is the iteration and the vertical axis is the expressive variance
value. Please refer to the color version.

1− λ∗ ≥ 1/2, and V(t̂/t) ≥ V(0.5); (d) holds because κ and V(0.5) are both smaller

than or equal to 1.

2.7 Proof of Theorem 5

Proof. If Ec(s) is true, then

d∑
j=1

∑
i∈Z

α
(s)
i

(
wj(s)

Tyi
)2
<

1

κ

d∑
j=1

∑
i∈O

α
(s)
i

(
wj(s)

Tyi
)2
.

Since ∆α
(s)
i = ηα

(s)
i

∑d
j=1

(
wj(s)

T ŷi
)2

, we have

∑
i∈Z

∆α
(s)
i <

1

κ

∑
i∈O

∆α
(s)
i .
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If
⋂s0
s=1 Ec(s) is true,

s0∑
s=1

∑
i∈Z

∆α
(s)
i <

1

κ

s0∑
s=1

∑
i∈O

∆α
(s)
i .

In the Algorithm 1, we eliminate at least one weight coefficient in each iteration.

Therefore, to step s0, we have
∑s0

s=1

∑
i ∆α

(s)
i ≥ s0. Namely,

s0∑
s=1

∑
i∈Z

∆α
(s)
i +

s0∑
s=1

∑
i∈O

∆α
(s)
i ≥ s0.

Thus,

1

κ

s0∑
s=1

∑
i∈O

∆α
(s)
i +

s0∑
s=1

∑
i∈O

∆α
(s)
i ≥ s0.

From the above inequality, we can obtain

λn ≥
s0∑
s=1

∑
i∈O

∆α
(s)
i ≥

s0κ

1 + κ
.

Therefore, we can conclude bound s0 ≤ λn(1+κ)
κ .

2.8 Proof of Theorem 7

As stated in the main body, our proof comprises following two steps.

Lemma 2. If E(s) is true for some s ≤ s0, and there exist ε1 such that

sup
w∈Sd

∣∣∣∣∣1t
t−s0∑
i=1

|wTx|2(i) − V
(
t− s0

t

)∣∣∣∣∣ ≤ ε1
and ε2, c̄ satisfying conditions (II) and (III) in Theorem 4, then

1

1 + κ

[
(1− ε1)V

(
t− s0

t

)
H̄ − 2

√
(1 + ε2)c̄dH̄

]
≤ (1+ε2)Hs+2

√
(1 + ε2)c̄dHs+ c̄.
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Proof. If E(s) is true, then we have

d∑
j=1

t∑
i=1

α
(s)
i

(
wj(s)

T zi
)2 ≥ 1

κ

d∑
j=1

n−t∑
i=1

α
(s)
i

(
wj(s)

Toi
)2
.

Thus we have

1

1 + κ

d∑
j=1

n∑
i=1

αi
(
wj(s)

Tyi
)2 ≤ d∑

j=1

t∑
i=1

αi
(
wj(s)

T zi
)2
.

Since w1(s), . . . ,wd(s) is the solution of the sth stage, the following holds by defi-

nition of the algorithm

d∑
j=1

n∑
i=1

αi
(
w̄T
j yi
)2 ≤ d∑

j=1

n∑
i=1

αi
(
wj(s)

Tyi
)2
.

Since 0 ≤ αi ≤ 1,∀i = 1, . . . , n, we have

d∑
j=1

n∑
i=1

αi
(
wj(s)

Tyi
)2 ≤ d∑

j=1

n∑
i=1

(
wj(s)

Tyi
)2
.

Since 1 ≤ s ≤ s0, from the definition of the algorithm, we have
∑

i∈Z αi ≥ t−s0.

Thus

t∑
i=1

αi
(
w̄j

T zi
)2 − t−s0∑

i=1

∣∣w̄j
T z
∣∣2
(i)

=

t−s0∑
i=1

[
α(i) − 1

] ∣∣w̄j
T z
∣∣2
(i)

+

t∑
i=t−s0+1

α(i)

∣∣w̄j
T z
∣∣2
(i)

≥
t−s0∑
i=1

[
α(i) − 1

] ∣∣w̄j
T z
∣∣2
(t−s0)

+

t∑
i=t−s0+1

α(i)

∣∣w̄j
T z
∣∣2
(t−s0)

=

[
t∑
i=1

α(i) − (t− s0)

] ∣∣w̄j
T z
∣∣2
(t−s0)

≥ 0.
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Thus we have

d∑
j=1

t−s0∑
i=1

∣∣w̄j
T z
∣∣2
(i)
≤

d∑
j=1

t∑
i=1

αi
(
w̄j

T zi
)2

≤
d∑
j=1

n∑
i=1

αi
(
w̄j

Tyi
)2
.

Combining the above inequalities, we get

1

1 + κ

d∑
j=1

t−s0∑
i=1

∣∣w̄j
T z
∣∣2
(i)
≤

d∑
j=1

t∑
i=1

(
wj(s)

T zi
)2
.

By Corollary 1 we complete the proof.

The following lemma guarantees that the value H∗ of the algorithm’s output is

lower bounded in term of the value H of any output that has a smaller value of the

robust variance estimator.

Lemma 3. Fix a t̂ ≤ t. If
∑d

j=1 V̄t̂(w
′
j) ≥

∑d
j=1 V̄t̂(wj), and there exists ε1, ε2

and c̄ such that supw∈Sd

∣∣∣∣1t ∑t̂− λt
1−λ

i=1

∣∣wTx
∣∣2
(i)
− V

(
t̂
t −

λ
1−λ

)∣∣∣∣ ≤ ε1 and conditions in

Theorem 4 are satisfied, then

(1− ε1)V
(
t̂

t
− λ

1− λ

)
H(w′)− 2

√
(1 + ε2)c̄dH(w′)

≤ (1 + ε1)H(w)V
(
t̂

t

)
+ 2
√

(1 + ε2)c̄dH(w) + c̄.

Theorem 7. If
⋃s0
s=1 E(s) is true, and there exist ε1 < 1, ε2, c̄ such that

sup
w∈Sd

∣∣∣∣∣1t
t−s0∑
i=1

|wTx|2(i) − V
(
t− s0

t

)∣∣∣∣∣ ≤ ε1,
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and Condition 1 holds, then

H∗

H̄
≥

(1− ε1)2V
(
t̂
t −

λ
1−λ

)
V
(
t−s0
t

)
(1 + ε1)(1 + ε2)(1 + κ)V

(
t̂
t

)
−


(

(2κ+ 4)(1− ε1)V
(
t̂
t −

λ
1−λ

)
+ 4(1 + ε2)(1 + κ)

)√
(1 + ε2)c̄d

(1 + ε1)(1 + ε2)(1 + κ)

 (H̄)−1/2

−

(1− ε1)V
(
t̂
t −

λ
1−λ

)
c̄+ (1 + ε2)c̄

(1 + ε1)(1 + ε2)V
(
t̂
t

)
 (H̄)−1, (2.4)

Proof. Since
⋃s0
s=1 E(s) is true, there exists a s′ ≤ s0 such that E(s′) is true. By

Lemma 2 we have

1

1 + κ

[
(1− ε1)V

(
t− s0

t

)
H̄ − 2

√
(1 + ε2)c̄dH̄

]
≤ (1+ε2)Hs′+2

√
(1 + ε2)c̄dHs′+c̄.

By the definition of the algorithm, we have
∑d

j=1 V̄t̂(w
∗
j ) ≥

∑d
j=1 V̄t̂ (wj(s

′)), which

by Lemma 3 implies

(1−ε1)V
(
t̂

t
− λ

1− λ

)
Hs′−2

√
(1 + ε2)c̄dHs′ ≤ (1+ε1)H∗V

(
t̂

t

)
+2
√

(1 + ε2)c̄dH∗+c̄.

By definition, Hs′ , H
∗ ≤ H̄. Thus we have

(I)
1

1 + κ

[
(1− ε1)V

(
t− s0

t

)
H̄ − 2

√
(1 + ε2)c̄dH̄

]
≤ (1 + ε2)Hs′ + 2

√
(1 + ε2)c̄dH̄ + c̄;

(II) (1− ε1)V
(
t̂

t
− λ

1− λ

)
Hs′ − 2

√
(1 + ε2)c̄dH̄

≤ (1 + ε1)H∗V
(
t̂

t

)
+ 2
√

(1 + ε2)c̄dH̄ + c̄.

Rearrange the inequalities, we have

(I) (1− ε1)V
(
t− s0

t

)
H̄ − (2κ+ 4)

√
(1 + ε2)c̄dH̄ − (1 + κ)c̄ ≤ (1 + κ)(1 + ε2)Hs′ ;

(II) (1− ε1)V
(
t̂

t
− λ

1− λ

)
Hs′ ≤ (1 + ε1)V

(
t̂

t

)
H∗ + 4

√
(1 + ε2)c̄dH̄ + c̄.
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Simplify the inequality, we get

H∗

H̄
≥

(1− ε1)2V
(
t̂
t −

λ
1−λ

)
V
(
t−s0
t

)
(1 + ε1)(1 + ε2)(1 + κ)V

(
t̂
t

)
−


(

(2κ+ 4)(1− ε1)V
(
t̂
t −

λ
1−λ

)
+ 4(1 + ε2)(1 + κ)

)√
(1 + ε2)c̄d

(1 + ε1)(1 + ε2)(1 + κ)

 (H̄)−1/2

−

(1− ε1)V
(
t̂
t −

λ
1−λ

)
c̄+ (1 + ε2)c̄

(1 + ε1)(1 + ε2)V
(
t̂
t

)
 (H̄)−1, (2.5)

2.9 Chapter Summary

In this chapter, we proposed a deterministic robust PCA algorithm for high-dimensional

data corrupted by arbitrary outliers. The algorithm alternates between a classical

PCA and decrease of weight coefficients on all the data points. Theoretical analysis

showed that the proposed algorithm is tractable, robust to corrupt points, eas-

ily kernelizable, asymptotic consistent and achieving maximal breakdown point of

50% – to the best of our knowledge, the first deterministic algorithm that achieves

these properties in the high-dimensional setup. More importantly, simulation results

demonstrated that the proposed algorithm improves computational efficiency over

its randomized counterpart HR-PCA – indeed, the number of iterations required to

find a satisfactory solution appears to approximate constant, in sharp contrast to

HR-PCA whose number of iterations required increases linearly with the number of

outliers.
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Chapter 3

Online PCA for Contaminated

Data

In the above chapter, we introduce a batch robust PCA method performing well in

high-dimensional regime. In this chapter, we propose an online robust PCA method

for handing big data with limited computer memory budget.

3.1 Introduction

We investigate the problem of robust Principal Component Analysis (PCA) in an

online fashion. PCA aims to construct a low-dimensional subspace based on a set of

principal components (PCs) to approximate all the observed samples in the least-

square sense [57]. Conventionally, it computes PCs as eigenvectors of the sample

covariance matrix in batch mode, which is both computationally expensive and in

particular memory exhausting, when dealing with large scale data. To address this

problem, several online PCA algorithms have been developed in literature [53, 38,

26]. For online PCA, at each time instance, a new sample is revealed, and the PCs

estimation is updated accordingly without having to re-explore all previous samples.

The significant advantages of online PCA algorithms include independence of their

storage space requirement of the number of samples, and handling newly revealed

samples quite efficiently.
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Due to the quadratic error criterion, PCA is notoriously sensitive to corrupted

observations (outliers), and the quality of its output can suffer severely in the face

of even a few outliers. Therefore, many works have been dedicated to robustifying

PCA [52, 44, 61, 47]. However, all of these methods work in batch mode and cannot

handle the sequentially revealed samples in the online learning framework. For

instance, [61] proposed a high-dimensional robust PCA (HR-PCA) algorithm that

is based on iterative performing PCA and randomized removal. Notice that the

random removal process involves calculating the order statistics over all the samples

to obtain the removal probability. Therefore, all samples must be stored in memory

throughout the process. This hinders its application to large scale data, for which

storing all data is impractical.

In this chapter, we propose a novel online Robust PCA algorithm to handle

contaminated sample set, i.e., sample set that comprises both authentic samples

(non-corrupted samples) and outliers (corrupted samples), which are revealed se-

quentially to the algorithm. Previous online PCA algorithms generally fail in this

case, since they update the PCs estimation through minimizing the quadratic error

w.r.t. every new sample and are thus sensitive to outliers. The outliers may manip-

ulate the PCs estimation severely and the result can be arbitrarily bad. In contrast,

the proposed online RPCA is shown to be robust to the outliers. This is achieved

by a probabilistic admittion/rejection procedure when a new sample comes. This

is different from previous online PCA methods, where each and every new sample

is admitted. The probabilistic admittion/rejection procedure endows online RPCA

with the ability to reject more outliers than authentic samples and thus alleviates

the affect of outliers and robustifies the PCs estimation. Indeed, we show that given

a proper initial estimation, online RPCA is able to steadily improve its output until

convergence. We further bound the deviation of the final output from the optimal

solution. In fact, under mild conditions, online RPCA can be resistent to 50% out-

liers, namely having a 50% breakdown point. This is the maximal robustness that

can be achieved by any method.

Compared with previous robust PCA methods (typically works in batch mode),
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online RPCA only needs to maintain a covariance matrix whose size is independent

of the number of data points. Upon accepting a newly revealed sample, online RPCA

updates the PCs estimation accordingly without re-exploring the previous samples.

Thus, online RPCA can deal with large amounts of data with low storage expense.

This is in stark contrast with previous robust PCA methods which typically requires

to remember all samples. To the best of our knowledge, this is the first attempt

to make online PCA work for outlier-corrupted data, with theoretical performance

guarantees.

3.2 Related Work

Standard PCA is performed in batch mode, and its high computational complexity

may become cumbersome for the large datasets. To address this issue, different

online learning techniques have been proposed, for example [17, 24], and many

others.

Most of current online PCA methods perform the PCs estimation in an incre-

mental manner [24, 33, 40]. They maintain a covariance matrix or current PCs

estimation, and update it according to the new sample incrementally. Those meth-

ods provide similar PCs estimation accuracy. Recently, a randomized online PCA

algorithm was proposed by [38], whose objective is to minimize the total expected

quadratic error minus the total error of the batch algorithm (i.e., the regret). How-

ever, all of these online PCA algorithms are not robust to the outliers.

To overcome the sensitiveness of PCA to outliers, many robust PCA algo-

rithms have been proposed [36, 20, 52], which can be roughly categorized into two

groups. They either pursue robust estimation of the covariance matrix, e.g., M -

estimator [32], S-estimator [37], and Minimum Covariance Determinant (MCD)

estimator [36], or directly maximize certain robust estimation of univariate variance

for the projected observations [30, 19, 20, 29]. These algorithms inherit the robust-

ness characteristics of the adopted estimators and are qualitatively robust. However,

none of them can be directly applied in online learning setting. Recently, [61] and
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the following work [47] propose high-dimensional robust PCA, which can achieve

maximum 50% breakdown point. However, these methods iteratively remove the

observations or tunes the observations weights based on statistics obtained from the

whole data set. Thus, when a new data point is revealed, these methods need to

re-explore all of the data and become quite computationally intensive.

The most related works to ours are the following three works. In [53], an incre-

mental and robust subspace learning method is proposed. The method proposes to

integrate the M -estimation into the standard incremental PCA calculation. Specif-

ically, each newly coming data point is re-weighted by a pre-defined influence func-

tion [51] of its residual to the current estimated subspace. However, no performance

guarantee is provided in this work. Moreover, the performance of the proposed al-

gorithm relies on the accuracy of PCs obtained previously. And the error will be

cumulated inevitably. Recently, a compressive sensing based recursive robust PCA

algorithm was proposed in [58]. In this work, the authors focused on the case where

the outliers can be modeled as sparse vectors. In contrast, we do not impose any

structural assumption on the outliers. Moreover, the proposed method in [58] essen-

tially solves compressive sensing optimization over a small batch of data to update

the PCs estimation instead of using a single sample, and it is not clear how to extend

the method to the latter case. Recently, He et al. propose an incremental gradient

descent method on Grassmannian manifold for solving the robust PCA problem,

named GRASTA [50]. However, they also focus on a different case from ours where

the outliers are sparse vectors.

3.3 The Algorithm

3.3.1 Problem Setup

Given a set of observations {y1, · · · ,yT } (here T can be finite or infinite) which are

revealed sequentially, the goal of online PCA is to estimate and update the principal

components (PCs) based on the newly revealed sample yt at time instance t. Here,

the observations are the mixture of authentic samples (non-corrupted samples) and
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outliers (corrupted samples). The authentic samples zi ∈ Rp are generated through

a linear mapping: zi = Axi+ni. Here, noise ni is sampled from normal distribution

N (0, Ip); and the signal xi ∈ Rd are i.i.d. samples of a random variable x with mean

zero and variance Id. Let µ denote the distribution of x. The matrix A ∈ Rp×d

and the distribution µ are unknown. We assume µ is absolutely continuous w.r.t.

the Borel measure and spherically symmetric. And µ has light tails, i.e., there exist

constants C > 0 such that Pr(‖x‖ ≥ x) ≤ d exp(1 − Cx/α
√
d) for all x ≥ 0. The

outliers are denoted as oi ∈ Rp and in particular they are defined as follows.

Definition 1 (Outlier). A sample oi ∈ Rp is an outlier w.r.t. the subspace spanned

by {wj}dj=1 if it deviates from the subspace, i.e.,
∑d

j=1 |wT
j oi|2 ≤ Γo.

In the above definition, we assume that the basis wj and outliers o are both

normalized (see Algorithm 2 step 1)-a) where all the samples are `2-normalized).

Thus, we directly use inner product to define Γ0. From the definition, a sample

is called outlier if it is distant from the underlying subspace of the signal. Note

that the outliers can follow arbitrary distribution. In this work, we are interested in

the case where the outliers are mixed with authentic samples uniformly in the data

stream, i.e., taken any subset of the dataset, the outlier fraction is identical when

the size of the subset is large enough.

The input to the proposed online RPCA algorithm is the sequence of observations

Y = {y1,y2, · · · ,yT }, which is union of authentic samples Z = {zi} generated by

the aforementioned linear model and outliers O = {oi}. And the outlier fraction in

the observations is denoted as λ. Online RPCA aims at learning the PCs robustly

and the learning process proceeds in time instances. At the time instance t, online

RPCA chooses a set of principal components {w(t)
j }dj=1. And the performance of

the estimation is measured by the Expressed Variance (E.V.) [61]:

E.V. ,

∑d
j=1 w

(t)
j

T
AATw

(t)
j∑d

j=1 wT
j AA

Twj

.

Here, {wj}dj=1 denote the true principal components of matrix A. The E.V. repre-
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sents the portion of signal Ax being expressed by {w(t)
j }dj=1. Thus, 1− E.V. is the

reconstruction error of the signal. The E.V. is a commonly used evaluation metric

for the PCA algorithms [61, 21]. It is always less than one, with equality achieved

by a perfect recovery.

3.3.2 Online Robust PCA Algorithm

The details of the proposed online RPCA algorithm are shown in Algorithm 2.

In the algorithm, the observation sequence Y = {y1,y2, · · · ,yT } is sequentially

partitioned into (T ′ + 1) batches {B0, B1, B2, . . . , BT ′}. And each batch consists of

b observations. Since the authentic samples and outliers are mixed uniformly, the

outlier fraction in each batch is also λ. Namely, in each batch Bi, there are (1−λ)b

authentic samples and λb outliers.

Note that such small batch partition is only for the ease of illustration and

analysis. Since the algorithm only involves standard PCA computation, we can

employ any incremental or online PCA method [24, 53] to update the PCs estimation

upon accepting a new sample. And the maintained sample covariance matrix, can

be set to zero every b time instances. Thus the batch partition is by no means

necessary in practical implementation. In the algorithm, the initial PC estimation

can be obtained through standard PCA or robust PCA [61] on a mini batch of the

samples.

We now explain the intuition of the proposed online RPCA algorithm. Given an

initial solution w(0) which is “closer” to the true PC directions than to the outlier

direction 1, the authentic samples will have larger variance along the current PC

direction than outliers. Thus in the probabilistic data selection process (as shown

in Algorithm 2 step b) to step d)), more authentic samples will be accepted than

outliers. Therefore, in the following PC updating based on standard PCA on the

accepted data, authentic samples will contribute more than the outliers. And the

estimated PCs will be “moved” towards to the true PCs gradually. Such process is

repeated until convergence.

1In the following section, we will provide a precise description of the required closeness.
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Algorithm 2 Online Robust PCA Algorithm

Input: Data sequence {y1, . . . ,yT }, buffer size b.
Initialization: Partition the data sequence into small batches {B0, B1, . . . , BT ′}.
Each patch contains b data points. Perform PCA on the first batch B0 and obtain

the initial principal component {w(0)
j }dj=1.

t = 1. w∗j = w
(0)
j , ∀j = 1, . . . , d.

while t ≤ T ′ do
1) Initialize the sample covariance matrix: C(t) = 0.
for i = 1 to b do

a) Normalize the data point by its `2-norm: y
(t)
i := y

(t)
i /‖y(t)

i ‖`2 .

b) Calculate the variance of y
(t)
i along the direction w(t−1): δi =∑d

j=1

∣∣∣∣w(t−1)
j

T
y

(t)
i

∣∣∣∣2.

c) Accept y
(t)
i with probability δi.

d) Scale y
(t)
i as y

(t)
i ← y

(t)
i /b
√
δi.

e) If y
(t)
i is accepted, update

C(t) = C(t) + y
(t)
i y

(t)
i

T
.

end for
2) Perform eigen-decomposition on Ct and obtain the leading d eigenvector

{w(t)
j }dj=1.

3) Update the PC as w∗j = w
(t)
j ,∀j = 1, . . . , d.

4) t := t+ 1.
end while
Return w∗.

3.4 Main Results

In this section we present the theoretical performance guarantee of the proposed

online RPCA algorithm (Algorithm 2). In the sequel, w
(t)
j is the solution at the t-th

time instance. Here w.l.o.g. we assume the the matrix A is normalized such that

the E.V. of the true principal component wj is
∑d

j=1 wT
j A

TAwj = 1. The following

theorem provides the performance guarantee of Algorithm 2 under the noisy case.

And the performance of w(t) can be measured by H(w(t)) ,
∑d

j=1 ‖w(t)T
j A‖2. Let

s = ‖x‖2/‖n‖2 be the signal noise ratio.

Theorem 8 (Noisy Case Performance). There exist universal constants c′1, c
′
2 which

depend on the signal noise ratio s and ε1, ε2 > 0 which approximate zero when s→∞
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or b→∞, such that if the initial solution w
(0)
j in Algorithm 2 satisfies:

λb∑
i=1

d∑
j=1

∣∣∣∣w(0)
j

T
oi

∣∣∣∣2 ≤ (1− λ)b(1− ε2)

c′2(1− Γo)

(
1

4
(c′1(1− ε)− ε1)2 − ε2

)
,

and

H(w(0)) ≥ 1

2
(c′1(1−2ε)−ε1)−

√√√√(c′1(1− ε) + ε1)2 − 4ε2
4

−
c′2
∑λb

i=1

∑d
j=1(w

(0)
j

T
oi)2(1− Γo)

(1− λ)b(1− ε2)
,

then the performance of the solution from Algorithm 2 will be improved in each

iteration, and eventually converges to:

lim
t→∞

H(w(t)) ≥ 1

2
(c′1(1−2ε)−ε1)+

√√√√(c′1(1− 2ε)− ε1)2 − 4ε2
4

−
c′2
∑λb

i=1

∑d
j=1(w

(0)
j

T
oi)2(1− Γo)

(1− λ)b(1− ε2)
.

Here ε1 and ε2 decay as Õ(d
1
2 b−

1
2 s−1), and ε decays as Õ(d

1
2 b−

1
2 ). And c′1 = (s −

1)2/(s+ 1)2, c′2 = (1 + 1/s)4.

Remark 1. From Theorem 8, we can observe followings:

1. When the outliers vanish, the second term in the square root of performance

H(w(t)) is zero. H(w(t)) will converge to (c′1(1−2ε)−ε1)/2+
√

(c′1(1− 2ε)− ε1)2 − 4ε2/2 <

c′1(1 − 2ε) − ε1 < c′1 < 1. Namely, the final performance is smaller than but

approximates 1. Here c′1, ε1, ε2 explain the affect of noise.

2. When s → ∞, the affect of noise is eliminated, ε1, ε2 → 0, c′1 → 1. H(w(t))

converges to 1−2ε. Here ε depends on the ratio of intrinsic dimension over the

sample size. And ε accounts for the statistical bias due to performing PCA on

a small portion of the data.

3. When the batch size increases to infinity, ε → 0, H(w(t)) converges to 1,

meaning perfect recovery.

To further investigate the behavior of the proposed online RPCA in presence of

outliers, we consider the following noiseless case. For the noiseless case, the signal
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noise ratio s → ∞, and thus c′1, c
′
2 → 1 and ε1, ε2 → 0. Then we can immediately

obtain the performance bound of Algorithm 2 for the noiseless case from Theorem 8.

Theorem 9 (Noiseless Case Performance). Suppose there is no noise. If the initial

solution w(0) in Algorithm 2 satisfies:

λb∑
i=1

d∑
j=1

(w(0)T

j oi)
2 ≤ (1− λ)b

4(1− Γo)
,

and

H(w(0)) ≥ 1

2
−

√√√√1

4
−
∑λb

i=1

∑d
j=1(w

(0)
j

T
oi)2(1− Γo)

(1− λ)b
,

the performance of the solution from Algorithm 2 will be improved in each updating

and eventually converges to:

lim
t→∞

H(w(t)) ≥ 1

2
+

√√√√1

4
−
∑λb

i=1

∑d
j=1(w

(0)
j

T
oi)2(1− Γo)

(1− λ)b
.

Remark 2. Observe from Theorem 9 the followings:

1. When the true direction and outlier direction are identical, i.e.,
∑d

j=1 |wT
j oi|2 =

1, the conditions become
∑λb

i=1

∑d
j=1(w(0)Toi)

2 <∞ andH(w(0)) ≥ 0. Namely,

for whatever initial solution, the final performance will converge to 1.

2. When the true direction and outlier direction are orthogonal, i.e.,
∑d

j=1 |wT
j oi|2 =

0, the conditions for the initial solution becomes
∑λb

i=1

∑d
j=1 |w(0)T

j oi|2 ≤

b(1−λ)
4 , and H0 ≥ 1

2 −

√
1
4 −

∑λb
i=1

∑d
j=1(w

(0)
j

T
oi)2

(1−λ)b . Hence, when the outlier

fraction λ increases, the initial solution should be further away from outlier

direction.

3. When 0 <
∑d

j=1 |wT
j oi|2 < 1, the performance of online RPCA is improved

by at least 2

√
1
4 −

∑λb
i=1

∑d
j=1(w

(0)
j

T
oi)2(1−Γo)

(1−λ)b from its initial solution. Hence,

when the initial solution is further away from the outlier direction, the outlier

fraction is smaller, or the outlier direction is closer to true direction, the im-

provement is more significant. Moreover, observe that given a proper initial
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solution, even if λ = 0.5, the performance of online RPCA still has a positive

lower bound. Therefore, the breakdown point of online RPCA is 50%, the

highest that any algorithm can achieve.

Discussion on the initial condition In Theorem 8 and Theorem 9, a mild

condition is imposed on the initial solution. In practice, the initial estimate can be

obtained by applying batch RPCA [47] or HRPCA [61] on a small subset of the

data. These batch methods are able to provide initial estimate with performance

guarantee, which may satisfy the initial condition.

3.5 Proof of The Results

In the proof of Theorem 8, we first show that when the PCs estimation is being

improved, the variance of outliers along the PCs will keep decreasing. Then we

demonstrate that each PCs updating conducted by Algorithm 2 produces a better

PCs estimation and decreases the impact of outliers. Such improvement will con-

tinue until convergence, and the final performance has bounded deviation from the

optimum.

We provide here some concentration lemmas which are used in the proof of

Theorem 8. The proof of these lemmas is provided in the supplementary material.

We first show that with high probability, both the largest and smallest eigenvalues

of the signals xi in the original space converge to 1. This result is adopted from [61].

Lemma 4. There exists a constant c that only depends on µ and d, such that for

all γ > 0 and b signals {xi}bi=1, the following holds with high probability:

sup
w∈Sd

∣∣∣∣∣1b
b∑
i=1

(wTxi)
2 − 1

∣∣∣∣∣ ≤ ε,
where ε = cα

√
d log3 b/b.

Next lemma is about the sampling process in the Algorithm 1 from step b)

to step d). Though the sampling process is without replacement and the sampled
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observations are not i.i.d., the following lemma provides the concentration of the

sampled observations.

Lemma 5 (Operator-Bernstein inequality [23]). Let {z′i}mi=1 be a subset of Z =

{zi}ti=1, which is formed by randomly sampling without replacement from Z, as in

Algorithm 1. Then the following statement holds

∣∣∣∣∣
m∑
i=1

wT z′i − E

(
m∑
i=1

wT z′i

)∣∣∣∣∣ ≤ δ
with probability larger than 1− 2 exp(−δ2/4m).

We then show that the authentic samples concentrate along the true principal

component direction w, as stated in the following lemma.

Lemma 6. If there exists ε such that

sup
w∈Sd

∣∣∣∣∣1t
t∑
i=1

|wTxi|2 − 1

∣∣∣∣∣ ≤ ε,

and the observations zi are normalized by `2-norm, then for any w1, · · · ,wd ∈ Sp,

the following holds:

(1− ε)H(w)− 2
√

(1 + ε)H(w)/s

(1/s+ 1)2

≤ 1

t

t∑
i=1

d∑
j=1

(wT
j zi)

2 ≤
(1 + ε)H(w) + 2

√
(1 + ε)H(w)/s+ 1/s2

(1/s− 1)2
,

where H(w) =
∑d

j=1 ‖wT
j A‖2 and s is the signal noise ratio.

Based on Lemma 11 and Lemma 6, we can provide the following concentration

results for the selected observations in the Algorithm 2.

Lemma 7. If there exists ε such that

sup
w∈Sd

∣∣∣∣∣1t
t∑
i=1

|wTxi|2 − 1

∣∣∣∣∣ ≤ ε,
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and the observations {z′i}mi=1 are sampled from {zi}di=1 as in Algorithm 1, then for

any w1, . . . ,wd ∈ Sp, with large probability, the following holds:

(1− ε)H(w)− 2
√

(1 + ε)H(w)/s

(1/s+ 1)2b/m
− δ

≤ 1

t

t∑
i=1

d∑
j=1

(wT
j z′i)

2 ≤
(1 + ε)H(w) + 2

√
(1 + ε)H(w)/s+ 1/s2

(1/s− 1)2b/m
+ δ,

where H(w) ,
∑d

j=1 ‖wT
j A‖2, s is the signal noise ratio and m is the number of

sampled observations in each batch and δ > 0 is a small constant.

We denote the set of accepted authentic samples as Zt and the set of accepted

outliers as Ot from the t-th small batch. In the following lemma, we provide the

estimation of number of accepted authentic samples |Zt| and outliers |Ot|.

Lemma 8. For the current obtained principal components {w(t−1)
j }dj=1, the number

of the accepted authentic samples |Zt| and outliers |Ot| satisfy

∣∣∣∣∣∣ |Zt|b − 1

b

(1−λ)b∑
i=1

d∑
j=1

(w
(t−1)
j

T
zi)

2

∣∣∣∣∣∣ ≤ δ and

∣∣∣∣∣∣ |Ot|b − 1

b

λb∑
i=1

d∑
j=1

(w
(t−1)
j

T
oi)

2

∣∣∣∣∣∣ ≤ δ
with probability at least 1− e−2δ2b. Here δ > 0 is a small constant, λ is the outlier

fraction and b is the size of the small batch.

From the above lemma, we can see that when the batch size b is sufficiently

large, the above estimation for |Zt| and |Ot| holds with large probability.

In the following lemma, we show that when the algorithm improves the PCs

estimation, the impact of outliers will be decreased accordingly.

Lemma 9. For an outlier oi, an arbitrary orthogonal basis {wj}dj=1 and the groundtruth

basis {wj}dj=1 which satisfy that
∑d

j=1 wT
j oi ≥

∑d
j=1 wT

j oi and
∑d

j=1 wT
j wj ≥∑d

j=1 wT
j oi, the value of

∑d
j=1 wT

j oi is a monotonically decreasing function of
∑d

j=1 wT
j wj.

Being equipped by the above lemmas, we can proceed to prove Theorem 8. The

details of the proof is deferred to the supplementary material due to the space limit.
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Figure 3.1: Performance comparison of online RPCA (blue line) with online PCA
(red line). Here s = 2, p = 100, T = 10, 000, d = 1.
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Figure 3.2: Performance of online RPCA. Here s = 3, p = 100, T = 10, 000, d = 1.
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Figure 3.3: Performance of online RPCA. The outliers distribute along 5 different
directions. Here s = 2, p = 100, T = 10, 000, d = 1.

3.6 Simulations

The numerical study is aimed to illustrate the performance of online robust PCA

algorithm. We follow the data generation method in [61] to randomly generate a

p × d matrix A and then scale its leading singular value to s, which is the signal

noise ratio. A λ fraction of outliers are generated on a line with randomly selected

direction. Since it is hard to determine the most adversarial outlier distribution, in
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simulations, we generate the outliers concentrate on several directions deviating from

the groundtruth subspace. This makes a rather adversarial case and is suitable for

investigating the robustness of the proposed RPCA algorithm. In the simulations,

in total T = 10, 000 samples are generated to form the sample sequence. For each

parameter setup, we report the average result of 20 tests and standard deviation.

The initial solution is obtained by performing standard PCA on the first batch after

removing the outliers. Simulation results for p = 100, d = 1, s = 2, 3 are shown in

Figure 3.1 and Figure 3.2 respectively. More simulation results for the d > 1 case

are provided in the supplementary material due to the space limit.

From the simulation results, we can make following observations. Firstly, online

RPCA can improve the PC estimation steadily. With more samples being revealed,

the E.V. of the online RPCA outputs keep increasing. Secondly, the performance

of online RPCA is rather robust to outliers. For example, the final result converges

to E.V. ≈ 0.95 even with λ = 0.3 for relatively low signal noise ratio s = 2 as

shown in Figure 3.1. We further compare the results shown in Figure 3.1 and

Figure 3.2 and can observe that when the signal noise ratio s increases, the final

performance becomes better. Note that here the initial solution is obtained by

simply performing standard PCA on the first 40 clean samples to mimic a relatively

good initial solution.

To more clearly demonstrate the robustness of online RPCA to outliers, we

implement the online PCA proposed in [38] as baseline for the σ = 2 case. The

results are presented in Figure 3.1, from which we can observe that the performance

of online PCA drops due to the sensitiveness to newly coming outliers. When the

outlier fraction λ ≥ 0.1, the online PCA cannot recover the true PC directions and

the performance is as low as 0.

We also simulate the case where the outliers are distributed on multiple lines. In

particular, we investigate the case for outliers distributing on 5 different lines. And

the simulation results are presented in Figure 3.3. The results are quite similar to

the one with outliers distributing on a single line. We can see that online RPCA

also performs quite well for this case.
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3.7 Technical Lemmas

Before proving the theoretical results in this chapter, we first present following

lemmas used in the proof.

Lemma 10. There exists a constant c that only depends on µ and d, such that for

all γ > 0 and b signals {xi}bi=1, the following holds with high probability:

sup
w∈Sd

∣∣∣∣∣1b
b∑
i=1

(wTxi)
2 − 1

∣∣∣∣∣ ≤ ε,
where ε = cα

√
d log3 b/b.

Lemma 11 (Operator-Bernstein inequality ). Let {z′i}mi=1 be a subset of Z =

{zi}ti=1, which is formed by randomly sampling without replacement from Z, as

in Algorithm 1. Then the following statement holds

∣∣∣∣∣
m∑
i=1

wT z′i − E

(
m∑
i=1

wT z′i

)∣∣∣∣∣ ≤ δ
with probability larger than 1− 2 exp(−δ2/4m).
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3.8 Proof of Lemma 6

Proof. Suppose the noise magnitude is ‖ni‖2 = 1 with out loss of generality. And

thus the signal magnitude is ‖xi‖2 = s. Then we have:

1

t

t∑
i=1

d∑
j=1

|wT
j zi|2

‖zi‖22

=
1

t

t∑
i=1

d∑
j=1

|wT
j Axi + wT

j ni|2

‖Axi + ni‖22

(a)

≤ 1

t

t∑
i=1

d∑
j=1

|wT
j Axi + wT

j ni|2

(‖Axi‖2 − ‖ni‖2)2

=
1

t

t∑
i=1

d∑
j=1

|wT
j Axi + wT

j ni|2

(s− 1)2

=
1

(s− 1)2

1

t


t∑
i=1

d∑
j=1

(wT
j Axi)

2 + 2

t∑
i=1

d∑
j=1

(wT
j Axi)(w

T
j ni) +

t∑
i=1

d∑
j=1

(wT
j ni)

2


(b)

≤ 1

(s− 1)2

d∑
j=1

‖wT
j A‖22 sup

v∈Sd

1

t

t∑
i=1

|vTxi|2 + 2

√√√√1

t

t∑
i=1

(wT
j Axi)2

√√√√1

t

t∑
i=1

(wT
j ni)2 +

1

t

t∑
i=1

(wT
j ni)

2


(c)

≤ (1 + ε)‖wTA‖2s2 + 2‖wTA‖s
√

1 + ε+ 1

(s− 1)2
.

Here the inequality (a) is from the triangle inequality. The inequality (b) is from

that

t∑
i=1

|wT
j Axi|2 = wT

j A

(
t∑
i=1

xix
T
i

)
ATwj

= ‖wT
j A‖22

{
wT
j A

‖wT
j A‖2

(
t∑
i=1

xix
T
i

)
ATwj

‖wT
j A‖2

}

≤ ‖wT
j A‖22 sup

v∈Sd

1

t

t∑
i=1

|vTxi|2,

for the first term and the inequality (
∑

i aibi)
2 ≤ (

∑
i a

2
i )(
∑

i b
2
i ) for the second

term. And the inequality (c) is from the definition of H(w) and applying Lemma

10.
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Similarly, we have

1

t

t∑
i=1

d∑
j=1

|wT
j zi|2

‖zi‖22

=
1

t

t∑
i=1

d∑
j=1

|wT
j Axi + wT

j ni|2

‖Axi + ni‖22

≥ 1

t

t∑
i=1

d∑
j=1

|wT
j Axi|2 − 2|wT

j Axi||wT
j ni|

‖Axi + ni‖22

≥ 1

t

t∑
i=1

d∑
j=1

|wT
j Axi|2 − 2|wT

j Axi||wT
j ni|

(‖Axi‖2 + ‖ni‖2)2

=
1

t

t∑
i=1

d∑
j=1

(wT
j Axi)

2 − 2|wT
j Axi||wT

j ni|
(s+ 1)2

≥
(1− ε)H(w)s2 − 2s

√
(1 + ε)H(w)

(s+ 1)2
.

Combining the above two results, we complete the proof.

3.9 Proof of Lemma 7

Proof. According to Lemma 2, we have

(1− ε)H(w)− 2
√

(1 + ε)H(w)/s

(1/s+ 1)2

≤ 1

t

t∑
i=1

d∑
j=1

(wT
j zi)

2 ≤
(1 + ε)H(w) + 2

√
(1 + ε)H(w)/s+ 1/s2

(1/s− 1)2
.

Next we will show that the method of sampling without replacement given in

Algorithm 1 provides an unbiased estimation of 1
t

∑t
i=1

∑d
j=1(wT

j zi)
2. To see this,

we define the random variables Xi = |wT zi|2 and Yi = Xi/bXi which is sampled

from Xi with probability pi = Xi and re-scaled by bXi as in Algorithm 1. Then

E[Yi] =

t∑
i=1

piYi =
t∑
i=1

Xi
Xi

bXi
=

t∑
i=1

Xi

b
.
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Thus,

E

[
m∑
i=1

Yi

]
=

m∑
i=1

E[Yi] =
m∑
i=1

t∑
i=1

Xi

b
=
m

b

t∑
i=1

Xi.

Namely,

E

[
m∑
i=1

∣∣wT z′i
∣∣2] =

m

b

t∑
i=1

∣∣wT zi
∣∣2 .

Thus, according to Lemma 3, we have

∣∣∣∣∣
m∑
i=1

∣∣wT z′i
∣∣2 − m

b

t∑
i=1

∣∣wT zi
∣∣2∣∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

∣∣wT z′i
∣∣2 − E

[
m∑
i=1

∣∣wT z′i
∣∣2]∣∣∣∣∣ < δ,

with probability larger than 1− 2 exp(−δ2/4m). Therefore,

m

b

t∑
i=1

∣∣wT zi
∣∣2 − δ ≤ m∑

i=1

∣∣wT z′i
∣∣2 ≤ m

b

t∑
i=1

∣∣wT zi
∣∣2 + δ.

Then applying Lemma 11 completes the proof.

3.10 Proof of Lemma 8

Proof. According to the Algorithm 1, the probability of accepting an authentic

sample is

Pr (zi is accepted) =
d∑
j=1

(
w

(t−1)
j

T
zi

)2

.

Since there are in total (1− λ)b authentic samples, we have

E|Zt| =
(1−λ)b∑
i=1

d∑
j=1

(
w

(t−1)
j

T
zi

)2

.

By applying the Chernoff bound, we have

Pr {||Zt| − E|Zt|| < δb} ≥ 1− e−2δ2b.
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Thus,

Pr


∣∣∣∣∣∣ |Zt|b − 1

b

(1−λ)b∑
i=1

d∑
j=1

(
w

(t−1)
j

T
zi

)2
∣∣∣∣∣∣ ≤ δ

 ≥ 1− e−2δ2b.

Similarly, the expectation of the number of accepted outliers is

E|Ot| =
λb∑
i=1

d∑
j=1

(
w

(t−1)
j

T
oi

)2

.

And applying Chernoff bound again, we obtain

Pr


∣∣∣∣∣∣ |Ot|b − 1

b

λb∑
i=1

d∑
j=1

(
w

(t−1)
j

T
oi

)2
∣∣∣∣∣∣ < δ

 ≥ 1− e−2δ2b.

3.11 Proof of Lemma 9

Proof. For the basis {wj}dj=1 spanning the groundtruth subspace, we can always

rotate these basis and align them to the estimated basis {wj}dj=1 to make sure that

oi,wj and wj lie within the same plane. We also denote the aligned basis as {wj}dj=1

without causing confusion. For the single basis pair, wj and wj , it can be verified

that

wT
j oi = (wT

j oi)(w
T
j wj) +

√
1− (wT

j oi)2
√

1− (wT
j wj)2,

when the basis wj satisfies the stated conditions. Thus we have

d∑
j=1

wT
j oi =

d∑
j=1

(wT
j oi)(w

T
j wj) +

d∑
j=1

√
1− (wT

j oi)2
√

1− (wT
j wj)2.

It is easy to verify that when
∑d

j=1 wT
j wj ≥

∑d
j=1 wT

j oi, the function

f(wT
j wj) =

d∑
j=1

(wT
j oi)(w

T
j wj) +

d∑
j=1

√
1− (wT

j oi)2
√

1− (wT
j wj)2
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is a monotonically decreasing function w.r.t.
∑d

j=1 wT
j wj be seeing that the increase

of any |wT
j oi| will decrease value of the function.

3.12 Proof of Theorem 10

Theorem 10 (Noisy Case Performance). There exist universal constants c′1, c
′
2

which depend on the signal noise ratio s and ε1, ε2 > 0 which approximate zero

when s → ∞ or b → ∞, such that if the outliers satisfies that
∑d

j=1 |wT
j oi|2 ≤ Γo,

the initial solution {w(0)}dj=1 in Algorithm 1 satisfies:

λb∑
i=1

d∑
j=1

∣∣∣∣w(0)
j

T
oi

∣∣∣∣2 ≤ (1− λ)b(1− ε2)

c′2(1− Γo)

(
1

4
(c′1(1− ε) + ε1)2 − ε2

)
,

and

H(w(0)) ≥ 1

2
(c′1(1−2ε)+ε1)−

√√√√(c′1(1− ε) + ε1)2 − 4ε2
4

−
c′2
∑λb

i=1

∑d
j=1(w

(0)
j

T
oi)2(1− Γo)

(1− λ)b(1− ε2)
,

then the performance of the solution from Algorithm 1 will be improved in each

iteration, and eventually converges to:

lim
t→∞

Ht ≥
1

2
(c′1(1−2ε)+ε1)+

√√√√(c′1(1− 2ε) + ε1)2 − 4ε2
4

−
c′2
∑λb

i=1

∑d
j=1(w

(0)
j

T
oi)2(1− Γo)

(1− λ)b(1− ε2)
.

Here ε1 and ε2 decay as Õ(d
1
2 b−

1
2 s−1), and ε decays as Õ(d

1
2 b−

1
2 ). And c′1 = (s +

1)2/(s− 1)2, c′2 = (1 + 1/s)4.

Proof of Theorem 10. The sample covariance matrix at trial t is calculated as:

Ct =
∑
zi∈Zt

ziz
T
i +

∑
oi∈Ot

oio
T
i .

And we have,

d∑
j=1

wT
j Ctwj =

d∑
j=1

∑
zi∈Zt

(wT
j zi)

2 +
d∑
j=1

∑
oi∈Ot

(wT
j oi)

2.
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Thus for the PCA solution {w(t)
j }dj=1 on the current accepted data set Yt =

Zt ∪ Ot, we have

d∑
j=1

∑
zi∈Zt

(
w

(t)
j

T
zi

)2

+
d∑
j=1

∑
oi∈Ot

(
w

(t)
j

T
oi

)2

≥
d∑
j=1

∑
zi∈Zt

(
wj

T zi
)2

+
d∑
j=1

∑
oi∈Ot

(
wj

Toi
)2
,

(3.1)

where the inequality is from the fact that {w(t)
j }dj=1 are the leading eigenvectors of

the covariance matrix Ct.

Note that all the data points are normalized by their `2-norm, therefore

d∑
j=1

(
w

(t)
j

T
oi

)2

≤ 1.

Thus we have
∑d

j=1

∑
oi∈Ot w

(t)
j

T
oTi oiw

(t)
j ≤ |Ot|. Substituting it to (3.1), we can

obtain

d∑
j=1

∑
zi∈Zt

(
w

(t)
j

T
zi

)2

+ |Ot| ≥
d∑
j=1

∑
zi∈Zt

(
wj

T zi
)2

+
d∑
j=1

∑
oi∈Ot

(
wj

Toi
)2
.

According to the definition of outliers, the outliers variance along the true PC di-

rections is upper bounded, i.e.,
∑d

j=1

(
wj

Toi
)2 ≤ Γo. Thus, we have

1

|Zt|

d∑
j=1

∑
zi∈Zt

(
w

(t)
j

T
zi

)2

≥ 1

|Zt|

d∑
j=1

∑
zi∈Zt

(wT
j zi)

2 − |Ot|
|Zt|

(1− Γo). (3.2)

According to Lemma 7, we have followings hold with large probability 1 −

2 exp(−δ2/4m),

1

|Zt|

d∑
j=1

∑
zi∈Zt

(
w

(t)
j

T
zi

)2

≤ (1 + ε)s2H(t) + 2s
√

(1 + ε)H(t) + 1

(s− 1)2b/m
+ δ, (3.3)

and

1

|Zt|

d∑
j=1

∑
zi∈Zt

(wT
j zi)

2 ≥
(1− ε)s2 − 2s

√
(1 + ε)

(s+ 1)2b/m
− δ. (3.4)

Herem = |Z(t)|, H(t) = H
(
w

(t)
1 , . . . ,w

(t)
d

)
and we utilize the fact thatH(w1, . . . ,wd) =
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1. Substitute (3.3) and (3.4) to (3.2), we can obtain that

(1 + ε)H(t) + 2
√

(1 + ε)H(t)/s+ 1/s2

(1/s+ 1)2
+2δ

b

|Z(t)|
≥

(1− ε)− 2
√

(1 + ε)/s

(1/s− 1)2
−b|Ot|
|Zt|2

(1−Γo).

According to Lemma 8, we have, with a large probability,

|Ot|
|Zt|

=

∑d
j=1

∑λb
i=1

(
w

(t−1)
j

T
wo

)2

∑d
j=1

∑(1−λ)b
i=1

(
w

(t−1)
j

T
zi

)2 ≤
(1/s+ 1)2

∑d
j=1

∑λb
i=1

(
w

(t−1)
j

T
wo

)2

(1− λ)b
(

(1− ε)H(t) − 2
√

(1 + ε)H(t)/s
) ,

and

|Zt|
b
≥ (1− λ)

(
(1− ε)H(t) − 2

√
(1 + ε)H(t)/s

)
.

Here the inequality is from Lemma 6.

Thus,

H(t) ≥ c1 −
c2
∑d

j=1

∑λb
i=1

(
w

(t−1)
j

T
wo

)2

(1− Γo)

(1− λ)b((1− ε)H(t−1) − ε′)
− ε̄ (3.5)

where

c′1(1− 2ε) ≤ c1 =
(s+ 1)2(1− ε)
(s− 1)2(1 + ε)

≤ c′1(1− ε),

c2 =
(1 + 1/s)4

1 + ε
=

c′2
1 + ε

,

ε̄ =
4(s2 + 1)

(s− 1)2s
√

1 + ε
+

1

(1 + ε)s2
,

ε′ = 2
√

(1 + ε)c̄/s.

Here, c′1 = (s+ 1)2/(s− 1)2, c′2 = (1 + 1/s)4.

In obtaining the above inequality (3.5), we utilize the fact that H(t−1) ≤ 1.

Based on the bound provided in (3.5), the result of Theorem 1 can be proved by
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induction. For the PC obtained from the first batch, {w(1)
j }dj=1, we have that

H(1) ≥ c1 −
c2
∑d

j=1

∑λb
i=1

(
w(0)T

j oi

)2
(1− Γo)

(1− λ)b((1− ε)H(0) − ε′)
− ε̄.

When the initial solution {w(0)
j }dj=1 satisfies the following conditions:

λb∑
i=1

d∑
j=1

(
w

(0)
j

T
oi

)2

≤ (1− λ)b(1− ε)
c2(1− Γo)

(
1

4
(c1 + ε1)2 − ε2

)
(3.6)

and

H(0) ≥ 1

2
(c1 + ε1)−

√√√√√1

4
(c1 + ε1)2 − ε2 −

c2
∑λb

i=1

∑d
j=1

(
w

(0)
j

T
wo

)2

(1− Γo)

(1− λ)b(1− ε)
,

(3.7)

where

ε1 =
ε′

1− ε
− ε̄, and ε2 =

ε′(c1 − ε̄)
1− ε

,

we can verify that

H(1) ≥ c1 −
c2
∑d

j=1

∑λb
i=1

(
w

(0)
j

T
wo

)2

(1− Γo)

(1− λ)b((1− ε)H0 − ε′)
− ε̄ ≥ H(0).

Thus according to Lemma 9, we have

λb∑
i=1

d∑
j=1

(
w

(1)
j

T
oi

)2

≤
λb∑
i=1

d∑
j=1

(
w

(0)
j

T
oi

)2

.

Similarly, suppose for the solution in (t−1)-th trial, we have
∑λb

i=1

∑d
j=1(w

(t−1)
j

T
oi)

2 ≤∑λb
i=1

∑d
j=1(w

(0)
j

T
oi)

2. Thus,
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H(t) ≥ c1 −
c2
∑λb

i=1

∑d
j=1

(
w

(t−1)
j

T
oi

)2

(1− Γo)

(1− λ)b((1− ε)H(t−1) − ε′)
− ε̄

≥ c′1(1− 2ε)−
c′2
∑λb

i=1

∑d
j=1

(
w

(0)
j

T
oi

)2

(1− Γo)

(1 + ε)(1− λ)b((1− ε)H(t−1) − ε′)
− ε̄

And we can verify that when the initial solution satisfies the conditions (3.6) and (3.7),

the performance of the new solution will be improved, namely

H(t) ≥ H(t−1).

And thus
∑λb

i=1

∑d
j=1

(
w

(t−1)
j

T
oi

)2

keeps decreasing according to Lemma 9.

Finally, by letting

c′1(1− 2ε)−
c′2
∑λb

i=1

∑d
j=1

(
w

(0)
j

T
oi

)2

(1− Γo)

(1 + ε)(1− λ)b((1− ε)Ht−1 − ε′)
− ε̄ = H(t),

we can solve out that

H(t) =
1

2
(c′1(1−2ε)+ε1)+

√√√√√(c′1(1− 2ε) + ε1)2

4
− ε2 −

c′2
∑λb

i=1

∑d
j=1

(
w

(0)
j

T
oi

)2

(1− Γo)

(1− λ)b(1− ε2)
.

Namely, the final performance will converge as above.

3.13 Chapter Summary

In this chapter, we proposed an online robust PCA (online RPCA) algorithm for

samples corrupted by outliers. The online RPCA alternates between standard PCA

for updating PCs and probabilistic selection of the new samples which alleviates the

impact of outliers. Theoretical analysis showed that the online RPCA could improve

the PC estimation steadily and provided results with bounded deviation from the

optimum. To the best of our knowledge, this is the first work to investigate such
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online robust PCA problem with theoretical performance guarantee. The proposed

online robust PCA algorithm can be applied to handle challenges imposed by the

modern big data analysis.
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Chapter 4

Online Optimization for Robust

PCA

In this chapter, we introduce an online robust PCA method which handles a different

setting from the above chapter. In the above chapter, some of the samples are

completely corrupted and are outliers. In this chapter, we handle the data each of

which is corrupted by sparse gross noises.

4.1 Introduction

Principal Component Analysis (PCA) [57] is arguably the most widely used method

for dimensionality reduction in data analysis. However, standard PCA is brittle

in the presence of outliers and corruptions [51]. Thus many techniques have been

developed towards robustifying it [52, 44, 61, 62, 47]. One prominent example is the

Principal Component Pursuit (PCP) method proposed in [44] that robustly finds the

low-dimensional subspace through decomposing the sample matrix into a low-rank

component and an overall sparse component. It is proved that both components

can be recovered exactly through minimizing a weighted combination of the nuclear

norm of the first term and `1 norm of the second one. Thus the subspace estimation

is robust to sparse corruptions.

However, PCP and other robust PCA methods are all implemented in a batch
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manner. They need to access every sample in each iteration of the optimization.

Thus, robust PCA methods require memorizing all samples, in sharp contrast to

standard PCA where only the covariance matrix is needed. This pitfall severely

limits their scalability to big data, which are becoming ubiquitous now. Moreover, for

an incremental samples set, when a new sample is added, the optimization procedure

has to be re-implemented on all available samples. This is quite inefficient in dealing

with incremental sample sets such as network detection, video analysis and abnormal

events tracking.

Another pitfall of batch robust PCA methods is that they cannot handle the

case where the underlying subspaces are changing gradually. For example, in the

video background modeling, the background is assumed to be static across different

frames for applying robust PCA [44]. Such assumption is too restrictive in practice.

A more realistic situation is that the background is changed gradually along with

the camera moving, corresponding to a gradually changing subspace. Unfortunately,

traditional batch RPCA methods may fail in this case.

In order to efficiently and robustly estimate the subspace of a large-scale or

dynamic samples set, we propose an Online Robust PCA (OR-PCA) method. OR-

PCA processes only one sample per time instance and thus is able to efficiently

handle big data and dynamic sample sets, saving the memory cost and dynamically

estimating the subspace of evolutional samples. We briefly explain our intuition here.

The major difficulty of implementing the previous RPCA methods, such as PCP,

in an online fashion is that the adopted nuclear norm tightly couples the samples

and thus the samples have to be processed simultaneously. To tackle this, OR-PCA

pursues the low-rank component in a different manner: using an equivalent form

of the nuclear norm, OR-PCA explicitly decomposes the sample matrix into the

multiplication of the subspace basis and coefficients plus a sparse noise component.

Through such decomposition, the samples are decoupled in the optimization and

can be processed separately. In particular, the optimization consists of two iterative

updating components. The first one is to project the sample onto the current basis

and isolate the sparse noise (explaining the outlier contamination), and the second
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one is to update the basis given the new sample.

Our main technical contribution is to show the above mentioned iterative opti-

mization sheme converges to the global optimal solution of the original PCP formu-

lation, thus we establish the validity of our online method. Our proof is inspired by

recent results from [56], who proposed an online dictionary learning method and pro-

vided the convergence guarantee of the proposed online dictionary learning method.

However, [56] can only guarantee that the solution converges to a stationary point

of the optimization problem.

Besides the nice behavior on single subspace recovering, OR-PCA can also be

applied for tracking time-variant subspace naturally, since it updates the subspace

estimation timely after revealing one new sample. We conduct comprehensive sim-

ulations to demonstrate the advantages of OR-PCA for both subspace recovering

and tracking in this work.

4.2 Related Work

The robust PCA algorithms based on nuclear norm minimization to recover low-rank

matrices are now standard, since the seminal works [59, 46]. Recent works [44, 45]

have taken the nuclear norm minimization approach to the decomposition of a low-

rank matrix and an overall sparse matrix. Different from the setting of samples

being corrupted by sparse noise, Xu et al. [62, 61] solve robust PCA in the case

that a few samples are completely corrupted. Following the work of [61], Feng et

al. [47] propose deterministic high-dimensional RPCA which achieves high efficiency.

However, all of these RPCA methods are implemented in batch manner and cannot

be directly used in online manner.

The most related works to ours are the following two works. In [53], an incremen-

tal and robust subspace learning method is proposed. The method proposes to inte-

grate the M -estimation into the standard incremental PCA calculation. Specifically,

each newly coming data point is re-weighted by a pre-defined influence function [51]

of its residual to the current estimated subspace. However, no performance guaran-
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tee is provided in this work. Moreover, the performance of the proposed algorithm

relies on the accuracy of PCs obtained previously. And the error will be cumulated

inevitably. Recently, a compressive sensing based recursive robust PCA algorithm

is proposed in [58]. The proposed method in [58] essentially solves compressive sens-

ing optimization over a small batch of data to update the PCs estimation instead

of using a single sample, and it is not clear how to extend the method to the latter

case.

As aforementioned, Mairal et al. [56] propose an online learning method for

dictionary learning and sparse coding. Based on that work, Guan et al. [49] propose

an online nonnegative matrix factorization method. Both of these two works can be

seen as online matrix factorization problem with specific constraints (sparse or non-

negative). Though it can also be seen as a kind of matrix factorization, the method

proposed in this work is essentially different from those two works. In this work,

an additive sparse noise matrix is considered along with the matrix factorization.

Thus the optimization and analysis are different from the ones in those works.

Benefitting from explicitly considering the noise, the proposed method possesses

certain robustness, which is absent in either the dictionary learning or nonnegative

matrix factorization works.

4.3 Problem Formulation

4.3.1 Notation

We use bold letters to denote vectors. In particular, x ∈ Rp denotes an authentic

sample without corruption, e ∈ Rp is for the noise, and z ∈ Rp is for the corrupted

observation z = x + e. Here p denotes the ambient dimension of the observed

samples. Let r denote the intrinsic dimension of the subspace underlying {xi}ni=1.

Let n denote the number of observed samples, t denote the index of the sample/time

instance. We use capital letters to denote matrices, e.g., Z ∈ Rp×n is the matrix of

observed samples. Each column zi of Z corresponds to one sample. For an arbitrary

real matrix E, Let ‖E‖F denote its Frobenius norm, ‖E‖`1 =
∑

i,j |Eij | denote the
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`1-norm of E seen as a long vector in Rp×n, and ‖E‖∗ =
∑

i σi(E) denote its nuclear

norm, i.e., the sum of its singular values.

4.3.2 Objective Function Formulation

Robust PCA (RPCA) aims to accurately estimate the subspace underlying the ob-

served samples, even though the samples are corrupted by gross but sparse noise. As

one of the most popular RPCA methods, the Principal Component Pursuit (PCP)

method [44] proposes to solve RPCA by decomposing the observed sample matrix Z

into a low-rank component X accounting for the low-dimensional subspace plus an

overall sparse component E incorporating the sparse corruption. Under mild condi-

tions, PCP guarantees that the two components X and E can be exactly recovered

through solving:

min
X,E

1

2
‖Z −X − E‖2F + λ1‖X‖∗ + λ2‖E‖1. (4.1)

To solve the problem in (4.1), iterative optimization methods such as Accelerated

Proximal Gradient (APG) [55] or Augmented Lagrangian Multiplier (ALM) [54]

methods are often used. However, these optimization methods are implemented

in a batch manner. In each iteration of the optimization, they need to access all

samples to perform SVD. Hence a huge storage cost is incurred when solving RPCA

for big data (e.g., web data, large image set).

In this paper, we consider online implementation of PCP. The main difficulty is

that the nuclear norm couples all the samples tightly and thus the samples cannot

be considered separately as in typical online optimization problems. To overcome

this difficulty, we use an equivalent form of the nuclear norm for the matrix X whose

rank is upper bounded by r, as follows [59],

‖X‖∗ = inf
L∈Rp×r,R∈Rn×r

{
1

2
‖L‖2F +

1

2
‖R‖2F : X = LRT

}
.

Namely, the nuclear norm is re-formulated as an explicit low-rank factorization of
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X. Such nuclear norm factorization is developed in [43] and well established in

recent works [60, 59]. In this decomposition, L ∈ Rp×r can be seen as the basis of

the low-dimensional subspace and R ∈ Rn×r denotes the coefficients of the samples

w.r.t. the basis. Thus, the RPCA problem (4.1) can be re-formulated as

min
X,L∈Rp×r,R∈Rn×r,E

1

2
‖Z −X − E‖2F +

λ1

2
(‖L‖2F + ‖R‖2F ) + λ2‖E‖1, s.t. X = LRT .

SubstitutingX by LRT and removing the constraint, the above problem is equivalent

to:

min
L∈Rp×r,R∈Rn×r,E

1

2
‖Z − LRT − E‖2F +

λ1

2
(‖L‖2F + ‖R‖2F ) + λ2‖E‖1. (4.2)

Though the reformulated objective function is not jointly convex w.r.t. the variables

L and R, we prove below that the local minima of (4.2) are global optimal solutions

to original problem in (4.1). The details are given in the next section.

Given a finite set of samples Z = [z1, . . . , zn] ∈ Rp×n, solving problem (4.2)

indeed minimizes the following empirical cost function,

fn(L) ,
1

n

n∑
i=1

`(zi, L) +
λ1

2n
‖L‖2F , (4.3)

where the loss function for each sample is defined as

`(zi, L) , min
r,e

1

2
‖zi − Lr− e‖22 +

λ1

2
‖r‖22 + λ2‖e‖1. (4.4)

The loss function measures the representation error for the sample z on a fixed

basis L, where the coefficients on the basis r and the sparse noise e associated with

each sample are optimized to minimize the loss. In the stochastic optimization,

one is usually interested in the minimization of the expected cost overall all the

samples [56],

f(L) , Ez[`(z, L)] = lim
n→∞

fn(L), (4.5)

where the expectation is taken w.r.t. the distribution of the samples z. In this work,
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we first establish a surrogate function for this expected cost and then optimize the

surrogate function for obtaining the subspace estimation in an online fashion.

4.4 Stochastic Optimization Algorithm for OR-PCA

We now present our Online Robust PCA (OR-PCA) algorithm. The main idea

is to develop a stochastic optimization algorithm to minimize the empirical cost

function (4.3), which processes one sample per time instance in an online manner.

The coefficients r, noise e and basis L are optimized in an alternative manner. In

the t-th time instance, we obtain the estimation of the basis Lt through minimizing

the cumulative loss w.r.t. the previously estimated coefficients {ri}ti=1 and sparse

noise {ei}ti=1. The objective function for updating the basis Lt is defined as,

gt(L) ,
1

t

t∑
i=1

(
1

2
‖zi − Lri − ei‖22 +

λ1

2
‖ri‖22 + λ2‖ei‖1

)
+
λ1

2t
‖L‖2F . (4.6)

This is a surrogate function of the empirical cost function ft(L) defined in (4.3), i.e.,

it provides an upper bound for ft(L): gt(L) ≥ ft(L).

The proposed algorithm is summarized in Algorithm 3. Here, the subprob-

lem in (4.7) involves solving a small-size convex optimization problem, which can

be solved efficiently by the off-the-shelf solver (see the supplementary material).

To update the basis matrix L, we adopt the block-coordinate descent with warm

restarts [42]. In particular, each column of the basis L is updated individually while

fixing the other columns.

The following theorem is the main theoretic result of the paper, which states

that the solution from Algorithm 3 will converge to the optimal solution of the

batch optimization. Thus, the proposed OR-PCA converges to the correct low-

dimensional subspace even in the presence of sparse noise, as long as the batch

version – PCP – works.

Theorem 11. Assume the observations are always bounded. Given the rank of the

optimal solution to (4.5) is provided as r, and the solution Lt ∈ Rp×r provided by
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Algorithm 3 is full rank, then Lt converges to the optimal solution of (4.5) asymp-

totically.

Note that the assumption that observations are bounded is quite natural for the

realistic data (such as images, videos). We find in the experiments that the final

solution Lt is always full rank. A standard stochastic gradient descent method may

further enhance the computational efficiency, compared with the used method here.

We leave the investigation for future research.

Algorithm 3 Stochastic Optimization for OR-PCA

Input: {z1, . . . , zT } (observed data which are revealed sequentially), λ1, λ2 ∈ R
(regularization parameters), L0 ∈ Rp×r, r0 ∈ Rr, e0 ∈ Rp (initial solutions), T
(number of iterations).
for t = 1 to T do

1) Reveal the sample zt.
2) Project the new sample:

{rt, et} = arg min
1

2
‖zt − Lt−1r− e‖22 +

λ1

2
‖r‖22 + λ2‖e‖1. (4.7)

3) At ← At−1 + rtr
T
t , Bt ← Bt−1 + (zt − et)r

T
t .

4) Compute Lt with Lt−1 as warm restart using Algorithm 4:

Lt , arg min
1

2
Tr
[
LT (At + λ1I)L

]
− Tr(LTBt). (4.8)

end for
Return XT = LTR

T
T (low-rank data matrix), ET (sparse noise matrix).

Algorithm 4 The Basis Update

Input: L = [l1, . . . , lr] ∈ Rp×r, A = [a1, . . . ,ar] ∈ Rr×r, and B = [b1, . . . ,br] ∈
Rp×r.
Ã← A+ λ1I.
for j = 1 to r do

lj ←
1

Ãj,j
(bj − Lãj) + lj . (4.9)

end for
Return L.
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4.5 Algorithm solving Problem (4.7)

For the data projection r and noise estimation e, we can get the closed-form solu-

tions for them respectively, as shown in Algorithm 5. In particular, the closed-form

solution to a projection to `1-ball in updating e involves a soft thresholding operator

Sλ[·] [131], which is defined as:

Sλ[x] ,


x− λ, if x > λ,

x+ λ, if x < −λ,

0, otherwise.

And it is conducted element-wisely on the involved vectors. The optimization iter-

ation is terminated when the following convergence criterion is met:

max(‖rk+1 − rk‖/‖z‖, ‖ek+1 − ek‖/‖z‖) < ε.

Here ε is set as 1× 10−6 throughout the simulations.

The details of the algorithm are summarized as follows,

Algorithm 5 Data Projection

Input: L = [l1, . . . , lr] ∈ Rp×r (input basis), z ∈ Rp, parameters λ1 and λ2.
e← 0.
while not converged do

Update the coefficient r:

r← (LTL+ λ1I)−1LT (z− e).

Update the sparse error e:

e← Sλ2 [z− Lr].

end while
Return L.
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4.6 Proof Sketch

In this section we sketch the proof of Theorem 11. The details are deferred to the

supplementary material due to space limit.

The proof of Theorem 11 proceeds in the following four steps: (I) we first prove

that the surrogate function gt(Lt) converges almost surely; (II) we then prove that

the solution difference behaves as ‖Lt − Lt−1‖F = O(1/t); (III) based on (II) we

show that f(Lt) − gt(Lt) → 0 almost surely, and the gradient of f vanishes at the

solution Lt when t → ∞; (IV) finally we prove that Lt actually converges to the

optimum solution of the problem (4.5).

Theorem 12 (Convergence of the surrogate function gt). Let gt denote the surrogate

function defined in (4.6). Then, gt(Lt) converges almost surely when the solution

Lt is given by Algorithm 3.

We prove Theorem 12, i.e., the convergence of the stochastic positive process

gt(Lt) > 0, by showing that it is a quasi-martingale. We first show that the sum-

mation of the positive difference of gt(Lt) is bounded utilizing the fact that gt(Lt)

upper bounds the empirical cost ft(Lt) and the loss function `(zt, Lt) is Lipschitz.

These imply that gt(Lt) is a quasi-martingale. Applying the lemma from [48] about

the convergence of quasi-martingale, we conclude that gt(Lt) converges.

Next, we show the difference of the two successive solutions converges to 0 as t

goes to infinity.

Theorem 13 (Difference of the solution Lt). For the two successive solutions ob-

tained from Algorithm 3, we have

‖Lt+1 − Lt‖F = O(1/t) a.s.

To prove the above result, we first show that the function gt(L) is strictly convex.

This holds since the regularization component λ1‖L‖2F naturally guarantees that the

eigenvalues of the Hessian matrix are bounded away from zero. Notice that this is

essentially different from [56], where one has to assume that the smallest eigenvalue
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of the Hessian matrix is lower bounded. Then we further show that variation of the

function gt(L), gt(Lt) − gt+1(Lt), is Lipschitz if using the updating rule shown in

Algorithm 4. Combining these two properties establishes Theorem 13.

In the third step, we show that the expected cost function f(Lt) is a smooth one,

and the difference f(Lt)−gt(Lt) goes to zero when t→∞. In order for showing the

regularity of the function f(Lt), we first provide the following optimality condition

of the loss function `(Lt).

Lemma 12 (Optimality conditions of Problem (4.4)). r? ∈ Rr and e? ∈ Rp is a

solution of Problem (4.4) if and only if

CΛ(zΛ − e?Λ) = λ2sign(e?Λ),

|CΛc(zΛc − e?Λc)| ≤ λ2, otherwise,

r? = (LTL+ λ1I)−1LT (z− e?),

where C = I−L(LTL+λ1I)−1LT and CΛ denotes the columns of matrix C indexed

by Λ = {j|e?[j] 6= 0} and Λc denotes the complementary set of Λ. Moreover, the

optimal solution is unique.

Based on the above lemma, we can prove that the solution r? and e? are Lipschitz

w.r.t. the basis L. Then, we can obtain the following results about the regularity of

the expected cost function f .

Lemma 13. Assume the observations z are always bounded. Define

{r?, e?} = arg min
r,e

1

2
‖z− Lr− e‖22 +

λ1

2
‖r‖22 + λ2‖e‖1.

Then, 1) the function ` defined in (4.4) is continuously differentiable and

∇L`(z, L) = (Lr? + e? − z)r?T ;

2) ∇f(L) = Ez[∇L`(z, L)]; and 3)∇f(L) is Lipschitz.
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Equipped with the above regularities of the expected cost function f , we can

prove the convergence of f , as stated in the following theorem.

Theorem 14 (Convergence of f). Let gt denote the surrogate function defined

in (4.2). Then, 1) f(Lt) − gt(Lt) converges almost surely to 0; and 2) f(Lt) con-

verges almost surely, when the solution Lt is given by Algorithm 3.

Following the techniques developed in [56], we can show the solution obtained

from Algorithm 3, L∞, satisfies the first order optimality condition for minimizing

the expected cost f(L). Thus the OR-PCA algorithm provides a solution converging

to a stationary point of the expected loss.

Theorem 15. The first order optimal condition for minimizing the objective func-

tion in (4.5) is satisfied by Lt, the solution provided by Algorithm 3, when t tends

to infinity.

Finally, to complete the proof, we establish the following result stating that any

full-rank L that satisfies the first order condition is the global optimal solution.

Theorem 16. When the solution L satisfies the first order condition for minimizing

the objective function in (4.5) , the obtained solution L is the optimal solution of

the problem (4.5) if L is full rank.

Combining Theorem 15 and Theorem 16 directly yields Theorem 11 – the so-

lution from Algorithm 3 converges to the optimal solution of Problem (4.5) asymp-

totically.

4.7 Proof of Lemma 12

Proof. Denote the subgradient of ‖e‖1 as ∂‖e‖1 and it is known that

∂‖e‖1 = {u|ui = sign(ei) if ei 6= 0, and |ei| ≤ 1 otherwise}.
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The point (r?, e?) is a global minimum of (5) if and only if the vector zero is in its

subgradient at (r?, e?):

∃u ∈ ∂‖e?‖1 such that e? + Lr? − z + λ2u = 0, (4.10)

−LT z + LTLr? + LTe? + λ1r
? = 0. (4.11)

From (4.11), we have,

r? = (LTL+ λ1I)−1LT (z− e?).

This proves the third inequality in the lemma. Substituting back into (4.10) yields

(
I − L(LTL+ λ1I)−1LT

)
(z− e?) = λ2u,where u ∈ ∂‖e?‖1.

Define the matrix

C , I − L(LTL+ λ1I)−1LT .

According to Woodbury matrix identity, we have

C =

(
I +

1

λ1
LTL

)−1

.

Thus C is invertible. We then have

C(z− e?) = λ2u,where u ∈ ∂‖e?‖1.

Let Λ = {j|e?[j] 6= 0} be the index set of nonzero elements of the optimal solution

e?. Then we can show that

CΛ(zΛ − e?Λ) = λ2sign(e?Λ)

Here CΛ denotes submatrix of C consisting of the column vectors of matrix C
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indexed by Λ. Then we can solve out that

e?Λ = (CTΛCΛ)−1(CΛzΛ − λsign(e?Λ)),

e?Λc = 0.

Since C is invertible, C is column full rank. Thus CΛ is column full rank and CTΛCΛ

is invertible, the solution e? is unique and thus r? is also unique.

4.8 Proof of Lemma 13

Proof. To reveal the regularity of the expected loss function f and its derivative

∇f , we need first to prove the regularity of the loss function ` as stated in the first

claim.

Proof of the first claim

Define a function f̃ as

f̃(r, e, z, L) ,
1

2
‖z− Lr− e‖22 +

λ1

2
‖L‖2F +

λ1

2
‖r‖22 + λ2‖e‖1.

Thus the loss function ` can be expressed as

`(z, L) = min
r,e

f̃(r, e, z, L).

The function f̃(r, e, z, L) is continuous, and for all r ∈ Rr, e ∈ Rp, the function

f̃(r, e, ·, ·) is differentiable, and the derivative ∇Lf̃(r, e, ·, ·) = (Lr + e − z)rT is

continuous. Furthermore, according to Lemma 1, f̃(·, ·, z, L) has unique minimizer

(r?, e?), thus Lemma 3 directly applies and we obtain that `(z, L) is differentiable

in L and

∇L`(z, L) = ∇Lf̃(r?, e?, z, L) = (Lr? + e? − z)r?T + λ1L.

Thus, we complete the proof of the first claim.
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Proof of the second claim

According to the first claim, the function `z,L is continuously differentiable, thus

∇Lf(L) = ∇LEz[`(z, L)] = Ez[∇L`(z, L)].

Equipped with the above two results, we are ready to prove that the derivative

∇Lf(L) is Lipschitz.

Proof of the third claim

To prove that ∇f(L) is Lipschitz, we will show that for all bounded observations

z, r?(z, ·) and e?(z, ·) are Lipschitz with constants independent of z. First, the loss

function `(z, L) defined in (4) is continuous in r, e, L, z and has a unique minimum

(according to Lemma 1) for fixed z and L, thus the optimal solutions r? and e? are

continuous in L and z.

Consider a matrix L and a sample z, and denote r? and e? as the corresponding

optimal solutions. Denote by Λ the set of the indices such that |CΛ(zΛ − e?Λ)| = λ1

(see Lemma 1). Here the matrix C is defined as C = I −L(LTL+ λ1I)−1LT . Since

CΛ is nonsingular, CΛ(zΛ − e?Λ) is continuous in L and z. Thus we consider a small

perturbation of (z, L) in one of their open neighborhood V , such that for all (z′, L′)

in V , we have if j /∈ Λ,
∣∣∣C ′j(z′[j]− e?′[j])

∣∣∣ < λ2 and e?′[j] = 0, where e?′ = e?(z′, L′).

Namely the support set of e? is not changed.

Based on the about continuity, we consider the following function

˜̀(zΛ, LΛ, r, eΛ) ,
1

2
‖zΛ − LΛr− eΛ‖22 +

λ1

2
‖LΛ‖2F +

λ1

2
‖r‖22 + λ2‖eΛ‖1.

Since the Hessian matrix of the function ˜̀(zΛ, LΛ, ·, ·) w.r.t. r, I⊗ (LTΛLΛ +λ1I),

and the Hessian matrix w.r.t. eΛ, I⊗λ2I, are positive definite, we have the function

91



˜̀(zΛ, LΛ, ·, ·) is strictly convex and

˜̀(zΛ, LΛ, r
?′, e?Λ

′)− ˜̀(zΛ, LΛ, r
?, e?Λ)

≥ λ1‖r?′ − r?‖22 + λ2‖e?Λ
′ − e?Λ‖22

≥ min(λ1, λ2)(‖r?′ − r?‖22 + ‖e?Λ
′ − e?Λ‖22). (4.12)

We then show that the function ˜̀(z, L, ·, ·)− ˜̀(z′, L′, ·, ·) is Lipschitz continuous.

To this end, we calculate the difference of the above function:

(
˜̀(z, L, r, e)− ˜̀(z′, L′, r, e)

)
−
(

˜̀(z, L, r′, e′)− ˜̀(z′, L′, r′, e′)
)

=
1

2

(
‖z− Lr− e‖22 − ‖z′ − L′r− e‖22

)
− 1

2

(
‖z− Lr′ − e′‖22 − ‖z′ − L′r′ − e′‖22

)
Define a matrix A = [L, I] and a vector b = [r; e], and we have Lr + e = Ab.

Then,

(
˜̀(z, L, r, e)− ˜̀(z′, L′, r, e)

)
−
(

˜̀(z, L, r′, e′)− ˜̀(z′, L′, r′, e′)
)

=
1

2

(
‖z−Ab‖22 − ‖z′ −A′b‖22

)
− 1

2

(
‖z−Ab′‖22 − ‖z′ −A′b′‖22

)
It is easy to show that the function ‖z − Ab‖22 − ‖z′ − A′b‖22 is Lipschitz with

constant as c1‖A − A′‖F + c2‖z − z′‖2, where c1, c2 are constants independent of

A,A′, z, z′. Thus,

(
˜̀(z, L, r, e)− ˜̀(z′, L′, r, e)

)
−
(

˜̀(z, L, r′, e′)− ˜̀(z′, L′, r′, e′)
)

≤
(
c1‖A−A′‖F + c2‖z− z′‖2

)
‖b− b′‖2

=
(
c1‖L− L′‖F + c2‖z− z′‖2

) (
‖r− r′‖2 + ‖e− e′‖2

)
According to (3.1) in the supplementary material, and considering (r∗′, e∗Λ

′) min-
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imizes the loss ˜̀(z′, L′, ·, ·), we have

min(λ1, λ2)
(
‖r∗′ − r∗‖22 + ‖e∗Λ

′ − e∗Λ‖22
)

≤ ˜̀(zΛ, LΛ, r
∗′, e∗Λ

′)− ˜̀(zΛ, LΛ, r
∗, e∗Λ)

= ˜̀(zΛ, LΛ, r
∗′, e∗Λ

′)− ˜̀(z′Λ, L
′
Λ, r
∗, e∗Λ) + ˜̀(z′Λ, L

′
Λ, r
∗, e∗Λ)− ˜̀(zΛ, LΛ, r

∗, e∗Λ)

≤ ˜̀(zΛ, LΛ, r
∗′, e∗Λ

′)− ˜̀(z′Λ, L
′
Λ, r
∗′, e∗Λ

′) + ˜̀(z′Λ, L
′
Λ, r
∗, e∗Λ)− ˜̀(zΛ, LΛ, r

∗, e∗Λ)

≤
(
c1‖LΛ − L′Λ‖F + c2‖zΛ − z′Λ‖2

) (
‖r∗′ − r∗‖2 + ‖e∗Λ

′ − e∗Λ‖2
)
.

Therefore, we have,

(
‖r∗′ − r∗‖2 + ‖e∗Λ

′ − e∗Λ‖2
)
≤ 1

min(λ1, λ2)

(
c1‖LΛ − L′Λ‖F + c2‖zΛ − z′Λ‖2

)
.

Combining the second claim, we can conclude the third claim.

4.9 Proof of Theorem 12

Proof. We prove the convergence of the sequence gt(Lt) by showing that the stochas-

tic positive process

ut , gt(Lt) ≥ 0,

is a quasi-martingale [48]. According to Lemma 4, if the sum of the positive dif-

ference of ut is bounded, ut is a quasi-martingale. And the sum converges almost

surely. Thus, we compute the difference of ut and obtain

ut+1 − ut

= gt+1(Lt+1)− gt(Lt)

= gt+1(Lt+1)− gt+1(Lt) + gt+1(Lt)− gt(Lt)

= gt+1(Lt+1)− gt+1(Lt) +
`(zt+1, Lt)− ft(Lt)

t+ 1
+
ft(Lt)− gt(Lt)

t+ 1
. (4.13)

Here the third equality is from the fact that gt+1(Lt) = 1
t+1`(zt+1, Lt) + t

t+1gt(Lt).

Since Lt+1 minimizes gt+1, gt+1(Lt+1) − gt+1(Lt) ≤ 0. Since the surrogate gt up-
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perbounds the empirical cost ft, gt ≥ ft, we also have ft(Lt)− gt(Lt) ≤ 0. Thus we

have

ut+1 − ut ≤
`(zt+1, Lt)− ft(Lt)

t+ 1
.

Since the above inequality is valid for the variation of each pair of ut+1 and ut, in

particular it will be valid for the positive variation,

[ut+1 − ut]+ ≤
`(zt+1, Lt)− ft(Lt)

t+ 1
,

where [·]+ denotes the positive variation.

According to Lemma 4, we consider the expectation of the variation of ut con-

ditioned on the past information Ft = {z1, . . . , zt, L1, . . . , Lt, r1, . . . , rt, e1, . . . , et}

and apply the above inequality,

E[[ut+1 − ut|Ft]+] ≤ E[`(zt+1, Lt)|Ft]− ft(Lt)
t+ 1

=
f(Lt)− ft(Lt)

t+ 1
≤ ‖f − ft‖∞

t+ 1
.

(4.14)

Here ‖f − ft‖∞ = supf∈F |f − ft| and F = {`(z, L) : Z → R, L ∈ L}. To bound

E[
√
t‖f − ft‖∞], here we use the Lemma 5. It is easy to show that in our case, all

the hypotheses are verified, namely, `(z, ·) is uniformly Lipschitz and bounded (see

Lemma 2). Thus Ez[`(z, L)2] exists and is uniformly bounded. Therefore, Lemma

5 applies and there exists a constant κ > 0 such that

E[
√
t|f − ft|∞] ≤ κ.

Therefore,

E[E[ut+1 − ut|Ft]+] ≤ κ

t
3
2

.

Therefore, defining δt as in Lemma 4:

δt =


1, if E[ut+1 − ut|Ft] > 0,

0, otherwise,
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we have

∞∑
t=1

E[δt(ut+1 − ut)] =
∞∑
t=1

E[E[ut+1 − ut|Ft]+] ≤
∞∑
t=1

κ

t
3
2

≤ +∞.

Thus, we can apply Lemma 4, which proves that ut = gt converges almost surely

and that
∞∑
t=1

|E[ut+1 − ut|Ft]| < +∞ a.s.

Thus we complete the proof.

4.10 Proof of Theorem 13

Proof. The Hessian matrix of gt(L) is H = I ⊗ (At + λ1I). Here ⊗ denotes the

Kronecker production and At =
∑t

i=1 rir
T
i . The smallest eigenvalue of H is equal

to the smallest eigenvalue of matrix (At + λ1I), which must be larger than λ1 since

At is a semi-definite positive matrix. Thus gt(L) is strictly convex. And we have,

gt(Lt+1)− gt(Lt) ≥ λ1‖Lt+1 − Lt‖2F . (4.15)

Since gt+1(Lt+1) < gt+1(Lt) due to Lt+1 minimizing gt+1, we have

gt(Lt+1)− gt(Lt) ≤ gt(Lt+1)− gt+1(Lt+1) + gt+1(Lt)− gt(Lt) = vt(Lt+1)− vt(Lt).

Here we define vt(L) , gt(L)− gt+1(L). And we have,

∇Lvt(L) = ∇Lgt(Lt)−∇Lgt+1(Lt) =
1

t
(LÃt −Bt)−

1

t+ 1
(LÃt+1 −Bt+1).
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Here Ã , A + λ1I as defined in Algorithm 2. Therefore, by utilizing the triangle

inequality and ‖AB‖F ≤ ‖A‖F ‖B‖F , we can obtain,

‖∇Lvt(L)‖F =

∥∥∥∥1

t
L

(
Ãt −

t

t+ 1
Ãt+1

)
− 1

t

(
Bt −

t

t+ 1
Bt+1

)∥∥∥∥
F

≤ 1

t

(
‖L‖F

∥∥∥∥∥Ãt − tÃt+1

t+ 1

∥∥∥∥∥
F

+

∥∥∥∥Bt − tBt+1

t+ 1

∥∥∥∥
F

)
.

Since the basis L is usually bounded ‖L‖F < κ1 (Assumption 1), the function vt(L)

is Lipschitz with constant ct = 1
t

(
κ1‖Ãt − tÃt+1

t+1 ‖F + ‖Bt − tBt+1

t+1 ‖F
)

. Thus, we

have

gt(Lt+1)− gt(Lt) ≤ vt(Lt+1)− vt(Lt) ≤ ct‖Lt+1 − Lt‖F .

Substituting into (4.15), we can then obtain that

‖Lt+1 − Lt‖F ≤
ct
λ1
.

Since ct = O(1/t), we have ‖Lt+1 − Lt‖F = O(1/t).

4.11 Proof of Theorem 14

Proof. From (4.13), we can obtain that

gt(Lt)− ft(Lt)
t+ 1

≤ `(zt+1, Lt)− ft(Lt)
t+ 1

−(gt+1−gt) ≤
`(zt+1, Lt)− ft(Lt)

t+ 1
+[gt+1−gt]−

Taking the conditional expectation on the filtration Ft as in the proof of Theorem

2, we obtain

E
[
gt(Lt)− ft(Lt)

t+ 1
|Ft
]

=
gt(Lt)− ft(Lt)

t+ 1
≤ E

[
`(zt+1, Lt)− ft(Lt)

t+ 1
|Ft
]
+E[[gt+1−gt]−|Ft].
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∞∑
t=1

gt(Lt)− ft(Lt)
t+ 1

≤
∞∑
t=1

E
[
`(zt+1, Lt)− ft(Lt)

t+ 1
|Ft
]

+
∞∑
t=1

E[[gt+1 − gt]−|Ft]

≤
∞∑
t=1

|f − ft|
t+ 1

+

∞∑
t=1

E[[gt+1 − gt]−|Ft].

Here [·]− means taking negative part. The second inequality is from (4.14). Accord-

ing to Theorem 2, the function gt converges almost surely. And we have

∞∑
t=1

|E[[gt+1 − gt]+]|Ft| < +∞ a.s.

By symmetry we can also obtain similarly

∞∑
t=1

|E[[gt+1 − gt]−]|Ft| < +∞ a.s.

According to central limit theorem, we have
√
t|f−ft| converges almost surely when

t→∞. Therefore
∑∞

t=1
|f−ft|
t+1 converges almost surely. Then we obtain the almost

sure convergence of the positive sum

∞∑
t=1

gt(Lt)− ft(Lt)
t+ 1

≤
∞∑
t=1

|f − ft|
t+ 1

+

∞∑
t=1

|E[ut+1 − ut|Ft]| ≤ ∞.

Since both gt and ft are Lipschitz continuous, there exists a constant κ′ > 0 such

that

|gt+1(Lt+1)− ft+1(Lt+1)− (gt(Lt)− ft(Lt))| ≤ κ′‖Lt+1 − Lt‖F .

According to Theorem 3, ‖Lt+1 −Lt‖F = O(1/t). Thus it is easy to verify that the

hypotheses of Lemma 6 are satisfied. Therefore,

gt(Lt)− ft(Lt) −→
t→+∞

0 a.s.
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Since gt(Lt) converges almost surely, this shows that ft(Lt) converges almost surely

to the same limit. Note that we have in addition ‖ft − f‖∞ −→
t→+∞

0 a.s. Therefore,

gt(Lt)− f(Lt) −→
t→+∞

0 a.s.

and f(Lt) converges almost surely.

4.12 Proof of Theorem 15

Proof. Since the function gt converges almost surely (see Theorem 2), gt = Tr(LTLÃt/t)−

Tr(LTBt/t), thus the sequences of matrices Ãt/t, Bt/t are bounded. It is possible to

extract converging subsequences. Let us assume for a moment that these sequences

converge respectively to two matrices A∞ and B∞. In that case, Lt converges to a

matrix L∞. Let U be a matrix in Rp×r. Since gt upperbounds ft on Rp×r, for all t,

gt(Lt + U) ≥ ft(Lt + U).

Taking the limit when t tends to infinity,

g∞(L∞ + U) ≥ f(L∞ + U).

Let ht > 0 be a sequence that converges to 0. Using a first order Taylor expansion,

and using the fact that ∇f is Lipschitz (see Lemma 3) and g∞(L∞) = f(L∞) a.s.

(see Theorem 4), we have

f(L∞) + Tr(htL
T∇g∞(L∞)) + o(htL) ≥ f(L∞) + Tr(htL

T∇f(L∞)) + o(htL),

and it follows that

Tr

(
1

‖L‖F
LT∇g∞(L∞)

)
≥ Tr

(
1

‖L‖F
LT∇f(L∞)

)
.
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Since the above inequality is true for all L, we have ∇g∞(L∞) = ∇f(L∞). Since

the first-order necessary condition for L∞ being an optimum of g∞ is that ∇g∞ = 0.

Thus at L∞, we have ∇f(L∞) = 0. Namely, the first-order optimum condition for

f at L∞ is also verified.

4.13 Proof of Theorem 16

Proof. The minimization of the objective function in (6),

min
L

lim
n→∞

1

n

n∑
i=1

`(zi, L)

is equivalent to

min
L,R,E

1

2
‖Z − LRT − E‖2F +

λ1

2

(
‖L‖2F + ‖R‖2F

)
+ λ2‖E‖. (4.16)

Here Z = [z1, . . . , zn], R = [rT1 ; . . . ; rTn ] and E = [e1, . . . , en].

When the first order optimal condition is satisfied, we have

(LRT − Z̃)R+ λ1L = 0, (4.17)

(RLT − Z̃T )L+ λ1R = 0, (4.18)

LRT − Z̃ ∈ λ2∂‖E‖1. (4.19)

Here Z̃ , Z − E. Note that for any invertible matrix Q, the pair (LQ,RQ−1)

provides a factorization equivalent to (L,R). In particular, any solution (L,R) can

be orthogonalized to a (non-unique) equivalent orthogonal solution L̄ = LQ, R̄ =

RQ−1 such that R̄T R̄ = ΛR and L̄T L̄ = ΛL are diagonal matrices [? ]. Substituting

R̄T R̄ = ΛR and L̄T L̄ = ΛL into (4.17) and (4.18), we can obtain that ΛL = ΛR = Λ.

Since we can always perform the orthgonalization operation on the obtained

solution L and R, we focus on an orthogonal solution, where RTR = Λ ∈ Rr×r and

LTL = Λ ∈ Rr×r . Since L and R are full rank, the elements in the diagonal of

matrix Λ are non-zero.
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From (4.17) we can obtain

L = Z̃R(RTR+ λ1I)−1 = Z̃R(Λ + λ1I)−1. (4.20)

Substituting back into (4.18), we have

RΛ− Z̃TL+ λ1R = 0.

Namely,

RΛ− Z̃T Z̃R(Λ + λ1I)−1 + λ1R = 0,

R(Λ + λ1I)2 = Z̃T Z̃R. (4.21)

Define R′ , R(
√

Λ)−1, then we have R′TR′ = (
√

Λ)−1RTR(
√

Λ)−1 = I. Namely,

the matrix R′ is an orthogonal matrix. From the above equation, we conclude that

R′
√

Λ(Λ + λ1I)2 = Z̃T Z̃R′
√

Λ.

R′(Λ + λ1I)2 = Z̃T Z̃R′.

Therefore, the columns of the matrix R′ are the eigenvectors of the matrix Z̃T Z̃ .

Thus the columns of the matrix R are the eigenvectors of the matrix Z̃T Z̃ scaled

by the square root of the matrix Λ. And the eigenvalues of the matrix Z̃T Z̃ are the

elements in the diagonal of matrix (Λ + λ1I)2.

From (4.20) we have

Z̃Z̃TL = Z̃Z̃T Z̃R(Λ + λ1I)−1 (4.21)
= Z̃R(Λ + λ1I)

(4.20)
= L(Λ + λ1I)2.

Thus similar to R, the columns of matrix L correspond to the eigenvectors of the

matrix Z̃Z̃T scaled by the square root of the matrix Λ.

Performing SVD on the matrix Z̃ provides Z̃ = UΣV T = U1Σ1V
T

1 + U2Σ2V
T

2 .

Here UT1 U2 = 0, V T
1 V2 = 0 and Σ1 ∈ Rk×k, Σ2 ∈ R(n−k)×(n−k).
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From the above results, we can obtain L = U1

√
Λ and R = V1

√
Λ.

Z̃T Z̃ = V Σ2V T .

Thus

Σ1 = Λ + λ1I.

Since the matrix L is full rank, LTL = Λ is positive definite. Thus Σ1 � λ1I.

The obtained solution X = LRT = U1ΛV T
1 = U1(Σ1 − λ1I)V T

1 . We can obtain

that

Z̃ −X = UΣV T − U1(Σ1 − λ1I)V T
1 = λ1U1V

T
1 + U2Σ2V

T
2 = λ1(U1V

T
1 +W ),

where W = U2Σ2V
T

2 /λ1.

Thus, it is easy to verify that

Z̃−X = Z−E−X ∈ ∂λ1‖X‖∗ = {λ1(U1V
T

1 +W )|UT1 W = 0,WV1 = 0, ‖W‖2 ≤ 1}.

(4.22)

Note that the problem in (4.16) is equivalent to the following convex optimization

problem,

min
X,E

1

2
‖Z −X − E‖2F + λ1‖X‖∗ + λ2‖E‖1.

The first-order optimal condition is satisfied by the obtained solution as shown

in (4.22) and (4.19). Since the optimization problem is convex, we can conclude

that the solution is also global optimal.

4.14 Technical Lemmas

Lemma 14 (Corollary of Theorem 4.1 from [130] ). Let f : Rp ×Rq → R. Suppose

that for all x ∈ Rp the function f(x, ·) is differentiable, and that f and ∇uf(x,u)

the derivative of f(x, ·) are continuous on Rq → R. Let ν(u) be the optimal value

101



function ν(u) = minx∈C f(x,u), where C is a compact subset of Rp. Then ν(u)

is directionally differentiable. Furthermore, if for u0 ∈ Rq, f(·,u0) has a unique

minimizer x0 then ν(u) is differentiable in u0 and ∇uν(u0) = ∇uf(x0,u0).

Lemma 15 (Sufficient condition of convergence for a stochastic process, [48]). Let

(Ω,F , P ) be a measurable probability space, ut, for t ≥ 0, be the realization of a

stochastic process and Ft be the filtration determined by the past information at

time t. Let

δt =


1 if E[ut+1 − ut|Ft] > 0,

0 otherwise.

If for all t, ut ≥ 0 and
∑∞

t=1 E[δt(ut+1 − ut)] < ∞, then ut is a quasi-martingale

and converges almost surely. Moreover,

∞∑
t=1

|E[ut+1 − ut|Ft]| < +∞ a.s.

Lemma 16 ([128]). Let F = fθ : χ→ R, θ ∈ Θ be a set of measurable functions

indexed by a bounded subset Θ of Rd. Suppose that there exists a constant K such

that

|fθ1(x)− fθ2(x)| ≤ K‖θ1 − θ2‖2,

for every θ1 and θ2 in Θ and x in χ. Then, F is P-Donsker. For any f in F , let

us define Pnf , Pf and Gnf as

Pnf =
1

n

n∑
i=1

f(Xi), Pf = EX [f(X)],

Gnf =
√
n(Pnf − Pf).

Let us also suppose that for all f , Pf2 < δ2 and ‖f‖∞ < M and that the random

elements X1, X2, . . . are Borel-measurable. Then, we have

EP ‖Gn‖F = O(1),
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where ‖Gn‖F = supf∈F |Gnf |.

Lemma 17 (Positive converging sums, [42]). Let an,bn be two real sequences such

that for all n, an ≥ 0, bn ≥ 0,
∑∞

n=1 an = ∞,
∑∞

n=1 anbn < ∞, ∃K > 0 s.t.

|bn+1 − bn| < Kan. Then, limn→∞ bn = 0.

4.15 Simulations

4.15.1 Medium-scale Robust PCA

We here evaluate the ability of the proposed OR-PCA of correctly recovering the

subspace of corrupted observations, under various settings of the intrinsic subspace

dimension and error density. In particular, we adopt the batch robust PCA method,

Principal Component Pursuit [44], as the batch counterpart of the proposed OR-

PCA method for reference. PCP estimates the subspace in a batch manner through

solving the problem in (4.1) and outputs the low-rank data matrix. For fair com-

parison, we follow the data generation scheme of PCP as in [44]: we generate a set

of n clean data points as a product of X = UV T , where the sizes of U and V are

p× r and n× r respectively. The elements of both U and V are i.i.d. sampled from

the N (0, 1/n) distribution. Here U is the basis of the subspace and the intrinsic di-

mension of the subspace spanned by U is r. The observations are generated through

Z = X+E, where E is a sparse matrix with a fraction of ρs non-zero elements. The

elements in E are from a uniform distribution over the interval of [−1000, 1000].

Namely, the matrix E contains gross but sparse errors.

We run the OR-PCA and the PCP algorithms 10 times under the following

settings: the ambient dimension and number of samples are set as p = 400 and

n = 1, 000; the intrinsic rank r of the subspace varies from 4 to 200; the value of

error fraction, ρs, varies from very sparse 0.01 to relatively dense 0.5. The trade-

off parameters of OR-PCA are fixed as λ1 = λ2 = 1/
√
p. The performance is

evaluated by the similarity between the subspace obtained from the algorithms and

the groundtruth. In particular, the similarity is measured by the Expressed Variance
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(E.V.):

E.V.(U,L) ,
Tr(LTUUTL)

Tr(UUT )
,

where L is from orthogonalizing the output of the OR-PCA or SVD on the output

of PCP, and U is the basis of the recovered subspace. A larger value of E.V. means

better subspace recovery.

We plot the averaged E.V. values of PCP and OR-PCA under different settings in

a matrix form, as shown in Figure 4.1(a) and Figure 4.1(b) respectively. The results

demonstrate that under relatively low intrinsic dimension (small rank/n) and sparse

corruption (small ρs), OR-PCA is able to recover the subspace nearly perfectly

(E.V.= 1). We also observe that the performance of OR-PCA is close to that of the

PCP. This demonstrates that the proposed OR-PCA method achieves comparable

performance with the batch method and verifies our convergence guarantee on the

OR-PCA. In the relatively difficult setting (high intrinsic dimension and dense error,

shown in the top-right of the matrix), OR-PCA performs slightly worse than the

PCP, possibly because the number of streaming samples is not enough to achieve

convergence.

To better demonstrate the robustness of OR-PCA to corruptions and illustrate

how the performance of OR-PCA is improved when more samples are revealed,

we plot the performance curve of OR-PCA against the number of samples in Fig-

ure 4.1(c), under the setting of p = 400, n = 1, 000, ρs = 0.1, r = 80, and the

results are averaged from 10 repetitions. We also apply GRASTA [50] to solve this

RPCA problem in an online fashion as a baseline. The parameters of GRASTA are

set as the values provided in the implementation package provided by the authors.

We observe that when more samples are revealed, both OR-PCA and GRASTA

steadily improve the subspace recovery. However, our proposed OR-PCA converges

much faster than GRASTA, possibly because in each iteration OR-PCA obtains the

optimal closed-form solution to the basis updating subproblem while GRASTA only

takes one gradient descent step. Observe from the figure that after 200 samples are

revealed, the performance of OR-PCA is already satisfactory (E.V.> 0.8). How-
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Figure 4.1: (a) and (b): subspace recovery performance under different corruption
fraction ρs (vertical axis) and rank/n (horizontal axis). Brighter color means better
performance; (c) and (d): the performance comparison of the OR-PCA, Grasta, and
online PCA methods against the number of revealed samples under two different
corruption levels ρs with PCP as reference.

ever, for GRASTA, it needs about 400 samples to achieve the same performance.

To show the robustness of the proposed OR-PCA, we also plot the performance of

the standard online (or incremental) PCA [41] for comparison. This work focuses on

developing online robust PCA. The non-robustness of (online) PCA is independent

of used optimization method. Thus, we only compare with the basic online PCA

method [41], which is enough for comparing robustness. The comparison results

are given in Figure 4.1(c). We observe that as expected, the online PCA cannot

recover the subspace correctly (E.V.≈ 0.1), since standard PCA is fragile to gross

corruptions. We then increase the corruption level to ρs = 0.3, and plot the per-

formance curve of the above methods in Figure 4.1(d). From the plot, it can be

observed that the performance of GRASTA decreases severely (E.V.≈ 0.3) while
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OR-PCA still achieves E.V. ≈ 0.8. The performance of PCP is around 0.88. This

result clearly demonstrates the robustness advantage of OR-PCA over GRASTA.

In fact, from other simulation results under different settings of intrinsic rank and

corruption level (see supplementary material), we observe that the GRASTA breaks

down at 25% corruption (the value of E.V. is zero). However, OR-PCA achieves a

performance of E.V.≈ 0.5, even in presence of 50% outlier corruption.

4.15.2 Large-scale Robust PCA

We now investigate the computational efficiency of OR-PCA and the performance for

large scale data. The samples are generated following the same model as explained in

the above subsection. The results are provided in Table 4.1. All of the experiments

are implemented in a PC with 2.83GHz Quad CPU and 8GB RAM. Note that batch

RPCA cannot process these data due to out of memory.

Table 4.1: The comparison of OR-PCA and GRASTA under different settings of
sample size (n) and ambient dimensions (p). Here ρs = 0.3, r = 0.1p. The corre-
sponding computational time (in ×103 seconds) is shown in the top row and the
E.V. values are shown in the bottom row correspondingly. The results are based on
the average of 5 repetitions and the variance is shown in the parentheses.

p 1× 103 1× 104

n 1× 106 1× 108 1× 1010 1× 106 1× 108

OR-PCA
0.013(0.0004) 1.312(0.082) 139.233(7.747) 0.633(0.047) 15.910(2.646)

0.99(0.01) 0.99(0.00) 0.99(0.00) 0.82(0.09) 0.82(0.01)

GRASTA
0.023(0.0008) 2.137(0.016) 240.271(7.564) 2.514(0.011) 252.630(2.096)

0.54(0.08) 0.55(0.02) 0.57(0.03) 0.45(0.02) 0.46(0.03)

From the above results, we observe that OR-PCA is much more efficient and

performs better than GRASTA. In fact, the computational time of OR-PCA is linear

in the sample size and nearly linear in the ambient dimension. When the ambient

dimension is large (p = 1× 104), OR-PCA is more efficient than GRASTA with an

order magnitude efficiency enhancement. We then compare OR-PCA with batch

PCP. In each iteration, batch PCP needs to perform an SVD plus a thresholding

operation, whose complexity is O(np2). In contrast, for OR-PCA, in each iteration,

the computational cost is O(pr2), which is independent of the sample size and linear

in the ambient dimension. To see this, note that in step 2) of Algorithm 3, the
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computation complexity is O(r2 + pr+ r3). Here O(r3) is for computing LTL. The

complexity of step 3) is O(r2 +pr). For step 4) (i.e., Algorithm 4), the cost is O(pr2)

(updating each column of L requires O(pr) and there are r columns in total). Thus

the total complexity is O(r2 + pr + r3 + pr2). Since p � r, the overall complexity

is O(pr2).

The memory cost is significantly reduced too. The memory required for OR-

PCA is O(pr), which is independent of the sample size. This is much smaller than

the memory cost of the batch PCP algorithm (O(pn)), where n� p for large scale

dataset. This is quite important for processing big data. The proposed OR-PCA

algorithm can be easily parallelized to further enhance its efficiency.

4.15.3 Robust Subspace Tracking

Besides identifying a static subspace, OR-PCA is also able to solve the subspace

tracking problem [129], where the underlying subspace of the observations is time

variant. In practice, several important problems can be abstracted as the subspace

tracking problem, such as video surveillance with moving cameras, network mon-

itoring. In this subsection, we investigate the performance of online RPCA for

tracking the dynamic subspace which is rotated gradually, and compare its perfor-

mance with the batch RPCA method. In particular, we rotate an initial subspace

basis U0 ∈ Rp×r along with the time instance t through Ut = eδtBU0. Here B is

a randomly generated skew-symmetric matrix1 and δ is a parameter to control the

rotation degree at each time instant. We generate one observed sample based on

each basis Ut, following the data generation scheme as in the above subsection. The

set of generated corrupted samples {z1, . . . , zn} forms the streaming samples, which

are from different subspaces. In this case, the batch RPCA method will fail since it

treats all the samples as from the same subspace. However, the proposed OR-PCA

continuously updates the subspace estimation according to each revealed sample.

Therefore, it is able to track the rotating subspace. In the simulations, we generate

1We use the MATLAB built-in function skewdec to generate the matrix B, and then normalize
its elements to less than 1, i.e., B = B/‖B‖∞.
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Figure 4.2: The performance comparison of the online RPCA (blue line) on rotating
subspaces with the batch RPCA (red lines) method. The underlying subspace is
rotated with the parameter δ = 1.

n = 1, 000 samples with p = 400, under the setting of the rank r = 40 and outlier

fraction ρs = 0.1. We implement the Principal Component Pursuit over all the

1, 000 samples as the baseline, i.e., batch RPCA. Both the OR-PCA and the batch

RPCA are implemented 10 times under each each setting and the average E.V. and

the variance are reported. Smaller δ means the subspaces change more slowly. The

subspace recovery performance is also measured by E.V. as aforementioned. Note

that the groundtruth subspace is different at different time instance.

We first compare the subspace tracking performance of OR-PCA with batch

RPCA under the setting of δ = 1, namely the subspace changes relatively fast. Their

performance curves against the number of samples are plotted in Figure 4.2. From

the results, we can make the following observations: (1) For the first 40 samples,

the performance of OR-PCA increases very fast, from the initial E.V. of 0.1 to 0.5.

This is because the initial samples are from similar subspace and can help improve
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Figure 4.3: The performance of the OR-PCA on tracking rotating subspaces under
different values of the changing speed parameter δ.

the subspace estimation well. Then OR-PCA enters a stable state of tracking the

subspace and its performance converges to about 0.55. (2) For the batch RPCA

method, due to the subspace is changing, its performance is not stable. For the

first 400 samples, the performance keeps increasing. But after that, its performance

breaks down soon. (3) Generally speaking, OR-PCA outperforms the batch RPCA

with a performance margin of 10% under the current setting.

Intuitively, the performance of the subspace tracking methods is affected by the

speed of the subspace changing. To investigate the ability of OR-PCA to track

subspace with different changing speed, we conduct the experiments under the dif-

ferent values of the parameter δ = {0.001, 0.01, 0.1, 1, 10}. The performance curves

are shown in Figure 4.3. From the results, we can observe that the more slowly

subspace rotates, the better OR-PCA performs for tracking. When the changing

speed increases, e.g., δ = 10, the performance will drop after achieving the best

performance. And finally OR-PCA converges to a relatively low performance.
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4.16 Chapter Summary

In this chapter, we develop an online robust PCA (OR-PCA) method. Different

from previous batch based methods, the OR-PCA need not “remember” all the

past samples and achieves much higher storage efficiency. The OR-PCA objective

function is formulated by decomposing the nuclear norm to an explicit product of

two low-rank matrices and an stochastic fashion optimization algorithm is adopted

to solve it. We provide the convergence analysis of the OR-PCA method and show

that OR-PCA approximates the solution of batch RPCA asymptotically. Compre-

hensive simulations clearly demonstrate the outperforming ability of OR-PCA on

both subspace recovering and tracking.
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Chapter 5

Geometric `p-norm Feature

Pooling for Image Classification

From this chapter, we introduce some applications of low-dimensional structure

learning in computer vision field. In particular, we focus on the problem of image

annotation and object recognition.

In this chapter, we propose to learn and utilize the low-dimensional structure

in the object class space, which will embed discriminative information into the gen-

erated image representation, and boost the classification performance of a realistic

system significantly.

5.1 Introduction

With the prevalence of the Bag-of-(Visual)-Words (BoW) model [78] for visual

recognition, feature pooling has become a common practice for image/video feature

representation and encoding. For a typical image classification task, local image

features are first extracted and quantized according to a visual dictionary. Then,

the quantization indices of all the local features are summarized to form the global

feature representation. A most common summarization method is to form the his-

togram, i.e. to sum up all the occurrences of each index throughout the entire

image in an orderless manner. From the viewpoint of feature pooling [67, 75], his-
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Figure 5.1: Illustration on the importance of the visual word spatial distribution for
image classification purposes. In the top block, the distributions of a specific visual
word in two classes are indicated by circles and triangles respectively. In the bottom
blocks, circles and triangles represent the pooled statistic values of the two classes.
By utilizing the class-specific local feature spatial distributions, Geometric `p-norm
Pooling can generate more separable pooled values, compared with the average and
max pooling.

togram representation is equivalent to average pooling. Despite its conceivable ease

and compactness, average pooling is not immune to local feature noise. To over-

come this inherent limitation, Ranzato et al. [83] proposed a pooling method called

max pooling. Instead of performing averaging operation, max pooling adopts the

element-wise maximum values of feature vectors over the whole image or the region

of interest as the pooled features. Max pooling has shown to be more robust against

local feature noise and can achieve much better classification performance [87].

However, sacrificing the rich information about spatial distribution of available

features as in these two pooling methods is not always worthwhile in practice. In the

image classification task, the objects/regions in the images are often well roughly

aligned, e.g. scenery images, or can be automatically aligned via saliency and sym-

metry detection. Therefore, image features do possess class-specific discriminative

geometric information (i.e. spatial distribution patterns). The simple assumption

associated with average or max pooling, that the spatial distribution for each visual
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feature is uniform across different classes, causes severe information loss. More se-

riously, such loss is irreversible and the lost information cannot be recovered in the

subsequent steps once abandoned. Figure 5.1 illustrates such an issue for the aver-

age and max pooling methods. For images from a specific class, their visual features

indexed by the same visual word often share similar spatial distribution. Besides,

such class-specific spatial distributions are quite distinct from each other and en-

code discriminative information. However, as shown in this figure, neither average

nor max pooling can capture the underlying difference and produce discriminative

features due to the loss of the spatial information in the pooling process.

Moreover, these two deterministic pooling methods either treat all the local

features uniformly or only select the most salient one, and they both assume local

features are distributed independently. By comparison, an optimal pooling scheme

is expected to be more flexible and able to capture the spatial correlation of features.

Motivated by the above considerations, we propose a so-called geometric `p-norm

pooling method. Overall, the proposed method aims to learn a pooling function that

implicitly encodes the class-specific geometric information of feature distribution in

the form of weighted norm. This function is optimized towards best class separa-

bility, with regularization that encodes prior knowledge about correlation of local

features. This geometric `p-norm pooling method possesses the following advan-

tages:

• As the pooling function is learned by directly maximizing the class separability,

it is designed to bear good discriminating capability.

• The pooling function exactly corresponds to the class specific spatial pattern

of each visual word, thus the spatial distribution information of visual words

is utilized to a satisfactory extent.

• It models the correlations among local features and makes a more reasonable

assumption about feature distribution. Also it can naturally unify the average

and max pooling in a more flexible framework.
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The remainder of this chapter is organized as follows. The related literature

is discussed in Section 5.2. Section 5.3 then elaborates on the geometric `p-norm

feature pooling method and provides the theoretical comparison with the max and

average pooling methods. An iterative optimization procedure is presented in Sec-

tion 5.4 for determining the ultimate pooling function. In Section 5.5 extensive

experimental results on benchmarks are presented and conclusions are drawn in

Section 5.6.

5.2 Related Work

The idea of feature pooling originates in the research on complex cells in the stri-

ate cortex [70]. In [70], they proposed a model in which responses of simple cells

are fed into higher complex cells through some pooling operations, thereby endow-

ing the complex cells with phase-invariance. Inspired by this seminal work, several

extensions in the direction of pooling mechanisms have been proposed afterwards

and widely applied in recent computer recognition systems. In the neocognitron

model [67], a sigmoid-like function is used to pool the input signals into a single

output. And convolutional networks [75] take the average value of the input signals

for subsequent processing. Some models of the primary visual cortex area V1 [82]

also include such average pooling component. Besides, another type of pooling via

max operation is used in the HMAX class of models [84]. Wang et al. [85] have

achieved impressive classification performance on several benchmarks through such

max pooling. As pointed out by Jarrett et al. [72], pooling type matters more

for classification tasks than careful unsupervised pre-training of features. However,

most of the studies on the pooling methods are purely empirical. Recently, Boureau

et al. [65] provided a theoretical analysis on the binary feature pooling in the context

of classification. Based on the i.i.d. Bernoulli distribution assumption, they demon-

strated that several factors, including the pooling cardinality and the sparsity of

the features, affect the discriminative powers of the pooling results. And neither the

average nor max pooling can always outperform the other in classification problems.
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Meanwhile a body of works have been devoted to discriminative dictionary learn-

ing [88][73], which considers the visual dictionary formation step in the BoW repre-

sentation pipeline. Instead, our work focuses on the subsequent visual words spatial

aggregation step and can be seamlessly combined with any dictionary formation

method.

5.3 Geometric `p-norm Feature Pooling

We assume that there are nc image classes, and the class index set is denoted as

C = {1, 2, · · · , j, · · · , nc}. Additionally, we denote the image index set for the j-th

class as Ij and the number of images in the j-th class is denoted as Nj . Denote

the location index set as M = {1, 2, . . . ,m, · · · ,M} in an image with M feature

locations, e.g. distributed over a regular grid. For each image I, we extract a set of

d-dimensional local descriptors, e.g. SIFT [79], from M densely arranged locations.

Then each local descriptor x is encoded by a pre-trained visual word dictionary

D ∈ Rd×K into a K-dimensional code vector u in a pre-defined feasible region F :

u = arg min
u
||x−Du||2,

s.t. u ∈ F . (5.1)

When F is constrained to the set of 0-1 vectors with only a single entry equal to 1,

the encoding method is known as the hard assignment. When F is defined as the

set of neighboring bases of the local descriptor x, the resultant u corresponds to the

recently proposed Locality-constrained Linear Coding (LLC) [85].

Each element uk of the code vector u indicates the local descriptor’s response

to the k-th visual word in the dictionary D. We aggregate the local descriptors’

responses across all the M image locations into an M -dimensional response vector

v(k). Namely, each element v
(k)
m of v(k) represents the response of the local descriptor

xm at the m-th location to the k-th visual word.
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5.3.1 Pooling Methods Revisit

Feature pooling is essentially to map the response vector v(k) into a statistic value

f(v(k)) via some spatial pooling operation f , where f(v(k)) is used to summarize the

joint distribution of visual features over the region of interest. Here, for notational

simplicity, we drop the visual word index k for v(k) in all the following sections.

In modern visual classification models, there are two widely used pooling op-

erations, i.e. the average pooling [65] and the max pooling [83]. Average pooling

adopts the scaled `1-norm of the response vector v as the statistic value and its

operation can be expressed as

fa(v) =
1

M
||v||1 =

1

M

M∑
m=1

vm. (5.2)

Namely, average pooling sums up the response values throughout the entire image or

the region of interest in an orderless manner. The pooling result is generally tolerant

to object transformation. However, it is not selective or discriminative enough for

the classification tasks [81].

Recently, inspired by the mechanism of the complex cells in the primary visual

cortex, another pooling operation is proposed in [84]. The so-called max pooling

operation computes the `∞-norm of the response vector,

fm(v) = ||v||∞ = max
m

vm. (5.3)

The max pooling only captures the most salient response over the whole image

or the region of interest. Thus it is more selective than the average pooling and able

to preserve invariance to object’s spatial transformations [84].

However, both pooling methods discard the spatial distributions of local de-

scriptors by either forcing the distribution to be uniform (the average pooling) or

only adopting the most salient location (the max pooling). This information loss

severely limits their discriminating capability and degrades the performance of the

subsequent classification procedures.
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Figure 5.2: Overview of the image classification flowchart. The shown architecture
has proven to perform best among the methods based on a single type of features [85].
Here we replace the original max pooling building block with our proposed geometric
`p-norm pooling method, and shall show the new pipeline is better.

In fact, each visual word may exhibit certain geometric structure within indi-

vidual classes since images for a certain classification task are often well roughly

aligned or can be roughly aligned automatically by saliency or symmetry detection.

These structures can contribute significantly to the discriminating capability once it

is properly utilized as illustrated in Figure 5.1. But once lost, this useful information

could never be recovered in the subsequent process. Therefore if we can well model

the spatial distribution for individual visual words, the obtained pooling results will

be more discriminative than those from traditional pooling methods.

5.3.2 Geometric `p-norm Pooling

As discussed, both the average and max pooling discard the geometric informa-

tion of local responses and thus only maintain limited discriminating capability. To

overcome this inherent issues, we propose the so-called Geometric `p-norm Pool-

ing (GLP) method. GLP is aimed at utilizing the spatial distribution patterns of

responses across different classes and meanwhile preserving the selective capability

and robustness as traditional pooling methods do.

More specifically, GLP process is defined as

fg(v; w) =

M∑
m=1

wmv
p
m = wTvp,

s.t. ||w||2 = 1, p ≥ 0, (5.4)

where vp denotes the element-wise p-th power of the response vector v. The geo-

metric coefficient wm encodes the contribution of the m-th image location for the

specific visual word. Different locations are given different weights during the pool-
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ing process. The parameter p determines the selection policy for locations. Note

that v has been normalized by its `2-norm, and all the elements of v are smaller

or equal to 1. Therefore, when the value of p equals to 1, GLP aggregates the re-

sponses over the entire region uniformly without preference to any location (same to

the average pooling). When p increases to a large value, the policy changes towards

winner-take-all (same to the max pooling). Namely, the value of p tunes the pooling

operation to transit from the average to the max pooling. Instead of fixing the

value of p, GLP adopts a more flexible one and possesses better selective capability.

Moreover, in GLP method, the values of w and p are visual-word-specific. This

enables GLP to better capture geometric information of the descriptors based on

the fact that different visual features usually follow different spatial distributions

among different classes.

5.3.3 Image Classification Procedure

The pipeline of a popular image classification procedure is shown in Figure 5.2. As

can be seen from the figure, a multi-stage image classification architecture generally

comprises four components. After local features are extracted from the input im-

age, many methods can be used to encode the feature vectors. Here we adopt the

Locality-constrained Linear Coding [85] method in our experiments, which encodes

the feature vector x into u based on the dictionary D as follows,

u = arg min
u
||x−Du||2

s.t. u ∈ F ,F = {u|||u ◦ d||2 ≤ λ, ||u||1 = 1}, (5.5)

where the entries of d are the Euclidean distances between x and the bases in D.

After feature encoding, pooling operations are performed to aggregate the en-

coded response vectors into a statistic vector to represent the whole image or the

region of interest. Finally the pooled feature vector is fed into a classifier, and then

further assigned to one of the pre-defined classes. Note that this work is aimed at

replacing the pooling component only rather than renewing the whole classification
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architecture. In fact, the proposed GLP method can be seamlessly combined with

arbitrary types of local features, encoding methods and ultimate classifiers.

5.4 Towards Optimal Geometric Pooling

5.4.1 Class Separability

To determine the parameters in the GLP, we adopt the class separability as the

objective function and optimize it with respect to both w and p. A practical choice

of the class separability criterion is the Marginal Fisher Analysis (MFA) developed

in [115]. MFA can well characterize the class separability of the data with more

general distributions beyond the Gaussian. More specifically, the objective function

is to maximize the inter-class separability scaled by the within-class compactness of

the pooled features, namely,

max
w,p
{D(w, p) :=

wTSb(p)w

wTSw(p)w
}, (5.6)

where Sb(p) characterizes the separability of different classes and Sw(p) describes

the within-class compactness [115]. These two matrices are computed as follows,

Sb(p) =
∑
i

∑
j∈N−k1 (i)

(vpi − vpj )(v
p
i − vpj )

T ,

Sw(p) =
∑
i

∑
j∈N+

k2
(i)

(vpi − vpj )(v
p
i − vpj )

T . (5.7)

Here N−k1(i) means the index set for the k1 nearest neighbors of the response vector

vi from different classes and N+
k2

(i) denotes the k2 nearest neighbors of vi from the

same class as vi.

5.4.2 Spatial Correlation of Local Features

The previous analysis in [65] is based on the strict assumption that the response

values from M locations in v are independent. However, this assumption is of-
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ten invalid for real-world data as also mentioned in [65], since image features at

adjacent locations are often strongly correlated. Ignoring this important fact may

lead to degraded capability in describing images. Although there exists few prior

knowledge about the exact form of the spatial correlation, an intuitive and simple

constraint/prior is that the geometric coefficients of (5.4) located at adjacent im-

age locations should exhibit similar values. To incorporate this spatial smoothness

constraint, we define a spatially smooth function as follows,

S(w) =
∑

i,j∈M,i 6=j
sij‖wi − wj‖2. (5.8)

The value of weight sij is set as

sij = exp (−‖ai − aj‖2

2ρ2
), (5.9)

where ai denotes the spatial coordinates of the i-th feature location. Minimizing

S(w) penalizes the case when adjacent elements of w show large numerical gap. ρ

is an empirical bandwidth parameter of the neighborhood and fixed as 0.5 in all our

experiments.

The smooth function can be further rewritten as

S(w) = wTLw, (5.10)

where the Laplacian matrix L is defined as L = D − S. The similarity matrix S

is defined as S = [sij ]M×M and the degree matrix D is a diagonal matrix with

Dii =
∑

j Sij .
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5.4.3 Optimal Geometric Pooling

We combine the objectives in both (5.6) and (5.10) into a unified function with a

weighting factor λ, namely,

max
w,p
Q(w, p) :=

wTSb(p)w

wTSw(p)w + λwTLw

=
wTSb(p)w

wT S̃w(p)w
, (5.11)

where S̃w is the regularized within-class scatter matrix, i.e., S̃w = Sw + λL.

Though the optimization problem in (5.11) is not convex overall, but there exists

closed form solution for w when p is fixed. Thus, we solve this optimization problem

iteratively by optimizing with respect to p and w alternatively.

Note that when optimizing for w, this objective function has the same form

as the well-known linear discriminative analysis (LDA) [66] algorithm, where Sb(p)

corresponds to the between-class scatter matrix and S̃w(p) corresponds to the within-

class scatter matrix. Here we borrow the analytical solution from LDA to derive

the optimal solution wopt to (5.11) with p fixed:

wopt = arg max
w

γ,

s.t. Sbw = γS̃ww. (5.12)

The solution wopt is the eigenvector corresponding to the largest eigenvalue.

For the optimization of (5.11) with respect to p, there is no closed-form solu-

tion. We adopt a gradient ascent process to solve p in an iterative manner. Let y

denote the pooled feature y = wTvp, thus the between-class and within-class scatter
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matrices of the pooled features can be written as

Ŝb(p) = wTSb(p)w

=
∑
i

∑
j∈N−k1 (i)

(yi − yj)2,

Ŝw(p) = wT S̃w(p)w

=
∑
i

∑
j∈N+

k2
(i)

(yi − yj)2 + λwTLw. (5.13)

We use α to denote the Hadamard product α = ln v ◦ vp. Then the derivatives

of Ŝb and Ŝw with respect to p are as follows,

∂

∂p
Ŝb = 2

∑
i

∑
j∈N−k1 (i)

(yi − yj)wT (αi −αj),

∂

∂p
Ŝw = 2

∑
i

∑
j∈N+

k2
(i)

(yi − yj)wT (αi −αj). (5.14)

The partial derivative of the objective function (5.11) with respect to p is

∇p =
∂

∂p
Q =

1

Ŝ2
w

(
∂Ŝw
∂p

Ŝb −
∂Ŝb
∂p

Ŝw). (5.15)

Thus we update p along the gradient direction with step size β as follows,

p(t+1) = p(t) + β∇p. (5.16)

The process will stop when the change of p is less than a pre-defined threshold θp

or the number of iterations exceeds the permitted number Niter.

5.5 Experiments

In this section, we evaluate the performance of the proposed GLP method on the

image classification task and compare it with the average and max pooling meth-

ods. First, we investigate the separability of the pooling results produced by GLP
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and the other two methods on a synthesized data set, which possesses distinctive

spatial distribution patterns for different classes. Then we evaluate GLP along with

the average and max pooling on three popular real-world datasets: Caltech-101

dataset [77], Caltech-256 dataset [69] and 15 scenes dataset [74]. The classification

performances based on these three pooling methods are compared under two dif-

ferent feature representing schemes: one is based on the hard assignment and the

other is based on the combination of Locality-constrained Linear Coding (LLC) [85]

and Spatial Pyramid Matching (SPM) [74].

5.5.1 Effectiveness of Feature Spatial Distribution

A set of randomly generated data is used to investigate the effectiveness of feature

spatial distribution for classification purpose. The synthesized dataset comprises

two classes of data, with distinctive spatial distribution per class. There are 200

data matrices for each class. The size of the matrix is fixed as 30 × 30 to simulate

an image with 30 × 30 feature locations. Each element of the matrix is a binary

variable to indicate the presence of certain visual feature at the corresponding loca-

tion. Random transitional noise with magnitude ranging from 1 to 20 locations are

added to each datum. Figure 5.3 shows two exemplar data from different classes.

We perform average pooling, max pooling and GLP on this dataset and plot the

distributions of the pooling results in Figure 5.3. From the derived pooling-feature

distribution, it can be seen that neither average pooling nor max pooling can well

separate these two classes due to the loss of the spatial information, while GLP

properly utilizes the features’ class-specific spatial distributions and the resultant

statistics are separable. GLP produces a discriminative pooling coefficients map as

shown in Figure 5.3.
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Figure 5.3: Comparison of GLP and average/max pooling over the synthesized data
with distinctive feature distributions for different classes. (a), (b) and (c), (d) show
the exemplar data from two different classes respectively. (e) displays the optimized
geometric coefficients over the region. Brighter pixels mean that the coefficients are
larger at the corresponding locations. (f) shows the pooling results distribution via
the average, max and GLP poolings. It can be seen that GLP can separate the data
from two classes well while average pooling and max pooling cannot.

5.5.2 Object and Scene Classification

Experiment Configurations

In this subsection, we continue with the comparison on real image datasets for object

and scene classification. The purposes of the experiments are two-fold. The first

one is to compare GLP directly with the other two pooling methods. The second

one is to evaluate the performance of the new image classification framework which

includes GLP as a new plug-in, and compare it with the state-of-the-arts methods.

These two groups of experiments follow the common experimental settings. We

only use a single type of local descriptor, dense SIFT [79], throughout the experi-

ments. The SIFT features are extracted from densely located patches centered at

every 4 pixels on the images and the size of the patches is fixed as 16 × 16 pixels.

We construct a visual word dictionary containing K words from the training sam-

ples via K-means clustering. The value of K depends on the number of samples

and varies across different datasets. Each SIFT feature vector is encoded into a

K-dimensional code vector based on the dictionary. Then the code vectors from
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every image are pooled into a single feature vector via different pooling methods.

During the training process of the GLP, we use all the training samples to calculate

the MFA scatter matrices and we set k1 = 20 and k2 = 20. The maximum number

of the alternations between optimizing w and p is fixed as Nalter = 10. The max-

imal number of iterations when solving p is Niter = 50. The stopping threshold of

updating p is θp = 0.1. The pooled features are used to train a multi-class linear

SVM. In our experiments, all the images are resized to 256×256 pixels. When GLP

is directly compared with other pooling methods, the code vectors are generated

by hard assignment. For the GLP, 30, 30 and 100 training samples are used for

Caltech-101, Caltech-256, 15 Scenes dataset respectively.

In the second group of experiments, we apply the GLP as a new pooling compo-

nent in the multi-stage image classification architecture proposed in [85]. The origi-

nal architecture consists of four components: image local feature extraction, feature

encoding, feature pooling and spatial pyramid matching (SPM) [74], followed by

linear SVM classifier. Here, we replace the max pooling component with the GLP

method, and compare the image classification performance with the original one and

other state-of-the-art methods. We follow the same experimental setting as in [85].

SIFT features are encoded by Locality-constrained Linear Coding (LLC) [85] and

the number of neighbors is fixed as 5. Images are hierarchically partitioned into 1×1,

2×2 and 4×4 blocks on 3 levels respectively in the SPM. We visualize the geometric

coefficients in Figure 5.4, from which it can be seen that the coefficients distribution

derived from GLP are able to capture the visual word spatial distributions.

Table 5.1: Accuracy comparison of image classification using hard assignment for
three different pooling methods.

Caltech-101 Caltech-256 15 Scenes

Average 44.16 22.01 56.72
Max 48.14 18.45 54.19

GLP 55.20 33.12 65.70
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Figure 5.4: Visualization of the pursued geometric coefficient maps for each specific
visual word over different classes. The left 6 columns show the exemplar images
from 3 classes per dataset and their corresponding geometric coefficient distribution
maps. The coefficients for one specific class are computed in one-vs-all manner.
The right most column shows the geometric coefficients for one specific visual word,
derived from GLP over all the classes. Each row displays for one dataset. For better
view, please refer to the color version.

Results on Caltech-101 Dataset

The Caltech-101 dataset [77] contains 9144 images in total from 102 different cate-

gories, including 101 object categories and 1 additional background category. The

number of images per category ranges from 31 to 800. The resolution of most images

is about 300×300 pixels. Following the setting in [85] [76], we randomly select 5, 15

and 30 images respectively for training and report the classification accuracies aver-

aged over the 102 categories. The size of visual word dictionary is set as K = 2048

as in [85].

Table 5.2: Classification accuracy (%) comparison on Caltech-101 dataset.

Algorithms 5 training 15 training 30 training

Zhang et al. [89] 46.60 59.10 66.20
KSPM [74] − 56.40 64.60
NBNN [63] − 65.00 70.40

ML+CORR [71] − 61.00 69.10
KC [68] − − 64.16

ScSPM [87] − 67.00 73.20
LLC [85] 51.15 65.43 73.44

GLP 59.35 70.34 82.60

The performance comparison of different pooling methods based on the hard-
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assignment encoding scheme is shown in the first column of Table 5.1. It can be seen

that GLP consistently outperforms the average and max pooling by a margin of 11%

and 7% respectively. The classification accuracy of GLP combined with LLC and

SPM is shown in Table 5.2. Based on the comparison with the original LLC [85],

we can observe that the performance improvement brought by GLP is nearly 9%

when using 30 training samples. Also GLP outperforms all the single type of feature

based methods. The performance has already exceeded the best one (82.3%) ever

reported on the Caltech-101 dataset in [76]. This result is very encouraging as the

method in [76] utilizes the groundtruth segmentations, which is not available for real

applications, to perform regression and uses 8 different types of features in total. In

sharp comparison, our method only uses a single type of feature (dense SIFT) and

needs no segmentation results to be provided.

Results on Caltech-256 Dataset

Caltech-256 [69] is an extension of the Caltech-101 dataset. It consists of 256 object

categories and contains from 80 to 827 images per category. The total number

of images is 30608. This dataset possesses larger intra-class variability than the

Caltech-101 and thus is more challenging. As in [85], 15, 30 and 45 images from

each category are used for training respectively, and we use a 4096-D visual word

dictionary as in [85]. As can be seen from the second column of Table 5.1, GLP also

consistently leads the performance compared with other pooling methods on this

dataset under hard-assignment setting. Also our method outperforms the state-of-

the-art method (LLC) on this dataset1, with a margin of 2% as shown in Table 5.3.

Results on 15 Scenes Dataset

Scene-15 dataset is composed of 15 scene classes. Each class contains 200 to 400

images and there are 4485 images in total. The scene categories contain from the

out-door street and industrial to the in-door kitchen and living room. As in [74] [87],

1Though the highest accuracy reported on this dataset is 45.3% [64] for 30 training samples
setting, they only evaluate the performance on 250 classes. Thus the result is not comparable with
LLC [85] and ours.
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Table 5.3: Classification accuracy (%) comparison on Caltech-256 dataset.

Algorithms 15 training 30 training 45 training

KSPM [69] − 34.10 −
ScSPM [87] 27.73 34.02 37.46

LLC [85] 34.36 41.19 45.31
KC [68] − 27.17 −

GLP 35.78 43.17 47.32

we randomly select 100 images from each class as training samples to construct a

1024-D visual dictionary. The improvements brought by GLP over the average and

max pooling are 9% and 11% respectively as shown in the third column of Table 5.1

under hard-assignment setting. Also from Table 5.4 we can see that GLP under the

setting with LLC and SPM can improve the classification performance further with

a margin of 4% compared with LLC and outperforms KSPM by nearly 2%. The

highest accuracy on this dataset is 86.1%, achieved by Nakayama et al. [80]. But in

that work, they used a much more sophisticated KL-divergence kernel SVM than

our linear SVM. This encouraging result further demonstrates that the proposed

GLP can enhance the pooling features’ discriminating capability remarkably.

Table 5.4: Classification accuracy (%) comparison on 15 scenes dataset.

Algorithms Accuracy

KSPM [74] 81.40
ScSPM [87] 80.28

LLC 79.24
GLP 83.20

5.6 Chapter Summary

In this chapter, we proposed the so-called geometric `p-norm pooling (GLP) method

to perform feature pooling. Different from traditional feature pooling methods, e.g.

the average and max pooling, the GLP method can utilize the geometric infor-

mation on the feature spatial distributions and thus provide more discriminative

pooling results. Moreover, it explicitly models the spatial correlations of the local
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responses in a more elaborated way rather than blindly simplifying them to be flat

or independent as in average and max pooling methods. Therefore, GLP is a more

discriminative, flexible and information-preserving pooling method. Comprehensive

experimental results on several benchmarks have demonstrated that GLP can serve

as a highly effective building block for the image classification architecture and boost

the performance to outperform or be comparable with the state-of-the-arts.

Note that the proposed GLP method can by no means handle all the general

cases (e.g. PASCAL VOC datasets), especially when the dataset contains large

intra-class spatial variances. This is due to the fact that GLP is tightly tied to the

feature positions. A partial remedy to this for many practical scenarios is we can

exploit the visual saliency or foreground detection to help roughly align the images

automatically. But the more challenging cases still invite future research.
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Chapter 6

Auto-grouped Sparse

Representation for Visual

Analysis

In this chapter, we show that how to discover the low-dimensional group struc-

ture within the image feature vectors effectively. The group structure helps provide

more accurate and flexible similarity measure between images and enhance the per-

formance of image annotation.

6.1 Introduction

Most of current image analysis methods represent images by aggregating local fea-

tures into image-level features, such as bag of words model [90, 91, 92]. These

methods generally ignore the fact that the local features may be from different ob-

jects and treat the image-level feature as a whole in the follow-up computation. Such

over-simplified strategy may render the results of image analysis inaccurate. For ex-

ample, given two multi-object images containing one common object, they should be

assigned one identical annotation. Indeed they are quite similar if only considering

local features from the common object. But their image-level features may differ

greatly due to involving local features from non-common objects and background
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Figure 6.1: Illustration on the proposed auto-grouped sparse representation method.
The elements of the image-level feature represent different visual patterns. The
feature elements are divided into k groups according to their individual sparse rep-
resentations. Each group represents one specific object. Based on the group-wise
sparse representations, a multi-edge graph is constructed to describe the relationship
between the images.

and thus mislead the image similarity computation. To handle such mutual inter-

ference of multiple objects in image analysis, several previous works propose to per-

form segmentation or detection as pre-processing before feature extraction [93, 94].

However, such pre-processing is quite complicated, computationally expensive and

inefficient.

In order to alleviate the mutual interference of multiple objects in given image-

level features, we propose to divide its elements into several independent groups,

such that each group represents typical visual patterns for one object. Thus, local

features from different objects can be segregated to some extent and semantically

different objects are considered independently in the follow-up computations. Then

we can obtain analysis result (e.g., image similarity) specific for one object, which

is immune to the interference from other objects and background, as desired. In

this way, we can obtain more accurate image relationship description from original

image-level features and improve their performance in various visual analysis tasks.

To this end, we propose a novel auto-grouped sparse representation (ASR)

method to automatically learn the intrinsic semantic groups of an image-level feature

vector. The pursuit groups should roughly reside on the identical subspace if they

correspond to objects from the same class [95, 96, 97]. And ASR computes multiple

sparse representations for elements of an input image-level feature vector w.r.t. an
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over-complete basis to identify the subspaces (corresponding to the objects) [98].

In particular, ASR performs single sparse representation over each feature element,

and meanwhile it imposes fusion-encouraging regularization to force the semanti-

cally correlated feature elements to share the same sparse representation. Thus

the feature elements corresponding to the same object, namely falling on the same

subspace, can be grouped together since they possess similar sparse representations.

Fig. 6.1 provides an example to illustrate the proposed ASR method. Given an

input image, its feature elements representing the same object (person or dog) fall

on identical subspace and thus will select identical basis images (containing person

or dog respectively) in their sparse representations. Thus elements of its image-level

feature can be divided into k groups according to their sparse representations. Each

feature group includes several characteristic visual patterns for one specific object.

In a multi-edge graph constructed based on the multiple sparse representation mod-

els, the input image is connected with the basis images via varying number of edges,

reflecting the relevance degree between them. It can be seen that such relationship

is more accurate and flexible.

Note that the proposed ASR is a general method and can also be applied for

other intrinsic group identification tasks, such as motion segmentation. In this work,

we examine the applicability of ASR in two practical visual analysis tasks. The first

application is to build the multi-edge graph [99] for more accurately classifying multi-

label images. Compared with conventional single edge graph, our multi-edge graph

achieves the state-of-the-art performance on the NUS-WIDE-LITE database. And

the second one is two-view motion segmentation. ASR segments the motion trajec-

tories by grouping the corresponding mixture linear regression models. Compared

with previously well-performed methods [100, 101], ASR significantly decreases the

segmentation error rates and offers more accurate and stable segmentation results.

The remainder of this chapter is organized as follows. We discuss related work

in Section 6.2. We present the problem formulation in Section 6.3 and detail the

smooth approximation optimization in Section 6.4. We conduct several experiments

in Section 6.5 to evaluate the proposed method. We provide some discussion in

132



Section ?? and conclude our work in Section 6.6.

6.2 Related Work

The proposed work aims at automatically uncovering the group structures across

multiple feature entries and simultaneously calculating the underlying sparse repre-

sentations within each group. The most intuitive approach to tackle this problem

is the Expectation-Maximization (EM) method [100]. EM may regard the group

assignments as hidden variables, and iterates the inference over hidden variables

and the parameter estimation of decoupled models until a local optimum is reached.

Gaffney et al. [102] applied the EM method to the trajectory clustering with the

assumption that the motion trajectories are generated from a mixture regression

model. The documentable limitation of the EM method is the locality of its opti-

mization and thus the final solution is typically sensitive to initialization.

The second type of approaches may be based on convex relaxation. Recently,

Quadrianto et al. [103] proposed to solve the regression model with mixture of

several regression vectors by relaxing the assignment variables into continuous ones.

Their experimental results show that the convex formulation performs better than

the EM method on a number of benchmark datasets. However, their formulation

seems hard to be generalized to sparse representation setting. Indeed, to the best

of our knowledge, there has been no effort on solving the sparse mixture regression

problem in a convex optimization framework.

Our method is directly inspired by the convex relaxation of clustering [104],

where the authors employ the sparsity-inducing norms to enforce the fusion of data

points. Sparsity-inducing norms have emerged as flexible tools that allow variable

selection in penalized linear models [105, 106]. In this chapter, we combine these

lines of research into our framework of auto-grouped sparse representation.
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6.3 Problem Formulation

In this work, we propose an auto-grouped sparse representation (ASR) method to

automatically identify the intrinsic group structure of a given feature vector. In par-

ticular, the elements of a feature vector y ∈ Rp constitute K non-overlapped groups

{yC1 , . . . ,yCK}, each of which represents one specific object and admits a specific

sparse representation ωk ∈ Rn w.r.t. the sub-matrix of provided over-complete basis

matrix A ∈ Rp×n. And Ck ⊆ {1, . . . , p} is the feature element indices contained

in the kth group. We aim to find the groups of elements in y and simultaneously

estimate their sparse representations by optimizing the following objective,

min
{Ck,ωk}Kk=1

{
1

2

K∑
k=1

‖yCk −ACkωk‖
2
`2 + λ

K∑
k=1

‖ωk‖`1

}
, (6.1)

where yCk denotes elements of y indexed by Ck and ACk denotes rows indexed by Ck

in the matrix A. In the above optimization problem, each element of y is assigned

to its corresponding group such that the overall loss is minimized.

The above objective function is a combinatorial optimization problem and in

general computationally intractable. Following the relaxation technique introduced

in [104], we relax the hard constraint on the number of groups to the fusion-

encouraging constraint on the sparse representations {wi}pi=1 ⊂ Rn of all elements

in y:1

min
{wi}pi=1

{
1

2

p∑
i=1

‖yi −Aiwi‖2`2 + λ

p∑
i=1

‖wi‖`1

}
,

subject to :
∑
i<j

1wi 6=wj ≤ t. (6.2)

Here yi denotes the ith element of the vector y, Ai denotes the ith row of the

matrix A. The indicator function 1wi 6=wj takes value 1 if wi, wj are unequal, and 0

otherwise;
∑

i<j denotes
∑p−1

i=1

∑p
j=i+1. Intuitively, the constraint on the number of

different vectors wi serves as a proxy of constraining the number of groups. When

1More details and underlying rationale are referred to [104].
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t ≥ p(p − 1)/2, it amounts to each entry forming an individual group. Otherwise,

along with the decrease of t, more feature elements are assigned into the same group.

However, due to the non-convexity of the indicator function, Problem (6.2)

remains computationally hard. Here, we replace the indicator function by `∞-

norm [104], which results in the following convex optimization problem:

min
{wi}pi=1

{
1

2

p∑
i=1

‖yi −Aiwi‖2`2 + λ

p∑
i=1

‖wi‖`1

}
,

subject to :
∑
i<j

‖wi −wj‖`∞ ≤ t.

The constraint imposed by the `∞-norm encourages the maximal difference between

two vectors to be zero, namely fusing them together. It can be equivalently expressed

in following regularization form:

min
{wi}pi=1

1

2

p∑
i=1

‖yi −Aiwi‖2`2 + λ

p∑
i=1

‖wi‖`1 + β
∑
i<j

‖wi −wj‖`∞

 . (6.3)

The objective function of Problem (6.3) consists of a smooth loss term and two non-

smooth regularization terms. In particular, we decompose the objective function

f(w) into the following two terms:

f̂(w) :=
1

2

p∑
i=1

‖yi −Aiwi‖2`2 ,

r(w) := λ

p∑
i=1

‖wi‖`1 + β
∑
i<j

‖wi −wj‖`∞ .

The problem bearing such non-smooth terms can be solved by smooth approx-

imation [107]. We provide the optimization details in the following section. Using

the proposed ASR, the feature element-wise sparse representations {wi}pi=1 are ef-

fectively recovered. In certain cases they may not exactly form distinct groups

{ωk}Kk=1. However, it is still possible to construct reliable groups. In this work, we

build an affinity graph of these representation vectors, and use a gap in the distri-
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bution of eigenvalues of the corresponding Laplacian matrix to estimate the number

of groups K. Then spectral clustering techniques [108] can be applied to the affinity

graph to cluster the representation vectors {wi}pi=1 into K groups. And we obtain

the feature elements group {yk}Kk=1 accordingly. Then {ωk}Kk=1 can be estimated

by performing sparse representation on each group individually.

6.4 Optimization Procedure

6.4.1 Smooth Approximation

According to the smooth approximation proposed in [107], the non-smooth regular-

ization term r(w) can be approximated by the following smoothed one,

rµ(w) = λ

p∑
i=1

sµ(wi) + β
∑
i<j

qµ(wi,wj),

where

sµ(wi) := max
‖v‖`∞≤1

〈wi,v〉 −
µ

2
‖v‖2`2 , (6.4)

qµ(wi,wj) := max
‖v‖`1≤1

〈wi −wj ,v〉 −
µ

2
‖v‖2`2 . (6.5)

Herein, µ is a parameter to control the approximation accuracy and fixed as 1 ×

10−4 throughout the experiments. For a fixed wi, denote v(wi) the unique max-

imizer of (6.4). It is standard that v(wi) = min {1,max {−1,wi/µ}} where oper-

ators max {·, ·} and min {·, ·} are performed in element-wise for the involved vec-

tors. Moreover, sµ(wi) is differentiable and its gradient ∇sµ = v(wi) is Lips-

chitz continuous with the constant Ls = 1/µ [109]. Also, denote v(wi,wj) the

unique maximizer of (6.5). Then v(wi,wj) can be easily obtained via the `1-

ball projection algorithm [110]. Moreover, qµ(wi) is differentiable and its gradient

∇qµ(wi) =
∑

j 6=i v(wi,wj) is Lipschitz continuous with the constant Lq = 1/µ for

each term [109].
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6.4.2 Optimization of the Smoothed Objective Function

For a fixed small smoothness parameter µ, we are going to minimize the following

smoothed objective function,

fµ(w) := f̂(w) + rµ(w). (6.6)

It is known that fµ(w) is differentiable with the gradient:

∇fµ(wi) = ∇f̂(wi) +∇rµ(wi), (6.7)

where,

∇f̂(wi) = ATi (Aiwi − yi) ,

∇rµ(wi) = v(wi) +
∑
j 6=i

v(wi,wj).

It is straightforward to verify that ∇f̂(w) is Lipschitz continuous with constant

Lf = ‖ATA‖2, where ‖ · ‖2 denotes the spectral norm of a matrix. Combining the

discussion in the previous subsection, we get that ∇fµ(wi) is Lipschitz continuous

with the constant,

Lf̂µ = ‖ATA‖2 +
1

µ
(λ+ β) . (6.8)

In particular, we employ the Accelerated Proximal Gradient (APG) method [111]

to optimize fµ(w). The detailed optimization procedure is provided in Algorithm 6.

6.4.3 Convergence Analysis

The following theorem guarantees the convergence of Algorithm 6.

Theorem 17. Let the sequences {w(t)}∞t=0 be generated by Algorithm 6. Then for

any t ≥ 0, we have,

fµ(w(t))− fµ(w∗) ≤
4Lfµ‖w∗‖2`2

(t+ 1)(t+ 2)
,
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Algorithm 6 Smooth minimization for objective (6.3).

Input: A ∈ Rp×n, y ∈ Rp, λ, β, itermax and ε.
Output: wi, i = 1, . . . , p.
Initialization: Calculate Lfµ according to Eqn. (6.8). Initialize w(0) ∈ Rp,
γ(0) ∈ Rp, and let η(0) ← 1, t← 0.
repeat
α(t) = (1− η(t))w(t) + η(t)γ(t),
Calculate ∇fµ(α(t)) according to Eqn. (6.7),
γ(t+1) = γ(t) − 1

η(t)Lfµ
∇fµ(α(t)),

w(t+1) = (1− η(t))w(t) + η(t)γ(t+1),
η(t+1) = 2

t+1 , t← t+ 1.

until t > itermax or |fµ(w(t+1))− fµ(w(t))| < ε.

where w∗ is an optimal solution to the problem (6.6) and Lfµ is the Lipschitz con-

stant of the function fµ(·) calculated in Eqn. (6.8).

The above theorem can be directly derived from Theorem 2 in [107]. From

Theorem 17, for a fixed µ, it can be seen that Algorithm 6 has the optimal rate of

convergence O(1/t2), where t is the number of iterations. In terms of the desired

residue, i.e., |fµ −min fµ| ≤ ε, the rate of convergence is O(1/
√
ε).

6.4.4 Complexity Discussions

Despite the convexity of the proposed method, the optimization procedure is still

challenging when the scale of the problem is relatively large. In ASR we individually

optimize n-dimensional models for in total p feature entries, thus the number of vari-

ables for the primal problem is O(pn), and O(p2) penalties are imposed. Due to us-

ing the smoothing terms, O(p2) more variables are introduced and O(p2) projections

have to be performed at each iteration. In this work, to reduce the computational

expense, an unsupervised entry-wise clustering (e.g., k-means) is performed in ad-

vance and the method turns to operate on the roughly clustered features. Suppose

the number of cluster K � p, then the number of variables is reduced to O(Kn)

and the number of constraints is reduced to O(K2).
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6.5 Experiments

In this section, we apply the proposed auto-grouped sparse representation (ASR)

method to solve two concerned applications, including motion segmentation and

multi-edge graph for multi-label image classification. We evaluate the performance

of the proposed ASR method on a synthetic dataset and two realistic benchmark

datasets respectively. The details on how to adapt the ASR method to the practical

applications are also provided in the following subsections.

6.5.1 Toy Problem: Sparse Mixture Regression

We first apply ASR in sparse mixture regression problem [103] to verify its effec-

tiveness in uncovering data’s group structure. The observed data points {yi}Ni=1

are generated according to the linear model yi = ωTk ai + ε. Here ai is a given re-

gressor vector, ωk is selected from a mixture of sparse linear models {ωk}Kk=1 and

ε ∼ N (0, 1) is added Gaussian noise. Here the data points {yi}Ni=1 can be stacked

into a feature vector y = [y1, . . . , yN ]T and the regressor vectors are stacked to form

the basis matrix A = [a1, . . . ,an]T . The mixture regression aims to estimate the K

regression models {ωk}Kk=1 according to {yi,ai}Ni=1. And simultaneously data points

{yi}Ni=1 are separated into K groups in which the data points are generated by the

same linear model. Namely, it aims to find the group structure of the input vector

y according to the underlying linear regression models of its elements.

In this experiment, we apply ASR on the dataset generated by varying number

of linear models with K = 2, 3, 4. The number of data points n is respectively set

as 30, 120, 1000. Data dimension p is fixed as 10. Each element of ai and ωk is

i.i.d. sampled from a uniform distribution on the unit interval. The models {ωk} are

sparsified by randomly zeroing half of their elements. The value of regularization

parameters are set as β = 1/p2 and λ = 0.1. And the convergence parameters are

fixed as ε = 1×10−4 and itermax = 10, 000. Fig. 6.2 shows the curves of the objective

function values in Eqn. (6.3) along the optimization iterations, and the obtained

data groups. The clear block diagonal structure of the `∞ distance matrix of the
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ASR results 

(a) K = 2

ASR results 

(b) K = 3

ASR results 

(c) K = 4

Figure 6.2: Auto-grouped results from ASR on the synthetic datasets for sparse
mixture regression. Top panel shows the `∞-distance matrices of the recovered
regression models, where darker color means smaller distance. And bottom panel
shows the convergence curves of the optimization processes.

uncovered linear models well demonstrates the ability of ASR to cluster the mixed

data correctly. From the convergence curve, it can be seen that objective function

converges within less than 200 iterations, which shows satisfying convergence rate.

6.5.2 Multi-edge Graph For Image Classification

Multi-edge graph vs. single-edge graph

A type of popular methods for image classification is to perform semi-supervised

learning based on a graph G = {V, E} [112, 113]. Here each vertex vi ∈ V represents

an image which is described by a feature vector yi ∈ Rp. And the edge eij ∈ E

from the ith to jth vertex, with weight wij , represents their similarity. In traditional

graphs, such as k-NN graph and `1-graph [114], similarity of two vertices is calcu-

lated based on the feature-level measure and represented by a single edge. However,

as pointed out in the introduction, multiple intrinsic groups may exist in one fea-

ture vector (corresponding to different objects or background), and more accurate

similarity can be obtained based on group-wise measurement. Here, we propose to

apply ASR to build a multi-edge graph Ĝ = {V, Ê} to more accurately and flexi-
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bly describe the relationship between images, and obtain better image classification

performance.

In constructing the multi-edge graph, we apply ASR for each feature vector yi

of vertex vi by treating the others as basis A. Then we obtain K representation

vectors {ωki }Kk=1 and the corresponding element groups of yi. Here the jth element

in ωki , ωki (j), represents the similarity between vj and vi w.r.t. the kth feature group

and we construct the edge ekij according to ωki (j). Note that for different samples,

the intrinsic group structure may be different. And thus the number of edges K

between two vertices may vary.

After constructing the multi-edge graph, any graph regularized semi-supervised

learning method can be employed to perform multi-label image classification [113,

112]. Since most of the methods operate on the graph adjacent matrix, which

bears 2D structure, we also need to construct an adjacent matrix for multi-edge

graph Ĝ through properly selecting and merging the multiple edges. In practice,

we first duplicate each edge ekij into multiple edges, and the number of duplication

is equivalent to the number of the feature elements in kth group. In this way, any

two nodes in Ĝ are directly linked by identical number of edges. Then we adopt the

Marginal Fisher Analysis (MFA) ratio [115] to evaluate the discriminative capability

of the edges for multiple image class. After obtaining the edges ranking on the

discriminative capability, we select the top t = 100 edges and combine them into

single edge by summing their weights directly. The produced graph adjacent matrix

is used for the semi-supervised learning on image classification.

Results

We compare the multi-edge graph with the k-NN and `1-graph [114] on the multi-

label image classification task. The evaluations are performed on the public NUS-

WIDE-LITE dataset [116], which consists of 55, 615 images and 81 different semantic

labels. Here, we use 27, 807 images as labeled data and the remains are unlabeled

as in [117]. The used 634-D feature is the concatenation of 225-D block-wise color

moments (CM), 128-D wavelet texture (WT), 73-D edge direction histogram (ED),
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64-D color histogram (CH) and 144-D color correlogram (CC). The k-NN graph is

constructed by selecting k = 3000 nearest neighbors. For the `1-graph, the regu-

larization parameter λ = 0.1 is selected from [0.001, 10]. In building the multi-edge

graph, the parameters are fixed as λ = 0.1, β = 2 × 10−4, itermax = 200 and

ε = 1 × 10−4. In our experiments, it takes about 15 seconds to build the graph

for one vertex on a PC with Quad CPU 2.83GHz and 8GB memory. An exemplar

sub-graph of Ĝ is shown in Fig. 6.3. In this sub-graph, several vertices are linked

to the query vertex v1 via 7 edges (the estimated number of groups K = 7), each

of which measures the similarity between corresponding vertex and v1 based on a

certain feature group, as indicated in the legend. It can be seen from Fig. 6.3 that

more semantically similar vertices (e.g., v2, v4) have larger number of edges with

larger weights to the vertex v1. This is because these vertices (images) contain

more similar objects to v1, which is captured by ASR in constructing the multi-edge

graph.

After duplicating the edges between two vertices into 634 edges (total dimension

of adopted feature), the MFA ratio is calculated based on 20 positive and negative

nearest neighbors of each vertex in Ĝ [115], and top t = 100 edges are selected

and combined. Then the popular Random Walk (RW) [113] and Entropic Graph

Semi-Supervised Classification (EGSSC) [112] are used to perform semi-supervised

learning on the multi-edge graph and baseline single-edge graphs. For EGSSC,

the parameters are searched in the sets µ ∈ {1 × 10−8, 1 × 10−4, 0.01, 0.1} and

ν ∈ {1 × 10−8, 1 × 10−6, 1 × 10−4, 0.01, 0.1} as in [112]. Classification performance

is measured by the Mean Average Precision (MAP) [117] and shown in Table 6.1.

It can be seen that the multi-edge graph significantly improves the multi-label im-

age classification performance, for both two semi-supervised learning methods. In

particular, compared with the state-of-the-art performance from LELR [117], the

improvement achieves 3.3% for multi-edge graph + RW and 4.1% for multi-edge

graph + EGSSC.

Besides, we also compare ASR with k-means + `1-graph. In particular, the el-

ements of feature vectors are clustered into 7 groups by k-means along the feature
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CM6 + CC2,3,4 

WT4 + ED2 

CM8 + WT2 + CH 
WT1,3 

CM2,4 

CM3 + ED3 

CM1,5,7 + ED1 + CC1  

Figure 6.3: A subgraph of the constructed multi-edge graph. Here 5 types of features
are used. Note that for ease of display, each type of feature is shown in groups, as
indicated by the subscripts in legend. The groups of these feature elements clusters
obtained by ASR are shown in legend. In the multi-edge graph, the edges’ weights
are shown in a histogram form.

Table 6.1: MAP (%) of label propagation on different graphs.

Graph RW [113] EGSSC [112]

kNN-graph 21.62 20.83
`1-graph 23.36 23.76

`1-graph Comb 22.60 23.55
Multi-edge graph 29.09 29.95

LELR [117] 25.79
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dimension. And we construct `1-graph for each feature element cluster. These `1-

graphs are then combined into a 7-edge graph `1-graph Comb for fairly comparing

with our ASR multi-edge graph. From Table 6.1, it is shown that multi-edge graph

outperforms `1-graph Comb graph by about 6% MAP. This further demonstrates

that ASR’s ability to find reasonable feature groups with more discriminative infor-

mation, benefitting from its accordance with the intrinsic structure of features.

6.5.3 Motion Segmentation

Two-view motion segmentation

Motion segmentation is aimed to assign multiple well tracked motion trajectories to

the corresponding moving rigid objects. From epipolar geometry, given two corre-

sponding points p and q from two images (p,q ∈ R3)2, they satisfy the following

equation [118],

pTFq = 0. (6.9)

Here the fundamental matrix F encapsulates the intrinsic projective geometry be-

tween two views. Trajectories on the same object have identical fundamental matrix.

And when K different rigid objects are moving independently, there are K different

fundamental matrices {Fk}Kk=1.

Here we apply ASR to the two view motion segmentation problem, where the

tracked trajectories are only from two frames. We first rewrite the epipolar equa-

tion (6.9) for one corresponded pair as (p⊗ q)T ω = 0, where ⊗ denotes the Kro-

necker product and the vector ω is formed by concatenating the columns of F . By

removing the homogeneous coordinate (last element of ω) to the right hand side,

the epipolar equation for N corresponding points can be written as aTi ωk = 1,

where ai consists of the first 8 elements of the vector pi ⊗ qi. Here, we also denote

the first 8 elements of original ω as ω without confusion. Then we stack the vec-

tors ai’s into basis matrix A = [a1, . . . ,an]T and the corresponding input vector is

y = [1, . . . , 1]T ∈ Rn. Similar to the mixture regression, we can solve it through ASR

2Actually, the point coordinates are in the projective plane, namely p,q ∈ P2
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Table 6.2: Segmentation errors (%) for sequences with 2 motions.

Method GPCA [101] RANSAC EM ASR

Checkerboard: 78 sequences

Mean 11.01 12.43± 0.26 37.44± 0.58 9.07
Median 7.51 8.22± 0.93 39.26± 0.82 4.13

Traffic: 31 sequences

Mean 7.75 14.60± 1.12 41.24± 0.41 9.42
Median 1.95 10.54± 2.28 42.91± 0.52 2.32

Articulated: 11 sequences

Mean 16.11 20.15± 0.61 33.77± 1.27 6.15
Median 14.14 17.28± 2.51 32.37± 4.08 0.99

All: 120 sequences

Mean 10.63 13.70± 0.32 38.08± 0.42 8.89
Median 6.68 9.05± 0.98 40.33± 0.60 3.07

as in Eqn. (6.1). Thus, we can obtain the segmentation of the motion trajectories

according to their estimated fundamental matrix Fk, which is expressed as vector

ωk in ASR.

Results

We use the Hopkins155 dataset [119] to evaluate ASR for the two-view motion seg-

mentation task. The dataset consists of 155 video sequences of two or three motions,

which are divided into three categories: checkerboard, traffic, and articulated. We

use the trajectories from the first 2 frames of each sequence as the input of the

two-view motion segmentation.

We compare our method with three popular motion segmentation methods. The

first one is Generalized Principal Component Analysis (GPCA) [101], which first

projects the data points to a 4 dimensional subspace, and then groups the estimated

normal vectors of the subspaces for data segmentation. The second method is the

Expectation-Maximization (EM) [100], which is widely used but only provides a local

optimum solution. The last one is the RANdom SAmple Consensus (RANSAC)

which solves model fitting problem by random data sampling and evaluation [120].

In the experiments, both the EM and RANSAC are run 20 times and their average

errors are reported. For ASR, the parameters are set as λ = 0 due to the fundamental
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Table 6.3: Segmentation errors (%) for sequences with 3 motions.

Method GPCA [101] RANSAC EM ASR

Checkerboard: 26 sequences

Mean 32.27 56.02± 0.29 46.88± 1.02 25.53
Median 30.92 57.47± 0.76 47.66± 1.85 20.04

Traffic: 7 sequences

Mean 17.58 48.61± 1.24 47.56± 2.19 26.48
Median 18.54 51.37± 0.98 51.31± 1.32 29.92

Articulated: 2 sequences

Mean 26.14 61.70± 3.83 43.27± 5.60 10.05
Median 26.14 61.70± 3.83 43.27± 5.60 10.05

All: 35 sequences

Mean 28.86 54.62± 0.32 46.81± 1.11 24.83
Median 24.32 57.07± 0.79 48.28± 1.84 22.62

matrix is not sparse, β = 1/N2, itermax = 1, 000 and ε = 1 × 10−4. Note that here

we do not compare the proposed method with multiple sample based methods,

e.g., sparse subspace clustering [121], since they only apply for multi-view motion

segmentation. And they do not estimate the fundamental matrices since they vary

across multiple frames.

The segmentation errors are provided in Table 6.2 for two motions and Table 6.3

for three motions respectively. It can be seen that ASR and GPCA significantly

outperform the EM and RANSAC methods owning to their convexity. Compared

with GPCA, the proposed ASR achieves smaller segmentation errors in most of

the sequences, and brings 1.74% and 3.91% overall improvement for two and three

motions respectively. More accurate segmentation results achieved by ASR well

demonstrate its superior ability in uncovering the underlying data group structure.

6.6 Chapter Summary

In this chapter, we proposed auto-grouped sparse representation (ASR) to auto-

matically obtain the underlying group structures of the correlated feature elements.

In ASR, each uncovered group represents a certain semantically meaningful pat-

tern. We applied a convex relaxation to the primal intractable objective function

to guarantee a global solution and further introduced smooth approximations to
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ease the optimization process. Furthermore, two realistic applications of ASR were

considered besides the evaluations on synthetic data. For multi-label image classifi-

cation, ASR achieves remarkable performance improvement over the state-of-the-art

methods owing to its ability to more accurately describe the semantic relationship

between images by building informative multi-edge graph. And for two view motion

segmentation, ASR significantly reduces segmentation errors compared with previ-

ous methods. Our proposed ASR need include a set of pair-wise regularizations

which may be inefficient for large-scale problems.
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Chapter 7

Conclusions

This thesis studies low-dimensional structure learning for big data in the spirit

of online learning and robust statistical learning. In this thesis, we investigate

both theoretical properties and practical applications of robust structure learning

in machine learning and computer vision fields. Section 1.2 gives a fairly detailed

account of the contribution of this thesis. In this chapter we provide a brief overview

of what we have learnt and what issues are open, and need to be addressed in future

research.

7.1 Summary of Contributions

In Chapter 2-4, we addresses two important problems in low-dimensional structure

learning for big data, namely, how to guarantee robustness of the inference results

to the data inherent noise and outliers, and how to scale the learning algorithms to

large-scale data.

We proposed a deterministic robust PCA algorithm for high-dimensional data

corrupted by arbitrary outliers. The algorithm alternates between a classical PCA

and decrease of weight coefficients on all the data points. To the best of our knowl-

edge, this is the first deterministic algorithm that achieves the maximal robustness in

the high-dimensional regime. This not only provides an acceleration of its random

counterpart method, but also suggests a new scheme for enhancing the efficiency
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of other randomness based methods by exploiting to process the samples in batch

manner.

We devised an online robust PCA (online RPCA) algorithm for samples cor-

rupted by outliers. The online RPCA alternates between standard PCA for updat-

ing PCs and probabilistic selection of the new samples which alleviates the impact of

outliers. This is the first work to investigate such online robust PCA problem with

theoretical performance guarantee. This work also provides a general framework

for robustifying the existing online learning methods, and it gives a promising and

practical solution to the challenges imposed by the modern big data analysis.

We developed the method of online optimizing the matrix norm through refor-

mulating the nuclear norm as an explicit product of two low-rank matrices. After

the reformulation, an stochastic fashion optimization algorithm is ready to apply

to solve the problem, with significant efficacy gain for processing large scale data.

We also provided a convergence analysis of the OR-PCA method. More impor-

tantly, OR-PCA suggests a general optimization and analysis framework of online

optimizing certain matrix norm through the factorization.

In Chapter 5-6, we demonstrated two low-dimensional structure learning meth-

ods for the applications in object recognition and image classification. We provided

the methods to discover the class discriminative structure and sub-group structure

of the image description vectors.

We proposed the so-called geometric `p-norm pooling (GLP) method to perform

feature pooling. Different from traditional feature pooling methods, e.g. the average

and max pooling, the GLP method can utilize the geometric structural information

on the feature class and spatial distributions and thus provide more discriminative

pooling results. GLP is a more discriminative, flexible and information-preserving

pooling method.

We proposed auto-grouped sparse representation (ASR) to automatically obtain

the underlying group structures of the correlated feature elements. In ASR, each

uncovered group represents a certain semantically meaningful visual pattern. Com-

pared with traditional clustering based methods, ASR provided a more robust way
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for finding the sub-group structure. ASR was used to build multi-edge graph which

more accurately describes semantic relationship between images and yielded better

image content annotation performance.

7.2 Open Problems and Future research

The work reported in this thesis has raised many problems to be studied in the

future. We list in this section some of the immediate questions to direct future

works after this thesis.

Distributed robust learning algorithms. In this thesis, we propose online

learning as a major solution to scaling robust low-dimensional structure learning

methods to big data. Besides online learning, another promising solution is the dis-

tributed learning. Under distributed learning framework, the data are distributed

and stored in different computation nodes. The learning is executed in each node

separately, and communications among different nodes are allowed. Distributed

learning is efficient for processing large-scale data and has been adopted in some

practical computation architectures, such as MapReduce developed in Google. How-

ever, how to design efficient communication between different nodes to guarantee

the robustness of the solutions is still an open problem. In the future, we can apply

the algorithmic and analysis framework proposed in Chapter 3 and Chapter 4 to

the distributed robust learning algorithms design and analysis.

Applications for robust regression and classification. In this thesis, we

focus on the problems of learning the low-dimensional structure of observed data.

However, the developed techniques in this thesis are not restricted to these prob-

lems. Instead, the techniques can be readily extended to other linear model learning

problems, among which the most important one may be the linear regression and

classification. Due to the ubiquitous noises and outliers are in realistic data, robus-

tifying the linear regression and classification are also heavily desired for making

predictions on realistic data. In the future, we will investigate the regression and

classification problems along this direction.
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