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SUMMARY

SUMMARY

Advanced technologies in consumer electronic products have enabled individual

users to record, share and view videos with mobile devices. With the volume of

videos increasing tremendously on the Internet, fast and accurate video search

and annotation have become urgent tasks and have attracted much research

attention. However, video search and management operations are typically

supported by either the low-level visual features or the manual textual an-

notations. Those approaches often suffer from low recall as they are highly

susceptible to changes in viewpoint, illumination, and noisy tags. By leverag-

ing geo-metadata, more reliable and precise search results can be obtained. The

geographic metadata is one of the important kinds of contextual information.

Due to the ubiquity of sensor-equipped smartphones, it has become increasingly

feasible for users to capture videos together with the geographic information, for

example the location and the orientation of the camera. Such contexts create

new opportunities for the organization and retrieval of geo-referenced videos.

This dissertation studies the geographic information use in video annotation

and retrieval. Since raw sensor data collected is often noisy, we first preprocess

the geo-metadata by building a comprehensive model to reduce the errors in

GPS and compass readings. The proposed approach can effectively provide

more accurate geo-metadata for downstream applications such as tagging and

search. For video annotation, we propose to leverage crowdsourced data from

social multimedia applications that host tags of diverse semantics to build a

spatial-temporal tag repository. In particular, we retrieve the necessary data

from several social multimedia applications, mine both the spatial and temporal

features of the tags, and then refine and index them accordingly. Consequently,

v



SUMMARY

the tag repository we built acts as the input to our previous auto-annotation

approach which we extend in several ways for better integration with the new

vocabulary. For video landmark retrieval, we present the Geo Landmark Vis-

ibility Determination (GeoLVD) approach which computes the visibility of a

landmark based on intersections of a camera’s Field-of-View (FOV) and the

landmark’s geometric information available from geographic information sys-

tems and services. We compare our method with the content-based spatial pyra-

mid matching approach combined with two advanced coding methods: sparse

coding and locality-constrained linear coding. By analyzing their strength and

weakness, we further integrate the visual and geographic information to achieve

improvements. For video similarity search, we propose a novel video description

which consists of (a) determining the geographic coverage of a video based on

the camera’s FOV and a pre-constructed geo-codebook, and (b) fusing video

spatial relevance and region-aware visual similarities to achieve a robust video

similarity measure. Toward a better encoding of a video’s geo-coverage, we also

construct a geo-codebook by segmenting a map into a collection of coherent re-

gions. The experimental results show that the proposed techniques achieved

significant improvements over its competitors, especially with fine-grained and

accuracy-enhanced geographic metadata.
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CHAPTER 1

Introduction

1.1 Background and Motivation

With advances in the technology of mobile device manufacturing and network

engineering, user-generated videos have become very popular in recent years.

The most popular video sharing website YouTube1 has more than one billion

users. According to the official statistics, 300 hours of video are uploaded every

minute [2]. This fast growing trend in video volume challenges the traditional

media organization schemes. Issues arise such as the high cost for visual feature

extraction and matching in content-based video retrieval systems, and the well-

known semantic gap between the low-level visual features and the high level

semantic concepts. Therefore, automatic understanding and efficient retrieval

of the growing user-generated videos are highly desired.

While the traditional content-based methodologies sometimes struggle to

1https://www.youtube.com/

1



CHAPTER 1. INTRODUCTION
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Figure 1.1: Applications that benefit from geographic information in multime-
dia.

achieve satisfying results, people have begun to realize the importance of using

the contextual information. The geographic metadata is just one important

type of such information that helps a lot in a variety of research domains [79].

Figure 1.1 shows the applications that can benefit from geographic information

in the multimedia domain. As can be seen, the presence of geographically

relevant metadata with images and videos has opened up interesting research

avenues within the multimedia domain. Nowadays the geotagged images are

pervasive in people’s life from community photo collections to the worldwide

Google Street View Service [36]. With today’s sensor-equipped smartphones,

it is also common to tag recorded videos with a continuous stream of extended

geographic properties that relate to the camera scenes. In our group’s prior

work [8], Arslan Ay et al. proposed a sensor-based description of video scenes.

To the best of our knowledge, this is the first work that addresses the issue

of modelling the actual geographic information of video scenes and utilizing

it for an efficient video search. The initial sensor rich video recording system

incorporates three devices: a video camera, a 3D digital compass, and a Global

2
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Figure 1.2: Key frame registration to a digital 3D world. [134]

Positioning System (GPS) device. GPS records the latitude, longitude, and

altitude, while a compass records the heading angle together with the pitch and

roll values. Considering the popularity of the sensor-equipped smartphones, we

developed geographic video recording applications for both Android- and iOS-

based mobile phones as well.

The media geographic coordinates can also be obtained by analyzing con-

tent and context such as title, tags, and text description [97, 55, 134]. This

is the so-called geotagging, whose goal is to determine the unknown location

of an image or a video. Though the state-of-the-art methods have reported

promising results, the accuracy is still far beyond satisfaction. In the annota-

tion and navigation system for tourist videos proposed by Zhang et al. [134],

not only the position but also the orientation of the camera can be obtained by

registering videos to a digital 3D world. For each key frame specified, they use

an interactive registration tool to align the image to 3D terrain and building

models as shown in Figure 1.2. However, they neglect to report the detailed

accuracy of their video registration method. In this study, we only focus on the

geographic information obtained from sensors such as GPS and digital compass,

3
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Figure 1.3: Georeferenced video search architecture. [7]

and geotagging techniques hardly fall within the scope of this discussion.

Based on the camera’s field-of-view model, Kim et al. designed and im-

plemented a geo-tagged video search framework [57]. Figure 1.3 shows the

architecture of the search engine. Queries supported in the system include:

(1) point query, (2) point query with bounded distance r, (3) directional point

query, and (4) rectangular range query. The Video Ranking module in Fig-

ure 1.3 rates search results according to the spatiotemporal overlap properties.

Three metrics have been proposed to describe the relevance of a video [7]: (1)

Total Overlap Area, (2) Overlap Duration, and (3) Summed Area of Over-

lap Regions. The Concept Detection module provides information about the

semantic content of the video segments to aid the ranking process, which is

currently not implemented and left for the future work.

As can be seen that the geographic information helps in understanding the

semantics of image and video contents, e.g., the type of event or scene that the

user has captured. It is especially useful for tourist image and video collections,

in terms of media organization, retrieval and navigation. However, most of

the previous work only focuses on the management of images. Though geo-

based video retrieval techniques have been proposed, there is a lack of thorough

4
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comparison between the rising geo-based techniques and the traditional content-

based techniques. The integration of visual and geographic information is still

in the initial stage which is of great necessity to be further developed and

evaluated. In this dissertation, we focus on the geographic information use in

video annotation and search. Before we introduce the details of the proposed

techniques, let us first have a look at the major issues existing in the current

geo-referenced video management systems.

– The geo-metadata collected from sensors can be noisy and inaccurate.

While for GPS this issue has been extensively studied [17, 20], only a few

efforts have been made on the correction of compass data [81, 89]. The

difficulty level of this problem is especially high since (a) unlike GPS, a

compass sensor does not provide any accuracy bounds, and (b) from our

empirical observations compass errors can sometimes be very high (up to

180◦). Considering the large amount of geo-metadata, a fully automatic

approach is preferred.

– The world is not a sensor-rich environment where every object has a

geotag. Note that the geographic context of the world can greatly help

people understand the video content based on the camera location and

orientation. Fortunately, nowadays spatial data have become increasingly

available from mapping services on the Internet. Apart from the physical

entities such as buildings and landmarks, it is also possible to determine

the geotag of events or other concepts of interest from crowdsourced data

available online (e.g., social multimedia applications such as Flickr). A

rich spatial-temporal tag repository is highly desired.

– Most of the geo-tagged videos are only associated with a single GPS loca-

5
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tion. This is not always helpful since a camera can move in both location

and viewing direction. We believe that it is important and indispensable

to propose effective techniques with fine-grained contextual information

where every video frame is tagged. Per-frame camera geographic prop-

erties can be either processed individually or compressed to video-level

features for efficiency concerns.

To solve the issues outlined above, we try to maximize the use of the geo-

graphic metadata in automatic annotation and retrieval of geo-referenced video

collections. Raw sensor data collected is often noisy, resulting in subsequent in-

accurate geospatial analysis. Therefore, we first focus on the challenging correc-

tion of compass data and present an automatic approach to reduce the errors.

Given the small geo-distance between consecutive video frames, image-based

localization does not work due to the high ambiguity in the depth reconstruc-

tion of the scene. As an alternative, we collect geographic context from Open-

StreetMap and estimate the absolute viewing direction by comparing the image

scene to world projections obtained with different external camera parameters.

To design a comprehensive model, we further incorporate smooth approxima-

tion and feature-based rotation estimation when formulating the error terms.

Experimental results show that our proposed pyramid-based method outper-

forms its competitors and reduces orientation errors by an average of 58.8%.

Hence, for downstream applications, improved results can be obtained with the

accuracy-enhanced geo-metadata.

In our prior work, we determine the geographic objects that are visible in

a video based on the viewable scene descriptions, by querying the geographic

information systems and services. However, the performance of this approach
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significantly depends on the quality of the adopted data sources. Previously

we built our prototype with the OpenStreetMap. However, its completeness

varies in different regions. To enrich the vocabulary for video tagging, we

began to seek for more diverse data sources. One of the promising informa-

tion sources could be the crowdsourced data available from social multimedia

applications, such as Flickr, Picasa and YouTube, where the semantics of mul-

timedia documents can be acquired by analysing the user-generated tags. The

geo-coordinates of a tag are likely to be unevenly distributed. To identify where

the peaks are, we construct Gaussian mixture models to describe the distribu-

tion of geo-coordinates. By doing this, the geo-coordinates are replaced with

continuous kernel functions to create summary statistics that are less sensitive

to high-frequency noise in the data. Given the distribution characteristics, clas-

sifiers are built to determine if it is positionable tag that can be added to our

spatial-temporal tag repository.

Next, we study and compare the visual and geographic information use in

video landmark retrieval. In recent years the bag-of-words (BoW ) model [28],

which is inspired by the success of text-based retrieval, has been extremely pop-

ular in a variety of visual retrieval and categorization tasks. The basic idea be-

hind the model is to view an image as a document comprised of unordered visual

words. Then a classification tool such as a support vector machine (SVM ) clas-

sifier can be trained to perform landmark categorization based on the labelled

BoW representations of a training set. Once the SVM classifier is trained,

it can be used to retrieve images of a certain landmark because it is capable

of distinguishing to which category an image belongs. The original BoW ap-

proach has been improved in various ways in its performance [126, 119]. Such

content-based retrieval, however, has a drawback that hinders its scalability:

7
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high computational complexity due to extensive image processing. Moreover,

it is highly susceptible to environmental conditions of the image, e.g., the illu-

mination and shooting angle. Additionally, we present a lightweight geo-based

approach termed Geo Landmark Visibility Determination (GeoLVD). We an-

alyzed the factors that may affect the retrieval performance. For the content-

based method, we analyzed the influence brought by the representativeness of

the training set and the diversity of the video frames. We also seek for better

image sources to select training images, and propose to use Google Street View

as a supplement to Flickr, which has been shown to be effective in improving

the retrieval performance by the experiment. For the geo-based method, we

analyzed the influence brought by the accuracy of the video’s geographic meta-

data and the detail level of the information we collected from the geographic

information systems. Finally we propose a hybrid retrieval method based on

the integration of the visual and geographic information. Experiments show

that it achieves great improvements in terms of precision and recall.

Additionally, we study the problem of video similarity search. A good

similarity measure is a key component in such a retrieval system. While the

viewable scene model [8] has been adopted for many geo-referenced video appli-

cations [7, 134, 99], one fundamental issue is it describes the camera properties

rather than the video content. We argue that content-oriented geo features

are highly desired because their consistency with visual clues can make the fu-

sion more seamlessly. Therefore, we propose a novel two-layer model in which

frames are indexed by the regions they capture instead of the camera location.

Subsequently, geo and visual features are directly connected via regions. Based

on this model, a novel video similarity measure is proposed by summing up

local similarity scores on a region-by-region basis. Toward a better encoding

8
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of the geographic features, we present the Geo-Codebook Generation module,

which segments a map into a collection of coherent regions as a geo-codebook.

Compared with a grid-based geo-codebook, our approach is shown to be more

descriptive and thus leads to a better similarity measure.

In order to evaluate the proposed methods, ground-truth annotations were

required and manually labeled with the help of my colleagues and labmates.

We first labeled the ground-truth individually, and then discussed together to

make an agreement. It is worth mentioning that this dissertation introduces an

effectiveness hybrid video retrieval system, which consists of multiple compo-

nents and parameters. Thus, within the limited time we only focus on several

key components and design our algorithms in a way that can be easily inte-

grated with other existing techniques in the rest of the modules. Currently for

the modules that are not our research focus, we only choose one of the popu-

lar off-the-shelf techniques for illustration, but please keep in mind that these

modules can be easily replaced by more advanced techniques for further im-

provements. Additionally, the optimal setting of some parameters is related to

the data characteristics. We would recommend users to tune such parameters

with a subset of the data, as how we proceed in our experiments.

1.2 Overview

As illustrated in Figure 1.4, this study concentrates on the annotation and

retrieval of fine-grained geo-tagged videos. Four major components in such a

system are presented in this dissertation. We first preprocess the geo-metadata

to reduce the errors in the raw sensor data. Next, we mine the spatial-temporal

tags from social multimedia applications such as Flickr to enrich our tag repos-
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Figure 1.4: An overview of the geo-tagged video annotation and retrieval sys-
tem.

itory for automatic video annotation. Thereafter, we study two types of video

queries, namely keyword-based video search and example-based similarity search,

and propose a hybrid model for each problem by fusing geo and visual features

to improve the retrieval effectiveness. Experimental results have shown that

our proposed approaches achieved significant improvements. The contributions

of each work are listed below:

Automatic geo-metadata correction. To reduce the errors in the geo-

graphic metadata, we focus on the challenging compass data correction and

formulate the task as an optimization problem by leveraging a set of complemen-

tary data sources. First, constrained by the geographic priors, the optimized

camera parameters should not drift too far away from the sensor readings. Next,

we estimate relative rotation between consecutive frames by performing local

feature matching with SIFT descriptors. To determine the absolute viewing di-

rection, we quantify the distance between the pixel semantic labels of the frame

and the 3D projections of the scene. Two distance metrics have been designed

and implemented, namely the pixel-based and the pyramid-based measure that

encode the spatial information of the semantic labels with different granularity.

10
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By minimizing the formulated objectives, we are able to reduce the errors in

the raw sensor data and provide more accurate geo-information as an input for

downstream applications.

Spatial-temporal tag mining. In order to enrich the candidate tag reposi-

tory for geo-tagged video annotation, we concentrate on how to screen raw tags

from social multimedia websites. We mathematically model the geographic dis-

tribution of tags, extract meaningful features from the model, and build both

simple and SVM-based classifiers to discover positionable tags. Furthermore,

we demonstrate that the simple classifier which does not require manual input

can achieve equally good performance compared to the SVM-based approach.

Similarly, we model the temporal distribution of positionable tags to mine the

duration when they are appropriate to be used. To better coalesce with the

repository of tags indexed in the spatial-temporal domain, we extend our prior

space-only visibility computation algorithm to the spatial-temporally combined

domain, mine more information from social multimedia applications to compute

tag similarities and popularities, and re-score tags’ relevances to videos, achiev-

ing a better quality of the generated tags. This work has been published in the

TOMM [129] journal.

Landmark retrieval from geo-tagged videos. We compare two state-of-

the-art content-based methods with a geo-based method which we refer to as

Geo Landmark Visibility Determination (GeoLVD) in terms of precision, recall

and execution time, respectively, analyze the strength and weakness of each

method, and discuss how to select the most suitable retrieval method according

to video conditions and system requirements. We investigate the factors that

11
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affect the retrieval effectiveness, measure and compare their influence through

experiments, and propose methods to reduce their adverse influence when it is

possible. Finally, we propose a hybrid retrieval method by integrating visual

and geographic information, which has been shown to achieve significant im-

provements in terms of precision and recall. This work has been published in

the TOMM [128] journal.

Hybrid video similarity search. This work concentrates on the following

two challenges in geo-tagged video management systems: (1) how to quantify

the spatial relevance of videos with the visual similarity to generate a pertinent

ranking of results according to users’ needs, and (2) how to design a compact

video representation that supports efficient indexing for fast video retrieval. To

solve the above issues, we propose a novel hybrid model for video representa-

tion which generates content-oriented geographic features that can be effectively

fused with visual cues to improve the precision of video similarity search. Ad-

ditionally, we utilize the information available from the geo-information sources

to semantically segment an area into a set of coherent regions, based on which

the geographic coverage of a video can be better encoded. This work has been

published in the TMM [130] journal.

1.3 Roadmap

The rest of this dissertation is organized as follows. Chapter 2 reports the

important related work to this study. Chapter 3 introduces the preliminaries of

the research. Chapter 4 introduces an automatic approach to reduce the errors

in the geographic metadata. Chapter 5 presents the construction of a rich

12
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spatial-temporal tag repository for automatic geospatial video annotation. In

Chapter 6, we demonstrate the visual and geographic information use in video

landmark retrieval. Chapter 7 presents a novel hybrid video representation for

similarity search. Chapter 8 concludes and suggests the potential future work.
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CHAPTER 2

Literature Review

This chapter looks into existing research work that is highly relevant to our

study. This review mainly focuses on four parts: geo-metadata correction, geo-

tagged image and video annotation, landmark recognition, and video similarity

search.

2.1 Geo-metadata Correction

In multimedia, a significant number of techniques benefit from the presence of

geographic metadata associated with images and videos [105, 8]. However, such

solutions may sometimes face performance issues due to the occurrence of GPS

and compass errors. Traditionally, raw GPS trajectories are usually processed

by standard smoothing techniques [20] and map matching algorithms [17]. To

produce more precise geographic context, the determination of camera view-

ing direction has attracted much research attention in recent years. Several
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content-based computer vision techniques have been proposed based on local

feature extraction and matching. Luo et al. [80, 81] estimated the viewing direc-

tions of world’s photos by reconstructing the scenes using a normalized 8-point

algorithm. Based on the assumption that the camera location extracted from

the geographic metadata is correct, they further geo-registered the photos on

Google Maps to assist users in exploring places of interests around the world.

Park et al. [89] proposed to utilize both Google Street View and Google Earth

satellite images to determine the camera orientation of a geotagged image.

Kroepfl et al. [61] presented a method to geo-locate a photo and then estimate

the viewing direction by registering the image onto street level panoramas.

However, these methods usually require a large image database to perform re-

liable object matching. Their effectiveness can sometimes be influenced by the

limitations of the data sources, e.g., Street Views are only applicable for photos

taken on or near road networks [118].

It is one of the central problems in photogrammetry to determine the rel-

ative position and orientation among a set of images. Horn [47] presented an

iterative method to solve the least-squares problem with more than five cor-

respondences. Snavely et al. [105] computed sparse 3D model of a scene and

determined the relative camera viewpoints of photographs for interactive 3D

browsing. However, these approaches have not dealt with the geo-registration

of camera poses with respect to world maps. Benefiting from the developed

Structure from Motion (SfM) reconstruction approaches, image-based localiza-

tion using 3D models of urban scenes has been extensively studied in recent

years [73, 123]. Sattler et al. [96] utilized 3D scenes reconstructed from Flickr

images, and showed that direct 2D-to-3D matching offered considerable poten-

tial for accurate image localization. Similarly, Li et al. [70] estimated camera
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Table 2.1: A comparison with the previous work.

Work
Geo

Metadata
Visual
Features

Auxiliary
Images

Geo
Context

SfM reconstruction
[70, 96, 105]

X X

Image-based matching
[61, 89]

X X

Location-constrained
geo-registration [80, 81]

X X

Geocontext-aware sensor
data correction, proposed

X X X

poses with respect to a large geo-registered 3D point cloud. Aided by advanced

matching techniques, system reliability and efficiency have been further im-

proved. However, such methods might sometimes be limited by their feasibility

as the 3D reconstruction step usually requires extensive image collections with

large baselines and sufficient overlaps.

As illustrated in Table 2.1, we have compared our method with the related

work in terms of feature sources. To the best of our knowledge, there are ba-

sically no algorithms designed for efficient compass sequence correction. The

existing techniques mostly focus on camera orientation determination where

good accuracies rely on the robust feature matching with extensive computa-

tional costs. Moreover, it can be easily seen that the proposed method is the

first attempt to consider the geographic context derived from OpenStreetMap

(OSM) for fine-grained video geo-registration.

2.2 Geo-tagged Image and Video Annotation

Automatic or semi-automatic semantic annotation has greatly facilitated im-

age and video search online. A number of studies have proposed state-of-the-

art content analysis methods to understand the semantics of multimedia con-

tent [83, 32, 93]. Alternatively, other studies proposed to leverage crowdsourced
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web data, or combine it with visual features [101, 100, 122]. Social media con-

tent, such as videos and images uploaded to YouTube and Flickr, is widely

exploited recently. In general, the candidate tags for an image or a video can

be suggested by its nearest neighbors. Siersdorfer et al. [100] proposed to cap-

ture the connections between videos using their content redundancy. Ballan et

al. [11] presented a system for video tag suggestions and temporal localiza-

tion based on the collective knowledge and visual similarity of frames. Several

annotation techniques based on relevance models, which are used to estimate

the joint distribution of words and images, have also been proposed and have

achieved encouraging performance [52, 83]. Liu et al. [75] argued that the per-

formance and scalability of traditional relevance-model-based methods can be

limited by the semantic gap and the dependence on training data, and further

proposed a dual cross-media relevance model which estimates a joint probability

from the expectation over words in a pre-defined lexicon.

Recently, researchers have investigated the relationship between tags and

geo-contexts of multimedia content, and used it to suggest tags. Moxley et

al. [84] proposed a tag suggestion method exploiting both content-based analy-

sis and geo-referenced information. Given an image to suggest tags, their system

queries a number of geographically closeby images, extracts their tags as candi-

dates, and scores them based on their local popularity and the visual similarity

between the target image and its neighbors. Abdollahian et al. [3] proposed

a similar method, but it was aimed at video annotation instead. To conduct

a visual comparison between the target video and geographically selected im-

ages, they segment the video and extract key frames to represent it. These two

methods have two limitations compared to ours. First, it is computationally

challenging to require a k-nearest neighbor computation for each image/video
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to suggest tags. Second, without investigating the global distribution of a tag,

it cannot reliably be judged whether the tag carries distinguishable semantics

in some place even if it frequently appears. For example, tourism and travel

may be popular in places of interest all over the world, to the point where they

cannot help users to recall where the image/video was taken.

Larson et al. [66] presented three tasks devoted to tagging and geo-tagging

at the MediaEval 2010 benchmarking initiative [65]. MediaEval brings multi-

media researchers together to pool research resources and focus efforts on devel-

oping solutions for challenging issues facing multimedia indexing and retrieval.

Recently, several techniques have been proposed to uncover the relationship

between word concepts and geographic regions. Yanai et al. [125] proposed

to use both image region and geo-location entropy to analyze relations be-

tween location and visual features. Intagorn and Lerman [49] proposed that

the boundaries of places can be learnt from noisy social annotations. Thomee

and Rae [110] uncovered the colloquial boundaries of locally characterizing re-

gions by innovatively modeling the data using scale-space theory. In the geo-

graphic information systems literature, methods for smoothing raw data points

to create continuous distributions have been proposed, with the advantage of

creating summary statistics that are less sensitive to high-frequency noise in the

data [15]. The basic idea is to replace the data points with continuous kernel

functions, e.g., Gaussian probability distributions are usually used. Sizov [104]

built a framework named GeoFolk for multi-modal characterization of social

media by combining text features with spatial knowledge in order to construct

better algorithms for content management, retrieval, and sharing. The method

captured the correlations between coordinates and tags by a mixture of latent

topics, where a mixture of per-topic Gaussian distributions was adopted.
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There exist two studies that are most closely related to ours. Rattenbury

et al. [95] proposed a method for finding the tags that represent places or

events. In their method the domain of study is partitioned into segments of

some pre-defined scales, then the tag usage in each segment is analyzed, and the

significant segments where the tag is used are identified and judged whether

to indicate a place/event or not. Compared to this study, our method does

not need to partition the domain, but focuses on street-level positioning and

considers the global distribution. Moreover, we analyze the tag similarity to

increase the semantic diversity of the generated tags. The other relevant study

was proposed by Zhang et al. [135]. They also investigated the distribution of

tags over the temporal and spatial domains, but they used the distributions

as features to mine the similarity among tags. Another important difference

is that our study demonstrates a novel scenario of using the correlation model

of tags and locations, that is, fertilizing the vocabulary for sensor-rich video

annotations.

The geo-context of multimedia objects may be used for innovative appli-

cations. For example, some studies demonstrated the usage of photos with

geo-coordinates to create tourism plans [78, 34]. Others used geo-coordinates

to place the content on a map to facilitate browsing and navigation of im-

ages/videos [114, 4]. Yin et al. studied the problem of discovering and com-

paring geographic topics from GPS-associated documents [132] and investi-

gated the problem of mining and ranking trajectory patterns from the uploaded

photos with geotags and timestamps [131]. Besides tag annotation and video

search, such geographic mining based applications can benefit from the spatial-

temporal tag repository we aim to build in this work as well.
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2.3 Landmark Recognition

Geographic location tags help users to localise videos, allowing the media to

be anchored to real world locations [94]. The MediaEval Placing Task is held

annually for participants to attempt to automatically assign latitude and lon-

gitude coordinates to each of the provided test videos [55]. Nowadays, with

an increasing number of devices being available that can automatically encode

geotags, it has become easier and more efficient to record the geo-metadata at

the time when videos are taken. A variety of methods and solutions benefit

from the presence of geographically relevant metadata. Liu et al. [76] pre-

sented a sensor enhanced video annotation system (referred to as SEVA) which

enables searching videos for the presence of particular objects. However this

approach requires a controlled environment where a sensor is attached to every

object. Simon et al. [103] presented an application framework that retrieves

the visible objects within the user’s viewable scene in the real world. Arslan

Ay et al. [8] proposed a viewable scene model, based on camera location and

orientation, to describe the viewable region within a video. This viewable

scene model was further extended for efficient tagging and searching in other

work [99, 7, 58]. One challenge is the occurance of GPS and compass errors

and therefore techniques based on geographic information may sometimes face

performance issues. Zhang et al. [134] proposed an annotation and navigation

system for tourist videos based on video tracks and orientation. The method

can calibrate, or even obtain, position and orientation information by register-

ing videos to geo-referenced 3D models. It brought awareness to the importance

of geographic metadata, especially for tourist videos.

In the computer vision domain, the bag-of-words method is the current
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state-of-the-art approach for landmark image retrieval [28]. The most popular

choice for feature extraction in the BoW model is the Scale-Invariant Fea-

ture Transform (SIFT ) descriptor [77]. It has been reported that, in terms of

landmark recognition, SIFT outperforms not only global features such as color

and texture, but also other local features such as Speeded Up Robust Features

(SURF ) and Multi-Scale Oriented Patches (MSOP) [5, 127]. Yap et al. [127]

also showed that dense-SIFT works better than sparse-SIFT, and an enhanced

BoW integrated with multiresolution patches and dense-SIFT achieves the best

performance.

As the traditional BoW approach discards the spatial information of local

descriptors, the descriptive power of its image representation is severely lim-

ited. Subsequently, efforts have been made to encode the spatial information

into image content descriptions [45, 90]. Lazebnik et al. [67] proposed a spatial

pyramid matching technique for natural scene categorization. Advanced cod-

ing techniques have also been proposed, which better encode the original fea-

ture descriptors based on the vocabulary basis to yield significant performance

improvements [126, 119]. Endeavors to enrich the BoW model with spatial

information from other perspectives have been tried as well, such as using ho-

mography mappings that geometrically connect pairs of images [25, 35]. The

idea of expanding 2D images into 3D landmark models for the task of landmark

recognition has also been studied [39]. However, performance improvements are

achieved by adopting more complex spatial models with a larger vocabulary, at

the expense of high memory and computational costs.

In the last several years, an important trend has emerged within the mul-

timedia and computer vision communities in an increasing emphasis on model-

ing and use of contextual information. Researchers began to utilize geographic
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data as supplement to visual information. Several methods have recently been

proposed for landmark recognition and retrieval that integrate geographic in-

formation with content analysis, but with different goals. Zheng et al. [136]

presented a web-scale landmark recognition engine that organizes, models and

recognizes landmarks on the scale of the entire planet Earth. Avrithis et al. [10]

proposed a system that can retrieve not only landmarks but also non-landmark

images in collections of community photos by constructing a 2D scene map for

each view cluster and preserving details from all the reference images while

discarding repeated visual features. Chen et al. [21] addressed the problem of

city-scale landmark recognition from cell phone images. More advanced content

and context integration techniques for mobile landmark recognition have been

proposed to achieve better performance as well [22, 71].

Most of the recent approaches on landmark recognition and retrieval focus

either on the landmark organization and modeling from large community photo

collections, or on the real-time landmark recognition within an image taken

from a mobile phone. Our work addresses a different aspect of landmark re-

trieval from geo-referenced video collections. It also differs from previous video

retrieval techniques [107, 31] in that it has a more specific focus on landmark

retrieval and proposes landmark recognition techniques suitable for videos, not

just images. Recently, Penatti et al. [91] proposed a novel video representation

model, called Bag-of-Scenes, which uses scenes as the basic elements to rep-

resent a video. The method has shown promising results in video geocoding,

but its performance in video retrieval still remains unknown. Moreover, the

dictionary of scenes is predefined, so issues may arise when retrieving relevant

segments of an arbitrary landmark that differs from any of the scenes in the

dictionary.
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2.4 Video Similarity Search

Great efforts have been made in multimedia search research in recent years.

In the following we will first report the related work on multimodal similarity

measures based on text and visual features, then move on to describe methods

that incorporate geographic features. Lastly we will describe the limitations of

the video descriptions in the existing approaches.

Many of the previous text-based video retrieval techniques perform unsat-

isfactorily due to the mismatch between textual information and video con-

tent. To solve this problem, a number of fusion strategies have been developed

to improve video retrieval from different modalities [42]. Campbell et al. pre-

sented a fully automatic retrieval system for speech, visual and semantic modal-

ities [16]. Different types of visual features extracted from keyframes (e.g., color

and texture) and text features extracted from speech transcripts were empir-

ically evaluated by experiments for concept detection and video search. To

better exploit the underlying relationship between video shots, Liu et al. pro-

posed a PageRank-like graph-based approach which simultaneously leveraged

textual relevancy, semantic concept relevancy, and low-level-feature-based vi-

sual similarity in video ranking [74]. Additionally, several multimodal reranking

methods have been proposed to improve the initial text search results. Hsu et

al. proposed a context reranking method by leveraging the contextual informa-

tion associated with recurrent images or videos over distributed sources [48].

A context graph was constructed where the nodes are videos and the edges

are weighted by multimodal contextual similarities, then the video reranking

problem was solved through a random walk on this context graph. Tian et

al. proposed a content-based reranking technique by formulating video search
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reranking as a global optimization problem within a Bayesian framework [112].

The conditional prior indicates the ranking score consistency between visu-

ally similar samples, and the likelihood reflects the disagreement between the

reranked list and the initial one returned by text-based search. However, it is

worth emphasizing that none of these methods utilize the geographic metadata

which is one of the important kinds of contextual information.

In recent years, the geographic metadata has been widely utilized in image

mining, annotation and retrieval. Kennedy and Naaman proposed a system

that can generate diverse and representative sets of images for landmarks by

combining context and content [56]. Crandall et al. investigated the problem

of organizing a large collection of geotagged photos [26]. Kamahara et al. pro-

posed a conjunctive ranking function using both geographic distance and image

distance for image retrieval [54]. Liao et al. [72] studied geo-aware tag features

for image classification. They built tag features by tag propagation from both

visual and geo neighbors. For video, Arslan Ay et al. proposed to model a

camera’s field-of-view based on camera position, orientation, viewable angle,

and the far visible distance [8]. This viewable scene model was further utilized

for efficient video tagging and searching by other work [7, 134, 99, 58]. Arslan

Ay et al. proposed to rank geo-referenced videos based on three fundamen-

tal metrics related to the search area, i.e., the total overlap area, the overlap

duration and the accumulation of overlap regions [7]. Zhang et al. proposed

to calibrate camera location and orientation by registering videos to a mirror

3D world [134], but it requires interactive registration and accurate 3D terrain

and building models. Without leveraging the visual features, it is difficult to

detect occlusions as this world is not a static world and we do not have the

geo-information of dynamic obstacles such as vehicles.

24



CHAPTER 2. LITERATURE REVIEW

Unfortunately, little efforts have been put on fusing the visual content and

the geo-context for sophisticated video similarity measure. Many of the content-

based video retrieval solutions decompose videos into a set of keyframes and

define the video similarity based on the pairwise keyframe distances [23, 98].

This prior work usually suffers from low recall rates as the search relies on visual

duplication. To better describe video content, modern approaches utilize a set

of concepts as intermediate descriptors to facilitate video search [133, 18, 69].

The concept set is usually general and frequent so as to answer as many queries

as possible [121], yet this results in difficulties for the precise interpretation of

queries (e.g., queries for a specific building). To overcome the limitations, this

work presents a hybrid video representation, based on which precise delimited

search results can be obtained. It conjunctively leverages video spatial relevance

and local visual similarities in video ranking, so it provides excellent support

for query-by-example in geospatial video search systems. Experiments show

that, based on a geo-referenced video clip or a geotagged image, our proposed

system can effectively retrieve the most relevant video clips compared with

existing methods.
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Preliminaries

3.1 Viewable Scene Model

Video sensors are becoming ubiquitous and the volume of captured video mate-

rial is very large. Therefore, in our prior work, Arslan Ay et al. [8] proposed to

collect and fuse multiple sensor streams such as the camera location, direction,

etc., to provide a comprehensive model of the viewable scene. As illustrated

in Figure 3.1, the camera viewable scene describes the visible scene based on

a camera’s field-of-view (FOV ). The 3-dimensional FOV Scene(P, ~d, θ, φ, R)

model is formulated by the following parameters: (1) the camera position P ,

(2) the camera direction (i.e., compass) vector ~d, (3) the horizontal and vertical

camera viewable angles θ and φ which describe the angular extent of the scene

filmed by the camera, and (4) the far visible distance R which is the maximum

distance at which a large object within the camera’s field-of-view can be rec-
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ognized. The parameters θ, φ and R are constants that can be estimated from

the optics of the camera used for video recording [43].

P

R

Θ 

ɸ 
d
→ 

Θ

P: camera location

d: camera direction vector

Θ: horizontal viewable angle

ɸ: vertical viewable angel

R: visible distance

→ 

Figure 3.1: Illustration of the 3D FOVScene model.

We created special geospatial video recording applications for both the

Android- and iOS-based smartphones. They acquire, process and record lo-

cation and orientation metadata along with the video streams. To obtain the

camera orientation, the apps employ the heading, pitch and roll acquired from

the compass and accelerometer sensors. Camera location coordinates are ac-

quired from the embedded GPS sensor. The collected geographic metadata is

recorded in JSON format. Each metadata item in the JSON data corresponds

to the viewable scene of a particular video frame. For synchronization purpose,

each metadata item is associated with an accurate timestamp. The users can

choose to upload their recorded geo-tagged videos to our server, where peo-

ple can submit geo-queries to search and view the videos via a web interface.

Note that compared to other geo-referenced video management systems, which

usually assign a single geo-coordinate to a whole video [46, 111], ours provides

the viewable scenes at frame-level granularity, such that it can enhance the

accuracy of video processing based on geo-context.
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3.2 Automatic Geo-tagged Video Annotation

Based on the camera viewable scene model introduced above, we leveraged

the geospatial properties of videos and proposed a sensor-rich and data-driven

approach to automatically generate tags for them [8, 99]. Here we briefly review

the key features of this approach.

The annotation process is automated by querying proper data sources using

the viewable scene descriptions [99]. The method has two major stages. In stage

one, the data sources are queried for visible objects in the videos where the ob-

jects’ visibility is calculated through spatial computations. Occlusion detection

is performed to remove hidden objects. The system then generates descriptive

textual tags based on the object information retrieved from the geo-information

services, such as names, types, locations, dimensions, etc.. Figure 3.1 shows the

3D viewable scene model we adopted and Figure 3.2 illustrates how the visible

objects are retrieved for each frame (the visible area is highlighted in blue while

the occluded area is highlighted in yellow). In stage two, six relevance criteria

are introduced to rank the tags based on their relevance to the videos, which

are the closeness to the FOVScene center, the distance to the camera location,

the horizontally and vertically visible angle ranges, and the horizontally and

vertically visible percentages.

After ranking tag candidates based on their relevance, the video segments

for which the tags are relevant to are determined. Unlike many other video

annotation techniques, this approach can associate tags precisely with the video

segments in which they appear, rather than the whole video clip. Therefore,

given a query of a certain tag, we are able to only return those relevant video

sections to the user.
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Figure 3.2: Illustration of a sample FOVScene and the visible objects which
are supplied by Google Earth and determined by conducting geometry compu-
tations (Copyright c© 2013 Google).

3.3 Datasets

The geo-referenced video datasets we used in this dissertation were collected

from the GeoVid 1 website maintained by our group. Users can record and

share videos using the GeoVid smartphone applications, or explore the world

by watching videos via a web browser. Moreover, the GeoVid project also pro-

vides APIs 2 for users to obtain public videos together with their corresponding

geographic metadata. The location and orientation metadata is recorded along

with each video stream by sampling the GPS sensor every second and the com-

pass sensor every 200 milliseconds.

There are other two auxiliary data sources that are frequently used in this

dissertation. For online mapping services, we chose the OpenStreetMap (OSM),

which is a crowdsourcing project that provides editable maps of the world.

1http://geovid.org/
2http://api.geovid.org
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Useful properties, such as name, type, footprint, and height, can be easily

extracted from the map data for a great number of geographic objects. In the

early stage of its development, issues such as important landmarks missing or

height information of buildings unavailable hindered its utilization in geo-based

applications. Therefore, in our early work we also collected building heights

from other sources such as EMPORIS3, or estimated based on other clues, e.g.,

the number of storeys. But as the data contribution growth has continued to

rise quickly [37], the map data has been greatly enriched. Nowadays, users can

even build three dimensional city models from it easily [120].

For social sharing services, we collected Flickr images together with their

associated timestamps, textual annotations, geo-coordinates, geotag accuracy

levels, etc.. Flickr is one of the best online photo management and sharing

applications. We used Flickr images as the training data for content-based or

hybrid analysis, and tried to mine positionable tags including event names from

Flickr in order to enrich the spatial tag repository of OpenStreetMap.

3.4 Notations

The important notations used in this dissertation are listed in Table 3.1.

Table 3.1: Notations used in this dissertation.

Symbols Meanings

FOV model

P Camera location with geo-coordinates
~d Camera direction vector
θ Camera horizontal viewable angle
φ Camera vertical viewable angle
R Camera visible distance

3http://www.emporis.com/
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Table 3.1-continued from previous page

Symbols Meanings

Automatic geo-metadata correction

S A sequence of video frames
L The associated location sequence
D The associated viewing direction sequence
[x, y, z] The UTM coordinates and altitude associated with a location
[α, β, γ] The yaw, pitch and roll associated with rotation
K The intrinsic parameter matrix of a camera
Ri The rotation matrix of the i-th frame
Ti The translation vector of the i-th frame
Eapprox The error term of smooth approaximation
Erotation The error term of relative rotation
Edirection The error term of absolute viewing direction
µ1, µ2, µ3 The balancing factors of the error terms
Sr A set of virtual scenes
Labelc(s) The semantic label matrix of a frame s
Labelp(s

r) The projection label matrix of a scene sr

Dist(L1, L2) The defined distance between two label matrices L1 and L2

Spatial-temporal tag mining

T Tag collection
G(τ) The geo-coordinates related to a tag τ
T (τ) The timestamps related to a tag τ

~γ, ~µ, ~Σ The parameters in Gaussian mixture models for tag geo-
graphic distribution modeling

Rcr The geographic confidence region
f1(τ) The number of positioning locations in the AOI
f2(τ) The prior sum of the positioning locations in the AOI
minPts The minimum number of points required to form a cluster
NP The noise control for DBSCAN
α The standard deviation control for DBSCAN
CNum, ICI Threshold parameters for estimating a tag’s temporal visible

intervals

I(τ)
vis The temporal visible intervals for tag τ

Sb(τ) The visual relevance score of a tag τ
Sp(τ) The popularity promotion score of a tag τ
ω The scaling factor between Sb(τ) and Sp(τ)
S(τ) The overall saliency score of a tag τ for ranking
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Table 3.1-continued from previous page

Symbols Meanings

Video landmark retrieval

X The image local descriptors
B The codebook for feature coding
C The sparse codings for X
Gframe The geometry of a frame viewable scene
Glandmark The geometry of a queried landmark
Go The geometry set of the relevant geographic objects
V isibleR The visible angle ranges of the queried landmark
Hybrid similarity search

r A geographic region
f A video frame
ol The overlap between a FOVScene and a geographic region
P c The centroid of the overlap
~dc The vector pointing from the camera location to the overlap

centroid
A(ol) The area of overlap ol
A(r) The area of geographic region r

Â(ol) The normalized area of overlap ol
D(P c, P ) Euclidean distance between P c and P

Dθ(~dc, ~d) Angular distance between ~dc and ~d
Kσ,σθ

A 2D Gaussian kernel
σ, σθ The Gaussian parameters used in generating the geo-

histograms in the proposed video representation
histgeo(v) The proposed geo-feature for video v
V S(r) Visual saliency of geographic region r
SS(r) Social saliency of geographic region r
λ The balancing factor between V S(r) and SS(r)
saliency(r) The overall saliency score of geographic region r
wvis

r (vi, vj) The local visual similarity in region r between videos vi and
vj

Sim(vi, vj) The proposed similarity measure between videos vi and vj
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Automatic Geographic Metadata

Correction

4.1 Introduction

Online video content is continuing to experience rapid growth. Uploading,

sharing, and viewing videos on the web have become an everyday activity in

people’s lives. With the ubiquity of sensor-equipped smartphones and tablets,

it is increasingly common for users to take images or record videos together

with the geographic properties of the camera (e.g., location and viewing direc-

tion). The presence of the geospatial contextual information has opened up

new opportunities in video management systems. This is especially the case

with fine-grained contextual information where every video frame is tagged. A

great number of applications, such as navigation systems [134], travel recom-
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mendation [78], and video tagging [99], can benefit from the geo-metadata by

utilizing it as an alternative or supplement to the traditional content analysis

approaches. However, the use of geographic information is sometimes ham-

pered by the presence of inaccuracies in the raw sensor data. While for GPS

this issue has been extensively studied [17, 20], only a few efforts have been

made on the correction of orientation data acquired from digital compasses and

accelerometers [81, 89]. The difficulty level of this problem is especially high

since (a) unlike GPS, a compass sensor does not provide any accuracy bounds,

and (b) from our empirical observations compass errors can sometimes be very

high (up to 180◦). Although the Structure from Motion (SfM) technique can be

applied for camera pose determination, robust estimation results usually rely

on the significant overlap and the large baseline (geo-distance between cam-

era locations) among the images to perform 3D reconstruction [70, 96, 123].

Moreover, such methods do not make full use of the geographic priors in the

metadata while reconstructing the scenes and therefore result in high computa-

tional costs. In this study we argue that, with the rapid growth of spatial data

available online, web images are no longer the only data source that may be

utilized. Buildings and other objects within a scene can be efficiently collected

from geographic information services (GIS). Thus, we propose to use the scene

context obtained from GIS instead of the 3D models reconstructed from large

scale images to geo-register video frames to world maps.

In recent years, spatial data have become increasingly available on the

Internet. Online mapping services enable users not only to consume but also

contribute geospatial information voluntarily. For instance, OpenStreetMap

(OSM) is an open project that provides user-generated maps of the world. In

the early stage of its development, issues such as important landmarks missing
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Automatic Geographic Metadata Correction

Geographic Priors Geographic Context
Location:

391: 1.2870059,103.8547517,5
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…

Viewing Direction:
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414: 223.596039,-2.665402,97.082007

…

Raw sensor data

Geographic features: OSM data Visual features: Color, SIFT…

<bounds minlat="1.2782949" 
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maxlon="103.8746328"/> <node 

id="25451929" visible="true" version="4" 

changeset="18729821" timestamp="2013-11-

05T14:11:53Z" user="cboothroyd"

uid="255802" lat="1.2952114" 

lon="103.8716627"/>
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Geo-based Applications
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Objectives 
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Merlion
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Figure 4.1: The overall architecture of the proposed automatic geo-metadata
correction framework. Raw sensor data is enhanced to provide more accurate
geographic information to downstream applications.

or height information of buildings unavailable hindered its utilization in geo-

based applications. But as the data contribution growth has continued to rise

quickly [37], the map data has been greatly enriched. Nowadays, users can

even build three dimensional city models from it easily [120]. It is reasonable

to assume that the quality of the spatial data will continue to improve over time.

Numerous techniques and solutions can benefit from the valuable information

that geo-information services provide about the world.

Figure 4.1 illustrates the overall architecture of our proposed automatic

geo-metadata correction framework. In this study, we mainly focus on the cam-

era orientation correction and formulate the task as an optimization problem

by leveraging a set of complementary data sources. First of all, constrained by

the geographic priors of the sensor readings, the optimized camera parameters

should be near the corresponding input data. Next, we extract local visual de-

scriptors such as SIFT to perform feature matching between consecutive frames

for relative rotation estimation. According to Olsson and Enqvist [88], although
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frames have short baselines that increase the ambiguity in depth determination,

it does not have much impact on the rotation estimates. Finally, with the ge-

ographic context derived from OSM, we geo-register the frames to the world

coordinate system by quantifying the distance between the pixel semantic labels

and the 3D projection of the scene. Two distance metrics have been designed

and implemented in our system, namely the pixel-based and the pyramid-based

measure that encode the spatial information of the semantic labels with differ-

ent granularity. By minimizing the formulated objectives, we process the raw

sensor data to provide more accurate geographic information as an input for

downstream applications.

4.2 System Overview

4.2.1 Design Principles

Our objective is to minimize the errors in the geo-metadata recorded by sensors.

To achieve this goal, we have formulated design principles by utilizing a set of

complementary data sources as follows:

Prior knowledge:

The geographic metadata recorded by GPS, compass and accelerometer.

Goal: the optimized locations and orientations should not drift too far

away from the input priors.

Visual content:

The visual clues extracted from frames. Goal: the relative orientation

between frames should be consistent with the rotation matrix estimated

by keypoint matching.

36



CHAPTER 4. AUTOMATIC GEOGRAPHIC METADATA CORRECTION

f 

x

y

z

Camera Coordinate 

System
x

y

Image Plane

World 

Coordinate

System

Camera FoVs

xy

z

Ow Oc

N

Figure 4.2: Illustrations of the coordinate systems used in our framework.

Geographic context:

The 3D scene built from OpenStreetMap. Goal: video content should be

aligned with the 3D scene in respect of the corresponding external camera

parameters.

To follow the above criteria, we begin by describing the problem formally.

4.2.2 Problem Description

Given a sequence of video frames, S = {s1, s2, ..., sn}, and its associated sensor

readings. The video geo-metadata correction problem is formulated as finding

the optimal location L = {l1, l2, ..., ln} and viewing directionD = {d1, d2, ..., dn}

sequences that simultaneously satisfy the aforementioned design principles.

Note that L and D have the same form with the input priors Lp and Dp derived

from the raw sensor data, both of which are formatted as introduced below.

In our framework, we use three coordinate systems to describe the location

of a point as shown in Figure 4.2. The image coordinate system is defined to

37



CHAPTER 4. AUTOMATIC GEOGRAPHIC METADATA CORRECTION

be located at the centre of the image with x and y axes pointing to right

and down, respectively. The origin of the camera coordinate system is located

f units before the image plane along the z axis where f is the focal length.

The world coordinate system is placed at the geo-coordinates of the first input

frame s1 with x axis pointing to the east and y axis pointing to the south.

Subsequently, we interpret the raw sensor readings associated with a frame

si into the location lpi and the viewing direction dpi with respect to the world

coordinate system. The camera location prior Lp = {lp1, l
p
2, ..., l

p
n} is given by

lpi = [xp
i , y

p
i , z

p
i ]

⊤ where xp
i and ypi are the UTM coordinates converted from

latitude and longitude tuples and zpi is related to altitude setting to 1.5 by

default. The camera orientation prior Dp = {dp1, d
p
2, ..., d

p
n} is presented by

dpi = [αp
i , β

p
i , γ

p
i ]

⊤ which are the angles of yaw (also known as heading), pitch

and roll that describe the rotations of the coordinate system around z, y, and x

axis, respectively. For example, a positive yaw rotates the camera to the right,

the angle of which always equals to the compass reading.

4.3 Video Georegistration

We start with the introduction of the camera model that we adopt in the

framework. To describe the relations between different coordinate systems, we

introduce how to compute the external camera parameters based on the raw

sensor data and present the formulas for coordinate transformations between

different systems. With the above preliminary knowledge, we describe the

formulated objectives for error minimization in the raw geo-metadata.
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4.3.1 Camera Model

Without loss of generality, we assume the intrinsic parameter matrix of a cam-

era to be K = diag([f, f, 1]). The focal length f is either known for calibrated

cameras or can be effectively estimated by content-based approaches [40, 14].

For a 3D point p in the world coordinate system, its corresponding image pro-

jection q can be computed based on a rotation matrix R and a translation

vector T using the pinhole camera model:

λ







q

1






= K (Rp+ T ) (4.1)

where λ denotes the depth factor. The rotation R and translation T can be

derived from L and D, which are the location and viewing direction sequences

that need to be optimized. In linear algebra, a rotation matrix is a matrix that

is used to perform a rotation in Euclidean space. Using the right hand rule,

the three basic rotation matrices that rotate a vector around x, y, or z axis by

an angle of θ are given by

Rx(θ) =












1 0 0

0 cos θ sin θ

0 − sin θ cos θ













Ry(θ) =












cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ













Rz(θ) =












cos θ sin θ 0

− sin θ cos θ 0

0 0 1













Recall that for the i-th input frame si, the camera viewing direction di =

[αi, βi, γi]
⊤ is given by yaw, pitch, and roll, which are the Tait-Bryan angles

representing intrinsic rotations about z− y′−x′′. Subsequently, the rotation of

the camera coordinate system with respect to the world coordinate system can
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be obtained from the above three elemental intrinsic rotations using matrix

multiplication: Rx(γi)Ry(βi)Rz(αi). According to this change in the coordi-

nate system (also known as passive transformation), the rotation matrix Ri is

computed as

Ri = (Rx(γi)Ry(βi)Rz(αi))
⊤ (4.2)

Comparatively, the calculation of translation Ti is quite straightforward,

which is simply Ti = l1 − li.

4.3.2 Energy Definition

Given a video sequence associated with geographic metadata, we are interested

in finding the optimal locations L and viewing directions D that minimize the

following energy function:

E = µ1Eapprox + µ2Erotation + µ3Edirection (4.3)

where Eapprox keeps the outputs from drifting away from the priors too much.

Erotation and Edirection control the errors of relative rotation and absolute viewing

direction, respectively. Parameters µ1, µ2 and µ3 are balancing factors that

control the weights assigned to different objectives.

Smooth Approximation

We formulate the approximation requirement as Eapprox = Eloc
approx + Edirec

approx.

The smoothing cubic spline algorithm [92] is adopted to process the locations
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Eloc
approx = L(t, x) + L(t, y) and function L(·) is given by

L(t, x) = ρ

n
∑

i=1

(

xp
i − Sx(ti)

σi

)2

+ (1− ρ)

∫ tn

t1

(S ′′
x(t))

2dt (4.4)

where t is a sequence of timestamps and Sx(t) is a set of cubic polynomials to fit

the observations t and x. The parameters σi can be used to change the weight

of each point in the error term. We set it to the accuracy measure associated

with GPS that indicates the degree of closeness between the GPS reading and

the true location. For the approximation of camera viewing direction, we try to

minimize the distance between the target D and the input prior Dp described

by the sum of L2 norms, which is

Edirec
approx =

n
∑

i=1

‖di − dpi ‖2 (4.5)

Relative Rotation

Next we discuss how to estimate the error of relative rotations, Erotation. For a

3D point p in the world coordinate system, let qsi and qsi+1 denote its projections

on two consecutive frames si and si+1, respectively. If the frames are sampled

at a relatively high frequency (e.g., 5 fps), it is reasonable for us to assume

that frames si and si+1 are taken at the same location. Therefore, according to

Eq. 4.1 we have

λi+1







qsi+1

1






= KRi+1R

−1
i K−1 · λi







qsi

1






(4.6)

Given a set of matched keypoints qsi and qsi+1 by feature matching, we

are able to rewrite Eq. 4.6 into a set of linear equations of the form Aiei = 0,

41



CHAPTER 4. AUTOMATIC GEOGRAPHIC METADATA CORRECTION

where ei is a vector consisting of the entries of matrix KRi+1R
−1
i K−1. Recall

that Ri = (Rx(γi)Ry(βi)Rz(αi))
⊤, so vector ei can be written in the form of the

camera focal length f and the target viewing direction di. Therefore, we seek

to optimize the sequence of camera orientations D by minimizing the sum of

‖Aiei‖2 over the input frames

Erotation =
n−1
∑

i=1

‖Aiei‖2 (4.7)

For the keypoint detection and matching, we use SIFT as the visual fea-

ture [77]. It provides a local descriptor for each keypoint including its location,

scale and orientation. Thereafter, we match the keypoints between consecutive

frames by first querying for the nearest neighbors, followed by using a minimal

solver in conjunction with RANSAC to filter out possible outliers. The set of

geometrically consistent matches that have been found as described above is

used to construct matrices Ai in Eq. 4.7.

Absolute Viewing Direction

To quantify the error of the absolute viewing direction of a camera is less

straightforward and requires additional information of the scene where the

video is taken. Recently, image-based localization techniques [70, 96] have

been proposed that match photos to pre-built 3D models of the world. Al-

though promising performance gains have been reported, the construction of

3D scenes usually relies on large amounts of high quality input images. Here

we argue that photos are no longer the only data source that can be utilized.

Nowadays, the information about a scene can be easily collected from mapping

services that are freely available (e.g., OSM). Additionally, to facilitate solving
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problems in computer vision, efforts have also been made on building 3D world

by extending OSM [120]. Aided by the pre-built 3D world, the scene captured

in an image can be well estimated based on the camera parameters derived

from the geo-metadata.

Alternatively, we can also try to understand an image scene based on the

content by semantic pixel labeling, e.g., we adopt the SuperParsing method [113]

in our experiments. As shown in Figure 4.3, it annotates every pixel with a

semantic label (e.g., building, water, road, and etc.), which provides a good

outline of the semantic classes and their distributions in the image. On the

other hand, as we mentioned before a scene can be labeled based on 3D pro-

jection techniques. OSM uses tags, such as building, road, and etc., to indicate

the category of an object. Therefore, the semantic labels can be derived from

the 2D projections of the world on the image plane. We illustrate this idea in

Figure 4.3 by giving two examples, namely the Marina Bay Sands hotel and

the Marina Bay Reservoir. If the input of camera location and orientation is

close to the ground truth, the 3D projection results should be well aligned with

the semantics derived from the content. This observation provides us a simple

but effective solution to estimate the absolute viewing direction of a camera.

For a frame si, let Labelc(si) and Labelp(si) denote the semantic labels

derived from the image content and the world projection, respectively. Con-

sidering the orientation of a camera is a continuous variable that has the form

of di = [αi, βi, γi]
⊤, it may not be feasible to compute the distance between

Labelc(si) and Labelp(si) every time we change the camera parameters for op-

timization. Therefore, we alternatively choose to sample a set of virtual scenes

Sr = {sr1, s
r
2, ..., s

r
m} with fixed camera parameters as references, based on which

the absolute viewing direction error of frame si, denoted by Esi
direction, can be

43



CHAPTER 4. AUTOMATIC GEOGRAPHIC METADATA CORRECTION

Marina Bay Sands 

Hotel Towers

Marina Bay 

Reservoir

Database

Geospatial

videos

Geographic 

information 

services

Camera 

pose

Visual 

content Semantic 

labeling

3D 

projection

3D models

Same scene or 

different?

Figure 4.3: Scene understanding by semantic pixel labeling and 3D projection
based on camera pose and OSM data.

estimated as a weighted sum using the following equation

Esi
direction =

m
∑

j=1

wij ·Dist
(

Labelc(si), Labelp(s
r
j)
)

(4.8)

where wij denotes the weight of the j-th reference scene srj with respect to

frame si. Without loss of generality, the reference scenes Sr can be selected by

sampling uniformly in each of the six dimensions of camera pose. wij should

be defined based on the similarity of camera parameters between si and srj , as

scenes that are taken within a small area pointing to similar directions can be

considered as good representatives for each other. The details about how to

decide wij will be discussed in Section 4.3.3, as it is related to the selection of

Sr and the optimization strategy.

The next task for us is to compute the difference between Labelc(si) and

Labelp(s
r
j). We select a list of concepts including building, water, road, sky

and pedestrian to annotate pixels. Both Labelc(si) and Labelp(s
r
j) are matrices
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whose entries are integer numbers that serve as the index of the pixel labels.

Thus, they have the same size as the input frame si, denoted by height(si) ×

width(si). In our framework, two distance measures are analyzed. The first one

is pixel-based. We count the number of pixels that are labeled with the same

concept in both Labelc(si) and Labelp(s
r
j) and normalize the value as follows

Dist
(

Labelc(si), Labelp(s
r
j)
)

= 1−
numofzeros(Labelc(si)− Labelp(s

r
j))

height(si) · width(si)

(4.9)

where function numofzeros(M) returns the number of zero entries in matrix

M . This measure estimates the pixel-wise distance between two label matrices,

but the results can be sometimes susceptible to the small changes in camera

pose. Inspired by the spatial pyramid matching designed for scene recogni-

tion based on local features [67], we also implement a pyramid-based distance

measure by partitioning the label matrix into increasingly fine cells and com-

puting histograms of concepts for each cell. More specifically, we construct a

spatial pyramid that has a total of Lpyr levels. At level lpyr = 1, 2, ..., Lpyr,

the label matrix is partitioned into 2lpyr−1 sub-regions. For each sub-region,

a histogram of concepts is generated by counting the number of times that

each label appears. Let histlpyr(M) be the vector formed by concatenating

the histograms generated on level lpyr for a label matrix M . Intuitively, we

would like to penalize the features of larger cells because they preserve decreas-

ing spatial information. Therefore, we assign weights 1
2Lpyr−lpyr

to histograms

histlpyr(M) and concatenate the weighted histograms into a feature vector

which is hist(M) = [hist
1(M)⊤

2Lpyr−1 , hist
2(M)⊤

2Lpyr−2 , ..., hist
lpyr (M)⊤

2Lpyr−lpyr
, ...]⊤. Subsequently, the

distance between two label matrices can be measured based on this pyramid-
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based feature as

Dist
(

Labelc(si), Labelp(s
r
j)
)

= 1−
hist(Labelc(si))

⊤hist(Labelp(s
r
j))

‖hist(Labelc(si))‖2 · ‖hist(Labelp(srj))‖2

(4.10)

We compare the performance of the above two distance measures and the

analysis results are discussed later in Section 4.4. Finally, the absolute viewing

direction error Edirection in the energy function (see Eq. 4.3) is estimated by the

sum, Edirection =
∑n

i=1 E
si
direction.

4.3.3 Energy Minimization

Inference in our model can be conducted by adopting an efficient two-stage

optimization strategy [60]. First, we optimize the location L by minimizing the

energy term Eloc
approx. Next we optimize the viewing direction D by keeping the

previously estimated location L fixed.

According to Eq. 4.4, we smooth the GPS trajectories with cubic splines.

As it is a traditional method, here we focus on discussing the optimization

of the viewing direction D while keeping the location L fixed. In order to

simplify the calculation of wij in Eq. 4.8, we sample the virtual scenes Sr at

the optimized locations in L instead of a uniform sampling in the 3D space. As

discussed before, wij should be formulated based on the similarity between the

camera poses of input frame si and reference scene srj . Given the above sampling

strategy of Sr, only the virtual scenes that are located at li will be considered

while computing Esi
direction. In other words, let lrj and drj denote the location and

orientation associated with scene srj . The weight before normalization w̃ij = 0

if lrj 6= li. Otherwise, we define the orientation difference between di and drj ,

46



CHAPTER 4. AUTOMATIC GEOGRAPHIC METADATA CORRECTION

Dist(di, d
r
j), to be the degrees that the unit vector along the z axis [0, 0, 1]⊤

rotates from one camera coordinate system to the other. Thereafter, we convert

distance to similarity using equation w̃ij = 180 − Dist(di, d
r
j), and normalize

the weights by the softmax function,

wij = softmaxj(w̃ij) =
exp w̃ij

∑

j exp w̃ij

(4.11)

The softmax function reduces the influence of reference scenes whose cam-

era pose greatly differs from the input frame, and limits the weights to have a

sum of one. After the normalization, we use the simplex search algorithm [64]

to optimize the camera viewing directions D with the initial point setting to

the geographic priors Dp derived from the geographic metadata.

4.4 Evaluation

4.4.1 Experimental Setup

We evaluated our proposed algorithm on the publicly available geo-referenced

video dataset from the GeoVid 1 website. To evaluate our approach, we man-

ually annotated the ground truth of camera poses based on map services (e.g.,

Google maps and Google Street View). We randomly selected ten sensor-rich

videos taken in Singapore to carry out the experiments. The description of the

dataset is illustrated in Table 4.1. The average video duration of this dataset

is 28 seconds. We sampled frames every three seconds to let users perform the

ground truth annotation and interpolated the camera parameters between the

sampled frames for later comparisons.

1http://geovid.org/
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Table 4.1: Georeferenced video dataset description.

Video duration
Shortest Longest Average
20 sec 62 sec 28 sec

No. of videos 10 videos with 83 ground truth labels

The dataset might still be small mostly because of the effort needed to ob-

tain the ground truth annotations, but its size is comparable to other camera

orientation determination papers [89, 81]. Moreover, to the best of our knowl-

edge, this work is among the early efforts that have been made on solving the

problem of automatic geo-metadata correction for video sequences.

4.4.2 Geographic Metadata Correction

We processed the raw geo-metadata and present the error reduction results.

The GPS accuracy of our test dataset is good, as all the accuracy measures

associated with GPS (σi in Eq. 4.4) are less than or equal to five. Since this

work focuses on the correction of the orientation data, at the current stage we

simply processed locations by the traditional smoothing technique with cubic

splines. Here we report the smoothing result on a more challenging dataset (the

accuracy value max(σi) > 50) [117] in Table 4.2. The parameter ρ in Eq. 4.4

was set to 0.6. We show the precision before and after processing at different

geographic margins of error.

Table 4.2: Precision comparison of raw and processed GPS data.

Radius 10 m 20 m 30 m 40 m 50 m

Raw Data 68.2% 91.0% 92.0% 92.9% 93.4%
Processed 70.9% 92.0% 93.4% 94.5% 95.2%

As can be seen, there was an improvement on location accuracy within all

error margins. On average, the smoothing splines were able to reduce the error
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per frame by 27.32%. Further improvements can be obtained by applying more

advanced techniques, such as mapping GPS traces to road maps [17]. Those

approaches can be integrated into our framework easily as we adopt a two-

stage optimization strategy by processing camera location and camera viewing

direction separately in different modules.

Next, we compared the camera orientation errors and report the results

in Figure 4.4. Recall that the viewing direction of a camera has the form of

d = [α, β, γ]⊤. As most of the users hold the camera perpendicular to the

ground while taking a video, the variations in pitch and roll are usually very

small (i.e., β ≈ 0◦ and γ ≈ 90◦). Therefore, we focus on evaluating the

correction of yaw, α, and define the error to be the absolute angle difference

between the measured and the true values in degrees. In other words, let αt
i and

αe
i denote the true and the estimated camera heading for frame fi. The error δi

is computed as δi = min (‖αe
i − αt

i‖, 360− ‖αe
i − αt

i‖). For an input video, the

orientation error is computed as the average of its frames, i.e., E = 1
n

∑n

i=1 δi.
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Figure 4.4: Raw and processed camera orientation error comparison for indi-
vidual videos.
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Based on the measurement above, we compared our proposed method with

ViewFocus, which is the most related to our work that determines the camera

direction with the existence of geo-metadata [80, 81]. Considering the baseline

between frames is usually small, we further optimized the result of ViewFocus

by conjunctively minimizing the distance to both the estimated external camera

parameters and the raw geographic priors (both location and orientation). For

the image-based methods discussed in the related work (see table 2.1), it is

difficult to perform a fair comparison due to the lack of third-party auxiliary

images. Moreover, such techniques are not always applicable, as the appearance

of at least one geo-object in the content is required to perform robust feature

matching and 3D reconstruction. As shown in Figure 4.4, raw data represents

the geographic priors derived from the input sensor readings. Pixel-based (see

Eq. 4.9) and Pyramid-based (see Eq. 4.10) indicate the distance measure we

used to quantify the difference between two label matrices. The reference scenes

Sr were sampled at the optimized locations of the input frames with viewing

directions sampled uniformly every 10 degrees. The balancing coefficients in

Eq 4.3 were set to µ1 = 1, µ2 = 0.02, and µ3 = 1000.

The average error reduction obtained by ViewFocus was 31.4%. Without

considering the geo-context derived from OSM, it was only able to work well

on certain videos (e.g., video 4), while being less effective for the rest of the

cases. Actually the correction effectiveness is related to the error patterns

of the geo-metadata. We will discuss this in the next paragraph by showing

some examples. Among the three approaches, the pyramid-based method is

the most effective and outperforms its competitors in eight out of the ten cases.

It obtained an average error reduction of 58.8%, where the best and the worst

cases were an 80.1% and 36.2% error decrease, respectively. Compared with the
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pixel-based distance measure, the pyramid-based approach achieved an average

of 27.6% improvement over the former. This is mostly because the value of

the pixel-based measure is susceptible to the changes in camera pose. Even a

small shift in camera orientation may have a big impact on the result of the

pixel-based distance measure. This might cause some issues as we sampled the

reference scenes Sr with a relatively coarse granularity. It is possible to further

improve the effectiveness by adopting a more fine-grained sampling approach,

but this will also increase the computational complexity. Comparatively, the

pyramid-based measure achieved better results as it is less sensitive to camera

changes while encoding part of the spatial information of the semantic labels

into the distance calculation.

To better understand real world effects, we further examined the raw,

the processed and the ground truth camera orientation sequences in our test

dataset. For the eight videos where the average orientation error of the raw geo-

metadata was larger than five degrees (videos 2 and 6 were excluded), we plotted

the compass readings in the beginning 13 seconds of each video in Figure 4.5.

The graphs were sorted ascendantly according to EV iewFocus −EPyramid, which

is the difference between the orientation errors obtained by the pyramid-based

and the ViewFocus approach. In other words, we show the plots with increasing

effectiveness of the former method w.r.t. the latter from Figure 4.5(a) to 4.5(h).

As can be seen, interestingly the videos in different rows exhibited different

inaccuracy patterns of the raw geo-metadata. While ViewFocus worked well

on cases where the raw compass readings were distributed around the truth

values and the inaccuracy mostly came from the relative rotation errors (e.g.,

Figures 4.5(a)), it became highly difficult to handle the camera orientation shift

without considering the geographic context of the world. As shown in the last
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(b) Video No. 8
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(e) Video No. 9
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(f) Video No. 7

 100

 110

 120

 130

 140

 150

1 4 7 10 13

O
ri
e
n
ta

tio
n
 R

e
a
d
in

g
s 

(d
e
g
re

e
)

Video Timecode (second)

Ground Truth
Raw Data

ViewFocus
Pixel-based

Pyramid-based

(g) Video No. 10

 180

 200

 220

 240

 260

1 4 7 10 13

O
ri
e
n
ta

tio
n
 R

e
a
d
in

g
s 

(d
e
g
re

e
)

Video Timecode (second)

Ground Truth
Raw Data

ViewFocus
Pixel-based

Pyramid-based

(h) Video No. 1

Orientation shift where the relative rotations stay approximately accurate

Figure 4.5: Effectiveness analysis of sensor data correction algorithms with or
without geographic context and its connections to the error patterns in the
camera orientation readings.
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row, the orientation shift resulted in the incorrectness of the absolute orientation

values while the relative rotations stayed approximately accurate. By applying

our proposed optimization strategy, this kind of error can be effectively reduced

by the third energy term, Edirection, in Eq. 4.3, which matches the image scene

to the projections of the world. Moreover, the second energy term Erotation

limits the error of the relative rotation between consecutive frames. This part

is similar to ViewFocus, which is capable of correcting the corrupted compass

readings caused by sudden delays or outliers.

4.5 Summary

We formulated the sensor data correction as an optimization problem. To

improve the efficiency and the feasibility of the framework, we built 3D scenes

based on OSM data. Next, we projected the 3D models onto the image plane

and compared it to the image scene analyzed by pixel labeling. This technique

provided us with an efficient way to quantify the absolute viewing direction

error of a camera. By analyzing the real-world data, we draw a number of

interesting observations that we summarize as follows:

(i) The geo-metadata errors can be roughly divided into two categories

by checking if there are serious corruptions in terms of the relative rotation.

Content-based approaches can effectively reduce rotation errors between con-

secutive frames, but without the context of the scene it becomes highly difficult

to correct orientation shift where the relative rotations are approximately ac-

curate.

(ii) Most of the existing image-based methods are only applicable to pho-

tos that clearly capture at least one object in order to perform robust keypoint
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matching and reconstruction. Comparatively, we geo-register cameras by con-

junctively considering the distribution of geo-objects and the rotation consis-

tency in the temporal domain. Good estimation can be obtained as long as

the landscape, where the video was taken, is fairly diverse towards different

directions.

(iii) One factor that may have an impact on our approach is the detail

level of the spatial data available from mapping services, e.g., the label matrix

generated by 3D projection can be imprecise due to missing buildings. For-

tunately, with the rapid growing collection of map data, it is reasonable to

expect that the proposed method will be able to geo-register video sequences

with increasing accuracies.

Please note that this work has been conducted in the last year of my

PhD, so the geo-metadata used in the following three chapters refer to the

original sensor data. At the current stage, the geo-based 3D projection and the

content-based semantic pixel labeling are regarded as two separate modules in

our framework. As part of the future work, we are interested in developing

a joint camera geo-registration and image scene understanding algorithm to

further improve the results in both of the subtasks.
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Spatial-Temporal Tag Mining

5.1 Introduction

To search videos from a large corpus, annotation (or tagging) is still one of

the most practical and powerful tools [6]. However, manual annotations are

laborious, often ambiguous, and their uneven quality has been well docu-

mented [124, 109]. In particular, annotating a video is more challenging than

annotating an image, because it consists of multiple scenes, where some are

easily overlooked. Therefore, researchers have investigated solutions to auto-

mate or semi-automate the annotation process. Principally, candidate tags for

an image or a video can be inferred from its nearest neighbors based on cer-

tain similarity measurements. Some prior solutions only analyzed the visual

features of multimedia content, which is very challenging for open domains

and usually very compute-intensive [51]. In recent years, data-driven methods
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have been suggested which leverage the collective knowledge that resides in

some social multimedia applications [101, 100, 122]. The annotation task can

also be addressed by employing relevance models, which are used to estimate

the joint distribution of words and images based on a high quality training

dataset [52, 83, 32]. With the increasing availability of geo-tagged images from

social sites such as Flickr, geo-aware tag suggestion tools that consider both

the geographic context and multimedia content have also been proposed [3, 84].

While most of the existing work focuses on entire-video tag suggestions, several

techniques have been proposed to localize tags at the shot- or even frame-level

granularity [11, 12, 99].

In our prior work, we leveraged the geospatial properties of videos and pro-

posed a sensor-rich and data-driven approach to automatically generate tags for

them [8, 99]. This approach does not analyze the visual features, and therefore

is particularly effective specifically for geography-oriented videos. This method

first models the viewable scenes of the camera as geometric shapes by means

of its accompanied sensor data, and then determines the geographic objects

that are visible in the video by querying geo-information databases through

the viewable scene descriptions. Subsequently textual information about the

visible objects is extracted to serve as tags. However, the data-driven nature

implies that the performance of the aforementioned approach significantly de-

pends on the quality of the geo-information databases used. Previously we built

our prototype using geographic information system (GIS) sources, but they can

currently still be incomplete. Details are discussed later in Section 5.2.2. In

order to enrich the candidate tag repository in our system, this study concen-

trates on how to screen raw tags from social multimedia websites, build a tag

repository, and integrate it with our auto-annotation system.
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5.2 Review of the Automatic Tag Generation

System

Recall that a brief review of this approach has been presented in Chapter 3.2.

Here we will discuss the limitations of the data source we used before.

5.2.1 System Overview

Figure 5.1(a) illustrates the framework of our previous auto-annotation ap-

proach. In our framework, the term object is abstract, and can be instantiated

in many ways, depending on what the data source is. The only requirement is

that an object must be accurately located in some place, such that its relevance

to the video can be determined by our viewable scene model. As illustrated in

Figure 5.1(b), this work studies the problem of how to build a rich positionable

tag repository that can be directly applied in the aforementioned annotation

system. The basic idea is to mine spatiotemporal tags from social multimedia

applications. In the rest of this section, we will first discuss the limitations of

the data source we previously used, and then introduce the proposed approaches

to incorporate more varied data sources.

5.2.2 Data Source Limitations

The data-driven nature of the aforementioned approach implies that its perfor-

mance significantly depends on the quality of the adopted data sources. Pre-

viously we built our prototype with the OpenStreetMap1 used as the data

source. OSM is a community based map application that can supply detailed

1www.openstreetmap.org
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Figure 5.1: (a) The architecture of the automatic tag generation framework for
sensor-rich outdoor videos, and (b) the process of building a positionable tag
repository and interfacing it with the remaining framework.

information (e.g., names, types, outlines) of numerous geographic objects (or

landmarks). However, its completeness varies in different regions. For instance,

the Merlion is a popular landmark in the Marina Bay area of Singapore and it

was featured in our previous testing videos, but our prototype was unable to

recognize it because it is missing in OSM. A more severe problem is that OSM

only records landmarks in the physical world, such that the semantics of the

generated tags are all within the geospatial domain. In contrast, though we

require objects to be associated with some place, they do not necessarily have

to be landmarks. Events may also be strongly correlated with a location. For

example, the national day parade, which is an event, is held in the Marina Bay

once a year. Summarily, video tags may miss some important semantics if a
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Figure 5.2: Conceptual illustration of the placement of tags in the spatial-
temporal domain. The dashed lines show the durations of tag usage while the
projected circles are the related places of the tags.

system only relies on the data sources of geographic objects. This motivated

us to seek more diverse data sources.

5.2.3 Seeking More Varied Data Sources

We desire that the data sources provide comprehensive information and diverse

semantics. However, the objects we investigated in our prior work were only

physical entities such as geographic landmarks. In this study we extend the

scope and objects can be landmarks, events or other concepts of interest that

are positionable in a specific place. One promising source of information is the

crowdsourced data available from social multimedia applications, such as Flickr,

Picasa and YouTube, where the semantics of images/videos can be acquired by

analysing the user-generated tags. Helpfully, the semantics extend beyond the
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geospatial domain. For example, we retrieved the first 20, 000 images sorted

by popularity in the Marina Bay area of Singapore from Flickr and collected

their associated tags. Table 5.1 lists the top 30 tags and their corresponding

semantics, including place, time, event, camera parameters, etc. Meanwhile,

these applications support multimedia positioning, that is, images/videos can

be assigned a geo-coordinate (or geo-tag). Hence, with images/videos acting

as the intermediary, tags and geo-coordinates are correlated. This raises the

potential that we can discover some tags which are strongly correlated with a

specific place. Moreover, the visibility of social tags can be sensitive to time

as well (e.g., event tags), which means they are not applicable to videos that

recorded the same place but at different times. This raises the need for us to

consider the coverage of a tag in both the spatial and temporal domains.

The data from social multimedia websites is not as organized as that from

geo-information systems, and much of the data are not relevant. To solve this

problem, we propose to build a spatiotemporal tag repository that can be di-

rectly applied to our auto-annotation system, by utilizing the data available

from social multimedia applications. As illustrated in Figure 5.1(b), we col-

lect the tags, the geo-location, and the timestamp associated with multimedia

objects. To determine whether a tag is positionable or not, we describe its ge-

ographic distribution by a Gaussian mixture model, based on which a classifier

is built. Next, we extend the repository into the temporal dimension by pre-

dicting the periodicity of each tag. Lastly, we estimate the tag popularity and

geographic bias, and integrate these two criteria into the tag relevance rank-

ing. In the next section, we will introduce the methods we adopted to build

such a tag repository which is both spatially and temporally indexed (e.g., see

Figure 5.2) by making use of social multimedia applications.
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5.3 Positioning Social Tags in Spatial-Temporal

Domain

We introduce our approach to make use of social multimedia applications to

build a data source of positionable tags, and determine their effective period.

First we need to retrieve data from a particular social multimedia information

source. In this study, we demonstrate the approach with Flickr. Nevertheless,

the method can easily be extended to other similar applications such as Picasa

and YouTube, assuming that the applications contain multimedia content as-

sociated with tags and geo-coordinates. The retrieved data is a collection of

multimedia objects, which is formally described as M = {mi|i = 1, 2, . . . , k}.

We let tags(m), geo(m) and time(m), respectively, represent the associated

tags, the geo-coordinates and the recording time of the object m.

Next, we denote the tag collection of the photos as T =
⋃

∀m∈M tags(m),

and all the images where a tag τ ∈ T appears asM(τ) = {m|τ ∈ tags(m), ∀m ∈

M}. Consequently, all the geo-coordinates related to a tag can be expressed as

G(τ) =
⋃

∀m∈M(τ) geo(m), and all the recording times can be similarly formulated

as T (τ) =
⋃

∀m∈M(τ) time(m).

5.3.1 Geographically Positioning Social Tags

Importantly, we need to formally define the concept of a positionable tag, which

is a tag that is strongly correlated to some location at street level accuracy.

There are two requirements for this. Being strongly correlated indicates that the

tag needs to frequently occur in some places but not elsewhere, while reaching

street level resolution makes sure that the accuracy level of the location of the
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Table 5.1: 30 most popular Flickr tags in the Marina Bay area of Singapore
and their corresponding semantics.

1 – 15 16 – 30
tag semantics tag semantics

singapore place† film other
f1 event ndp09 event

marina bay place ndpeeps event
night time bw other
asia place† 2008 time
canon camera skyline other

esplanade place formula 1 event
city place‡ kodak camera

marina bay sands place analogue other
marina place‡ travel other

geotagged other analog other
bay place‡ black other
nikon camera architecture other
street place‡ 2009 time
2010 time river place‡

tag matches that of our viewable scene model, which is on the order of hundreds

of meters. However, not all the tags can meet these two requirements. In

Table 5.1, the place tags with a “‡” mark are so general that the distributions

of their geo-coordinates tend to be relatively uniform. On the other hand,

the place tags with a “†” mark are sure to occur more frequently in some

places, but the granularity of the places is too coarse to be comparable with

our viewable scene model. Note that not just place tags can be positionable.

For example, the street course of f1, which means the Formula One automobile

race, is well defined. Therefore, the first challenge is to determine whether a

tag is positionable, and if it is, where the tag is positioned.

To solve this problem, we build a model to describe the distribution of

the geo-coordinates of a tag, and leverage the expectation maximization algo-

rithm [29] to estimate its parameters. This step is considered as a dimension
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Figure 5.3: Illustration of the global distribution of the geo-coordinates of tag
f1.

reduction to some extent. Next, we extract two features from the distribution

model and use them to build a classifier to determine whether the tag can be

positioned into our area of interest (AOI). Note that since a tag can be posi-

tioned anywhere, it is not easy to build a world-wide ground truth to evaluate

the performance of our method. Moreover, in many cases, applications may be

only interested in some specific places. Hence we properly adapt the original

challenge to detect a positionable tag in our pre-defined AOI. In the remainder

of this section, we explain the method in detail.

Profiling Tag Distribution

The geo-coordinates of a tag are likely to be unevenly distributed. Figure 5.3

shows an example of the tag f1, where we can observe a number of hot spots (the

points in color), indicating the frequent usage of this tag in these regions. To

identify where the hot spots are, we construct a high-level mathematical model
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to describe the distribution of geo-coordinates. The basic idea is to replace the

geo-coordinates with continuous kernel functions to create summary statistics

that are less sensitive to high-frequency noise in the data. Intuitively, for a

certain tag τ , each hot spot can be modeled with a bivariate normal distribution

N (µ,Σ), where the mean µ = E[~g] = (E[lon],E[lat])⊺ and the covariance matrix

Σ = E[(~g − E[~g])(g − E[~g])⊺] (superscript (τ) is omitted for simplicity). Note

that a hot spot is not necessary to be as pronounced as shown in Figure 5.3.

Assume there are n such normal distributions, and each single geo-coordinate

~g follows either one with the probability γ, where
∑n

i=1 γi = 1. Hence we can

model the distribution of all the geo-coordinates as the weighted composite of

the n normal distributions, that is,

Pg(~g|~γ, ~µ, ~Σ) =
n

∑

i=1

γiNi(~g|µi,Σi). (5.1)

However, ~γ, ~µ and ~Σ in Equation (5.1) are actually unknown variables. We

need to estimate them from the set of geo-coordinates G that we obtained.

From the probability function, we can derive the likelihood function as

L(~γ, ~µ, ~Σ|G) = Pg(G|~γ, ~µ, ~Σ) =

‖G‖
∏

i=1

Pg(~gi|~γ, ~µ, ~Σ) (5.2)

or the more convenient log-likelihood function as

l̂(~γ, ~µ, ~Σ|G) =
1

‖G‖

‖G‖
∑

i=1

lnPg(~gi|~γ, ~µ, ~Σ). (5.3)
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Consequently, our target can be formalized as

argmax
~γ,~µ,~Σ

l̂(~γ, ~µ, ~Σ|G). (5.4)

To find the parameters of our geo-coordinate distribution model that max-

imize the likelihood function, we make use of the well established expectation

maximization (EM) algorithm [29]. The EM algorithm is an iterative method:

it alternately performs an expectation (E) step, where the expectation of the

log-likelihood is evaluated with the current estimations of the parameters, and

a maximization (M) step, where parameters is computed to maximize the ex-

pected log-likelihood found on the previous E step. One of the issue that has

not been clarified is the number of confederate normal distribution n, which

needs to be specified during the execution of the EM algorithm. Therefore,

we additionally recruit a v-fold cross-validation algorithm [1] to automatically

determine how many normal distributions are required to model the distribu-

tion of geo-coordinates. The general idea is to divide the observed data (or

G here) into v folds. The EM algorithm is respectively applied to the v folds

of the training data. The log-likelihood values for all the v folds are averaged

into a single metric to measure the stability of our model. At the beginning,

the number of normal distributions is set to 1. If the average log-likelihood

has been increased, we will correspondingly increment the number of normal

distributions by 1 and invoke a new round of cross-validation.

Building a Positionable Tag Classifier

With the distribution characteristics highlighted by the aforementioned model,

it is possible to determine whether the tag is positionable in our pre-defined area
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of interest (AOI). Intuitively, a tag is considered positioned at the place where

a hot spot emerges, and the mean vector ~µ is consequently regarded as the set

of candidate positioning locations. However, not all the hot spots qualify. As

is mentioned earlier, the accuracy of the tag position should reach street level,

thus the area of the bell-shape of a normal distribution (or the confidence region

Rcr) should be small enough, such that each mean µ decisively approximates a

specific location of the tag. The area can be estimated through the covariance

matrix Σ, that is, Rcr = var(lon) + 2cov(lon, lat) + var(lat). Hence we define

the positioning locations of a tag, denoted by ~µ′, as the ones that are subject

to Rcr ≤ πr20, where r0 is the threshold of the street-level granularity.

However due to data noise and incompleteness, we found that having one or

more positioning locations can not ensure that a tag is positionable. To address

this problem, we build a binary classifier C, which takes the information of a

tag’s positioning locations as input and outputs 1 if it considers the tag to be

positionable in the AOI, and 0 otherwise. We employ two features to build the

classifier. The first feature f1(τ) is the number of positioning locations in the

AOI. By definition, f1(τ) = ‖~µ′∩AOI‖. The second feature f2(τ) is the sum of

the priors of the positioning locations in the AOI. The prior p is estimated by

the Gaussian mixture model. By definition as well, f2(τ) =
∑

µi∈~µ′∩AOI pi. We

observe that some tags have a hot spot in the AOI but are not widely considered

as strongly correlated to the AOI. The reason is that these tags happened to

be frequently used by a small number of users in the AOI, such that placing

the tags there may not make sense to a majority of users. According to the

distribution model, we expect this phenomenon to produce some hot spots with

relatively low priors in the AOI. Therefore, we involve a filter to eliminate this
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hazard. Finally, we can obtain a classifier that is formalized as

C~µ′,~p(τ) =















1 if f1(τ) ≥ c0 ∧ f2(τ) ≥ p0

0 else

(5.5)

where c0 and p0 are pre-defined thresholds.

One drawback of the above methodology is the need to heuristically as-

signed thresholds to both features in Equation (5.5). To overcome this problem,

we can leverage a supervised learning algorithm such as SVM [27]. First, we

select a small set of tags and ask experts to determine whether they are po-

sitionable in the AOI. Furthermore, the values of f1(τ) and f2(τ) of this tag

set are computed. Then, we leverage the SVM algorithm to train the classifier

Csvm(τ). One pre-requisite of this method is the availability of an annotated

training set. For one or a few AOIs, the manual effort is probably manageable,

however, for hundreds of AOIs or more, it is too laborious. As a result, if C~µ′,~p(τ)

is not obviously inferior to Csvm(τ), we prefer the former. This comparison will

be further discussed in the evaluation section.

Applying the classification, we now retain a set of tags that are considered

as being positionable in the AOI, and denoted as Tp = C(T ). For each retained

tag, we store a tuple 〈tag, spike center(s), area(s) of the confidence regions,

location prior(s)〉 into a database. It is noteworthy that, (1) a tag may have

multiple positioning locations in the AOI according to our classification algo-

rithm, and (2) the database issues are out of the scope of this study, e.g., how

to properly index the tuples to accelerate range query processing.
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Tag Expansion based on Geo-spatial Feature Similarity

As mentioned at the beginning of Section 5.3.1, there exist tags that are related

to places but are difficult to detect because of their uniform distribution or their

coarse granularity (e.g., bay and garden). Fortunately, the meaning of a tag

is usually delimited by its geo-location. For example, the tag garden is most

likely referring to the Gardens by the Bay if we know that it was published

near Marina Bay, and thus the location distribution of the tags garden and

gardens by the bay should be highly similar in the AOI of Marina Bay. Based

on this observation, we can find the tags that implicitly refer to a specific place

by comparing their geo-spatial distributions in the AOI with the ones of the

positionable tags detected by our classifier. Those tags are considered to be

geographically positionable as well, and our tag collections are thus further

enriched.

Zhang et al. [135] proposed to compute tag geo-spatial similarity by ag-

gregating tags into geo-spatial buckets. Here, since we have modeled the dis-

tribution of a tag by a mixture of Gaussians, we adopt the Jensen-Shannon

divergence (JSD) which is a popular method of measuring the similarity be-

tween two probability distributions. It is a symmetrized and smoothed version

of the Kullback-Leibler divergence (KLD), and is defined as:

DJS (P ‖ Q) =
1

2
DKL (P ‖ M) +

1

2
DKL (Q ‖ M) (5.6)

where P and Q are two distributions and M = 1
2
(P +Q). For distributions P

and Q of a continuous random variable, the KLD is defined to be the integral:

DKL (P ‖ Q) =

∫ ∞

−∞
ln

(

p (x)

q (x)

)

p (x) dx (5.7)
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where p (x) and q (x) denote the densities of P and Q. Unfortunately, the KLD

between two Gaussian mixture models is not analytically tractable. Here we

estimate the KLD between two Gaussian mixture models by the Monte-Carlo

algorithm [44]. In our system, we utilized the Java library jMEF 2 that can

create and manage mixtures of exponential families.

5.3.2 Temporally Positioning Social Tags

A positionable tag may still not be relevant to some video, even if it is in the

coverage area of the video, because its semantics are not valid for the time

when the video was captured. It is noteworthy that the semantics of such a tag

probably refer to an event. For instance, the tag ndp09 indicates the National

Day Parade held in the area of the Marina Bay on 9 August 2009. While the

tag ndp09 is non-repeatable, the usage of tag f1 spikes once a year, each time

when the Formula One Grand Prix is held in Singapore (e.g., see Figure 5.4).

Therefore, we must estimate the coverage of a tag not only in the spatial but

also in the temporal domain.

Currently we only consider the recording times of the photos that are

located in the AOI and denote the time set with T
(τ)
p ⊆ T (τ). Though the data

model in the temporal domain is similar to that in the spatial domain, we prefer

to use DBSCAN [30] instead of EM because the density is known beforehand.

A repeatable event is expected to occur at a similar hour of different days, or at

a similar date/month of different months/years. Therefore, it is very effective

to use DBSCAN, which is a density-based clustering algorithm, to discover the

time intervals I(τ) = {i = [tbegin, tend]} during which the tag τ is visible in the

AOI.

2http://vincentfpgarcia.github.io/jMEF/
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Figure 5.4: Illustration of the temporal distribution of the timestamps of tag
f1.

Algorithm 1 sketches the overall procedure to determine a tag’s temporal

visible intervals. Specifically, we set the level of density reachability ǫ to hour,

day and month, respectively, and limit the minimal number of timestamps

required to form a cluster to filter small hazard intervals. Next we execute

DBSCAN to generate the cluster centers and the standard deviations based

on which we further compute the time intervals at different granularity I(τ)
h ,

I(τ)
d , and I(τ)

m . Subsequently, we analyze the statistics of each tag from the

fine-grained to the coarse-grained level to see if a tag’s visibility is sensitive to

time. We first skip the situations where the timestamps are not well clustered,

i.e., where the percent of the points that are marked as noise is greater than a

threshold NP or where the average standard deviation is α times larger than

the density parameter ǫ. Then, we review the number of clusters generated. If

there is only a single time interval (i.e., ‖I(τ)‖ = 1), we consider that the tag

is representing a single event that is only visible during this time. Otherwise,

if the number of clusters generated is greater than a threshold CNum, we fit

I(τ) into an arithmetic progression I(n). If the fitting achieves a pre-defined
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Input:
1 The collection of social tags, T ;
2 The density-based neighbor’s reachability parameters, ǫ1 := hour,
ǫ2 := day and ǫ3 := month;

3 The minimum number of points required to form a cluster, minPts;
4 The threshold parameters, NP , α, CNum and ICI ;
Output:

5 The estimated temporal visible intervals for each tag τ , {I(τ)
vis};

6 for each τ ∈ T do

7 for i := 1 to 3 do

8 Center, Stddev, noisePerc := DBSCAN(T
(τ)
p , ǫi,MinPts);

9 if noisePerc > NP or average(Stddev) > αǫi then continue;
10 for j := 1 to ‖Center‖ do

11 tjbegin = centerj − stddevj;

12 tjend = centerj + stddevj;

13 end

14 I(τ)
i = {[tjbegin, t

j
end]|j = 1, 2, ..., ‖Center‖}

15 if ‖I(τ)
i ‖ = 1 then

/* detect events that happened only once */

16 mark tag τ as a single event

17 I(τ)
vis := I(τ)

i ;

18 else if ‖I(τ)
i ‖ ≥ CNum then

/* detect periodic events */

19 I(n), prob := arithProgressionF itting(I(τ)
i );

20 if prob ≥ ICI then

21 mark tag τ as a periodic event;

22 I(τ)
vis := I(n);

23 end

24 end

25 if τ has been marked as an event then break;

26 end

27 if τ is not marked as any event then

28 I(τ)
vis := any time;

29 end

30 end

31 return {I(τ)
vis};

ALGORITHM 1: Social tags’ temporal visible intervals estimation.
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confidence interval CII , we determine the tag to represent a periodic event that

is visible during I(0) + k(I(n)−I(n− 1)), k ∈ N. If a tag is not marked as an

event at any granularity, it is considered to be visible at any time.

5.4 Extension of the Auto-annotation Approach

Our auto-annotation approach can freely incorporate the positionable tag repos-

itory. We can compute whether the tags are covered by the viewable scenes of

a certain video as used to do it for landmarks. However, we need to extend the

visibility computation by adding one more dimension (i.e., time). We compare

the timestamp of our FOVScene with the temporal visible intervals of the tags.

Since determining the visibility of a tag in the time domain is not very com-

putationally complex, we invoke it before performing spatial domain testing,

where sophisticated geometry computations are more intense. We make use of

the principle location of a tag and assume that its outline is a circle that is

congruent with the confidence region. Afterwards, we search for and score any

qualified tags for the videos. Finally, an ordered list of tags for each sensor-rich

video is obtained. Note that some refinement of the auto-annotation approach

may lead to a better use of a new data source. Since the tags are obtained from

social multimedia applications, crowdsourced data can be leveraged as metrics

for tags. These metrics, such as tag popularity and geographic bias, can serve

as the criteria to re-score the tags. The popularity of a tag can be estimated

by the number of authors who use it. In practice, we select all the multimedia

objects in our retrieved data set that are annotated by a specific tag, count the

number of unique author IDs, and store them in the database. The priors of the

positioning locations of a tag, which is computed when building the Gaussian
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mixture model, can indicate the tag geographic bias. Next, we present how to

use these two measures to re-score the tag relevance.

Our auto-annotation system first scores the candidate objects based on

their visual relevance to a video. We refer to it as the baseline score, Sb(τ).

However, some inherent characteristics of tags are likely to be missing. For

instance, the Esplanade is a famous landmark in the Marina Bay area of Sin-

gapore and one would expect that it attracts more video captures than other,

less known structures. However, our experimental system did initially not pro-

mote the rank of this tag. Fortunately, social multimedia applications can help

to judge the importance of tags. Hence, starting from the baseline score, we

propose a promotion score Sp(τ) to give more credit to important tags.

Recall that the visual relevance of a tag is computed based on the fol-

lowing six criteria: the closeness to the FOVScene center, the distance to the

camera location, the horizontally and vertically visible angle ranges, and the

horizontally and vertically visible percentages. Since a tag can have multiple

positioning locations in the spatial-temporal repository we built, we compute

the visual relevance score for each of the positioning locations based on the

above six criteria. The baseline score for a tag is subsequently modified to

Sb(τ) =
∑

i piS
i
b(τ), where Si

b(τ) represents the visual relevance of the i-th po-

sitioning location in the AOI and pi is the corresponding location prior. Next,

we compute the promotion score based on the tag popularity which is set to

be proportional to the number of authors. Here we prefer widely used tags be-

cause they agree with the majority of users’ perception and people may be more

inclined to use them to search for images/videos as well. Lastly, we linearly
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combine these two scores for tag relevance ranking:

S(τ) = Sb(τ) + ωSp(τ) (5.8)

where ω scales the promotion score against the baseline score. As a result, the

distinguishable and important tags are promoted, leading to a more appropriate

tag ranking mechanism.

5.5 Evaluation

We choose Flickr to evaluate the performance of the approach for building a

positionable tag repository. The following five AOIs were selected: the Marina

Bay in Singapore, the James R. Thompson Center and the Grant Park in

Chicago, the Humble Administrator’s Garden in China and the Todaiji Temple

in Japan. Each of the AOIs was defined as a region of a circle with a radius of

1 km. We compiled the data set from Flickr with the following steps. First, we

used the range search API to retrieve the first 20, 000 photos taken from 2007

to 2011 in each of the selected AOIs, and ranked according to their popularity.

Then, we extracted all the tags used by these seed photos. Thereafter, for each

tag, we retrieved at most 20, 000 popular photos using it (some tags may not be

used by that many photos), and recorded the photo ID, the author ID, the geo-

coordinates, its accuracy, the recording time and the co-occurrent tags, which

make up the data set. Considering the data noise, we detected and merged

duplicate tags by calculating the Levenshtein distance between tags. In the

remaining of this section, we demonstrate the accuracy of our positionable tag

classification, the accuracy of tag positioning, and the quality of the generated
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tags by our auto-annotation prototype.

5.5.1 Accuracy of Positionable Tag Classification

To evaluate the performance of our classifier, we selected the 2, 500 most fre-

quently used tags (500 per AOI) and invited users to judge whether the tags are

associated with a specific place. The tag distributions are modeled as a mix-

ture of Gaussians using Weka [38]. Based on this manually annotated ground

truth, we first trained and evaluated the performance of the SVM-based classi-

fier Csvm. In our implementation, we used LIBSVM [19] to train the classifier,

using the number of positioning locations in the AOI (i.e., f1(τ)), the sum of

the priors of the positioning locations in the AOI (i.e., f2(τ)) and both fea-

tures, respectively. Only the tags’ positioned locations whose confidence region

was no larger than the AOI (i.e., r0 ≤ 1km) were considered. The tags with

the ground truth were randomly divided into two partitions, that is, a training

set and validation set at a rate of 4:1. We ran 40 rounds of classifier training

and validation, and in each round, we randomly re-selected the training tags to

minimize the bias resulting from the training data selection. We use precision

and recall as the metrics to evaluate the effectiveness of the classifier. We also

report the F1 score, F1 = 2 × precision×recall

precision+recall
, as it considers both precision and

recall.

Table 5.2 illustrates the performance of the SVM-based classifier Csvm. In

general, either the number of positioning locations in the AOI or the sum of

the location priors in the AOI is an effective feature, which achieves impressive

precision and recall. Using the two features together achieves the best perfor-

mance in terms of the F1 score. Additionally, we observe that the standard
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Table 5.2: Precision, recall and F1 score statistics using the SVM classifier.

f1(τ) f2(τ) f1(τ) + f2(τ)

Precision mean 0.735 0.862 0.845
Precision std. 0.032 0.028 0.033
Recall mean 0.826 0.709 0.724
Recall std. 0.028 0.034 0.027

F1 Score mean 0.777 0.778 0.780

deviations of precision and recall are small, indicating that the performance of

the classifiers trained by different data sets is rather stable.

Next, we evaluate the classifier C~µ′,~p based on heuristics. The thresholds

are f1(τ) ≥ 1 and f2(τ) ≥ 0.6, with which we obtain a classifier that achieves

0.846 precision and 0.707 recall (see Table 5.3). This indicates that the perfor-

mance of C~µ′,~p is as good as that of Csvm, considering the precision-recall metric.

Furthermore, we are interested whether the threshold choice based on our in-

tuition is optimal. Figures. 5.5(a)–(c) describe the performance with respect

to the precision-recall metrics over different combinations of the thresholds of

f1(τ) and f2(τ). Clearly, with an increase of the thresholds, tags are less likely

to be considered positionable, such that the precision increases while the recall

declines. Considering both the precision and the recall, we observe that the

sweet spot is zero or one centers for f1(τ) and a not too large percentage for

f2(τ), where our threshold choices lie. In summary, we can achieve good re-

sults with the simple classifier, and need not rely on the SVM-based one that

requires manual input.

Additionally, we study the impact of the performance of the geo-coordinates

on the classification. In practice, the geo-coordinates associated with a photo

in Flickr may originate from human annotation, or positioning via GPS, cel-

lular base stations or Wi-Fi access points, etc. Different positioning methods
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(a)

(b)

(c)

Figure 5.5: (a) precision, (b) recall and (c) F1 score under different combina-
tions of the number of centers and the sum of priors thresholds.
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Table 5.3: Precision, recall and F1 score statistics using the proposed classifier
by thresholding.

accuracy level >= 1 accuracy level >= 14

Precision 0.846 0.866
Recall 0.707 0.772

F1 Score 0.770 0.816

have varying accuracy levels. However, we restrictively require each tag to

be positionable at some place at street-level accuracy. Therefore, we would

expect the accuracy of our classification to be encumbered by inaccurate geo-

coordinates. Our generic classification approach is blind to the accuracy level of

geo-coordinates, because the information cannot be assumed to be universally

available. Fortunately, Flickr quantifies the accuracy level (from world ∼ 1 to

street ∼ 16) and supplies it to API users. Hence, for a subsequent experiment

we filtered out the geo-coordinates whose accuracy level is below 14 to form the

input of our algorithm, and reported the statistics in Table 5.3. By doing so,

the classifier achieved 0.866 precision and 0.772 recall with the same threshold

settings.

In general, as geotags are collected from crowdsourced media, it is rea-

sonable to assume that the accuracy level of their majority is relatively high.

Moreover, the good classification results shown in Figure 5.5 indicate that our

method is capable of filtering out inaccurate data to a certain extent and reflect-

ing the properties of the majority. As pointed out by Hauff [41], the positional

accuracy of the geotag information of Flickr images is highly dependent on the

popularity of a landmark. The average distance to the ground truth location is

between 11 to 13 meters for images taken at popular landmarks, which is small

compared to the size of the viewable scene model we consider.

Next we evaluate the estimation of tags’ temporal visibility intervals. We
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manually annotated tags based on whether they are temporally sensitive or not,

and evaluated the effectiveness of Algorithm 1 as a two-class classifier. The

dataset was divided into two subsets of equal size, working as the training set

and test set, respectively. Now let us recall the input parameters required by the

algorithm. minPts denotes the minimum number of points to form a cluster.

NP and α are thresholds to skip the situations where the timestamps are not

well clustered. CNum and ICI are parameters for periodic events detection.

We set minPts = 10, CNum = 4, and ICI = 0.9 heuristically, and then tuned

NP and α through experiments with the training set. Table 5.4 lists the F1

scores based on different combinations of NP and α values. As shown, the F1

score reaches its maximum when NP = 10% and α = 3, and then decreases on

all sides. Therefore, we selected this point as the optimal setting and achieved

0.863 precision and 0.704 recall on the test set. Table 5.5 shows some examples

of the temporally sensitive tags detected by our algorithm together with the

estimated center and standard deviation of their visibility intervals. In general

the results are promising. As illustrated, the method is capable of detecting

not only the names of single/annual events, but also the tags indicating the

time (e.g., month, season, or even year). The last two tags marked by “†” in

Table 5.5 are examples of false positives generated by our algorithm. Though

such tags are usually considered to be visible at all times, on occasion they can

be closely related to an event as well. The tag wall street is associated with the

Occupy Wall Street movement which staged a protest event that happened in

New York City’s Wall Street financial district3 and the tag transformers 3 is

associated with the filming of the movie “Transformers 3” in Chicago, in 2010.

3The actual event that triggered the hot spot of the tag wall street in Chicago is the
Occupy Chicago collaboration which began on 24 September 2011, in solidarity with the
Occupy Wall Street protests.
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Table 5.4: F1 scores based on different settings of NP and α.

❍
❍
❍

❍
❍❍

NP

α
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

5% 0.55 0.55 0.585 0.585 0.622 0.549 0.536 0.508 0.455

10% 0.651 0.651 0.682 0.682 0.708 0.63 0.61 0.581 0.522

15% 0.651 0.651 0.667 0.667 0.694 0.618 0.6 0.571 0.522

20% 0.636 0.636 0.652 0.652 0.68 0.618 0.6 0.571 0.522

Table 5.5: Illustrations of the estimated social tags’ temporal visibility intervals.

Tags Center
Std.

Deviation
Period

isGeo-
Positionable

f1 Sep. 28 7 days Every Year Yes

2010
Jul. 10,
2010

90 days — No

spring May 1 23 days Every Year No

october Oct. 11 8 days Every Year No

christmas Dec. 29 10 days Every Year No

lollapalooza Aug. 6 2 days Every Year Yes

occupy wall street
Oct. 17,
2011

28 days — Yes

wall street†
Oct. 15,
2011

7 days — Yes

transformers 3†
Aug. 4,
2010

78 days — No

It is difficult to recognize such situations and therefore the algorithm marked

them as events as well. We further examined the temporal sensitive tags that

were not easily detected and found they mainly included two types: the ones

whose deviation was much larger than the density (e.g., day, evening and 2011 )

and the ones that are ambiguous (e.g., march).

5.5.2 Accuracy of Tag Positioning

In the tag classification step, our classifier selected 412 positionable tags that

were used for the following evaluation. Recall that we adopt the location of the

hot spot covering the highest percentage of geo-coordinates as the principle loca-
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Figure 5.6: Cumulative distribution function (CDF) of the distances between
the estimated and the real positions.

tion of a positionable tag. This location is further used by our auto-annotation

approach to conduct geometry computations and determine the coverage of

the tag by a specific video. Therefore, we need to determine whether the es-

timated locations are accurate enough. Though the classification step ensures

that tags are positioned at some locations with street-level accuracy, we need to

check whether they are positioned at the locations where they are semantically

supposed to belong.

Usually, it is difficult to decide what the correct location of a tag is, except

when the tag represents a landmark. We obtained the locations of 41 such po-

sitionable tags from Google Map, Wikipedia, etc., to serve as the ground truth,

and then computed the distance between the ground truth and our estimated

locations. In general, the mean distance is 202 m while the standard deviation

is 207 m. In detail, Figure 5.6 shows the cumulative distribution function of the

distances, which are not uniformly distributed. More than 50% of the distances

are shorter than 100 m. The absolute values would seem to be still acceptable

since the scale of these landmarks is usually at the level of hundreds of meters,
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and the camera may not be still, but pan across a region.

5.5.3 Tag Expansion and Ranking

Based on the positionable tags detected by the classifier, we first carried out

tag expansion and then supplied these positionable tags to our auto-annotation

framework, which was equipped with the new features introduced in Section 5.

To verify the tag expansion approach, we compute the precisions under differ-

ent threshold settings and report the statistics in Table 5.6. The first row lists

the results computed based on the true positionable tags that were manually

labeled as the ground truth. To eliminate manual work, we carried out the

tag expansion based on the positionable tags that were automatically detected,

and report the precisions in the second row. As can be seen, both of them

achieve the highest precision when the threshold is set to 0.1. Due to error

accumulations, the precisions decreased slightly when we utilized the automat-

ically detected positionable tags. Fortunately, the probability that two random

tags are similar in geospatial distribution is low. Compared with the precision

of the positionable tag classifier which is 0.846 as reported in Section 5.5.1, the

tag expansion precision 0.778 is compatible and thus can be integrated into our

system. Table 5.7 shows some examples of the tags that were expanded.

Figure 5.7 shows two canonical sensor-rich videos we previously captured

and the generated tags for each based on different datasets. The recording

locations of the video clips were the Marina Bay in Singapore and the Grant

Park in Chicago, respectively. For comparison purposes, the first row lists the

tags generated using the information extracted from OSM only. The second

row of results are generated from the geographically positionable tags that we
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Table 5.6: Precision comparison of tag expansion based on the true positionable
tags geotagst and the automatically detected positionable tags geotagsd.

JSD 0.05 0.1 0.15 0.2

Tag expansion based on geotagst 0.815 0.829 0.714 0.632

Tag expansion based on geotagsd 0.714 0.778 0.654 0.633

Table 5.7: Illustrations of tag expansion. The tag detected is listed together
with its nearest positionable neighbor and the Jensen-Shannon divergence be-
tween them.

Tag NN JSD

occupy nato summit 0.0106
protests occupy chicago 0.0161
sands mbs (marina bay sands) 0.0351

skyscraper downtown chicago 0.0521
bay marina bay sands 0.0537

downtown downtown chicago 0.0700
skyway supertree 0.0949
fountain grant park 0.0989
bean attplaza 0.1376

cloud forest gardens by the bay 0.1507

detected by applying tag classification and expansion. We can observe that

the tags in the first row look long, formal and are completely spelled out. In

contrast, tags in the second row originate from the Flickr dataset and are more

concise and casual. By taking the tags’ temporal visibility into consideration,

we were able to remove the tags of the National Day Parade and the F1 Grand

Prix from the video clip taken near Marina Bay while keeping the tags of the

NATO Summit and the Chicago NATO protests for the one taken in Chicago.

To evaluate the effectiveness of our proposed technique, we carried out a

user study to capture user preferences regarding the annotation results. We se-

lected ten video clips from different regions around the world. Without loss of

generality, we used only the top ten tags generated based on different datasets.
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OSM dataset Flower Dome, Silver Garden, Marina Bay Sands (Sands SkyPark), Marina Bay Sands, 

Marina Bay Sands Tower 2, Indian Garden, Dragonfly Lake, The Canopy, Marina Bay 

Sands Tower 1, Marina Bay Sands Tower 3 

 

Flickr dataset Marina Bay Sands, Botanical Tower, Marina Bay Reservoir, Marina Bay Gardens,  

Singapore, Gardens by the Bay, Flower Dome, Marina Bay, Dragonfly, Singapore Flyer 

 

 

 

OSM dataset Grant Park, Chicago Hilton & Towers, Renaissance Blackstone Hotel – Marriott, 

Columbia College Chicago South Campus Building, Columbia College Chicago 618 S., 

Michigan Building, Buddy Guy's Legends, Spertus Institute of Jewish Studies, Jones 

College Prep, Columbia College Chicago Plymouth Court 

Flickr dataset Spertus Institute, Grant Park, Auditorium Theatre, Hilton Chicago, Merle Reskin Theatre, 

Spertus, NATO Summit, Chicago NATO Protests, Congress Plaza, Chicago Loop. 

 

 

Figure 5.7: Illustration of snapshots of sample videos. The top tags are gener-
ated with the proposed auto-tagging system based on different datasets.

22 volunteers who are familiar with the regions where the videos were taken par-

ticipated in this user study. They were requested to watch each video carefully

and score the tag set based on the following two criteria: (1) the relevance of

the generated tags (1 – least, 10 – most), and (2) the diversity of the generated

tags (1 – least, 10 – most). Figure 5.8 shows the results of this user study. As

can be seen, the relevance of the tags generated based on either of the datasets

is high. The average relevance score achieved by using the Flickr dataset is

7.53, which is higher than the score of 7.01 achieved by using the OSM dataset.

The results demonstrate the effectiveness of our proposed techniques to build

the spatial-temporal tag repository. In terms of tag diversity, the improvement

achieved by using the tag repository we built is even higher. The average diver-

sity scores are 6.35 and 7.55, respectively. As the OpenStreetMap only records
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Figure 5.8: Comparison of (a) relevance and (b) diversity of the tags generated
based on different datasets.

landmarks in the physical world, the semantics of the generated tags are all

within the geospatial domain. Comparatively, the tags in the spatial-temporal

repository we built are not limited to the names of geographic objects but can

be any tag that is strongly correlated with a specific place (e.g., the name of an

event). Additionally, by applying the tag expansion approach, the semantics of

the tags are further enriched. Overall, there is strong evidence that our adap-

tation algorithms are effective in generating accurate tags with more diverse
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semantics.

5.6 Summary

We presented an innovative auto-annotation approach for sensor-rich videos,

and showed how a positionable tag repository extracted from social multimedia

applications can be beneficial. To setup such a repository, we estimated the

geographic distribution model of tags, extracted two features from the model,

and built two classifiers to detect positionable tags. Furthermore, we profiled

their temporal distributions to determine their effective durations. To make

better use of the repository, we extended the visibility computation algorithm to

the temporal domain, and computed tag similarity, popularity and geographic

bias to re-order the tag list. The excellent quality of the generated tags with

this overall approach has been confirmed through our evaluation.

In our future work we plan to investigate how to combine tags supplied

from heterogeneous data sources, extend our approach to Internet-scale, and

popularize our mobile video capturing applications to obtain more sensor-rich

videos for evaluation.
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CHAPTER 6

Visual and Geographic Information Use

in Video Landmark Retrieval

6.1 Introduction

The retrieval of landmark sequences from video collections still remains a very

challenging task. While the previous chapter focuses on efficient geo-based

video annotation in support of keyword-based search, this work introduces a

more effective hybrid retrieval method by leveraging the content and the con-

text conjunctively. Content-based visual information retrieval offers a promis-

ing approach for landmark search. In recent years the bag-of-words (BoW )

model [28], which was inspired by the success of text-based retrieval, has been

extremely popular in a variety of visual retrieval and categorization tasks. The

original BoW approach has subsequently been improved in its performance in
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various ways [67, 126, 119]. Such content-based retrieval, however, has one

drawback that hinders scalability, namely high computational complexity due

to extensive signal-level processing. Moreover, it is susceptible to environmental

conditions associated with an image, for example its illumination and camera

recording angle [63, 51].

Since content-based retrieval is sometimes struggling to achieve satisfac-

tory results, researchers have begun to utilize contextual information as an

alternative or supplement to visual information. For outdoor videos and im-

ages, geographic information is especially useful. When performing a landmark

retrieval task among a set of GPS-tagged images, geo-clustering is usually ap-

plied at an early stage [56, 10]. For geo-referenced videos, the associated geo-

metadata has been utilized for auto-tagging and searching large collections of

community-generated videos [7, 99]. The principles of the geo-based technique

can also be applied to landmark retrieval. One challenge is that its performance

is influenced by the accuracy of the sensor data.

In this study, we evaluate, compare and finally integrate two major types

of landmark retrieval techniques: (a) the content-based and (b) the geo-based

approaches. Note that we do not utilize textual metadata as it differs from

visual content and geo-context in terms of granularity, i.e., textual annotations

such as titles and tags are usually not localized to frames. Moreover, textual

annotations can be ambiguous and noisy and hence their accuracy is difficult

to assess. The video collection we use in our experiments is geo-referenced,

meaning the location and orientation of the cameras were recorded and asso-

ciated with the video streams as metadata that can subsequently be used for

geo-based retrieval. For content-based retrieval, videos need to be preprocessed

such that the visual feature information is extracted, coded, and stored.
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We first compare two state-of-the-art content-based methods, namely Spa-

tial Pyramid Matching with Sparse Coding (ScSPM ) and Locality-constrained

Linear Coding (LLC ) [126, 119], with a geo-based method which we refer to as

Geo Landmark Visibility Determination (GeoLVD), in terms of precision, recall

and execution time, respectively. We selected these methods as representatives

because they currently exemplify the state-of-the-art and are superior in their

own fields. Both ScSPM and LLC enrich the traditional BoW with spatial in-

formation and the advanced coding techniques they adopt not only accelerate

the processing speed but also significantly improve the effectiveness. GeoLVD

computes the visibility of a landmark based on intersections of a camera’s field-

of-view and the landmark’s geometric information available from GIS. It utilizes

the state-of-the-art FOVScene [8] to model the camera’s field-of-view and its

effectiveness is well supported by experimental results. Second, we analyze the

detailed factors that can affect the retrieval effectiveness. For the content-based

method, we investigate the influence of selecting a representative training set

and the impact of the diversity of the video frames. We also seek better sources

for training images and propose to use Google StreetView as a supplement to

Flickr, a combination which is shown to be effective in our experiments. For the

geo-based GeoLVD method we analyze the influence of the accuracy of a video’s

geographic metadata and the level of detail of the information we can obtain

from geographic information system sources. Finally, we propose a hybrid re-

trieval method based on the integration of visual and geographic information.

Experiments show that such a combination is compelling and achieves the best

performance in the landmark retrieval task.
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6.2 Landmark Retrieval Methods

The initial step for video landmark retrieval is to determine the landmark’s

visibility in any given frame. We describe the algorithmic fundamentals for

two different retrieval paradigms to recognize landmarks from a collection of

community contributed videos. Section 6.2.1 first describes two existing, state-

of-the-art content-based methods and then Section 6.2.2 introduces a context-

based method that utilizes geographic properties.

6.2.1 Landmark Retrieval from Visual Cues and Fea-

tures

Recently the BoW model [28] has been extremely popular for use in a variety

of visual retrieval and categorization tasks because of its high classification

quality. The method treats an image as a collection of orderless appearance

descriptors extracted from local patches, quantizes them into discrete visual

words, and then computes a compact histogram representation for semantic

image classification. Subsequently SVM classifiers are constructed from the

labelled BoW representations. Here we model the landmark retrieval task as

a two-class (positive vs. negative) classification problem. In a retrieval session,

our system selects the SVM trained for the target landmark, and then scans

and ranks the frames based on the probability scores output by the selected

SVM.

One limitation, however, is that the BoW approach discards the spatial

information of local descriptors, which severely limits the descriptive power of

the image representation. Therefore the SPM technique has been proposed

to overcome this issue by [67] for natural scene categorization. The approach
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creates a spatial pyramid representation by partitioning the image into increas-

ingly fine sub-regions and computing histograms of local features found inside

each sub-region. SPM shows significantly improved performance on challeng-

ing scene categorization tasks. However, researchers have empirically found

that it only works well with a particular type of nonlinear Mercer kernels, e.g.,

the Chi-square kernel [126]. As a consequence, the nonlinear classifier imposes

additional computational complexity, namely O (n3) in training and O (n) in

testing, where n is the number of support vectors. New coding techniques have

been proposed to make it work well with simple linear SVMs, which can dra-

matically improve the scalability of the training phase and the speed of testing.

Two linear SPM s with advanced coding techniques are tested in our experi-

ments. The algorithmic details are described in the two following Sections 6.2.1

and 6.2.1.

Linear Sparse Coding

A method called ScSPM [126] has been proposed to compute the spatial-

pyramid image representation based on Sparse Coding (SC ), instead of the

K-means vector quantization (VQ) in the traditional SPM. The approach is

naturally derived by relaxing the restrictive cardinality constraint of VQ. Fur-

thermore, it uses max pooling, which is more robust to local spatial translations

and more biologically plausible, rather than the average pooling adopted in the

original SPM.

Let X be a set of D-dimensional local descriptors extracted from an image,

i.e., X = [x1, x2, . . . , xN ] ∈ R
D×N , and let B = [b1, b2, . . . , bM ] ∈ R

D×M be a

codebook with M entries. The SC in ScSPM can be described as solving the
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following problem:

argmin
C

=
N
∑

i=i

‖ xi −Bci ‖
2 +λ ‖ ci ‖l (6.1)

where C = [c1, c2, . . . , cN ] ∈ R
M×N is the set of sparse codings for X. The

restrictive cardinality constraint of VQ is relaxed by using a sparsity regular-

ization term, which is the l norm of ci in this case. The codebook training is

equivalent to finding the optimization of problem Eqn. 6.1, which can be solved

by algorithms such as the feature-sign search algorithm.

It has been found that ScSPM works well with simple linear SVMs, which

means it remarkably reduces the complexity of SVMs to O (n) in training and

a constant in testing, and even improves the classification accuracy. However,

the coding speed is relatively slow.

Locality-constrained Linear Coding

Wang et al. [119] proposed an approach that enables SPM to work with locality-

constrained linear coding, referred to as LLC. This approach also adopts max

pooling, and it utilizes the locality constraints to project each descriptor into

its local-coordinate system. The LLC code uses the following criteria:

argmin
C

=
∑N

i=i ‖ xi − Bci ‖
2 +λ ‖ di ⊙ ci ‖

2

s.t. 1Tci = 1, ∀i

(6.2)

where ⊙ denotes element-wise multiplication, and di ∈ R
M is the locality

adaptor that allocates different freedom for each basis vector proportional to

its similarity to the input descriptor xi.

Just like with ScSPM, the codebook can be trained using LLC coding cri-
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teria shown in Eqn. 6.2. In effect, it can also be trained using a simple K-means

clustering method, since experiments have shown that the codebook generated

by K-means clustering can produce satisfactory accuracy. More extensive ex-

periments on the selection of codebooks were carried out by Viitaniemi and

Laaksonen [116]. A fast approximated LLC method has been proposed as well

to further speed up the encoding process. This efficiency significantly adds to

the practical value of LLC for real-world applications.

6.2.2 Landmark Retrieval from Geographic Information

Due to technological advances, sensor-equipped smartphones have made it easy

to record geo-referenced videos through the use of popular apps. The lo-

cation and direction of the camera can be obtained from the built-in GPS

and compass sensors of a smartphone. Furthermore, geographic information

about landmarks can be retrieved from map sources such as OpenStreetMap

(http://www.openstreetmap.org/), which is a free service that provides editable

maps of the world. Next, we will introduce the details of a landmark retrieval

technique based on geographic information.

Viewable Scene Model

Presented with the geographic information associated with a video frame, here

we utilize the viewable scene model (referred to as FOVScene) proposed by

Arslan Ay et al. [8] to describe the visible scene based on a camera’s field-of-

view (FOV ). Recall that the 3-dimensional FOV Scene(P, ~d, θ, φ, R) model is

illustrated in Figure 3.1, with the following parameters: (1) the camera position

P , (2) the camera direction (i.e., compass) vector ~d, (3) the horizontal and
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vertical camera viewable angles θ and φ which describe the angular extent of

the scene filmed by the camera, and (4) the far visible distance R which is the

maximum distance at which a large object within the camera’s field-of-view can

be recognized. In this study, the position (latitude/longitude) and orientation

information of the camera are associated with video streams at a fine-granular

level as metadata, i.e., at each – or every few – frames. For simplicity, we

assume that the camera is always level, i.e., the direction vector ~d only stays

on the horizontal plane. The parameters θ, φ and R are constants that can be

estimated from the optics of the camera used for video recording [43].

Determination of Landmark Visibility

Given the name of a landmark and a video frame, the task here is to determine

the landmark’s visibility in the frame. The geometry of the viewable scene

of the frame Gframe is modeled as FOV Scene(P, ~d, θ, φ, R). The geometry of

the landmark Glandmark can be retrieved from, for example, OpenStreetMap.

We also need to consider the situation where sometimes the existence of other

buildings may hide the landmark from the camera’s sight, and it is therefore

necessary to retrieve the geometry of all relevant objects within the same region

as the landmark for occlusion checks. Let {o1, o2, . . . , ok} be the set of all rele-

vant objects, then {Go1 , Go2 , . . . , Gok} represents their corresponding geometry

set.

Given the geometry information above we introduce an algorithm termed

GeoLVD to determine the visibility of a certain landmark within a frame. This

algorithm is inspired by the 3D visibility query processor proposed by Shen et

al. [99], but differs mainly in the following three aspects:

– The GeoLVD algorithm determines the visibility of a given landmark,
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while Shen’s method aims to find all the visible objects within the view-

able scene.

– The GeoLVD algorithm considers the landmark to be either visible or

invisible, while Shen et al. further classify the visible objects into two

sub-categories: front objects and vertically visible objects.

– The GeoLVD algorithm uses an R⋆-tree index structure to organize the

geometry of all the relevant objects, while Shen’s method does not men-

tion any advanced data structure adopted for spatial indexing.

Instead of assigning scores to frames based on the ratio of viewable angles

of the target landmark, we define the output of GeoLVD to be binary, i.e., the

output is either zero or one, where zero (one) indicates that the landmark is

invisible (visible). Our rationale for using a binary output is that in our experi-

ence the effectiveness of the geo-based method highly depends on the accuracy

of the geographic metadata. We found that the use of more elaborate geometry

calculations provides no significant benefit for the correction of the variations

induced by noise which the geographic metadata intrinsically possesses. Fig-

ure 6.1 shows an example of the GeoLVD method in (a) Google Earth together

with its corresponding (b) projection on the 2D plane. Assume that the land-

mark to be retrieved is the Marina Bay Sands hotel. The main steps of the

algorithm are as follows. First it computes the field-of-view towards the land-

mark within the FOV of the camera, which is the region colored in yellow.

Next, the shape’s Minimum Bounding Rectangle (MBR) is calculated – the ge-

ometry colored in green – and used to perform an R⋆-tree spatial search among

the GIS source objects. The objects labeled with letters are returned because

they overlap with the MBR. Among the returned objects, A, D, and E appear
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in between the camera and the landmark, so their height needs to be checked

to see if an occlusion occurs. Finally, GeoLVD determines the visibility of the

landmark after removing all the occlusion situations.

(a)

Landmark
C

F

B
E

D

A

FOV

(b)

Figure 6.1: (a) An illustration of a camera’s field of view in Google Earth
(Copyright c© 2013 Google [36]). (b) The corresponding scene projection on
the 2D plane.

To describe the problem formally, let r = [µ, ν] denote a horizontal angle

range. Then the visible angle ranges of the landmark within the FOV can

be denoted as a set V isibleR = {r1, r2, . . . , rk}. The goal of the algorithm

is to compute the visible angle ranges of the queried landmark. A value of

V isibleR = ∅ indicates that the landmark is invisible, otherwise, it is considered

visible. Algorithm 2 sketches the overall procedure to determine a landmark’s

visibility. InitVisibleRanges() initializes the horizontal visible angle ranges of

the landmark within the FOV without considering occlusions. GeometryFilter()

filters out the objects that will not cause occlusions by executing an R⋆-tree

spatial search with the query area as the MBR of VisibleR. All the returned

objects are examined one by one to see if an actual occlusion occurred. Com-

puteOccludedRC() computes the horizontal occluded angle ranges, which are

considered as candidates and will be further checked by isVerticalOccluded() to

see if any of them are vertically occluded as well. If not, the object needs to be
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Input:
1 The geometry of the viewable scene Gframe: FOV Scene;
2 The geometry of the queried landmark Glandmark;
3 The geometry set of all the relevant objects Go = {Go1 , Go2 , ..., Gok};
Output:

4 The visible angle ranges of the queried landmark V isibleR;
5 V isibleR = InitV isibleRanges (FOV Scene,Glandmark);
6 G′

o = GeometryF ilter (V isibleR,Go);
7 for each Goi ∈ G′

o do

8 OccludedRC = ComputeOccludedRC (V isibleR,Goi);
9 for each r ∈ OccludedRC do

10 if !isVerticalOccluded(Glandmark, Goi , r) then
11 OccludedRC = OccludedRC − {r};
12 end

13 end

14 UpdateV R (V isibleR,OccludedRC);
15 if V isibleR = ∅ then

16 break;
17 end

18 end

19 return V isibleR;

ALGORITHM 2: GeoLVD — Geo Landmark Visibility Determination
Query Processor

removed from the candidate set. UpdateVR() updates the visible angle ranges

by subtracting the occluded angle ranges at the end of each iteration. The

algorithm terminates when V isibleR becomes empty or after all the relevant

objects have been checked for potential occlusions.

6.3 Evaluation

Next we compare the retrieval performance of the content- and geo-based meth-

ods. For this purpose, we first introduce the datasets and the experimental

settings, and then we report the statistics and summarize the strength and

weakness of each approach.
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6.3.1 Experimental Settings and Datasets

We selected eight popular landmarks in Singapore as our retrieval targets as

follows: the Marina Bay Sands hotel, the Esplanade, the Singapore Flyer, the

Art Science Museum, the Gardens by the Bay1, the Merlion1, the Universal

Studios Globe1 and the Ngee Ann City1. For each of these landmarks, we

collected images from Flickr by posting queries while setting both text and

location restrictions. Next, the image sets were manually filtered, keeping only

250 images for each landmark with considerations for both high quality and

good diversity. We found that some landmarks might co-occur in the same

image (e.g., the Marina Bay Sands hotel and the Art Science Museum). Thus,

to reduce complexity, we prepared a common negative examples set for all the

landmarks. The images in the negative set were collected from Flickr consisting

of other landmark images around the world and images taken in Singapore, and

again applying a manual filter and retaining 750 images in the end. As a result,

a 1,000-image training set was formed for each of the landmarks including 250

positive and 750 negative instances.

The video collection on which we performed the landmark search consists

of 131 geo-referenced videos taken in Singapore. To understand the impact

of illumination on any content-based retrieval we further divided the videos

into two groups of 114 day-time and 17 night-time videos. The groundtruth

of a landmark’s visibility was annotated manually frame by frame at a sample

rate of five per second. The groundtruth annotations distinguish the following

three situations: (1) landmark entirely visible, (2) partially visible, and (3)

1These final four landmarks were mainly used in testing the scalability of the proposed
hybrid method due to some dataset restrictions – we had limited night-time videos in the
test set and there was a lack of Google StreetView images.
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Examples of partially visible landmarks:

Examples of visible landmarks:

Figure 6.2: Illustration of frames with fully and partially visible landmarks in
the test set.

invisible. Several examples of frames with fully visible and only partially visible

landmarks in the test set are displayed in Figure 6.2.

The local feature we used were SIFT descriptors of 16× 16 pixel patches

computed over a grid with a spacing of 8 pixels. We adopted a three-level

pyramid matching with a vocabulary size of 1,024 for both ScSPM and LLC.

6.3.2 Frame Retrieval Evaluation

Each video was treated as a collection of frames and we evaluated the different

methods on the task of frame retrieval. The test set for each run was formed

by randomly choosing 1,000 frames for querying from the video collection. The

proportion of positive to negative samples in the test set was set to 3:7, con-

sidering the fact that a landmark usually appears only in a small portion of

a video. The retrieval techniques were evaluated on the criteria of precision,

recall, and execution time. Ten experimental runs were carried out and the av-

erage results are reported in Tables 6.1, 6.2 and 6.3. Our tests were performed

on a desktop computer with a 3.20 GHz dual core CPU and 4 GB of main mem-

ory. Both the entirely and partially visible landmarks were regarded as positive

instances. The classification threshold of the SVMs is set to the mid-value of

the output range, which is 0.5 when the output is a probability score varying
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Table 6.1: Retrieval technique comparison over different landmarks and video
conditions.

(a) Marina Bay Sands hotel

Illumination Day Night
Criterion Precision Recall Precision Recall
ScSPM 0.8972 0.5410 0.7393 0.4547
LLC 0.8838 0.4927 0.6868 0.4553
GeoLVD 0.7144 0.8910 0.6545 0.6640

(b) Esplanade

Illumination Day Night
Criterion Precision Recall Precision Recall
ScSPM 0.9396 0.3273 0.6151 0.1347
LLC 0.9099 0.3173 0.6688 0.2113
GeoLVD 0.6991 0.8450 0.6706 0.9223

(c) Singapore Flyer

Illumination Day Night
Criterion Precision Recall Precision Recall
ScSPM 0.8845 0.1100 0.4181 0.0247
LLC 0.7308 0.0587 0.3150 0.0557
GeoLVD 0.7910 0.8307 0.6143 0.7343

(d) Art Science Museum

Illumination Day Night
Criterion Precision Recall Precision Recall
ScSPM 0.8936 0.3223 0.5735 0.3500
LLC 0.8614 0.3113 0.5288 0.4927
GeoLVD 0.7314 0.8213 0.7417 0.7450

between zero and one. For the spatial index structure we used the Java R⋆-tree

implementation available from https://code.google.com/p/spatialindex.

Result Discussion

We first report our main observations from Tables 6.1, 6.2 and 6.3 and then

discuss interesting phenomena and their potential reasons. Finally we summa-

rize the strengths and weaknesses of the content-based and geo-based methods,

respectively.
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Table 6.2: Retrieval technique comparison over supplementary landmarks
among day-time videos.

Landmark Gardens by the Bay The Merlion Universal Studios Ngee Ann City
Criterion Precision Recall Precision Recall Precision Recall Precision Recalll
ScSPM 0.8165 0.5037 0.9874 0.2810 0.8550 0.4577 0.9112 0.1930
LLC 0.7714 0.8597 0.9598 0.5630 0.7760 0.4330 0.6641 0.1630
GeoLVD 0.7070 0.9740 0.8183 0.8967 0.8367 0.5870 0.8612 0.8537

Table 6.3: Execution time per query frame of the content- and geo-based meth-
ods.

Step Preprocessing Retrieval
ScSPM 2.4 s 0.17 ms
LLC 1.1 s 0.17 ms
GeoLVD - 0.30 ms

– Observation 1: Dependence on Illumination. Among day-time

videos, the geo-based method always achieves a better recall while the

content-based methods achieve better precisions. However, among the

night-time videos the geo-based method outperforms the content-based

methods in both recall and precision, except for the one case of the Marina

Bay Sands hotel.

– Observation 2: Dependence on Landmark. The performance of

both ScSPM and LLC varies significantly among the different landmarks

we tested, while the GeoLVD method performs relatively stably.

– Observation 3: Execution Time. The three methods exhibit com-

parable, high retrieval speeds, but the content-based methods involve an

extra preprocessing step for visual feature extraction and coding, which

is time-consuming. Though LLC is much faster than ScSPM in the

preprocessing step, it performs less stable and mostly worse in terms of

precision and recall.
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It is obvious that the illumination has a great impact on the content-based

methods. This is not unexpected because objects become less distinguishable in

low light even for human eyes, and therefore also for SIFT feature descriptors.

On the other hand, illumination should have little impact on the geo-based

method, so ideally GeoLVD ’s performance should be similar on videos taken

under various conditions. However, this is not always the case as is illustrated

in Table 6.1. For example, the precision of GeoLVD for the Singapore Flyer

has a gap of 18% between day and night. We consider this to be caused by the

variations in the video sets’ geographic distributions which also varies, besides

the illumination. The location where a video is recorded is a crucial factor

for a geo-based method because smaller obstacles that may not be stored in a

GIS database (e.g., OpenStreetMap), such as trees and unimportant buildings,

are more likely to exist in some places than others. Therefore, the retrieval

precision could be significantly reduced under such circumstances.

The second observation concerns the impact of the diversity of landmarks.

For the content-based methods – though the SIFT feature descriptor we used is

invariant to uniform scaling, orientation, and affine distortions to some extent –

the real-world landmark variations are far more complex than that. In general,

frames in which the landmark occupies the majority of the scene can provide

more distinguishable local features, so they are easier to be recognized by the

classifier. Furthermore, the similarities and differences between the training

and test images also affect the classifier’s decision. The training set is expected

to encompass the landmark’s visual diversity in order to well represent all pos-

sible situations that may appear in the test images, but as is shown in our

experiments, the Flickr images cannot always represent the video frames well.

For example, Figure 6.3 shows two images of the Singapore Flyer. Figure 6.3(a)
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(a) (b)

Figure 6.3: Two typical images of the Singapore Flyer landmark in the ex-
perimental dataset: (a) a representative of the Flickr training images (Copy-
right c© 2013 Flickr [33]) and (b) a representative of the frames from the video
dataset.

is a representative of the Flickr images and Figure 6.3(b) is a representative of

the video frames. Since they were taken at different places, the appearance of

the Singapore Flyer differs markedly. We may speculate that there are fewer lo-

cations where users take photos of landmarks compared to places where videos

are taken, because videos may include actions such as pans and zooms and a

landmark may only be part of a lengthy shot. Therefore, in videos recorded

at places other than the favorite spots for taking Flickr photos, the landmark

becomes more difficult to be recognized by the classifier.

When analyzing the execution time, one key difference between content-

based and geo-based methods is that the former requires an extra preprocessing

step before retrieval can be performed. Visual features need to be extracted

and coded in the preprocessing phase for selected frames. Although in video

retrieval applications the frame contents are usually analyzed only once and

the features saved for indexing and searching, it can usually not be ignored

because it is very time-consuming compared with the actual retrieval. In small

to medium sized video sharing systems, the time spent on video preprocessing

may be acceptable, but as it becomes significant in large video sharing systems
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such as YouTube, issues arise such as determining the best time to preprocess

a video. Though generally only a small portion of videos gain great popularity

while the others receive little attention, it still remains a very difficult task to

predict the popularity of a video beforehand. It may be wasteful to preprocess

a video immediately after it is uploaded because it could turn out to be an

unpopular clip that users rarely search for. On the other hand, if preprocessing

is performed on demand of a retrieval request, it will cause major delays and

possibly make the system impractical. The geo-based method, on the other

hand, does not encounter this kind of concern.

Content- versus Geo-based: Strengths and Weaknesses.

As discussed above, the content-based method is susceptible to variations in

illumination and landmark appearance. It is challenging to form a training set

that can well represent all the possible conditions of video frames. Addition-

ally content-based methods require a time-consuming preprocessing step before

retrieval. The strength of content-based methods is that an SVM classifier out-

puts a probability. Thus by choosing different thresholds, one can find the best

trade-off between precision and recall. The strength of the geo-based method is

that it is more stable under various video conditions and landmark appearances.

Since videos do not need to be preprocessed, they can be retrieved immediately

after being uploaded to a server. Note that although the performance of the

geo-based method depends on the accuracy of the sensor data, we found from

our experiments that the performance is acceptable, since GeoLVD achieves an

average recall of greater than 80% (see Table 6.1). For comparison purposes

we also computed ScSPM ’s average recall when it achieves an equal precision

to GeoLVD and it is only less than 40% among day-time videos. However, the
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geo-based method has its own drawback. It relies on geographic information

services such as OpenStreetMap which may have uneven building and detail

coverage, leading to missed occlusions and obstacles. However, if past experi-

ence is any guide then these data sources are rapidly improving in both coverage

and details. Though this still leaves the problem of dynamic occlusions such as

a bus passing by or newly planted trees.

6.3.3 Content-based Method Robustness Analysis

From our experiments we have an approximate idea of the performance that

can be achieved by ScSPM and LLC in frame retrievals for certain landmarks.

Though these methods have been reported to achieve promising classification

results on some standard datasets (e.g., Caltech 101, Caltech 256, and PAS-

CAL VOC 2007) they face challenges when applied to large and multi-domain

real world images and video frames. Here we mainly consider and discuss the

following three factors that affect the retrieval effectiveness of content-based

methods:

1. The complexity of visual features.

2. The representativeness of the training set.

3. The diversity of the test set.

In general, better performance is more likely achieved by adopting a more

extensive spatial model and a larger visual vocabulary, but this will also cost

more memory and computation time. The visual feature vector we used for

each image has a length of (1 + 4 + 16)× 1, 024 = 21, 504 floating point values

which is already highly complex for video collections. Since the videos are
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geo-referenced, we expect that their performance can be further improved with

the help of the geographic metadata. The integration of content and context

information will be discussed in Section 6.3.5.

Next, we investigated alternative image sources that can make the training

set more representative. Google Maps StreetView would seem a good choice,

since it is a very comprehensive dataset which consists of 360◦ panoramic views

of almost all main streets and roads in a number of countries, with a distance

of about 12 m between recording locations. To supplement the current training

image set, we collected Google StreetView images on five main streets around

Marina Bay. In Figure 6.4, the red pins represent the locations of images we col-

lected, and at each location four directional side views were retrieved, ensuring

that one of them would point to the landmark of interest, which is the Singapore

Flyer in the case of Figure 6.4. For each landmark, 25 images were manually

selected as positive instances, and the other 75 images with the same loca-

tion but different side views were automatically selected as negative instances.

To evaluate the effectiveness of this new image source, a new training set was

formed by randomly selecting 25 positive and 75 negative instances from the

previous training set and substituting them with the Google StreetView images.

In the following experiment, we will use TrainingFlickr and TrainingFlickr+StV

to denote the previous and new training sets, respectively.

For the third factor in our list, we conjecture that the appearance of objects

may be more diverse in videos than in images because videos frequently contain

moving scenes which are different than the composition of single, static picture.

Thus, the partial appearance of a landmark is a common situation in video

frames. It occurs due to scene transitions, pans, zooms, or partial occlusions.

To measure the fraction of a landmark’s partial appearances in videos, we
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Figure 6.4: Details of the Google StreetView training images collected near
Marina Bay. Right: image location distribution, left: an example of four side
views per location. Copyright c© 2013 Google [36].

filtered out all the frames in which the landmark is only partially visible and

prepared a new test set considering only the landmark’s entire appearance as

positive instances. We will use TestPartialLM and TestEntireLM to denote the

previous and new test sets respectively in the following experiments.

Experiments were carried out based on different combinations of train-

ing and test sets. For the content-based method we used ScSPM, and since

the Google StreetView images we collected are all taken during the day, we

performed the experiments among day-time videos only. As the frames were

ranked based on the SVM probabilistic outputs, we computed the precision-

recall curves by changing the threshold value. The results are shown in Fig-

ure 6.5. We observe that the StreetView images indeed enhance the represen-

tativeness of the training set and produce the greatest improvement for the

Singapore Flyer landmark. Moreover, when the definition of positive instances

is narrowed in the test set to the landmark’s entire appearance only, ScSPM

performs much better than before. This reveals not only ScSPM ’s poor recog-

nition rate with a landmark’s partial appearance, but also the widespread exis-

tence of such frames in videos. A landmark is more likely to show up partially
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(a) Landmark: Marina Bay Sands hotel
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(b) Landmark: Esplanade
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(c) Landmark: Singapore Flyer
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(d) Landmark: Art Science Museum

Figure 6.5: Evaluations with two training sets (Flickr only or Flickr with Google
StreetView images, Flickr+StV ) and two test sets (partial or entire view of
landmarks) for the content-based ScSPM method.

if it is bigger in size, which is the reason why the performance on the Marina

Bay Sands hotel improves the most.

6.3.4 Geo-based Method Robustness Analysis

The geo-based method geometrically computes a landmark’s visibility based

on the geographic information of both the camera and the surrounding objects

(e.g., buildings). We summarise the factors that affect the retrieval effectiveness

of geo-based methods into the following three aspects:

1. The accuracy of the smartphone sensor data.
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Table 6.4: Details of landmark visibilities in Google StreetView images.

Condition Visible Invisible Total
Marina Bay Sands 298 117 415
Esplanade 120 295 415
Singapore Flyer 233 182 415
Art Science Museum 90 325 415

2. The level of detail of the static geographic object models (e.g., buildings).

3. The probability of the accidential appearance of real-world dynamic,

moving objects such as people, vehicles, etc.

To evaluate the influence of each aspect, we used the Google StreetView im-

ages for the test set because they are associated with accurate location and ori-

entation information. For each landmark, the test set is formed by all the images

whose camera orientation is towards the landmark. We collected StreetView

images at 415 locations, so there are overall 415 images in each test set. The

details are shown in Table 6.4. We evaluated two variations of the geo-based

method on StreetView images and video frames, respectively. The first ap-

proach is GeoLVD , which is termed the geo-advanced method as it checks if

a landmark is hidden by obstacles. The other is termed the geo-basic method

that does not perform the occlusion check, and hence functions for baseline

comparisons.

For StreetView images, the geo-basic method always has a recall of 100%

because all the test images point toward the landmark and will be surely re-

trieved without the occlusion check. Its precisions are 71.8%, 28.9%, 56.1%, and

21.7% respectively for the four landmarks. Comparatively, the geo-advanced

method achieves higher precisions which are 85.2%, 42.0%, 66.5%, and 46.4%.

The results are illustrated in Figure 6.6 and show that the geo-advanced method

gains an average increase of 15.4% in precision over geo-basic. Since the
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Figure 6.6: GeoLVD method results
with retrieval queries based on Google
StreetView images.
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Figure 6.7: GeoLVD method results
with retrieval queries based on video
frames.

StreetView images are associated with accurate geographic information, any

retrieval errors of GeoLVD are mainly attributed to the second and third fac-

tors listed earlier. Geographic information services such as OpenStreetMap

only record data of major objects, hence it is not feasible to obtain information

of unimportant buildings or trees which are potential obstacles that may hide

a landmark. Moreover, even for the buildings recorded in OpenStreetMap, in-

terestingly the height information is sometimes not available. For simplicity,

we estimated the height according to a building’s name and type. For example,

we used a height of 0 m for rivers and 30 m for ordinary buildings. Even this

simple height estimation as the 3D occlusion check improves the precision by an

average of 15.4%. However, it also worsens the recall slightly by an average of

4.3% resulting in a drop from 100% to 95.7%. We conclude that the geographic

information collected from OpenStreetMap is currently not detailed enough for

precise landmark visibility calculations. As a result the precisions of GeoLVD

for the Esplanade and Singapore Flyer are still quite low (less than 50%). In

general, smaller landmarks are affected more by the lack of information detail.
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For video frames the retrieval precisions are visualized in Figure 6.7. We

executed the experiments on 10 test sets for each landmark, and the resulting

average precisions are 65.7%, 69.9%, 74.9%, 66.2% for the geo-basic method

and 71.4%, 70.0%, 79.1%, 73.1% for the geo-advanced method, respectively.

Compared with the results in Figure 6.6 we can make two major observations.

First, both the geo-basic and the geo-advanced methods perform better on

video frames, and second the performance gap between the geo-basic and the

geo-advanced methods is significantly smaller on video frames. Given the as-

sumption that the geographic sensor metadata is not as accurate as the data

from StreetView, we would expect the retrieval performance to become worse.

One explanation for the improvement might be that the locations for capturing

landmarks have been selected by users and hence they have already been “fil-

tered” to avoid occlusions. Hence, compared with the semi-robotically collected

StreetView images, the probability that a camera view is pointing towards a fa-

mous landmark but is occluded by obstacles becomes smaller for video frames.

Therefore, even without knowledge of minor inconsequential objects, the geo-

based methods can still work well on video frames. The degree of sensor errors

can be estimated by the recall values of the geo-basic method, which are 89.6%,

84.5%, 83.1%, and 82.1%, because the values are expected to be 100% if the

sensor data is accurate. In terms of the geo-advanced method, only the recall

for the Marina Bay Sands hotel decreases slightly to 89.1% while the other

three values remain unchanged. This slight drop in recall, together with the

other two observations above, indicate that the geo-based landmark retrieval is

less susceptible to the lack of geographic information when queried with video

frames.
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6.3.5 Hybrid Integrated Content and Context Analysis

The encouraging results from Section 6.3.2 illustrate that contextual informa-

tion, for example in the form of geographic data, is a powerful tool for the

search of large-scale video archives. Since content- and context-based methods

make use of complementary information, it seems natural to combine the two

to further improve performance.

Here we propose a hybrid landmark retrieval method which is a late fusion

approach that combines the scores of the content- and context-based methods

in semantic space [106, 9]. As pointed out by Atrey et al. [9], the late fusion

approach has the advantage of allowing us to use the most suitable methods for

analyzing each single modality, e.g., SVMs for visual content and GeoLVD for

geographic context. In our study context refers to the location and orientation

of the camera. However, the method may be extended to other contextual

information in the future. The key idea of the hybrid approach is to first

estimate the effectiveness of the content analysis based on the distance from

the recorded frames to the landmark, and then use this measure as a weighting

factor to combine the scores of the content- and context-based methods. The F1

score is a good indicator for the effectiveness of the content-based method as it

considers both precision and recall (see Eqn. 6.3). Therefore, we grouped video

frames based on their distance to the landmark and computed the F1 score for

every group. We fit the F1 score to a Gaussian function of distance for each of

the landmarks as shown in Figure 6.8. For an image that is taken far away from

the landmark, the content-based method is not very reliable since the image

contains limited details of the landmark but much irrelevant elements from its

surroundings. As the camera location moves closer to a landmark, its structure
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Figure 6.8: Estimated Gaussian Function of F1 Score over Distance for different
landmarks.

is better visualized and the “noise” from the surroundings is reduced to some

extent as well. However, if the distance is further reduced, the probability

that an image focuses on only one part of the landmark instead of the whole

structure becomes higher, and the resulting information loss also weakens the

effectiveness of the content-based method to some extent.

F1 = 2×
precision× recall

precision+ recall
(6.3)

We propose to combine the scores of content- and context-based methods,

Scorec and Scoreg, using the formula below,

Scoreh = α× Scorec + (1− α)× Scoreg

where α is the preference coefficient that controls the balance between the two

scores. Based on the observations above, we define α as,

α = ai + bi ×Gaussiani
F1(Dist(landmarki, frame))
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Table 6.5: F1 scores of methods based on content only, context only, and their
hybrid integration.

Method ScSPM GeoLVD Hybrid
Marina Bay Sands 0.6858 0.7930 0.8249
Esplanade 0.5736 0.7652 0.7878
Singapore Flyer 0.5628 0.8104 0.8104
Art Science Museum 0.6783 0.7737 0.8003
Gardens by the Bay 0.7347 0.8193 0.9376
The Merlion 0.7451 0.8557 0.8836
Universal Studios 0.6261 0.6900 0.8138
Ngee Ann City 0.6169 0.8574 0.8701

where i = 1, 2, . . . , 8 represents the index for the eight landmarks, Gaussiani
F1(x)

denotes the estimated Gaussian function of the F1 score for landmark i, and

Dist(landmarki, frame) computes the distance between landmark i and a

given frame. Values ai and bi are constants such that ai + bi ≤ 1. As indicated

earlier, we use the F1 score as the measure of effectiveness for the content-based

method. In practice, it should be avoided that α is close to zero because the

location associated with a frame is acquired from GPS and thus contains some

noise. Consequently, we use ai to control the lower bound of α.

Figure 6.9 illustrates the precision-recall graphs of the proposed hybrid

method as well as the results of ScSPM and GeoLVD for comparison. The

experiments are performed on day-time videos. The positive instances of video

frames are defined to include both the entire and partial appearances of a

landmark. For each of the landmarks, a separate training set is selected where

ai and bi (i = 1, 2, . . . , 8) are tuned. We also illustrate the highest F1 score

that each of the methods achieves in Table 6.5.

From the statistics we can see that the proposed hybrid method achieves

the best result overall. It significantly improves the effectiveness of ScSPM.

Moreover, it enhances GeoLVD not only by increasing the F1 score but also by
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(a) Landmark: Marina Bay Sands
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(b) Landmark: Esplanade
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(c) Landmark: Singapore Flyer
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(d) Landmark: Art Science Museum
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(e) Landmark: Gardens by the Bay
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(f) Landmark: The Merlion
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(g) Landmark: Universal Studios

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

o
n

 

 

ScSPM
Hybrid
GeoLVD

(h) Landmark: Ngee Ann City

Figure 6.9: Precision-recall curves comparison of methods based on content
only, context only, and their hybrid integration.
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enriching the output from binary to a probability range. The best improvement

is observed with the landmark Universal Studios Globe. We examined the test

set and found that the frames are usually recorded very close to the globe

because of its small size compared with other landmarks, and this therefore

makes it the most sensitive to GPS errors. This is also the reason why GeoLVD

only achieves an average recall of 58.7% with the globe. Fortunately, ScSPM

compensates for such situations very well and consequently makes the hybrid

method highly effective. On the other hand, most of the test frames from the

Singapore Flyer are taken some distance away at Marina Bay which weakens

the reliability of ScSPM in terms of compensation. The execution time of

the hybrid method is approximately the sum of the content- and context-based

methods we used, i.e., 2.4 s for preprocessing and 0.47 ms for retrieval per frame,

which is quite fast and acceptable. In summary, the selection of a suitable

method depends on the application requirements of retrieval effectiveness which

is closely related to the characteristics of the landmarks and the video collection.

6.4 Summary

In this study we have evaluated two state-of-the-art video landmark retrieval

paradigms, namely media-content based and geo-context based retrievals. For

the content-based retrieval, we selected two high performance methods, ScSPM

and LLC, and for the geo-based retrieval, we introduced GeoLVD , which is

inspired by the 3D visibility query processor proposed by Shen et al. [99].

From the comparison results we draw a number of interesting observations,

chiefly among them is the importance of the illumination conditions for content-

based methods, summarized as follows.
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– When performing retrievals from our day-time video collection, it is al-

ways the case that content-based retrieval achieves a higher precision,

while the geo-based retrieval achieves a higher recall.

– However, when carrying out retrievals from the night-time video collec-

tion, the geo-based method always outperforms the content-based method

in terms of both precision and recall.

– The performance of the content-based method varies significantly when

searching for different landmarks, while the geo-based method is rela-

tively stable.

Therefore, we conclude that when the illumination or the appearance of a

landmark is not favorable for content-based retrieval, the geo-based method is

more suitable and should be chosen instead.

In terms of execution time, we observe the following.

– Both the content-based and the geo-based methods exhibit comparable

retrieval speeds in the sub-milliseconds per frame, but the former involves

an extra preprocessing step for visual feature extraction and coding which

is usually time-consuming, taking on the order of 1 to 2 seconds per frame.

– LLC, which aims at speeding up the visual feature coding procedure, is

much faster than ScSPM in the preprocessing step. However, it is also

less accurate in the retrieval phase.

The time spent on the preprocessing step may not be a significant burden

for small to medium video sharing systems. However for large video sharing

platforms such as YouTube, it becomes a hassle to determine when is the best
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time to preprocess a video. In such a scenario the geo-based retrieval method

reveals its strength as no video preprocessing is needed beforehand. However,

the standardized recording of geographic metadata is currently still in the ex-

ploratory stage among large online media sharing systems.

In the future, we plan to extend the evaluation from frame retrieval to

segment retrieval by investigating video temporal continuity as well. Addition-

ally, efforts have been made in the study and development of indoor positioning

systems, e.g., the Redpin project (http://redpin.org). We are interested in in-

tegrating such capabilities into our system to allow it to work both outdoors

and indoors.
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Hybrid Video Similarity Search

7.1 Introduction

This work extends the keyword-based landmark retrieval studied in the pre-

vious chapter to a more general problem of precise example-based video sim-

ilarity search. Query-by-example based video search refers to the automatic

retrieval of video segments that are similar to a user-provided example from

the video database. Considering the limited descriptiveness of textual anno-

tations, example-based content-level processing of multimedia documents has

recently been popular in image and video retrieval literature [50]. Unfortu-

nately, content-based methods suffer from the semantic gap [51] that hinders

an accurate discovery of video content of interest. To solve this issue, ge-

ographic contextual modeling has been investigated recently. Methods have

been proposed to judge the relevance of documents based on the textual and
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spatial similarity with a query [62]. In multimedia, most previous work fuses

visual content and geo-context to facilitate image management, whereas little

effort has been placed on video retrieval. For example, image location infor-

mation is widely applied for geo-clustering in landmark mining [56, 26], or to

create a conjunctive ranking in image annotation and retrieval [59, 54]. Such

approaches cannot make full use of the geographic information since in most

cases only the camera location is incorporated. For video, in most of the current

geo-referenced retrieval systems [8, 7, 58], clips are ranked purely based on their

spatial relevance to the geospatial queries. In this study, we focus on sensor-

rich videos with fine granularity spatial data. Since such geographic properties

are automatically recorded using a built-in GPS and compass, we use outdoor

videos where the sensor readings are more accurate. We leverage the geographic

metadata of videos to improve the performance of text-based and content-based

video retrieval techniques. More robust and diverse semantic annotations and

similarity search results can be obtained by applying multi-feature fusion.

One issue of the previous fusion approaches is that they utilize the camera

location directly. However, such information only captures the camera proper-

ties (e.g., photographer location in some street in Paris) rather than the video

content (e.g., the Eiffel Tower). This inconsistency motivated us to propose a

new content-oriented geo-feature to facilitate video search. The key components

of the approach are illustrated in Figure 7.1: the Hybrid Model Generation (see

Section 7.2) and the Geo-Codebook Generation (see Section 7.3). In the Hybrid

Model Generation module, a two-level hierarchical model is introduced where

multiple cues collaboratively contribute to the video representation. At level

one, we generate a geo-histogram which represents the regions that a video

covers based on the camera’s field-of-view and a pre-defined geo-codebook.
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Figure 7.1: Illustration of key techniques for geographic and visual feature
fusion in our proposed video retrieval system.

Different from the earlier viewable scene model [8] which focuses on individual

frames, our proposed model describes the overall geographic coverage of a video.

It enables the estimation of spatial relevance between videos through the cosine

similarity between the two corresponding geo-histograms. At level two, we map

frames to the regions they capture and select the visually representative ones.

Note that in our model, frames are indexed by the regions they capture instead

of the camera location. By doing so, geo and visual features are directly con-

nected via regions. Thereafter, we propose a video similarity measure which

sums up local similarity scores on a region-by-region basis. Next, toward a

better encoding of the geographic coverage in the hybrid model, we present the

Geo-Codebook Generation module. In this component, we propose an approach

that can semantically segment a map into a collection of coherent regions as

a geo-codebook. We further quantify the saliency of each region, as humans

perceive geographic objects in different areas differently, e.g., a building is more

121



CHAPTER 7. HYBRID VIDEO SIMILARITY SEARCH

likely to be of interest than a road. Finally, we built a video retrieval system

based on the proposed model. Its effectiveness is shown through a performance

comparison with existing methods.

7.2 Hybrid Model for Video Representation

While the viewable scene model [8] has been adopted for many geo-referenced

video applications [7, 134, 99], one fundamental issue is it describes the camera

properties rather than the video content. We argue that content-oriented geo

features are highly desired because their consistency with visual clues can make

the fusion more seamlessly. As illustrated in Figure 7.2, we propose a novel two-

layer model in which frames are indexed by the regions they capture instead of

the camera location. Therefore, geo and visual features are directly connected

via regions.

Video Clips

Level 1

Geographic Features

Level 2

Visual Features

Figure 7.2: Illustration of the proposed hybrid model for video representation.

On the first level, this model computes the overall geographic coverage of

a video instead of emphasizing individual frames for efficient spatial relevance

measure. On the second level, it indexes frames by regions and selects a number
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of representative ones based on the visual cues. In the rest of this section,

we will first introduce the feature modeling of the proposed two-level video

representation, then present a robust video similarity measure based on which

more accurate search results can be retrieved.

7.2.1 L1: Geographic Coverage Calculation

As introduced earlier, level one aims to capture the overall geographic cov-

erage of a video. To achieve this goal, we pre-segment a map into a set of

regions with different saliency values. This is used as a geo-codebook to encode

the geo-coverage of a video. The approaches for map segmentation and saliency

estimation will be discussed in the next section. The geographic metadata is de-

scribed by the viewable scene model proposed by Arslan Ay et al. [8] (referred to

as FOVScene). Figure 7.3 illustrates the 2-dimensional FOV Scene(P, ~d, θ, R)

model which is the 2D version of Figure 3.1. As we can see in this figure, the

FOVScene overlaps with a geographic region, where ol represents the overlap,

P c denotes the centroid of overlap ol, and ~dc is the vector pointing from point P

to P c. These are the important concepts that will be used in the geo-coverage

calculation.

P

R

θ

d
→ 

P: camera location

d: camera direction vector
→ 

θ: viewable angle

R: visible distance
ol

P
c

→ 

d
c

P

Figure 7.3: Illustration of FOVScene model in 2D.

To quantify what portion of a region is covered by a frame, we compute the

overlap between the camera’s FOVScene and the regions in the geo-codebook
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and use the overlap area to emphasize their spatial relevance [7]. As research

indicates that people tend to focus on the center of an image [53], we prioritize

regions that are close to the camera location and viewing direction [99, 134].

Let olij denote the overlap between region ri and frame fj. We assign weights

to the regions based on the following three criteria,

• Normalized area of the overlap: Considering the regions differ in size, we

normalize the area of the overlap A(olij) by the area of the region A(ri),

that is Â(olij) = A(olij)/A(ri).

• Closeness to the camera location: We compute the Euclidean distance

D(P c
ij, Pj) between the overlap geometry center P c

ij and the camera location

Pj, and formulate this criterion as 1√
2πσ

exp(−
D(P c

ij ,Pj)
2

2σ2 ).

• Closeness to the viewing direction: Let ~dcij denote the vector pointing from

the camera location Pj to the overlap centroid P c
ij . We compute the angular

distance Dθ( ~dcij,
~dj) between vector ~dcij and the camera direction ~dj, and

formulate this criterion as 1√
2πσθ

exp(−
Dθ( ~dcij ,

~dj)
2

2σ2
θ

).

Consequently, we compute the weight for region ri captured in frame fj

using Eq. 7.1 given below.

hist
geo
i (fj) =

Kσ,σθ
(D(P c

ij , Pj), Dθ( ~d
c
ij ,

~dj))Â(olij)
∑

k Kσ,σθ
(D(P c

kj , Pj), Dθ( ~d
c
kj ,

~dj))Â(olkj)
(7.1)

where Kσ,σθ
(d, dθ) =

1
2πσσθ

exp
(

−1
2
( d

2

σ2 +
d2
θ

σ2
θ

)
)

. As a frame can cover multiple

regions, the denominator is a factor that normalizes the sum of the region

weights to one.

124



CHAPTER 7. HYBRID VIDEO SIMILARITY SEARCH

Subsequently, the histogram for video geo-coverage is calculated as the sum

of histgeoi (fj) using Eq. 7.2. Since the video segments showing regions with a

higher saliency value are more likely to be perceived by humans, we weight the

histogram entries by the corresponding region saliency values saliency(ri), that

is:

histgeoi (v) = saliency(ri)
∑

fj∈v
histgeoi (fj) (7.2)

Finally, we normalize histgeo(v) by its Euclidean norm:

ˆhist
geo

i (v) =
histgeoi (v)

‖histgeo(v)‖2
(7.3)

Now the geospatial relevance between videos can be efficiently measured

as the cosine similarity between the generated geo-histograms, which quantifies

the common areas covered by both of the videos:

Sg(vi, vj) =
∑

k

ˆhist
geo

k (vi) ˆhist
geo

k (vj) (7.4)

Note that for videos where only the GPS is available in the geo-metadata, it

is possible to relax the direction criterion when generating the geo-histograms.

We define the geographic area covered by such a frame to be a circle region

centered at it with a radius of r. Therefore, Eq. 7.1 can be reduced to:

histgeoi (fj) =
Kσ(D(P c

ij, Pj))Â(olij)
∑

k Kσ(D(P c
kj, Pj))Â(olkj)

(7.5)

The regions are weighted based on the first two criteria which are Â(oli) and

Kσ(D(P c
ij , Pj)) =

1√
2πσ

exp(−
D(P c

ij ,Pj)
2

2σ2 ).
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7.2.2 L2: Representative Visual Features Selection

On the second level, visual features are extracted as the complementary infor-

mation. In general, it is insufficient to measure video similarity purely based on

the common geo-areas covered by both videos because (1) occlusions can occur

due to moving objects such as people and vehicles, and (2) the geo-histogram

generated on the first level is susceptible to sensor accuracy. Therefore, it is

highly desired to compare visual features for a more robust similarity measure.

The traditional content-based video similarity measure is mostly based on pair-

wise keyframe distances. Comparatively, with the prior knowledge of camera

location and viewing direction, we can geographically index the frames of a

geo-referenced video based on the regions they capture, and compute the local

visual similarities in each region.

Since a large number of video frames are near-duplicate, it is necessary to

cluster the frames and select the representative ones in each region. We build

upon an effective lightweight clustering technique called the reciprocal election

approach proposed by van Leuken et al. [115]. The key idea is to let every frame

vote for the others. We make adaptations to the voting function to incorporate

the frame geo-features. In a video v, let F = {f1, f2, ..., fn} denote the set of

frames of v that capture a same region ri. For each frame fj in F , we rank the

others based on their visual similarities to fj. Particularly, the visual similarity

between frames is computed using Eq. 7.6.

W (fi, fj) = exp

(

−
‖fi − fj‖

2
2

σ2

)

(7.6)

Let f denote the k-th nearest neighbor of fj. The vote f receives from

fj is defined to be vote(fj) = histgeoi (fj)/k. A smaller k indicates that the
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two frames are highly similar and f is a good representative for fj. A larger

histgeoi (fj) indicates that fj is highly relevant to region ri and it is a salient

frame in set F . Subsequently, the total votes f receives from the others is
∑

j vote(fj) where fj is a frame in set F other than f .

After all the frames have cast their votes, the frame with the highest num-

ber of votes is selected as the first representative. The cluster around it is formed

by those frames whose visual similarity to it exceeds a pre-defined threshold.

Next, we exclude the first representative and its cluster members, and select

the frame with the highest number of votes in the remaining set as the sec-

ond representative. This process repeats until the percentage of the remaining

frames is less than a threshold (0.05).

As the appearance of a region can change among videos, the visual sim-

ilarity of a region’s appearances can be measured based on its representative

sets in different videos. To promote visually similar ones in ranking, we present

an approach to fuse video spatial relevance with region visual similarity in the

following section.

7.2.3 Video Similarity Measure

As introduced earlier, the proposed video representation transforms the original

per-frame features into per-region features (spatial weight and visual represen-

tatives). Subsequently, video similarity can be decomposed as the sum of region

feature similarities. As an example, Figure 7.4 shows two video clips A and B

where a same region, the Marina Bay Sands hotel circled in red, is captured.

Recall that the spatial relevance between two videos can be measured as the

cosine similarity between the geo-histograms:
∑

k
ˆhist

geo

k (vi) ˆhist
geo

k (vj), that is
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0.88×0.6 = 0.528 between A and B. One issue arises in this case if we measure

their similarity purely according to the spatial relevance. That is, the Marina

Bay Sands hotel is occluded by trees in B, resulting in a low visual similarity

score of 0.43. Furthermore, though the frames circled in blue and yellow show

different regions, interestingly they happen to be visually similar.

0.45 0.88 

0.6 0.8 

0.43 

0.74 

0.48 
0.37 

A 

B 

Geo-histogram 

Geo-histogram 

Visual 

Similarity 

Figure 7.4: An example of similarity calculation between two videos.

Without loss of generality, let wvis
k (vi, vj) represent the local visual similar-

ity between videos vi and vj in terms of region rk. A small wvis
k (vi, vj) indicates

that the region’s appearances in the two videos are dissimilar, which is possibly

caused by unpredictable occlusions, geo-metadata errors, or changes in illumi-

nation and viewpoints. Based on this observation, we penalize such situations

by Eq. 7.7:

Sim(vi, vj) =
∑

k

wvis
k (vi, vj) ˆhist

geo

k (vi) ˆhist
geo

k (vj) (7.7)

Note that wvis
k (vi, vj) can be computed by any existing visual similarity

measure [23, 24, 98]. The proposed mechanism conjunctively leverages the

geographic coverage similarity and the visual content similarity. wvis
k (vi, vj)

controls the impact of visual features on the similarity calculation. If wvis
k (vi, vj)

is set to one under all circumstances, Eq. 7.7 would become a histogram-based
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approach which is similar to the one proposed by Arslan Ay et al. [7]. The

difference is that their approach measures the spatial relevance between a video

and a region query, whereas ours focuses on measuring the similarity between

two videos. Such methods have the advantages of being highly efficient as

the computation is only based on the geographic metadata, but without visual

features its performance can degrade due to obstacles and occlusions.

On the other hand, the average size of the regions in the geo-codebook

controls the impact of geographic features on the similarity calculation. Assume

that there is only one region in the geo-codebook which is the entire globe,

Eq. 7.7 would reduce to one of the existing visual-based similarity measures. In

general, better precision can be achieved by using a geo-codebook with a finer

granularity, as it arranges frames in smaller groups where the visual semantics

are more explicit. But considering the errors in GPS and compass readings, a

geo-codebook whose granularity is compatible with the size of the FOVScene

model should be used.

In summary, the proposed model enables efficient spatial relevance calcu-

lations between videos as a dot-product of the geo-histograms on the first level

and fuses visual clues to promote visually similar ones on the second level. By

applying the geographic indexing of frames, our model not only reduces the

computational costs, but also excludes noise that exists due to the mismatch

between frames from different regions.

7.3 Geo-Codebook Generation

The geo-codebook is a key component in the hybrid model generation. Perhaps

the simplest way to generate a geo-codebook is to use a grid-based map. How-
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ever, a grid-based codebook suffers from two drawbacks as shown in Figure 7.5.

First, geographic objects (e.g., A, B and C) naturally differ in granularity while

grid cells are equal-sized. Second, an object (e.g., C) can be separated into mul-

tiple cells even if it is smaller than the cell size.

A

B

C

Figure 7.5: Limitations of a grid-based codebook that cannot satisfactorily
capture the diverse granularity of geographic objects.

To solve the above two problems, we propose to construct a geo-codebook

by a set of coherent regions that cover the map with no gaps or overlaps.

There are several approaches that can discover the geographic coherent regions

by investigating large image collections [110, 49]. However, such techniques

cannot be applied for the geo-codebook generation because: (1) The regions

discovered are usually not a full coverage of the map, and (2) the granularity

of the generated regions is usually too coarse. Alternatively, geo-information

services, e.g., OpenStreetMap (OSM), provide information of the geographic

objects all over the world. Compared with social image collections, this data

source is more detailed and precise based on which a reliable geo-codebook can

be generated.
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7.3.1 Problem Formulation

For a geographic area, we first partition it into a set of square grid cells. Let

G = {gi|i = 1, 2, ...,m×n} denote the set of cells, where m and n represent the

number of rows and columns, respectively. Next we retrieve the information

of geographic objects in each cell from OSM. Let Oi = {oi1, o
i
2, ..., o

i
k} represent

the object set of grid cell gi, where k is the total number of objects in it. Each

object is represented by a quintuple, o = {id, name, tags, footprint, height}. A

graph G = (V,E) is constructed where the nodes V are grid cells and the edges

E are weighted by node similarities. Thereby, the geo-codebook generation

can be modeled as a graph clustering problem where each cluster represents a

coherent region.

7.3.2 Clustering Cells into Coherent Regions

Based on the observation that adjacent similar cells should be merged into the

same coherent region, we model the edges in graph G according to the following

two criteria, the distance and the similarity between cells, in Eq. 7.8.

eij = Kσ(D(gi, gj)) · S(gi, gj) (7.8)

where Kσ(d) =
1√
2πσ

exp(− d2

2σ2 ); D (gi, gj) and S(gi, gj) denote the distance and

the similarity between grid cells gi and gj, respectively.

Intuitively, cells should more likely be merged if they contain one or more

common geographic objects. Therefore, we compute S(gi, gj) based on the

semantic similarity of the geographic objects in them. Recall that the geo-

graphic object set in cell gi is O
i = {oi1, o

i
2, ..., o

i
k}. Further, we assign a weight
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to each object by measuring the percentage of area it occupies in cell gi, i.e.,

P = {pi1, p
i
2, ..., p

i
k}. Thereafter, similarity S(gi, gj) is computed as the weighted

sum of the pairwise similarity of the geographic objects in grid cells gi and gj:

S(gi, gj) =
∑

v,w

pivp
j
wS(o

i
v, o

j
w) (7.9)

Recently, Ballatore et al. proposed a mechanism to compute the semantic

similarity of the OSM geographic classes [13]. They extracted a semantic net-

work from the OSM Wiki website, and computed the tag-to-tag similarity score

based on the network topology. As each geographic object can be assigned with

multiple tags in OSM, we extend their approach to measure the object-to-object

similarity by averaging the corresponding tag-to-tag similarities:

S(oi, oj) =















1 if oi.id = oj.id

S̄(ti, tj) else

(7.10)

where ti and tj are tags attached with objects oi and oj, and S̄(ti, tj) denotes

the average value of the pairwise tag similarities.

After the graph is constructed, we adopt an effective clustering approach

called Newman and Girvan’s Algorithm [85]. This algorithm avoids the short-

comings of the traditional hierarchical clustering methods by detecting cluster

peripheries instead of finding the strongly connected cores. Additionally, it

provides a quality measurement called modularity which is more effective than

empirically chosen thresholds. One issue is that finding a maximum-modularity

clustering of a graph is computationally intractable. In our system, we utilized

a Java implementation from the project linloglayout1 which used an effective

1https://code.google.com/p/linloglayout/
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heuristic algorithm for modularity maximization.

Based on the above discussion, semantically coherent regions are obtained,

resulting in a descriptive geo-codebook. Therefore, the features encoded in the

hybrid model are more explicit and interpretable, leading to a better similarity

estimation.

7.3.3 Region Saliency Estimation

As aforementioned, the importance of buildings and other geographic objects

varies significantly in different areas. For example, landmarks are usually more

attractive than ordinary buildings. Therefore, it is necessary to score the regions

in the geo-codebook, based on which important objects appearing in a video

can get emphasized in the video representation. Visual saliency and social

saliency [102] complement with each other in attractiveness estimation. Here

we estimate the region saliency according to these two criteria as follows.

Visual Saliency: Higher objects are more likely to draw the attention of the

human eye, e.g., a building is more likely to be of interest than a road. Based on

this observation, we formulate this criterion as V S(r) =
∑

i {pi × oi.height},

where oi represents a geographic object in region r and pi is the percentage of

area covered by oi in r.

Social Saliency: This criterion measures the impact of social factors on

a region. We collect a set of geotagged images from Flickr, and compute the

score for this criterion as SS(r) =
∑

i Kσ(di), where di is the distance between

the region center and the location of the i-th image. It can be viewed as the

sum of image counts weighted by a Gaussian kernel based on distance.

To combine the above two criteria, the saliency of region r is calculated as
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saliency(r) = V S(r) + λSS(r) where λ is a scaling factor. Recall that in the

geo-coverage calculation, geo-histogram entries are weighted by region saliency

scores. Therefore, our proposed hybrid model is able to promote important

regions that are more likely to be of interest in the video representation.

7.4 Evaluation

We implemented a video search prototype and evaluated its effectiveness. We

proceed in two steps. The first part shows two examples of the geo-codebook

generation. The second part evaluates the performance of the proposed model

in video retrieval.

7.4.1 Experimental Setup

We evaluated our proposed approach on the geo-referenced video dataset from

the GeoVid website. Additionally, a supplementary dataset comprising 15,616

geotagged images was collected from Flickr by performing keyword-based search.

Two types of tags were used as the query keywords: (1) the textual information

of the geographic objects and (2) 25 popular concepts including airport, an-

imal, birds, boat, bridge, buildings, cityscape, clouds, college, crowd, danc-

ing, flowers, food, garden, grass, lake, person, plants, sky, street, sunset, temple,

tree, vehicle, and water. This image dataset was used in the region saliency

estimation.

For each of the frames and images, we extracted the following three low-

level visual features in our experiments:

• 48-D Gabor Wavelet Texture: Texture features extracted at four scales and
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six orientations using a Gabor wavelet decomposition. [82]

• 225-D Block-Wise Color Moments: The first (mean), the second (variance)

and the third order (skewness) color moments in HSV space extracted over

5×5 fixed grid partitions. [108]

• 512-D Gist Descriptor: The spatial structure of an image described by

global features derived from the spatial envelope. [87]

These features are used for visual similarity measurement.

7.4.2 Geo-Codebook Generation

In our implementation, the geographic information of objects was collected from

the OpenStreetMap. We recorded the name, the tags, and the footprint of each

object. However, for buildings described in the OSM, interestingly the height

attribute is sometimes not available. To solve this problem, we collected the

building heights from EMPORIS2, a real estate data mining company collecting

and publishing data and photographs of buildings worldwide. In Singapore

for example, it has records of 6,915 buildings, 321 of which have the height

information. For the rest where the height of the building is not available, we

estimate based on other clues, e.g., the number of storeys.

Figure 7.6 presents examples of the generated geo-codebook in four differ-

ent areas, namely Singapore, Chicago, Japan, and Hong Kong. The cell length

of the grids was set to 50 m and the parameter σ in Eq. 7.8 was set to 65 m

(σ = 1.3 × 50 = 65 m). This parameter σ controls the connections between

adjacent cells. If a large value is used, a cell will be bonded with its neigh-

bors more tightly and therefore result in a coarse geo-codebook. Conversely,

2http://www.emporis.com/
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(a) Singapore (b) Chicago

(c) Japan (d) Hong Kong

Figure 7.6: Examples of the generated geo-codebook in different areas around
the world.

a small value of σ will result in a fine-grained geo-codebook. Additionally in

Figure 7.6, the colors indicate the estimated saliency for each region and the

scaling parameter λ was empirically set to 0.4. Compared with the grid-based

codebook in Figure 7.5, we can see that this model successfully captures the

diverse granularity of different geographic objects, and the estimated saliency is

also consistent with human perception. Let us take Figure 7.6(a) as an example

since it shows the same area as in Figure 7.5. In the center of the picture, we

can see that the shape of Marina Bay (Object A in Figure 7.5) is well captured

by the geo-codebook. The building on its right (Object B in Figure 7.5) is the

most famous Marina Bay Sands hotel. Other salient regions marked in red are

mainly the popular landmarks including the Singapore Flyer, the Esplanade,

the Singapore River, and the financial district. In Figure 7.6(b), the salient
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regions belong to the Loop which is the central business district of Chicago. In

Figures 7.6(c) and 7.6(d), the salient regions are the Kofukuji Temple and the

Time Square (Hong Kong), respectively.

Note that the current geo-codebook was generated within a city. For large-

scale video datasets, our method can be easily scaled up by using a hierar-

chy: (1) segment the Earth surface into countries and cities, (2) generate geo-

codebooks within cities, and (3) index videos using the generated geo-codebooks

in various cities.

7.4.3 Evaluation on Video Retrieval

To evaluate the effectiveness of our proposed model in video retrieval, we col-

lected a total of 423 videos throughout the world, ranging from 21 to 523 s in

duration. The videos were further segmented into 1,656 shots, each of which

are about 30 s in duration. Furthermore, we selected 30 video clips and 10

Flickr images (see Figure 7.7) as queries. The selection criterion is that they

contain some recognizable places and landmarks which are more likely to be of

interest.

Figure 7.7: Ten geotagged Flickr images used as queries.

In our implementation, we adopt the method proposed by Cheung et al. [23]

to measure the distance based on visual clues. Thereby, wvis
k (vi, vj) in Eq. 7.7
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is computed as:

wvis
k (vi, vj) = exp

(

−
Dvis

k (vi, vj)

σ

)

(7.11)

Dvis
k (vi, vj) =

∑

fv∈Rk(vi)

(

minfw∈Rk(vj)‖fv − fw‖2
)

|Rk(vi)|+ |Rk(vj)|

+

∑

fw∈Rk(vj)

(

minfv∈Rk(vi)‖fv − fw‖2
)

|Rk(vi)|+ |Rk(vj)|

(7.12)

where Rk(v) denotes the set of representative frames of region rk in video v,

|Rk(v)| represents its size, and Dvis
k (vi, vj) is the visual distance between the

two sets of frames, Rk(vi) and Rk(vj). As we can see, we first compute the local

visual distance Dvis
k (vi, vj) as the average distance between the closest matched

frames using Cheung et al.’s method [23]. Then, we use a Gaussian kernel to

acquire the local visual similarity score, which is wvis
k (vi, vj).

For the hybrid model generation, we empirically set σ = R
3
and σθ =

θ
6
in

Eq. 7.1, where R and θ denote the visible distance and the viewable angle of

the FOVScene model illustrated in Figure 7.3.

Effectiveness comparison

To evaluate the effectiveness of our proposed region-aware video similarity mea-

sure, here we compared the following six methods and reported the results:

• GEO : It ranks videos based on the geospatial relevance using Eq. 7.4.

• CRLF : It filters the collection based on location, and then ranks the re-

maining based on visual similarity [86].

• CRGV : It ranks the collection based on a conjunctive function using both

geographic distance and visual distance [54].
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• RASM : It ranks videos based on the proposed region-aware similarity mea-

sure using Eq. 7.7.

• OB : A visual approach based on the state-of-the-art ObjectBank image

descriptor. It represents an image based on its response to a large number

of pre-trained object detectors [68].

• BoS : A visual approach based on the state-of-the-art Bag-of-Scene video

representation. It generates a compact descriptor based on a dictionary of

scenes, each of which represents a semantic concept [91].

As the existing work [86, 54] built their model using only GPS, to make

it a fair comparison we generated the geo-histograms using Eq. 7.5 in this

experiment. Later we will discuss how the performance can be further improved

when camera direction is also available in the geo-metadata. For each of the

queries, we examined the results and plotted the average precision at n (P@n)

in Figure 7.8. We also compared the methods based on the Mean Average

Precision (MAP) measure which is reported in Table 7.1.
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Figure 7.8: P@n comparison of the proposed and the existing fusion methods.

GEO serves as a baseline method because it ranks videos based only on

the geo-metadata. CRLF and CRGV outperformed the baseline method by in-

tegrating the visual clues. One issue is that these fusion approaches utilized the
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Table 7.1: MAP comparison of the proposed and the existing fusion methods.

Method GEO CRLF CRGV OB BoS RASM

By-video 39.6% 40.6% 41.2% 44.6% 38.7% 49.2%
By-image 38.9% 39.7% 39.8% 41.7% 34.6% 44.2%

camera location directly. However, such information only captures the camera

properties rather than the video content. This inconsistency between geo and

visual features limited the effectiveness of such approaches. Additionally, we

carried out experiments using the state-of-the-art visual features OB and BoS

for comparison. OB is an object-level image descriptor which is generated based

on pre-trained object detectors. It increased the MAP compared with methods

CRLF and CRGV where the low-level visual features were adopted. However,

due to the high dimensionality of the ObjectBank descriptor, it has the draw-

back of being time-consuming in feature extraction and similarity calculation.

The time complexity of each method will be compared in Section 7.4.3. In

contrast, BoS is a high-level compact video descriptor. In this experiment,

we used a dictionary of 500 concept scenes and soft coding technique. The

BoS descriptor represents a video segment using a single vector. Therefore,

it is highly efficient in computing the similarity score between videos (see Ta-

ble 7.6). However, it might be difficult to maintain a high MAP at the same

time. As can be seen, our hybrid model RASM achieved the best results overall.

It improved the MAP by 4.6% and 10.5% compared to OB and BoS. Our model

generates the geo-coverage of a video which is a content-oriented geo-feature.

Good performances can be achieved by fusing only with the low-level visual

features. Moreover, our proposed model also works well with more advanced

visual features such as OB and BoS. As reported in Table 7.2, our fusion tech-

nique can improve the MAP by as much as 7.7% compared with the original
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content-based approaches.

Table 7.2: MAP comparison of fusion with OB and BoS.

Method OB RASMOB BoS RASMBoS

By-video 44.6% 51.9% 38.7% 46.4%
By-image 41.7% 48.4% 34.6% 42.1%

As a final point, our model can make use of multiple geo-features in the

metadata, while how the camera direction can be utilized in other methods

remains unknown.

Geo-metadata availability

Next, we studied how the retrieval performance varied when the geo-metadata

was available at different levels. The comparison of average P@n is illustrated

in Figure 7.9, and the MAP statistics are reported in Table 7.3. The subscript

indicates which geo-metadata was used in the geo-coverage modeling.
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Figure 7.9: P@n comparison based on different availability of geo-metadata.

Table 7.3: MAP comparison based on different availability of geo-metadata.

Method GEOgps RASMgps GEOfov RASMfov

Query-by-video 39.6% 49.2% 66.9% 71.8%
Query-by-image 38.9% 44.2% 48.4% 53.2%
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As can be seen, the effectiveness of both GEO and RASM was greatly

improved by utilizing camera direction. It indicates the importance of camera

orientation in video content analysis, but unfortunately compass record is still

only available in the minority of multimedia documents. Such geo-restrictions

can greatly help reduce the semantic gap between the low-level visual features

and the high-level semantic concepts. For query-by-video, RASMfov improved

the MAP by 22.6% compared to RASMgps. For query-by-image, the increments

were 9.0%. RASM is more robust than GEO because its similarity measure is

more tolerant to dynamic obstacles and geo-metadata errors by analyzing the

visual clues.

In terms of geo-metadata, social sharing platforms such as Flickr provide

an accuracy level of geotags associated with photos. Therefore users can avoid

using images with inaccurate geotags as queries. As pointed out by Hauff [41],

the positional accuracy of the geotag information of Flickr images is highly

dependent on the popularity of the venue. The average distance to the ground

truth location is between 11 − 13 meters for images taken at popular venues,

which is small compared to the size of the viewable scene model that we con-

sider. Moreover, the good retrieval results shown in Figures 7.8 and 7.9 indicate

that our method is robust within a certain range of geotag errors.

Step-By-Step Model Justification

The proposed video similarity measure includes two main components: geospa-

tial relevance calculation and multi-feature fusion. To demonstrate the effec-

tiveness of our proposed approach in each step, we replace our method by a

functionally reduced counterpart and compare the corresponding retrieval per-

formance.
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• The geo-codebook generation is a key component in the first step. We use

it to encode the geo-histograms, based on which the geospatial relevance

between videos is computed. To illustrate its effectiveness, we replace it

by a grid-based approach. Each region in the grid-based codebook is a

square area that has a side length of 300 m.

• To justify the effectiveness of the region-aware fusion approach illustrated

in Eq. 7.7, we compare it with the late fusion method [62]. The similarity

is estimated as S = 1
2
(Sg + Sv), where Sg and Sv denote the geospatial

relevance and visual similarity, respectively. As shown in Figure 7.4,

additional noise can be introduced by late fusion due to the mismatch

between visual features from different regions.

Table 7.4: Mean average precision decrement.

Query Type Query-by-video Query-by-image

geo-codebook→grid map -2.7% -2.1%
region-aware→late fusion -4.3% -4.4%

As shown in Table 7.4, the MAP decreased when we replaced one compo-

nent by an existing one. This demonstrates the effectiveness and the indispens-

ability of our proposed approach.

System Efficiency

We performed the retrieval experiments on a desktop computer with a 3.20

GHz dual core CPU and 4 GB of main memory. The comparison of the execu-

tion time for feature extraction is reported in Table 7.5. For each query that

we executed, we recorded the retrieval latency which includes the similarity

calculation and the result ranking. The average value is reported in Table 7.6.
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Table 7.5: The comparison of the execution time for feature extraction per
image.

Feature GEO Color Texture Gist OB BoS

Time 0.01 ms 0.06 s 0.12 s 0.46 s 4.68 s 4.682 s

Table 7.6: The comparison of the average retrieval latency.

Method GEO CRLF CRGV OB BoS RASM

By-video 6 ms 512 ms 525 ms 927 ms 11 ms 295 ms
By-image 6 ms 83 ms 98 ms 185 ms 11 ms 64 ms

In comparison of the execution time for feature extraction, the encoding of

the proposed geo-features is highly efficient as the calculation is only based on

the camera location and orientation. In contrast, the time complexity for visual

feature extraction is much higher. As can be seen, the low-level visual features

such as color and texture would cost dozens of milliseconds for extraction,

while the more descriptive ObjectBank representation would cost more than

four seconds. BoS cost slightly more than OB as the former takes an extra

step by soft encoding each frame to its nearest neighbors in the dictionary.

Our proposed model can achieve high MAP while maintaining good efficiency.

With the help of the proposed content-oriented geo-feature, effective retrieval

performances can be achieved by using only the less descriptive low-level visual

features, and thus the time complexity is greatly reduced.

As aforementioned, the videos in our system are indexed using inverted files

based on the geographic regions. Therefore, only the geo-relevant videos are

processed for similarity calculations. Method GEO is highly efficient because

the high-dimensional visual features are not utilized in the similarity calcula-

tions. The visual approach BoS reduced the time complexity by generating

a visual descriptor per video segment instead of per frame. Method OB is
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the least efficient due to its high dimensionality compared with color, texture,

and Gist used in other approaches. For hybrid approaches, the visual feature

comparison is always the major cost for both storage and computation. Let

n̄ denote the average number of keyframes in a video, then the complexity for

the visual similarity calculation in CRLF, CRGV, and the late fusion approach

will be O (n̄2). Different from the above methods where a pairwise comparison

between keyframes is required, our proposed approach RASM reduces the com-

putational costs by geographic indexing where only the local visual similarities

of each region are computed. If the keyframes of a video are divided into an

average of k̄ region groups, the time complexity will be reduced to O
(

n̄2/k̄
)

.

Comparatively, most of the previous work focused on the compact video rep-

resentations that support efficient visual indexing [24, 98]. It is worth empha-

sizing that such techniques are parallel to our model, which can be integrated

on the region-level after frames are geographically indexed. The geographic

and the visual indexing complement with each other in a large video database.

Considering the limitations on the availability of current geo-referenced videos,

discussions of integrating efficient approximate visual similarity measure are

left as part of the future work.

7.5 Summary

This work proposed the generation of content-oriented geo-features to facili-

tate video search. It does not focus on one specific visual similarity measure,

rather it shows that the innovative fusion of visual and geo features provides

improved performance over the existing approaches. A novel hybrid model is

proposed as video representation, describing both the video geographic coverage
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and the region-aware representative visual features. Additionally, we propose

to construct a geo-codebook by utilizing the information available from the

geo-information services to segment an area into a set of coherent regions. It

overcomes the limitations of a grid-based codebook, based on which the ge-

ographic coverage of a video can be better encoded. Lastly, we developed a

video retrieval prototype based on our proposed hybrid model. To evaluate its

performance, we compared it to existing approaches. The results convincingly

demonstrate the effectiveness of our proposed approaches.

Toward a more effective video retrieval system, we plan to improve several

components of the proposed approach in the future. It will be interesting to

study how to enrich the query types supported in the system (e.g., search videos

by a group of images). Additionally, more efforts will be made on the correction

of geographic metadata and the acceleration of visual similarity calculations.
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Conclusions and Future Work

This dissertation studied the problem of geo-referenced video annotation and

retrieval. The video dataset was recorded by smartphone applications devel-

oped by our group where the location and orientation of the camera are recorded

along with the video streams. In order to benefit from the sensor metadata,

we utilized the geographic information systems and services such as the Open-

StreetMap (OSM). The OSM is a community based map application that can

supply detailed information (e.g., names, types, outlines) of numerous geo-

graphic objects. However, its completeness varies in different regions. There-

fore, we alternatively leveraged social multimedia applications such as Flickr

to enrich the vocabulary for video tagging. Moreover, hybrid methodologies by

multi-feature fusion have been proposed to improve the effectiveness for video

retrieval. Here we summarize our work as follows.

First, to reduce the noise and errors in the raw sensor data, we preprocessed
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the geo-metadata by utilizing the geographic context derived from OSM. We

built a comprehensive model to formulate the error terms, which incorporates

smooth approximation, rotation estimation, pixel labeling and 3D projection.

Earlier methods usually rely on the feature-based matching with 3D models

reconstructed from large scale images. Comparatively, the feasibility of the

proposed method has been greatly improved as we relaxed the preliminary

data requisites that are required by Structure-from-Motion for robust feature

matching.

Next, to enrich the vocabulary for the auto-annotation approach in our

prior work, we showed how a positionable tag repository can be built based

on social multimedia applications. To setup such a repository, we modeled the

geographic distributions of tags by Gaussian mixture models. To judge whether

a tag is positionable or not, we employed two features to build a classifier: (1)

the number of peaks in the area-of-interest (AOI), and (2) the sum of the priors

of the peaks in the AOI. Furthermore, we profiled their temporal distributions

to determine their effective durations. Finally, we ranked the tag candidates

based on their popularity and geographic bias.

Finally, we fused the geo and visual features to improve the retrieval ef-

fectiveness. For landmark search, we evaluated and compared two state-of-

the-art video landmark retrieval paradigms, namely media-content based and

geo-context based retrievals. From the comparison results we draw a number

of interesting observations, based on which a hybrid integration of content and

context was analyzed and shown to achieve significant improvements. For sim-

ilarity search, we proposed a novel two-level video representation. At level one,

we generated a content-oriented geo-histogram to describe the regions that a

video captures. At level two, we generated region-aware visual features for
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each entry of the geo-histogram. Based on this representation, a novel video

similarity measure was proposed. Furthermore, toward a better encoding of

the geographic coverage in the hybrid model, we presented an approach that

segments a map into a collection of coherent regions which we refer to as a

geo-codebook. Finally, we built a video retrieval prototype and demonstrated

its effectiveness over existing approaches.

In the future, we plan to improve several components of the geo-tagged

video retrieval prototype. First, we will enrich the query types supported in

the system (e.g., search videos by a group of images). Next, as currently the

video frames are considered independently, we will investigate video temporal

continuity for further improvements. Additionally, more efforts will be made

on the correction of geographic metadata and the development of indoor posi-

tioning systems to allow it to work both outdoors and indoors.

149



CHAPTER 8. CONCLUSIONS AND FUTURE WORK

150



Bibliography

[1] Electronic Statistics Textbook. StatSoft, Inc, 2011. 65

[2] YouTube Press, Statistics. http://www.youtube.com/yt/press/statistics.html, Apr.

2015. 1

[3] G. Abdollahian and E. J. Delp. User Generated Video Annotation Using Geo-tagged

Image Databases. In IEEE ICME, 2009. 17, 56

[4] S. Ahern, M. Naaman, R. Nair, and J. Hui. World Explorer: Visualizing Aggregate

Data from Unstructured Text in Geo-referenced Collections. In ACM/IEEE-CS Joint

Conference on Digital Libraries, 2007. 19

[5] G. Amato, F. Falchi, and F. Rabitti. Landmark Recognition in VISITO Tuscany. In

Multimedia for Cultural Heritage, pages 1–13, 2012. 21

[6] M. Ames and M. Naaman. Why We Tag: Motivations for Annotation in Mobile and

Online Media. In SIGCHI, 2007. 55

[7] S. Arslan Ay, R. Zimmermann, and S. Kim. Relevance Ranking in Georeferenced Video

Search. Multimedia Systems, 16:105–125, 2010. vii, 4, 8, 20, 24, 88, 120, 122, 124, 129

[8] S. Arslan Ay, R. Zimmermann, and S. H. Kim. Viewable Scene Modeling for Geospatial

Video Search. In ACM Multimedia, pages 309–318, 2008. 2, 8, 14, 20, 24, 26, 28, 56,

89, 93, 120, 121, 122, 123

151



BIBLIOGRAPHY

[9] P. K. Atrey, M. A. Hossain, A. El Saddik, and M. S. Kankanhalli. Multimodal Fusion

for Multimedia Analysis: A Survey. Multimedia Systems, pages 345–379, 2010. 112

[10] Y. Avrithis, Y. Kalantidis, G. Tolias, and E. Spyrou. Retrieving Landmark and Non-

landmark Images from Community Photo Collections. In ACM Multimedia, pages

153–162, 2010. 22, 88

[11] L. Ballan, M. Bertini, A. Del Bimbo, M. Meoni, and G. Serra. Tag Suggestion and

Localization in User-generated Videos Based on Social Knowledge. In Proceedings of

Second ACM SIGMM Workshop on Social Media, pages 3–8, 2010. 17, 56

[12] L. Ballan, M. Bertini, A. Del Bimbo, and G. Serra. Enriching and Localizing Semantic

Tags in Internet Videos. In ACM Multimedia, pages 1541–1544, 2011. 56

[13] A. Ballatore, M. Bertolotto, and D. Wilson. Geographic Knowledge Extraction and

Semantic Similarity in OpenStreetMap. Knowledge and Information Systems, pages

61–81, 2013. 132

[14] S. Bennett, J. Lasenby, A. Kokaram, S. Inguva, and N. Birkbeck. Reconstruction of the

Pose of Uncalibrated Cameras via User-Generated Videos. In International Conference

on Distributed Smart Cameras, pages 3:1–3:8, 2014. 39

[15] C. Brunsdon, A. Fotheringham, and M. Charlton. ”geographically weighted summary

statistics a framework for localised exploratory data analysis ”. Computers, Environ-

ment and Urban Systems, pages 501 – 524, 2002. 18

[16] M. Campbell, A. Haubold, S. Ebadollahi, D. Joshi, M. R. Naphade, A. P. Natsev,

J. Seidl, J. R. Smith, K. Scheinberg, J. Tešic, and L. Xie. IBM Research TRECVID-
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