2,181 research outputs found

    Improving the mobility performance of autonomous unmanned ground vehicles by adding the ability to 'Sense/Feel' their local environment.

    Get PDF
    This paper follows on from earlier work detailed in output one and critically reviews the sensor technologies used in autonomous vehicles, including robots, to ascertain the physical properties of the environment including terrain sensing. The paper reports on a comprehensive study done in terrain types and how these could be determined and the appropriate sensor technologies that can be used. It also reports on work currently in progress in applying these sensor technologies and gives details of a prototype system built at Middlesex University on a reconfigurable mobility system, demonstrating the success of the proposed strategies. This full paper was subject to a blind refereed review process and presented at the 12th HCI International 2007, Beijing, China, incorporating 8 other international thematic conferences. The conference involved over 250 parallel sessions and was attended by 2000 delegates. The conference proceedings are published by Springer in a 17 volume paperback book edition in the Lecture Notes in Computer Science series (LNCS). These are available on-line through the LNCS Digital Library, readily accessible by all subscribing libraries around the world, published in the proceedings of the Second International Conference on Virtual Reality, ICVR 2007, held as Part of HCI International 2007, Beijing, China, July 22-27, 2007. It is also published as a collection of 81 papers in Lecture Notes in Computer Science Series by Springer

    Using acoustic sensor technologies to create a more terrain capable unmanned ground vehicle

    No full text
    Unmanned Ground Vehicle’s (UGV) have to cope with the most complex range of dynamic and variable obstacles and therefore need to be highly intelligent in order to cope with navigating in such a cluttered environment. When traversing over different terrains (whether it is a UGV or a commercial manned vehicle) different drive styles and configuration settings need to be selected in order to travel successfully over each terrain type. These settings are usually selected by a human operator in manned systems on what they assume the ground conditions to be, but how can an autonomous UGV ‘sense’ these changes in terrain or ground conditions? This paper will investigate noncontact acoustic sensor technologies and how they can be used to detect different terrain types by listening to the interaction between the wheel and the terrain. The results can then be used to create a terrain classification list for the system so in future missions it can use the sensor technology to identify the terrain type it is trying to traverse, which creating a more autonomous and terrain capable vehicle. The technology would also benefit commercial driver assistive technologie

    Using acoustic sensor technologies to create a more terrain capable unmanned ground vehicle

    Get PDF
    Unmanned Ground Vehicle’s (UGV) have to cope with the most complex range of dynamic and variable obstacles and therefore need to be highly intelligent in order to cope with navigating in such a cluttered environment. When traversing over different terrains (whether it is a UGV or a commercial manned vehicle) different drive styles and configuration settings need to be selected in order to travel successfully over each terrain type. These settings are usually selected by a human operator in manned systems on what they assume the ground conditions to be, but how can an autonomous UGV ‘sense’ these changes in terrain or ground conditions? This paper will investigate noncontact acoustic sensor technologies and how they can be used to detect different terrain types by listening to the interaction between the wheel and the terrain. The results can then be used to create a terrain classification list for the system so in future missions it can use the sensor technology to identify the terrain type it is trying to traverse, which creating a more autonomous and terrain capable vehicle. The technology would also benefit commercial driver assistive technologies

    A novel method of sensing and classifying terrain for autonomous unmanned ground vehicles

    Get PDF
    Unmanned Ground Vehicles (UGVs) play a vital role in preserving human life during hostile military operations and extend our reach by exploring extraterrestrial worlds during space missions. These systems generally have to operate in unstructured environments which contain dynamic variables and unpredictable obstacles, making the seemingly simple task of traversing from A-B extremely difficult. Terrain is one of the biggest obstacles within these environments as it could potentially cause a vehicle to become stuck and render it useless, therefore autonomous systems must possess the ability to directly sense terrain conditions. Current autonomous vehicles use look-ahead vision systems and passive laser scanners to navigate a safe path around obstacles; however these methods lack detail when considering terrain as they make predictions using estimations of the terrain’s appearance alone. This study establishes a more accurate method of measuring, classifying and monitoring terrain in real-time. A novel instrument for measuring direct terrain features at the wheel-terrain contact interface is presented in the form of the Force Sensing Wheel (FSW). Additionally a classification method using unique parameters of the wheel-terrain interaction is used to identify and monitor terrain conditions in real-time. The combination of both the FSW and real-time classification method facilitates better traversal decisions, creating a more Terrain Capable system

    Migration from Teleoperation to Autonomy via Modular Sensor and Mobility Bricks

    Get PDF
    In this thesis, the teleoperated communications of a Remotec ANDROS robot have been reverse engineered. This research has used the information acquired through the reverse engineering process to enhance the teleoperation and add intelligence to the initially automated robot. The main contribution of this thesis is the implementation of the mobility brick paradigm, which enables autonomous operations, using the commercial teleoperated ANDROS platform. The brick paradigm is a generalized architecture for a modular approach to robotics. This architecture and the contribution of this thesis are a paradigm shift from the proprietary commercial models that exist today. The modular system of sensor bricks integrates the transformed mobility platform and defines it as a mobility brick. In the wall following application implemented in this work, the mobile robotic system acquires intelligence using the range sensor brick. This application illustrates a way to alleviate the burden on the human operator and delegate certain tasks to the robot. Wall following is one among several examples of giving a degree of autonomy to an essentially teleoperated robot through the Sensor Brick System. Indeed once the proprietary robot has been altered into a mobility brick; the possibilities for autonomy are numerous and vary with different sensor bricks. The autonomous system implemented is not a fixed-application robot but rather a non-specific autonomy capable platform. Meanwhile the native controller and the computer-interfaced teleoperation are still available when necessary. Rather than trading off by switching from teleoperation to autonomy, this system provides the flexibility to switch between the two at the operator’s command. The contributions of this thesis reside in the reverse engineering of the original robot, its upgrade to a computer-interfaced teleoperated system, the mobility brick paradigm and the addition of autonomy capabilities. The application of a robot autonomously following a wall is subsequently implemented, tested and analyzed in this work. The analysis provides the programmer with information on controlling the robot and launching the autonomous function. The results are conclusive and open up the possibilities for a variety of autonomous applications for mobility platforms using modular sensor bricks

    Technology Assessment of eVTOL Personal Air Transportation System

    Get PDF
    This thesis intended to provide a holistic vision on the potential consequences of the introduction of emerging electrical Vertical Takeoff and Landing (e VTOL) Personal Air Transportation System (PATS) to contribute to the forming of public and policy opinion, and to assess the impacts and the feasibility of that. Instead of looking from a detailed vehicle design viewpoint, we tried to understand the need, the impacts, and the perceptions and the concerns of stakeholders. Thus, it was set a framework and methodology starting with a technology assessment point of view in the light of transportation system analysis. Limitations of the current ground and airline transportation systems, increasing congestion, poor block speed, combined with expanding population and demand for affordable on- demand mobility are driving the development of future transportation technology and policy. The third wave of aeronautics might be the answer and could bring about great new capabilities for society that would bring aviation into a new age of being relevant in daily lives since eVTOL PATS is envisioned as the next logical step in the natural progression in the history of disruptive transportation system innovations. However, there are a lot of questions. Although there was difficulty since the system was an emerging air transportation mode, an interdisciplinary study has been conducted to assess the impacts of developing such a capability. The research questions were determined to address the research objectives. What is the current state of mobility and eVTOL air transportation mode? What are the potential benefits of eVTOL air transportation mode for user and society? What are the perceptions of service providers, regulator, and user? What are the main challenges including technology, regulation, operation, social and environment aspects to enable the system? What are the enabling technologies? Nevertheless, with the results obtained lately from the research activities, revolutionary technologies and regulations are bringing us closer to eVTOL PATS reality every day. It can be argued that a new socio-technical transition will come about like the transition from horse drawn carriers to cars. Even if it is still a long way to go, it seems rather likely that the time has been arriving in the next decade. Their existence and operation would therefore need to be taken into consideration for today’s planning considerations and construction projects to be able to have this emerging air transportation mode available in the future. As the technology underlying eVTOL PATS evolves, wider eVTOL adoption across various markets is likely to be supported further if a set of key challenges such as safety and security, ease of use and autonomy, noise, infrastructure, and air traffic management are overcome. Achieving drastic improvements in ease of use, safety and community acceptable noise are the most critical steps towards the future feasibility of this market. Multi-use demos and demonstrating successful operation with early vehicles, namely eVTOL PATS prototype field operations, will create public acceptance and understanding of potentials in emerging air transportation mode for public good, use and learn in multiple applications. The overall perception of the user, service provider and regulator are positive, and the support is high. Shortly, a successful implementation and sustainable transition will depend on overcoming technological hurdles, regulatory frameworks, operational safety, cost competitiveness, and sensibilities of the affected communities. There is a need to enable people and goods to have the convenience of on-demand, point-to-point safe travel, further, anywhere in less travel time, through a network of pocket airports/vertiports, and there is a significant potential benefit so that policy makers, regulators and metropoles’ transportation planning departments should consider an inclusion of eVTOL air transportation mode into the scenarios and policies of the future.Esta tese pretende fornecer uma visão holística sobre as potenciais consequências da introdução do Sistema de Transporte Aéreo Pessoal (PATS) de Decolagem e Pouso Vertical elétrico emergente (e VTOL) para contribuir para a formação de opinião pública e política, e para avaliar os impactos e a viabilidade disso. Em vez de olhar de um ponto de vista detalhado o projeto do veículo, tentamos entender a necessidade, os impactos, as percepções e as preocupações das partes interessadas. Assim, foi definido um quadro e uma metodologia partindo de um ponto de vista de avaliação de tecnologia à luz da análise do sistema de transporte. As limitações dos atuais sistemas de transporte terrestre e aéreo, o aumento do congestionamento, a baixa velocidade do tráfego, combinados com a expansão da população e a mobilidade com procura acessível estão impulsionando o desenvolvimento de futuras tecnologias e políticas de transporte. A terceira onda da aeronáutica pode ser a resposta e pode trazer grandes novas capacidades para a sociedade que trariam a aviação para uma nova era de ser relevante na vida cotidiana, uma vez que o VTOL PATS é visto como o próximo passo lógico na progressão natural na história das inovações disruptivas do sistema de transporte. No entanto, há muitas perguntas. Embora tenha havido dificuldade por se tratar de um modo de transporte aéreo emergente, um estudo interdisciplinar foi realizado para avaliar os impactos do desenvolvimento de tal capacidade. As questões de investigação foram determinadas para atender aos objetivos do projeto. Qual é o estado atual da mobilidade e do modo de transporte aéreo eVTOL? Quais são os benefícios potenciais do modo de transporte aéreo eVTOL para o utilizador e a sociedade? Quais são as percepções dos provedores de serviços, regulador e utilizador? Quais são os principais desafios, incluindo tecnologia, regulamentação, operação, aspectos sociais e ambientais para habilitar o sistema? Quais são as tecnologias facilitadoras? No entanto, com os resultados obtidos ultimamente nas atividades de pesquisa, tecnologias e regulamentações revolucionárias estão nos aproximando cada dia mais da realidade do VTOL PATS. Pode-se argumentar que uma nova transição sócio-técnica ocorrerá como a transição de carruagens puxadas por cavalos para automóveis. Mesmo que ainda seja um longo caminho a percorrer, parece bastante provável que a hora esteja chegando na próxima década. A sua existência e operação, portanto, precisam ser levadas em consideração para as questões de planeamento e projetos de construção de hoje para poder ter esse modo de transporte aéreo emergente disponível no futuro. À medida que a tecnologia subjacente ao eVTOL PATS evolui, é provável que a adoção mais ampla do eVTOL em vários mercados seja ainda mais apoiada se um conjunto de desafios importantes, como segurança e proteção, facilidade de uso e autonomia, ruído, infraestrutura e gestão de tráfego aéreo forem superados. Alcançar melhorias drásticas na facilidade de uso, segurança e ruído aceitável pela comunidade são os passos mais críticos para a viabilidade futura deste mercado. Demonstrações multi-uso e demonstração de operação bem- sucedida com veículos iniciais, ou seja, operações de campo do protótipo eVTOL PATS, criarão aceitação pública e compreensão dos potenciais no modo de transporte aéreo emergente para o bem público, uso e aprendizado em várias aplicações. A percepção geral do utilizador, prestador de serviço e regulador é positiva, e o suporte é alto. Uma implementação bem-sucedida e uma transição sustentável dependerá da superação de obstáculos tecnológicos, estruturas regulatórias, segurança operacional, competitividade de custos e sensibilidade das comunidades afetadas. Há uma necessidade de permitir que pessoas e mercadorias tenham a conveniência de viagens seguras de que necessitam, ponto a ponto, e além disso, em qualquer lugar em menos tempo de viagem. Isso pode ser feito por meio de uma rede de aeroportos/vertiports, e há um benefício potencial significativo para que os formuladores de políticas, reguladores e departamentos de planeamento de transporte das grandes metrópoles considerem a inclusão do modo de transporte aéreo eVTOL nos cenários e políticas do futuro

    Scientific Assessment for Urban Air Mobility (UAM)

    Get PDF
    Better connecting the international research community and the International Civil Aviation Organization (ICAO) enables effective assessments of novel aviation innovations. The International Forum for Aviation Research (IFAR) created a group on Urban Air Mobility (UAM) to explore the broad array of aspects relevant to the ICAO mandate. The assessment began with a study of the current industry landscape, including an overview of existing market studies, proposed aircraft designs and concepts, and potential paths of industry evolution. The Industry Assessment is summarized into key takeaways highlighting the need for international assessments on economic and societal factors associated with UAM, common understanding of the extent to which the nascent industry can leverage current infrastructure and regulatory structures, and harmonization of industrywide terminology. The subsequent Scientific Assessment, developed through cooperative efforts between international domain experts, captures 17 focus areas relevant to UAM. All focus areas present opportunities for further research. Key takeaways include: the need for further study of the impact of autonomous systems (AS) on the industry; infrastructure requirements (including vertiports and weather sensing) to support the industry; and data requirements (including domains such as cybersecurity, emissions, and safety) to ensure safe, scalable operations. Finally, a brief overview of the current standards landscape as relevant to the Scientific Assessment is presented, which displays the benefits of applying digital systems engineering techniques to map current research efforts to ongoing standards activities

    Autonomous ground vehicles in urban last-mile delivery : an exploration of the implementation feasibility and consumer’s acceptance

    Get PDF
    E-Commerce has rapidly changed the urban last-mile delivery in recent years, and Courier-, Express- and Parcel (CEP) companies are challenged by the increasing demand. Service robotics with autonomous vehicles are subject to be the catalyst for transforming the industry. Considering the infancy and lack of research on the subject, the purpose of this study is to explore the concept of autonomous ground vehicles (AGVs) in urban last-mile delivery from two perspectives. First, data about the industry and insights from the technology provider summarize the status quo of recent developments and implementation barriers with the help of expert interviews. The findings show obstacles in the technological maturity and regulatory framework. Moreover, although only road-AGVs (rAGVs) will significantly change the industry, sidewalk-AGVs (sAGVs) act as a proof of concept as the implementation is more feasible. In addition, they create new premium services for the consumers. Second, an attempt to determine the consumer’s acceptance of sAGVs, using the combination of the technology acceptance model and the technology readiness index, is made with an online survey. The proposed research model is analysed by means of simple regression analysis, and all hypotheses are supported. The majority of the respondents have a positive attitude towards the concept of sAGVs for delivery and consider using it when the safety of their delivery goods is guaranteed. This dissertation enriches the literature on human-robot acceptance as well as the management of CEP-companies to increase the engagement in the implementation of sidewalk-AGVs to increase service innovation for consumers.O comércio electrónico mudou rapidamente a entrega urbana de bens ao consumidor, e as empresas de Correio Expresso Urgente são desafiadas pela procura crescente. Os serviços robóticos com veículos autónomos serão provavelmente o catalisador da transformação desta indústria. Considerando a falta e o estágio inicial de investigação, este estudo explora o conceito de veículos autónomos terrestres (AGVs) na entrega urbana de bens ao consumidor considerando duas perspetivas. Uma primeira será a de recolher dados sobre a indústria e insights de fornecedores da tecnologia, sumarizando os mais recentes desenvolvimentos e as barreiras à implementação, com a ajuda de entrevistas a especialistas. Os resultados revelam obstáculos na maturidade tecnológica e enquadramento regulamentar. Adicionalmente, embora apenas os AGVs rodoviários (rAGVs) virão a alterar significativamente a indústria, os AGVs de passeio (sAGVs) atuam como prova de conceito, dada a sua implementação viável. Em segundo lugar, a aceitação de sAGVs por parte do consumidor é determinada através da combinação de modelos de aceitação tecnológica e do índex de prontidão de tecnologia, via questionário online. O modelo de investigação proposto é testado por meio de análise de regressão simples, e todas as hipóteses são suportadas. A maioria dos participantes tem uma atitude positiva em relação aos sAGVs para entrega, e considera usá-los se a segurança dos seus bens for garantida. Esta dissertação enriquece a literatura sobre aceitação humana-robot, bem como a gestão de empresas de Correio Expresso Urgente, aumentando o envolvimento na implementação de sAGVs e fomentando a inovação em serviços para o consumidor

    A Novel Predictor Based Framework to Improve Mobility of High Speed Teleoperated Unmanned Ground Vehicles

    Full text link
    Teleoperated Unmanned Ground Vehicles (UGVs) have been widely used in applications when driver safety, mission eciency or mission cost is a major concern. One major challenge with teleoperating a UGV is that communication delays can significantly affect the mobility performance of the vehicle and make teleoperated driving tasks very challenging especially at high speeds. In this dissertation, a predictor based framework with predictors in a new form and a blended architecture are developed to compensate effects of delays through signal prediction, thereby improving vehicle mobility performance. The novelty of the framework is that minimal information about the governing equations of the system is required to compensate delays and, thus, the prediction is robust to modeling errors. This dissertation first investigates a model-free solution and develops a predictor that does not require information about the vehicle dynamics or human operators' motion for prediction. Compared to the existing model-free methods, neither assumptions about the particular way the vehicle moves, nor knowledge about the noise characteristics that drive the existing predictive filters are needed. Its stability and performance are studied and a predictor design procedure is presented. Secondly, a blended architecture is developed to blend the outputs of the model-free predictor with those of a steering feedforward loop that relies on minimal information about vehicle lateral response. Better prediction accuracy is observed based on open-loop virtual testing with the blended architecture compared to using either the model-free predictors or the model-based feedforward loop alone. The mobility performance of teleoperated vehicles with delays and the predictor based framework are evaluated in this dissertation with human-in-the-loop experiments using both simulated and physical vehicles in teleoperation mode. Predictor based framework is shown to provide a statistically significant improvement in vehicle mobility and drivability in the experiments performed.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146026/1/zhengys_1.pd
    corecore