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Abstract 
In this thesis, the teleoperated communications of a Remotec ANDROS robot have been 
reverse engineered. This research has used the information acquired through the reverse 
engineering process to enhance the teleoperation and add intelligence to the initially 
automated robot. The main contribution of this thesis is the implementation of the 
mobility brick paradigm, which enables autonomous operations, using the commercial 
teleoperated ANDROS platform. The brick paradigm is a generalized architecture for a 
modular approach to robotics. This architecture and the contribution of this thesis are a 
paradigm shift from the proprietary commercial models that exist today. The modular 
system of sensor bricks integrates the transformed mobility platform and defines it as a 
mobility brick. In the wall following application implemented in this work, the mobile 
robotic system acquires intelligence using the range sensor brick. This application 
illustrates a way to alleviate the burden on the human operator and delegate certain tasks 
to the robot. Wall following is one among several examples of giving a degree of 
autonomy to an essentially teleoperated robot through the Sensor Brick System. Indeed 
once the proprietary robot has been altered into a mobility brick; the possibilities for 
autonomy are numerous and vary with different sensor bricks. The autonomous system 
implemented is not a fixed-application robot but rather a non-specific autonomy capable 
platform. Meanwhile the native controller and the computer-interfaced teleoperation are 
still available when necessary. Rather than trading off by switching from teleoperation to 
autonomy, this system provides the flexibility to switch between the two at the operator’s 
command. The contributions of this thesis reside in the reverse engineering of the original 
robot, its upgrade to a computer-interfaced teleoperated system, the mobility brick 
paradigm and the addition of autonomy capabilities. The application of a robot 
autonomously following a wall is subsequently implemented, tested and analyzed in this 
work. The analysis provides the programmer with information on controlling the robot 
and launching the autonomous function. The results are conclusive and open up the 
possibilities for a variety of autonomous applications for mobility platforms using 
modular sensor bricks.   
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1 Introduction 

1.1 Overview  

Robotic Systems are a promising but challenging research area. While significant 
progress has been made in teleoperation, research on full autonomy is still limited. It 
usually focuses and performs better on autonomous navigation or simple assembly tasks. 
Even as the studies on autonomous systems advance, in certain cases, for safety and 
security reasons, removing the operator from the human-robot loop is not an option. 
Instead, assisting the human operator by adding autonomous functions to a teleoperated 
robot is the proposed goal of this work. There is usually a trade off when acquiring a 
degree of autonomy; studies have shown that the robot’s effectiveness decreases as its 
autonomy increases [1], [2] and [3]. This project however proposes to keep both 
teleoperation and autonomy in the same system to minimize the trade offs and the 
restricted applications. In other words, the objective of this thesis is to integrate both 
teleoperation and autonomy into one system using mobility and sensor bricks. 
 
Teleoperated robots are opposed to intelligent systems in that they absolutely require 
human guidance. Autonomous systems use sensor to independently perceive and act on 
their environment. This trend is referred to as active sensing as opposed to passive 
sensing when the robot is only collecting data. Hence going from one system to another 
involves adding sensors to the teleoperated robot. While the principle is simple, actually 
adding sensors to a robot is a complicated task. Teleoperated machines usually include a 
few simple sensors such as surveillance cameras. The visual output is typically sent to a 
control station from which the robot is being controlled. Adding sensors to the robot 
implies physically adding an on-board unit capable to access the sensors and control the 
robot. In other words it means a lot of hardware changes need to be done before 
autonomy takes place.  
 
Autonomous robots also have built-in sensors such as range sensors and encoders that 
they use to localize and position themselves. The focus of most self-sufficient robots is to 
autonomously navigate through certain terrains or execute well-defined simple tasks. 
This means that even when certain robots are autonomous or semi-autonomous they are 
usually task specific. They have been built to meet a precise need. Therefore it seems like 
going from teleoperation to autonomy also requires a predefined goal. When the 
environment or circumstances change, the autonomous robot cannot adapt without adding 
different sensors and corresponding self-ruling functions. 
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The migration from teleoperation to modular autonomy emphasizes two main points. 
First this transition is simple and does not involve major hardware changes on the initial 
system. Second, the autonomous functions are not limited to a few basic sensors and a 
few specific applications. Overall the anticipated system combines teleoperation and 
autonomy in a very advantageous way as it does not choose from either technology but 
rather combines them into an easily convertible system. Before the theory and 
methodology, resides the motivation of this work. A few examples of applications will 
also help clarify the usefulness and need for this new hybrid robotic system.  

1.2 Motivation 

There are several motivation factors for creating a teleoperated robot with autonomous 
capabilities, the main factor being keeping the security and safety of the operator. Other 
issues are the modularity and flexibility of the system, which involves easily replacing, 
updating or combining several kinds of sensors for data collection and data fusion. 
Adding autonomy implies more efficiency and accuracy in a priori known environments. 
Indeed in well-defined circumstances robots are much more efficient and precise than 
human operator, especially untrained operators. 

1.2.1 Safety and Efficiency 
An appropriate example of robust teleoperated robots is the Remotec ANDROS robot 
series. The company specializes in reconnaissance and hazardous waste or bomb disposal 
robots. Remotec robots are designed to support the requirements and needs of federal, 
state and municipal law enforcement agency Explosive Ordnance Disposal (EOD) 
organizations [4]. ANDROS robots are designed to assist expert technicians when 
performing remote reconnaissance, access, render safe, “pick up and carry away” 
(PUCA) [4], and disposal during extremely hazardous explosive ordnance missions. 
Those robust machines are capable to navigate in rough terrains, climb up to 37 degrees 
stairs and withstand the force of minor explosions. Obviously in such delicate 
circumstances human operators must supervise the robots. Therefore the main reason to 
keep the teleoperation option in the new system is allowing the operator to take over at as 
soon as a situation becomes too dangerous to be handled autonomously by the robot. 
Beside the safety issue, certain tasks are just too complicated for the robot to undertake 
unassisted. As much as robotic autonomy is being developed there are still challenges 
that limit autonomous robots to simplistic tasks such as pulling, pushing and picking up 
objects. Even if complex engineering systems are implemented for a robot to identify, 
recognize and perform a task, an expert can be a lot more cost and time effective by 
guiding a less complex machine in performing the same exact task.  

1.2.2 Modularity and Flexibility 
Robotics is moving toward modularity, flexibility and portability. Modular robotics 
breaks unmanned systems up into several components. While components come together 
to create one system, they are each semi-independent unit that can be reused, replaced, 
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removed, added or separately updated. The first great advantage of such a system is its 
life-cycle cost. When one component breaks down the whole system does not go down as 
technicians can easily find a replacement for the defective part. Hence the entire system 
does not go to waste and there is no need to purchase a whole new one. Similarly when 
there is maintenance or new development on parts of the system, it does not completely 
become outdated and unusable since certain parts can be reused and reassembled with 
updated components. At a larger scale than just one machine, modular robotics allows 
parts to be interchangeable as needed between different robots. Another improvement in 
this technology is the flexibility that it offers. In the case of the migration from 
teleoperation to modular autonomy, the motivation is not to be so restricted in the kind of 
autonomous function to be added. Indeed in this case, modular sensor bricks can, not 
only be reused, replaced or independently be updated, but they can also be combined. 
The term brick refers to an independent sensor system. Physically attaching the sensors to 
the robot would limit the number and sorts of sensors to be linked to the system. Using 
sensor bricks allows using any desired number of sensors, which is important for several 
different kinds of autonomous functions, for data collection and data fusion. This way the 
autonomous robot is not so task specific and can be fit to various and diverse 
applications.  

1.2.3 Autonomy and Capability 
While part of the motivation behind this work is to keep the operator involved another 
element is to alleviate his or her work. Indeed while human guidance is very important 
and required in delicate bomb disposal operation, robots are generally a lot more efficient 
than human operator in simple tasks performance. An untrained person cannot operate 
most of the commercial robot. The operators must be trained and become expert 
technicians. With time and experience one can acquire the dexterity necessary to operate 
this heavy machinery. Adding semi-autonomous to autonomous functions to the control 
systems makes it easier for a new operator to execute certain tasks. Considering that in a 
priori known environment and well-defined circumstances a robot is more efficient than a 
human, giving the robot a certain degree of autonomy can also help even the best-trained 
operator. During operation, allowing the technician to focus on the most important 
aspects of a certain task and delegating the rest to the robot can be a useful autonomous 
feature. For example, while the operator is focusing on a manipulating task, the robot can 
autonomously keep its own survival by avoiding collisions. This is however just one 
illustration of autonomy. The greater motivation here is not to meet the need for a 
specific application. It is rather to allow communication between a robot and various 
sensors to execute diverse autonomous functions. The connection between a mobility 
platform and several different kinds of sensor bricks allows the implementation of as 
many autonomous functions from simple data collection to path planning and obstacle 
avoidance.  
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1.3 Applications 

The main applications of the projected system are security and safety oriented. An 
obvious reason to operate or completely delegate a task to an unmanned system is to 
protect human beings from probable or anticipated danger. This type of application best 
fits organizations such as the Department Of Energy (DOE). Other applications are more 
general and could be applied to fields such as the Automotive Research Center (ARC) 
and others in which scanning processes are required.  
 
Safety and security are at the core of DOE operations. For example DOE deals with 
chemical safety, nuclear safety and hazardous waste transport. Teleoperated or 
autonomous unmanned systems are desirable in such applications mainly to avoid contact 
between human beings and potential harmful contamination. Among several scenarios 
showing the usefulness of the anticipated system for the DOE, one major picture is the 
crucial surveillance of its facilities. A semi-autonomous agency with DOE, which could 
use surveillance robots, would be the National Nuclear Safety Agency (NNSA). NNSA 
enhances national security through the military use of nuclear energy. It not only 
improves nuclear weapons but also responds to nuclear and radiological emergencies in 
the US and abroad. To prevent terrorists from accessing dangerous material, a robot 
equipped with a surveillance camera and a range sensor can periodically go around the 
perimeter of a particular building and look for intruders or other anomalies. This way an 
operator does not have to constantly supervise the robot and will only be alerted in the 
case of an emergency. It is safe since a robot cannot get hurt; it relieves the operator who 
can focus on another important task. Moreover the robot behavior does not include loss 
of focus, fatigue and other human imperfections.  
 
The ARC develops simulations and designs for mobile platforms to later be applicable in 
real environments. The work of ARC revolves around five thrusts areas. Throughout the 
different thrusts areas, the main emphasize remains the collection and fusion of data. 
Before modeling and simulation is possible data has to be scanned and analyzed. The 
teleoperated or automated scanning process is a very useful application for ARC. Having 
a robot communicating with the sensors involved is a practical and efficient way to 
collect data on a precise path and at a constant speed. Of course the scanning vehicle 
could be a car and not necessarily a robot. However as mentioned above driving a car can 
imply more errors in the process. Moreover for huge profiling mission sending “a well-
organized army” of robots perceptibly has several advantages over sending drivers in 
automobiles. There is also a reachability factor in the scanning process. A robot can 
access remote areas that a human cannot or should not access. Aside from hazardous sites 
where it would be undesirable to send a human, robots can scan hard-to-reach areas such 
as the undercarriage of a car for example. The robot could also be a flying helicopter 
scanning over a certain field. Using mobile platform equipped with sensors can redefine 
and expand the meaning of scanning processes for ARC and other similar laboratories.  
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Under vehicle inspection is a scanning process of special interest at the Imaging, 
Robotics and Intelligent Systems (IRIS) laboratory. It combines the security aspect and 
the scanning process in an application for a teleoperated to autonomous system. The 
teleoperation removes the operator from the scene out of a safety concern in the case of 
hazardous material hidden in or under the car. Moreover scanning under a car with a 
mirror on a stick only covers thirty to forty percent or the under carriage of a car. Hence 
sending a robot with sensors under the vehicle is safer and more efficient than sending an 
operator to conduct the inspection. An inspector may drive the robot to the vehicle and 
then let the robot take over. Performing an autonomous scrutiny facilitates the task of the 
operator, who may at time loose sight of the robot. Having access to several sensors 
during the scanning process reveals more information than the eye can tell. For example 
visual data can be deceptive. A fake muffler placed under the car could actually hide a 
threat that a visual camera would not detect. Alternatively using an additional thermal 
camera automatically reveals important details about what part should or should not be 
hot while the engine is running. Similarly a range sensor can differentiate between the 
picture of a muffler or a real muffler by providing 3-D information. Such complete 
scanning can be extended to the inside of the car, or the inside of a suspicious room. 
Figure 1 illustrates the difference between a human and a robot inspector. 
 
Scouting missions are another promising application for the robot. With a few images of 
a specific scene allowing the operator to simply point at objects of interests on a screen 
instead of driving the robot to different places would be a great autonomous function to a 
robust teleoperated robot. For example the operator would point to a suspicious object 
and request a close up picture of that object. The robot would then take over, drive itself 
to the target destination and come back with a picture. This mission implies that the robot 
is equipped with at least a visual and range sensor to be able to avoid obstacles, reach its 
target, collect data and home back to its original position. Such application is especially 
desirable for agency such as the Weapon of Mass Destruction Civil Support Team. Those 
military teams were established to protect U.S. citizen against the growing threat of 
chemical and biological terrorism. They are spread out in the different states to support 
state and local authorities in the event of incident involving weapons of mass destruction. 
They are equipped with personal protective suits and decontamination kits. They carry 
special equipment to detect the source of toxic agents, digital still and video camera and 
other sophisticated tools to help identify the nature of the threat. Then they return to their 
special communication van for modeling and simulation on the computer and for 
laboratory analysis of potential samples. Some limitations include the fact that a man 
should not stay in those suits for more than an hour, which implies several rotations 
between several agents before the scene is completely analyzed. The analysis only starts 
when the scouting process is over. Using an unmanned system equipped with several 
sensors including chemical and biological sensors in particular allows continuing the 
inspection as long as necessary. While the robot cannot get contaminated and can stay 
exposed longer than a human without perishing, the operators inside the van can start 
identifying the threat and react consequently. Guiding the robot when desired or pointing  
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Driver interrogation conducted by a human. Driver interrogation conducted by a robot. 

  
Trunk inspection conducted by a human. Truck inspection by a robot. 

  
Under vehicle inspection using a mirror. Under vehicle inspection by a robot. 

  

Figure 1: The images on the left describe a human operator conducting a vehicle 
inspection. The images on the right show a robot conducting the same inspection.  
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the robot to specific locations at time, they can thoroughly cover terrain through 
communication with the robot and its sensors.   

1.4 Contributions 

The concept of an adjustable autonomy has been examined before under different angles, 
especially the trade offs between an entirely autonomous system and a teleoperated robot. 
While this topic will be discussed later in the literature review, one can say that in general 
the work is usually done on a robot already built with the capability to support simple 
autonomous function. Hence the first contribution is to reverse engineer an industrial 
system and add a computer interface control to a commercial robot initially intended only 
for teleoperation. This first step is crucial in order to later add intelligence to that robot. It 
is an advantage because those robots are usually very robust and the only reason they do 
not include multiple sensors are practicality and cost efficiency. Again as extra sensors 
are added to a robot it becomes a little more task specific and therefore applications 
restricted. Those are not desirable features for a company building series of robots. A 
chemical sensor or a nuclear sensor is often meant for a particular application and would 
be not be useful for a basic surveillance robot for example. The capability to reverse 
engineer commercial robots and make them controllable through a computer interface is 
an inexpensive advantageous alternative to built different specialized robots. Such system 
can be converted first from the proprietary teleoperation to a complex teleoperation using 
several special sensors. Its functionality can later be expanded through relatively simple 
software changes versus complicated hardware changes. 
 
The second contribution is an extended definition of a mobility platform as a mobility 
brick. Mobile platforms are not an innovation, however they are usually perceived as 
robots in themselves. Therefore they are either teleoperated or they integrate sensors with 
on-board intelligence to navigate autonomously. The contribution here is to blend in this 
definition with the whole brick concept. The notion of sensor brick has formerly been 
established [5]; the idea of a mobility brick in the larger scope of an interoperable 
Modular Robotic System is a major contribution of this thesis. Before any autonomy 
takes place, the mobility brick paradigm provides the information necessary for any 
operator to access the drive commands of the platform. In the greater picture of the 
Sensor Brick Concept, different robotic platforms are transformed in series of mobility 
bricks and are no longer controlled by their original proprietary controller. Instead, they 
become accessible by various control units located in a central unit or other bricks. Any 
computer equipped with the appropriate information can drive the mobility brick. 
 
The last contribution is derived from this greater picture of the brick technology. 
Acquiring autonomy through mobility and sensor bricks widens the areas of applications 
especially when several sophisticated sensors are required. As different sensors can be 
rotated or combined together the robots become more versatile. This project does not 
propose to build a navigation or task specific autonomous robot but rather to allow 
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implementing several types or autonomy using the mobility and sensor bricks concept. 
Figure 2 shows the main objective of this work and highlights the claimed contributions. 

1.5 Organization of this Thesis 

This document will be organized as follow; Chapter 2 will be a literature review to 
acquire a general knowledge of the different kinds of teleoperated and autonomous 
robots. In other words this chapter will attempt to examine the state of the art in robot 
autonomy. Chapter 3 will discuss the core of the proposed concept. This chapter will 
describe the transition from teleoperation from the proprietary control box to a computer 
interface control box. After this reverse engineering section, Chapter 3 will explain the 
subsequent evolution towards an autonomous robot using the sensor bricks. Chapter 4 
will look more closely into the previously defined sensor and mobility bricks concept. 
While Chapter 3 describes the theory of this research Chapter 4 will focus on the 
implementation of the proposed idea. Chapter 5 will then present how the resulting 
system has been tested and analyzed. Finally, Chapter 6 will conclude the thesis based on 
its results and suggest future work to be conducted on this system or other prototypes.  
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Figure 2: This diagram show the general objective of this thesis and underlines its 
contributions.  
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2 Related Works 

Chapter 2 examines the state of the art of the research on autonomy. This chapter starts 
by giving an overview of the autonomy concept, its origin and meaning. It further 
discusses its principle and different levels. Finally the last section of this chapter 
summarizes and analyzes the different methods to implement autonomy. 

2.1 Overview 

The word “automation” comes from the Greek word “autonomos” In the etymology of 
the term autos means self and nomos means rule or law. That is to say that an 
autonomous individual makes its own rules as opposed to following those of an external 
governing power. Autonomous robots are aimed to be physical entities that can 
accomplish useful tasks without human intervention. They are supposed to operate in an 
unknown environment without receiving direct instructions from users. This is a very 
complex project; therefore it involves several objective difficulties. The first section of 
this chapter will help understand and explore the meaning of autonomy. This definition 
implies various real-time difficulties and possible solutions, which will also be discussed 
in the same section. The second section will look at the bigger picture about autonomous 
systems. Without going into detailed implementation and architecture, it will concentrate 
on the different levels of autonomy. As a complete evaluation of this broad subject is 
beyond the scope of this review, it will examine the work of a few researchers on robots 
with different degrees of autonomy.  The last two sections will present important factors 
to consider in going from teleoperation to autonomy.  

2.2 Principle of Autonomy 

As mentioned before autonomous systems are physical systems capable of operating 
without direct human intervention. In other words it should perform its role while 
maintaining its own viability [6]. This definition can be compared to that of a living 
system, which also adapts to its environment for survival. Autonomous robots must adapt 
to their environment even if those change. To be autonomous first implies being 
automatic. In turn being automatic means sensing the environment and its impact on your 
existence. Autonomy goes beyond automaticity in the sense that an autonomous robot not 
only realizes the impact of the environment on its existence but further adapts to the 
environment changes to insure its survival. Moreover this adaptation process has to 
happen in real-time as opposed to studying an environment in advance before operating. 
For example it is less complex to program a robot to go around an empty room without 
human supervision or intervention than it is in a room filled with obstacles. It is also less 
difficult to accomplish the same task in a room with obstacles when the programmer has 
a priori knowledge on the room then it is when the environment is unknown. What will 
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the robot do if the dimensions are different, if it comes to a still obstacle, a moving 
obstacle? An automatic robot that ran in an unexpected wall will keep going against it 
until its motors burn, while an autonomous robot will know to go around the obstacle. 
This robot should not only know to adapt to the environment (avoid the wall) but also 
learn from it. In other words it should remember the characteristics of this obstacle in 
case it should take the same rout sometime later. In addition, according to Kasabov [7], if 
it does encounter the same obstacle a second time it should have learned enough about it 
to avoid it even more efficiently than the first time and this learning process should go on 
as the robot finds itself in the same or similar situations. An Intelligent Agent System 
(IAS) should then have parameters that represent short and long term memory, age, 
forgetting, etc [6]. Kasabov [7] states that an IAS should be able to analyze itself in terms 
of behavior, error and success. 

2.2.1 Definition 
Robotic systems are aimed to perform services. Autonomous robotic systems are aimed 
to perform the same services while maintaining themselves. Those systems have to self-
govern themselves in order to insure their survival independently of external changes. 
They have to be adaptive because users and environment change frequently. They have to 
learn from the different circumstances they encounter and improve their existences.  

2.2.2 Problems 
From the definition above arise several problems, which reside in the process of 
acquiring data and learning from the environment. The fact that the autonomous robot is 
expected to adapt to its surroundings in real-time supposes that it is able to sense still and 
moving object with respect to itself. Moreover autonomaticity supposes that the robot 
already has a general knowledge about how to interpret and handle the sensors’ 
information. 

2.2.3 Sensing 
There are several issues in the sensing part of robot automation. The quality of sensor 
information is influenced by sensor noise, the limited field of view, the condition of 
observation, and the inherent difficulty of the perceptual interpretation process [6]. Thus 
those issues have to do with how the robot receives the information from sensors. 
Assuming the robot knows how to handle a specific situation, noise-corrupted 
information may lead to a malfunction in the robot operation. Similarly limited field of 
view may engender problems in the robot navigation and operation. The condition of 
observation such as illumination, angle of view, motion and others all have to be taken 
into consideration by the robot when sensing information to avoid misinterpretation. It is 
easy to see how ambitious and complicated it is to want to attribute the human notion of 
sensing to a robot.  
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2.2.4 Control 
Making sense of sensor information leads to the problem of controls in autonomous 
robot. Once again for the robot to correctly interpret sensor information it needs to have 
prior general knowledge about the environments in which it operates. An obvious 
difficulty is that it is impossible to have complete and exact prior knowledge about these 
environments. Real-world environments are characterized by a large amount of 
uncertainty that even human beings cannot predict. Therefore it is impossible to prepare 
the robot to handle all the situations that it will encounter. Problems can range from the 
effects of varying environmental conditions on the robot sensors and traction 
performance through to the need to deal with the presence of unexpected situations [6].  
 
The goal for an autonomous robot control then would be to start with a basic database 
about possible situations and later learn and improve its database with experience. This 
simple, logic idea brings up another important issue in control systems called epistemic 
actions. Epistemic actions require that the programmer build the “basic” database 
mentioned earlier with additional rules so that the right actions are fired at the right time. 
Epistemic actions not only need to be fired when information in the database is missing 
but also when it is out of date [8]. Indeed the information in the database has to be kept 
coherent with the sensory systems and the external world for appropriate reaction from 
the robot. This cache system problem, called model coherence problem is an instance of a 
more general problem in computer and robot design. Real robotic systems consist of 
several sub-systems, clusters of sensors, motors and databases operating in parallel, on 
separate processors. Often these simple processors don’t have their own operating 
systems. Therefore all their information must be consistent with one another and the 
external world as they are gathered in one central operating system.  
 
In summary automated reasoning systems are typically built on a task-oriented model of 
programming. Some basic prior knowledge is stored in a database of assertions in a 
number of logical languages, indexed perhaps by predicate name [8]. The robot receives 
information from sensors and functions by query. It asks the system about the findings of 
the sensors, about how to handle them, finds the answer and reacts in the appropriate 
manner. Ideally if the result of the query is missing or out of date it adds or modifies the 
database. How this is done, or even how the database is filled in the first place is the 
essence of the problems in control architectures of autonomous robots. 

2.2.5 Control Architecture 
Control architectures for autonomous robots should be able acquire sensory information, 
adapt to unstructured changing environments and fire the desired reactive behavior. This 
behavior can be to move in a certain direction or it can be task oriented. Autonomous 
robots should be modular i.e. subdivided into smaller modules that can each easily be 
replaced or updated without major software modifications to the main system. All those 
facts need to be taken into account when building those robots. Several architectures have 
been proposed including four main ones [9]:  
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• In the NASREM architecture, developed by Albus, [10, 11], the information 
passes through several processing stages until the system understands the current 
situation. Then the commands are sent again to several modules until the desired 
action is taken at the lowest levels.  

• The subsumption architecture proposed by Brooks [12] is layered in several 
communicating levels of competence. This architecture brings the robot to a 
higher level of competence using higher layers with access to the lower layers of 
operation. Lower layers operate at simpler and more basic levels. 

• The Task Control Architecture (TCA) architecture, developed by Simmons [13, 
14] includes a general purpose central unit linked to several task-specific 
modules. This system is interconnected; there is no higher layer but rather a 
common central control responsible for getting the right sensing information to 
the right reactive module.  

• The Local Area Augmentation System (LAAS) architecture, proposed by Alami 
et al. [15], is composed of three layers. The highest level does the global 
planning; the middle layers receives tasks from the higher level, supervise their 
execution while being reactive to unexpected events. At the lowest level, the third 
layer does elementary robot tasks and functions such as perception or motion.  

 
Those four architectures are used separately or together to implement four main 
paradigms for autonomous robots control systems.  
 

• Sense-model-plan-act (SMPA). This basic idea is used in most autonomous 
system. However the single route between sensing and acting causes undesirable 
delays between the two. Hence this primary paradigm has been improved by 
horizontal and vertical decompositions. 

• Vertical decomposition, as its name indicates, vertically splits into hierarchical 
levels. Sensing information and commands all flow up and down between the 
different layers. Reasoning at higher levels implies more planning and less 
interaction with the environment, hence less delays in reactions. This paradigm 
however requires protocols between layers which reduces modularity and 
expandability. 

• Horizontal decomposition, as suggested by its name, this paradigm remains at a 
simple low level of operation. It is very reactive because it uses the idea of a 
central unit communicating with several modules without a hierarchical structure. 

• Reactive systems are based on the fact that behaviors tend to be little or not goal 
directed [9]. These systems neglect the model-plan part of the SMPA paradigm 
and follow more of a sense act behavior.   

 
Different architectures can be used to perform the same tasks. Some paradigms perform 
better in different circumstances. While various scientists argue in favor or against 
particular one, numerous researchers are supporters of hybrid architectures. In other 
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words, they avoid the disadvantages of specific architectures and make the best of 
advantages of others by combining them in the same systems. 

2.2.6 Online Learning 
An important general concept for autonomous robot is the concept of online learning 
versus simulation. According to the definition of autonomy a fundamental requirement 
for automated systems is that it be able to carry out tasks in the real world and in real 
time. Moreover it must be able to adapt to its environment as it performs those tasks. Still 
several scientists test their robots by using simulation. Results of simulation can easily be 
criticized. Indeed numerous successful simulations will fail on real robots because of the 
following reasons [6, 16]. 
 

• Numerical simulations do not usually consider all the physical laws of the 
interaction of a real agent with its own environment, such as mass, weight, 
friction, inertia, etc. 

• Physical sensors deliver uncertain values, and commands to actuators have 
uncertain effects, whereas simulative models often use grid-worlds and sensors 
that return perfect information. 

• Physical sensors and actuators, even if apparently identical, may perform 
differently because of slight variations in the electronics and mechanics or 
because of their different positions on the robot or because of changing weather or 
environmental conditions. 

 
Learning online enables the robot to adapt to real conditions and circumstances as 
adaptive behaviors can only emerge from coupling the agent with its environment and not 
from simulation.  
 
Having underlined the advantages of online learning versus simulation in automation and 
before looking into advanced research topics in this areas here are the most popular 
methods to develop robotic agents. 

2.2.7 Methods to Implement Autonomy 

2.2.7.1 Path Planning 
Once a robot is given a goal position; it determines a collision-free path to navigate 
through from its initial to its final position. This process is called path planning and can 
be categorized into global and local path planning. Global path planning is usually used 
when the environment is known a priori. It is used with simple exact model of a real 
environment. Again as discussed above, real-world environment are never simple 
enough. Therefore for autonomous system local path planning is preferred. It is more 
practical and is based on obstacle avoidance. The simplicity of this idea is attractive but it 
has its problem also. Basing the motion only on avoiding obstacle could cause the vehicle 
to get stuck in corners. For example if two different sensors are near obstacles and trying 
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to move the robot in different directions it would get stuck. These situations would 
translate in local minimum in the local path planning algorithms. Second, this method 
causes unstable motion near obstacles. Typically there is no speed and direction control 
integrated in those avoidance algorithms, which leads to sudden and unstable motion 
when deviating the vehicles.  The key idea here is adding mapping to this mechanism so 
that the vehicle knows more about its surrounding when reaching an obstacles. As this 
method does not however provide the robot with situation-action rules other methods 
propose an alternative. 

2.2.7.2 Neural Networks 
Neural networks have the advantage to learn by example, generalize from those examples 
and apply their resulting algorithms to specific situations. However these neural networks 
require substantial data sets and representative patterns to characterize their environment 
during training [3]. Moreover the number of hidden layers and nodes are parameters that 
are fixed by the programmer. On the one hand, too many hidden units overfit the training 
data and fail for testing data. On the other hand too few hidden layers produce a behavior 
that is too generalized. Hence the programmer would have to have a lot of experience 
with real environment and circumstances to implement the right number of layers. Again 
even if it were possible to store enough data to navigate in unstructured changing 
environment it would require a substantial amount of data. 

2.2.7.3 Fuzzy Logic 
This method seems to better solve the problem of unstructured changing environment. 
Indeed Fuzzy Logic method provides means for mapping sensor information in real-time. 
Again this is a major requirement for autonomous robots which must have a degree of 
self-government in unknown environment without human intervention. The success of 
Fuzzy Logic Control (FLC) is owed in a large part to the technology’s ability to convert 
qualitative linguistic descriptions into complex mathematical functions and the ability to 
deal with various situations without analytical model of the environment [8]. In other 
words this methodology takes away the problem of having to mathematically describe an 
environment that is unstructured, changing and described only qualitatively, inexactly 
and uncertainly by sensors. This approach translates particular situation into functions 
that the autonomous agent can understand. It is then particularly useful in the case of 
obstacle avoidance. When compared with path planning this method provides actual 
mapping of the surroundings and provides the vehicle with more information about what 
to do after avoiding obstacles. When compared with the neural network approach, the 
algorithm is not based on experience but on expert knowledge. This is because the rules 
are based on physical meaning rather than on training and experimenting. Hence this 
approach seems the best fit for autonomous robot navigation. However physically 
describing very complex environments remains a challenge even for human experts. 
Instead of a large amount of data (neural networks approach), a large amount of rules 
have to be constructed to begin with. It is a tedious, time consuming process and leaves a 
lot of room for research and improvement.  
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2.2.7.4 Evolutionary Algorithms  
This method is inspired by the principles of natural evolution and genetics [8]. Genetic 
Algorithms (GA) uses processes such as selection, recombination and mutation to solve 
robotic problems. Unlike fuzzy methods, evolutionary algorithms are based on global and 
not iterative searches in the solution space. They are more efficient and faster than 
iterative searches. The optimization process is simple and does not care about the 
problem itself just about what solution best solves it.   
 
The GA approach enriches the optimization environment for fuzzy systems [8]. As 
mentioned before fuzzy rules can be very complex. However the GA approach assumes 
that the solution space is complete and fixed and therefore cannot learn Online. An 
attempt to solve this problem has been to develop the Experience Bank. As the robot 
encounters problems it searches through this Experience Bank, if one of these 
experiences solves the problem the search ends, otherwise each experiences are “graded” 
on how well they fit this particular situation. The highest fitness experience is used as a 
starting position to the lower level GA that is used to generate new solutions to the 
current situation [8]. This approach preserve the advantages of easy searches and speeds 
up the process of creating new solution space sections by starting at the best possible 
place in this space. Scientists were inspired by the mechanism of biological organism 
which functions according to two important processes, evolution and life long learning. 
Evolution takes place naturally and affects the nature of the organism while life long 
learning takes place at an individual level. Similarly the Fuzzy-Genetic system (the 
Associative Experience Engine) [8] develops the evolution process; an online technique 
is then added to implement the life long learning process. 

2.2.7.5 Reinforcement Learning  
This method is based on direct trial and error interactions with a dynamic environment. 
Reinforcement Learning (RL) is a learning strategy that does not characterize a learning 
problem. RL just considers possible behaviors, finds one reaction that performs well for 
one particular problem and applies it. It does not try and optimize solution; it does not 
care to know if another solution would have been better from a long term output point of 
view. It is just important that it has a lot of action-reaction contact with its environment. 
In other words the RL method looks at different situations as utility problems rather than 
optimization problems. After interacting with its environment the robot must gather and 
store lessons from its experiences. This approach contrasts with the traditional supervised 
learning algorithms. Indeed RL works towards immediate rewards while supervised 
learning works toward the best output from a given input. Another difference from 
supervised learning is that on-line performance is important: the evaluation of the system 
is often concurrent with learning (which seems attractive in online learning in 
unstructured environments) [8].  
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2.3 Levels of Autonomy 

Robotics systems range from teleoperated to fully autonomous. In teleoperated systems 
the human operator has full control over the robot’s behavior while there is no human 
intervention in fully autonomous systems. Telerobotics describe robotic systems, which 
despite human guidance have a degree of autonomy. 

2.3.1 Telerobotics 
Teleoperated robots require continual operator intervention to successfully perform a task 
[17]. This type of robotic systems is used in delicate applications such as clearing 
hazardous waste. In those dangerous cases, human operators are needed to maneuver the 
robots to prevent accidents. Often operators only have a virtual contact with the robots 
and need to be experienced and extremely precise in guiding the robots. Such operation is 
recognized to be difficult on the users. In an attempt to solve this problem, Conway [18] 
introduces the concept of “teleautonomy”. He discusses methods to generate intelligent 
actions at distance. This method blends autonomy with human intervention. The degree 
of autonomy that the robot should have is the subject of discussions especially in 
hazardous tasks. Telerobotics blends human supervision with robot local intelligence. 
While researchers debate on how much autonomy the robot should have in performing a 
task, one safe focus in this matter is the robot equilibrium and survival. Sian, Yokoi, 
Kajita and Tanie illustrate this point in several papers [19, 20] on which this section will 
focus. Apart from walking pattern generation, the work previous to theirs has generally 
focused on arm or head manipulation of a static body. The few work on whole body 
motion has attempted to convert the body motion of an operator into command for the 
robot. This work however is very involved, requires complex interface and still causes 
problems such as difficulty in generating stable motions in real-time, due to geometrical 
and dynamical differences between human operators and humanoid robots. These authors 
propose a switching command based whole body teleoperation based on simple joystick 
interface. The concept of integrating operator’s intention and robot autonomy is derived 
from human motions, which are a mixture of conscious motions and unconscious 
motions. When accomplishing a specific task, we consciously take actions while 
unconsciously taking others to accommodate us in our task. For example while running 
one focuses on his or her leg movements and unconsciously moves ones arm to stay 
balanced. Based on this idea Sian, Yokoi, Kajita and Tanie [19] have developed a system 
where depending on the objective of each task, the operator selects the specific part of the 
robot he wishes to operate with. The operator does so with simple joystick control 
without worrying about the robot balance. This autonomous motion of the robot is 
insured using a trajectory of the target manipulation point and the robot balance as the 
criteria for whole body motion generation. These scientists propose a method that divides 
the body structure in several mechanisms corresponding to the main joints of the robot. 
The operator controls the motion and velocity of each joint he wishes to operate. The 
robot maintains itself using two principals. 
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• Balance Autonomy Based on the measurement of the Zero Moment Point (ZMP) 
this mechanism allows the robot to remain within the support polygon for 
dynamically stable motion.  

 
• CoM Position and Torso Orientation Modification Autonomy Based on the 

measurement of the center of mass (CoM) and the orientation of the torso, the 
stable reachable area of a humanoid robot can be extended [19].  

 
The same authors added to their work by proposing an intuitive foot operation [20]. As 
the previous one, this approach is based on the fact that with current recognition and 
decision-making technology, human supervision is still necessary for humanoid robots. 
Hence this method proposes to incorporate the operator’s foot command with the robot’s 
autonomy in maintaining balance. Most of the work on humanoid robots’ autonomy 
concentrates on generating walking pattern. The issue of real-time foot operation is rarely 
discussed [20]. This paper emphasizes that one great advantage about humanoid robots is 
that they have feet that can be used for more than walking. For example they can be used 
to step on specific areas or to push an object around. In those cases it is important to 
facilitate the operator’s work by allowing him to only transmit intuitive commands to the 
robot and let the robot maintain its own balance. The contribution here is the Foot 
Operation Autonomy.  

2.3.2 Semi-Autonomy 
Semi-autonomy also referred as scripted autonomy describes the systems in which the 
user triggers behaviors in the robots through voice, touch or other mechanism. These 
automated reasoning systems are typically built on a transaction-oriented model of 
computation [8]. Knowledge is acquired from the environment and stored in the robot 
database. Then the system translates queries sent by an operator into logical assertions. 
Even assuming it is possible to clearly describe several queries so that the robot can 
answer them, the problem occurs about how to fill the database. In the case of greatest 
interest, the robot does not know its surroundings and its environment changes 
frequently. However automated systems are not prepared for such cases, they assume all 
the information they need is already stored in the database before operation. Semi-
autonomous behaviors can be triggered by different mechanisms. Language is a favorite 
for researchers. This section will focus on such systems. They are called tagged behavior-
based systems.  

2.3.2.1 The Bertrand System 
The Bertrand system [21] is a database-free logic programming system that answers 
block-world queries using real blocks and a real-time visual system [8]. This system 
answers questions such as “Is there a blue object above a red object?” using visual 
routine processor. The robot searches for blue block, and then looks right below. It finds 
a red object and drives to the chosen block. If it had chosen the wrong blue object it 
would have backtracked and searched for another blue object. 
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2.3.2.2 The Ludwig system 
Ludwig [22] is another simple natural-language question answering system based on 
colors and special relations. It is grounded in real-time vision. It is different than the 
Bertrand system in that it consists of parallel network communicating finite state 
machines. Semantic analysis, synthetic analysis and visual processing occur in the 
pipeline and the system keeps track of the relationship between those programs.  
 

2.3.2.3 Improvement of the Bertrand-Ludwig Architecture 
Hence Tagging provides an alternative mechanism for coordinating the different 
representation of an object [8]. This approach does not require a complete database of 
objects nor does it require passing complicated symbolic expressions between 
components of a system. Moreover tagged behavior-based systems add to the traditional 
qualities (simplicity, parallelism and efficiency) of behavior-based system by providing 
additional flexibility and programmability. While the Bertrand-Ludwig architecture 
works well for queries it does not work so well for controlling actions. It is also 
dependant on the scene as the robot is seeing it a precise moment. If the scene changes, 
the robot does not notice it. A forward-chaining inference system is needed to continually 
re-compute computed inference.  Tagging is only a partial solution to the problem of 
representing predicate-argument structure. However not only does it apply to the 
mechanism of the reasoning of several robots used nowadays but also improves it. The 
robot Kludge [8] was programmed using the feed-forward tagging scheme to follow 
simple natural language, such as “get the green ball”. Kludge is equipped with a 25-MIP 
DSP board with an attached frame grabber and video camera. In addition Kludge uses an 
odometry system which tracks the location of the object it identified using its visual 
system in real-time. Kludge then uses this combination of mechanism to fire different 
behaviors, like following a blue ball for example.  
 
The unifying theme of these systems is to import useful features of traditional symbolic 
AI systems into behavior-based systems without also importing the model-tracking and 
model-coherence problems [8]. The goal for Cerebus [8] is to integrate the advantages 
about the previous automated systems but also to be capable of limited reasoning. This 
semiautonomous state gives the robot the ability to do the tasks of the Kludge project and 
also to access its own internal state. 

2.3.3 Full Autonomy 
Fully autonomous systems describe systems operating without human intervention. Such 
robots can only be implemented with the use of sophisticated sensors. They are divided in 
two main categories: systems that have knowledge about their environment and systems 
that operate in completely unknown environments. The robots with a priori knowledge 
about their surroundings are still autonomous because they operated without input from 
the user. They have learned various behaviors in a virtual environment before 
autonomously repeating the same behaviors in real time. 
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2.3.3.1 Learning by Demonstration 
Yeasin and Chaudhuri [23] propose an approach to program a robot by demonstrating a 
task several times in front of a binocular vision system. The motivation behind 
programming a robot by demonstration is simple and compelling: a user knowing how to 
perform a task should be sufficient to create a program to replicate the task [23]. This 
idea of integrating perceptual information with human skill can help in developing a 
flexible autonomous robot. Previous work, similar to works by Ude [24], has 
concentrated on tracking the object the human was working on instead of tracking the 
human hand. The key new idea is to help a robot observe a human performing a task, 
understand it and generate the corresponding program to perform the same task. A similar 
work has been done by Kuniyoshi [25] et al to track the motion of a human hand for 
program generation. The endeavor of this paper is to develop a fast, efficient and robust 
vision system, which is capable of extracting the sufficient statistics from the visual data, 
captured during the demonstration of the task [23]. The proposed system is composed of 
five major blocks: 
 

• Data acquisition, 
• Vision, 
• Trajectory reconstruction, 
• Task description, and 
• Command generation module. 
 

The data acquisition module captures the training data and the vision module extracts the 
sufficient statistics from it to generate automatic commands for the robot controller [23]. 
The next module reconstructs an optimal path from the vision information. The task 
description module subdivides the tasks in smaller task to facilitate the work of command 
generation module. Billard and Matari [26] evaluate a model of human imitation of 
abstract, two-arm movement. Input to this system are data from human arm movement 
recorded using a video and marker based tracking systems. The goal here is to provide 
the robot with on- and/or off-line learning or adaptive capabilities. Instead of adapting 
through reprogramming the robot would adapt through demonstration. This method is 
appealing, once again because demonstration is a natural and simple way for human-
robot interaction. Instead of trying to guide the robot through a task, the operator who 
might not be familiar with the robot can just demonstrate how she/he would perform the 
task. This approach makes the robot’s motion much smoother and flexible because it 
directly follows human instruction. Several works on the same topic have been very task 
specific whereas recently the focus is more on mechanisms of imitation in natural 
systems. In other words this work ultimately aims for the implementation of a humanoid 
robot. The endeavor is to, on the one hand, build biologically plausible models of animal 
imitative abilities, and, on the other hand, develop architectures for visuo-motor control 
and learning in robots which would show some of the flexibility of natural systems [26]. 
Billard and Matari [26] evaluate the model’s performance at reproducing human arm 
movements. A simplified biologically inspired model of primate imitative ability is 
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developed. It has different levels of attention for repeating known movements or learning 
new movements. The recognition of the direction and orientation and the motion tracking 
mechanism are based on visual information. The recognition of the direction and 
orientation and the motion tracking mechanism are based on visual information. The 
motor control, which activates the muscles, is hierarchical and composed of artificial 
neural networks.  
 
In a similar work, Aleotti, Caselli and Reggiani [27] argue that for tasks whose essential 
features are known a priori, demonstrating in a virtual environment may improve 
efficiency and reduce the trainer’s fatigue. It presents experiments in simple virtual tactile 
fixtures in pick-and-place tasks. This approach assumes that trajectory will eventually be 
computed by path planning based on actual location of objects and status of the working 
environment. In the proposed robot teaching method, an operator, wearing a dataglove 
with a 3D tracker, demonstrates the tasks in a virtual environment [27]. The system 
translates actions into commands for the robot manipulator. Then the recognized task is 
performed in a simulated environment for validation before being executed in the real 
environment. This teaching by showing method includes three main phases: 
 

• Task presentation - The user wearing the dataglove executes the intended task in a 
virtual environment. 

• Task analysis - The system analyzes the task and extracts a sequence of high-level 
operations, taken from a set of rules defined in advance. 

• Mapping - The synthesized task is mapped into basic operations and executed, 
first in a 3D simulated environment and then by the robotic platform. 

 
The robot is controlled by the programming by demonstration (PbD) application in a six 
Degree Of Freedom (DOF) Puma 560 manipulator. A 2D vision system recognizes 
objects in the real workspace and detects their initial configuration. The whole 
application is built on top of a Common Object Request Broker Architecture (CORBA)-
based framework, which interconnects clients and servers while providing transparent 
access to the various heterogeneous subsystems [28].  

2.3.3.2 Autonomous Self Reconfiguring Robots 
A parallel approach to robot autonomy it that of self-reconfiguring robots. Those robots 
do not necessarily move but rather change their shape autonomously. An example on this 
kind of robots would be the work of Rus and Vona on crystalline robots [29]. Crystalline 
robots consist of modules that can aggregate together to form distributed robot systems 
[29]. They are equipped with an actuation mechanism, which permits automated shape 
metamorphosis. Self-reconfiguring robots consist of a set of identical robotic modules 
that can autonomously and dynamically change their aggregate geometric structure to suit 
different locomotion, manipulation, and sensing tasks [29]. The goal for assuming 
different geometric shapes is to adapt to different environments. Self-reconfiguring 
robots are subdivided into two groups: heterogeneous and homogeneous.  Heterogeneous 
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systems consist of different modules and homogeneous systems consist of identical 
modules. In this case there is no path planning instead researchers implement local and 
global self-reconfiguring planning. Rus and Vona introduce a new approach to 
homogeneous self-reconfiguring robots based on a module called Crystalline Atom. 
Inspired by muscles and amoebas, this module is actuated by expansion and contraction. 
By expanding and   contracting the neighbors in a connected structure, an individual 
module can be moved in general ways relative to the entire structure [29]. In previous 
papers the same authors presented this crystalline module [30] and a robot system 
composed of 10 Crystalline Atoms [31]. Their latest work shows that Crystalline Atoms 
satisfy sufficient   conditions for a self-reconfiguring robot system. Traditional work in 
this area involves cellular robotics like Fuduka’s method to coordinate a set of 
specialized modules [32]. More work in this area includes a type of locomotion added to 
the metamorphosis. Murata et al proposed a system of modules that can achieve planar 
motion by walking over one another [33, 34] and moved to 3D motion [35]. The self-
reconfiguring planning in most cases is somewhat similar or inspired from one another 
except in the case of Rus and Vona [29] who propose a new algorithm suitable for their 
new actuation capabilities.  

2.3.3.3 Homing 
Homing is a term borrowed from biology, where it is usually used to describe the ability 
of various living organisms such as insects, to return to their nest after having traveled a 
long distance along a certain path [36]. In robotics, this term is used for the ability of the 
robot to its initial (home) position after performing a certain task. The tendency in recent 
researches is to move to visual or visual guided homing instead of sensory homing for 
reasons that will be discussed in the second part of this section. 

2.3.3.3.1 Non-Visual Homing 
There have been various efforts of solving the problem of autonomous navigation in 
robotics. Robots are usually equipped with non-visual sensors, such as range sensors. The 
position of the robot is constantly recomputed with respect to an arbitrary absolute 
coordinate system. 
 
A good example of distance sensing is the work of Bizzantino et al. They describe a work 
on a large laboratory testbed for space robotics, able to execute hierarchically organized 
complex activities, to increase the degree of autonomy of the system [37]. This approach 
uses a set of laser distance sensors to localize the true grasping positions. The resulting 
system is able to perform several tasks such as closing a drawer without human 
intervention and even when the robot is off the expected position by a few centimeters. 
Space robots are probably one of the few applications where a high degree of autonomy 
is not just desirable but rather mandatory. Indeed even if men wish to do the robot’s 
work, space is not a natural environment for them and makes their performance of any 
task very difficult. Previous similar attempt (CAT) [38] to solve this problem, especially 
in grasping tasks, has been very dependant on the exact position of the object to be 
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grasped. Errors of just a few millimeters caused failure in grasping and collisions. The 
contribution of Bizzantino and al. has been to exploit the information of a set of laser 
distance sensors to allow autonomous motion of the arm even if for unexpected reasons 
the object to be grasped has been moved of several centimeters. Indeed an important part 
of space robotics is SPARCO (SPAce Robot Controller), which provides powerful 
motion control instructions. However, as mentioned before, this system does not handle 
anomalies (non nominal configurations). If the object to grasp accidentally moves a few 
millimeters from the expected position, collision occurs or an operator is needed to 
readjust the settings. The new idea is to add a new action called CHECK. The CHECK 
action completes all the initial actions in SPARCO by automatically and in real time 
learning the actual robot position. This is done through a special configuration and 
processing of distance sensors provided in this paper. In this new approach the 
manipulated subjects are out of the nominal place of several centimeters, against the few 
millimeters of the basic SPARCO release [37].  
 
The previous example focused on grasping motion. Another area of interest in research is 
just the mobility platform concept, which can be used for other purposes such as carrying 
or dragging objects. In modular robotics that is a very important concept more 
specifically in the Imaging Robotics and Intelligent Systems Lab in the Electrical and 
computer Engineering Department at the University of Tennessee. Its sensory system is 
based on modular brick sensors that have their own sensor, processing, power and 
communication units. Hence the mobility platform becomes a mobility brick capable of 
standing on its own. The general idea is that the mobility brick should be able to pick up 
and carry a of the sensor brick and bring back scans to a passive operator. There are two 
components of intelligent mobility: mobility capabilities and mobility control [39]. Those 
two components of a mobile platform are self-descriptive; the first refers to its 
characteristics and the second to its intelligence. Moore and Flann add the mobility 
control is also subdivided in two components: 
 

• First managing the “local dynamic” interactions between the vehicle and the 
forces it encounters, intelligent vehicle-level control algorithms must be 
developed and implemented to optimally maneuver the vehicle. 

• Second, mission mobility and path planning is concerned with “global” motion 
planning and navigation and is used to determine the part a vehicle should take to 
pass through a given rejoin to achieve its objective.  

 
For easy motion mobility platform usually incorporate omnidirectional wheel, hence the 
name Omnidirectional Vehicle (ODV). The Utah State University (USU) has developed a 
series of T ODV including the ARC III, a 45-lb small-scale robot [40] and the T2 [41], a 
1480-lb robot. ODV are an innovation in mobile robotics as traditional concept use 
vehicle steering mechanisms [42, 43]. This kind of vehicle uses skid steering and is 
constrained by the direction of travel. The T series are not really omnidirectional as it 
takes a finite time to turn a wheel to a new angle. However this type of vehicle is 
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equipped with smart wheel with three degrees of freedom: height, steering and drive. 
This combined with very fast turn rate motor result in a motion that is effectively 
omnidirectional. Other researchers have developed ODV concepts that include fewer (3-
4) wheels [40, 44, 45, and 46]. The T series uses six wheels to get more power and tired 
surface on the ground. Some researchers have also carefully built and studied the 
particular behavior of different robots [47, 48 and 49]. The T series differs from these 
previous works in the design of the smart wheel, with the slip ring that allows infinite 
rotation of each wheel in either direction [39]. Hence Moore and Flann contribution is the 
development of a task-based trajectory planning strategy combined with a first-
principles-derived, model-based controller developed specifically to exploit the mobility 
capabilities of their specific robots. This strategy is characterized by a hierarchical task 
decomposition approach. At a high level, a knowledge-based planner and a special 
algorithm generate the vehicle path as a sequence of basic maneuvers. At the vehicle 
level those maneuvers are converted in time-domain trajectories. At the lowest level 
linear controllers drive the wheel’s low-level drive motor and steer the angle motor 
controllers.  
 
Sun and al. present a modeling and analysis method for the motion planning and control 
of mobile robot systems in a hybrid fashion. Robotic systems obtain environmental 
information from perceptive sensors and respond to the perceptions to execute the task 
through decision and control process [50]. The Hybrid Automata perceptive model and 
reference have both discrete and continuous components. The discrete layers enable the 
robot system to plan and modify original path through switching. However in the case of 
an obstacles for example, the reference is blocked and the robot only resumes its 
operation after the obstacles are moved. Previous works on hybrid systems and hybrid 
automata [51, 52, and 53] have lead to Brocket’s proposal of a motion description 
language for kinetic state machines [54]. In this model machines are the continuous 
analog of finite automata. However all the previous approaches use time as a reference 
for both the discrete and continuous parts of the system. Sun proposes a new general 
approach to sensory homing: instead of time, the control input is the new reference which 
is a function of real-time sensory measurements as it is crucial for the reference to keep 
evolving and not being blocked by unexpected obstacles. The hybrid perceptive 
references enable both the continuous part and the discrete part of the system to deal with 
unexpected events [50]. The discrete part keeps the perceptive reference evolving through 
modifications of the original information. Both, the discrete and the continuous part are 
integrated by the hybrid perceptive motion reference. This system has been implemented 
using a Mobile Manipulator-Phantom Joystick teleoperation system consisting of a 
Nomadic XR4000 mobile robot, a puma560 robot arm mounted on a mobile robot and a 
phantom joystick controller. There are two PCs on board of the mobile robot (platform 
and arm) and one for the joystick controller. The robot and the controller communicate 
through the Internet.  
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2.3.3.3.2 Visual Homing 
Several approaches to robots autonomy have been inspired by insect physiology. Most of 
these works were inspired by the pioneer work of Cartwight and Collet [55] on insect 
behavior. According to them insects base their navigation on their memory of certain 
landmarks locations. More work (Srinivasan et al. and Lambrinos et al.) [56, 57] later 
reinforces the idea that insect navigation is based on specific landmarks and uses it for 
robots navigation. These works use the fact that some insects would actually make 
detours in their way to a target position just to pass by familiar locations. Works by 
Lambrinos, Franz, Moller and Cassinis et al. [58, 59, 60, and 61] on autonomous robot 
navigation exploits interesting findings about insects’ behavior. First insects use vision to 
travel and they use very large fields of view. Second, they use certain parts of this stored 
visual data to localize themselves. Finally and very interestingly 3D structure is not a 
prerequisite for their navigation. Most of these works especially exploit the benefits of 
the wide field of view. Argyros, Bekris and Orphanoudakis [36] take those facts into 
consideration and propose a new approach to homing that exploits omni-directional 
vision. Their method is based on a panoramic camera. It uses the fact that there are at 
least three correspondence features between two panoramic views taken from two 
different positions. Then, a control mechanism helps the robot move from one frame to 
another. More explicitly when homing is activated the robot starts tracking specific 
features of its environment (corners). The robot selects intermediate target positions (IPs) 
on its original path. These IPs are visited sequentially as the robot travels toward its final 
destination. A tracking mechanism allows the robot to compare images along its path. It 
only needs to match 3 corners in order to move from one position to the next. This 
homing scheme is based on the extraction of low-level sensory information, namely the 
bearing angles of corners. Argyros et al. [36] implemented this method on a robotic 
platform and the home position is reached with an accuracy of a few millimeters after a 
journey of several meters. This approach could be qualified as homing as a solution for 
global navigation. Homing has also been proposed as a solution for local navigation 
problems [62]. Koku et al. [62] point out that several homing approaches methods usually 
use egocentric navigation as a part of their homing algorithms [63] and propose a homing 
method based solely on visual data. The proposed method is called Egocentric 
Navigation or ENav. Other methods used egocentric navigation in addition to some 
absolute information including the work of Gaussier, Pinette, Moller and Dai [64, 65, 66, 
and 67]. ENav is based only on egocentric navigation. The robot has a perception of a 
target position and a similar perception of the position where it currently is. It then scans 
the view for object it recognizes and creates egocentric representation for them. The 
comparison between the two helps direct it towards the right destination. This 
information is referred to as the Sensory Egosphere (SES). A similar representation 
called the Landmark Egosphere (LES) describes the target position. The robot is given 
the LES and frequently creates the SES. This mechanism is usually done through 
egocentric representation where landmarks are indexed based on their angular separation 
with each other. A heading vector h computed by this method points the robot toward the 
target point. The robot generates and updates the h vector and starts moving towards the 
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target point until the SES and the LES are close enough to each other. The results 
obtained from this method are beyond satisfactory as the error in reaching the destination 
does not exceed the size of the robot. The particularity of this method is that is eliminates 
the need for absolute landmarks and is based only on perception. Since it does not 
involve mapping, the heading vector h does not have to point toward the final direction, it 
just has to get a robot a little closer to the target point.  

2.4 Autonomous Methods Evaluation  

The research on autonomous robots is broad. As those research areas apply to various 
different topics, they do not always compare to each other. Nor do they always complete 
each other but rather they apply to different circumstances. This section will try to 
categorize the methods to implement autonomy presented in section 3. It will point out 
the ways and the circumstances where a certain method is preferable over another. In 
other words it will present the applications and the limitations of those methods. Then it 
will attempt to explain the trade off between teleoperation and autonomy. Finally this 
analysis will propose an alternative to choosing, which is the purpose of this work. 

2.4.1 Task Oriented Autonomy 
Methods like Tagging and Programming by demonstration are mostly task oriented. 
Some behavior-based methods may have commands such as “Go to the blue block”, 
however the focus resides in recognizing and reaching the block rather than path planning 
and obstacle avoidance. It is common to see behavior-based systems as incompatible with 
autonomous operation. Hence research in this area is quite limited. Yet Horswill [8] 
points out that it is not only compatible but also implementable. His project shows that it 
is possible to program a robot to respond to users’ simple voice commands and perform 
different tasks. The main reason why this method is neglected is the difficulty in 
programming behavior-based systems. While reasoning systems use very advanced 
languages, compilers and development environments, behavior-based system are still 
written in simple languages such as C++. Programmers have to write codes in both 
languages and then couple them, which is painful and error-prone, hence not practical. 
Some equivalence between the two languages is needed to make the programming and 
debugging easier and more efficient. Assuming such protocol is created, behavior-based 
systems would still need to be couple with online-learning methods to be very useful. 
Indeed they are task-oriented and so far they mostly assume a database of behaviors 
already stored in the robot’s memory. This is when PbD (Programming by 
Demonstration) becomes handy. This method could be used to fill up the database in the 
tagging systems. Programming by demonstration goes beyond filling databases in robotic 
systems. It does so simply by demonstrating a task to the robot. Any user can later 
demonstrate rather complicated task for the robot to reproduce. Of course PbD is still 
being studied and still needs improvements. The initial work on PbD often required 
special hardware - not available for everyone - such as the dataglove with 3D tracker 
used in the University of Parma, Italy [12]. While researchers are going towards visual 
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tracking, other problems with this method involve singularity of trajectory and the 
complexity of the underlying recognition and interpretation of movements. Another 
problem with this method is that often the task has to be demonstrated several times 
before the robot can execute it, which is not always possible in real time.  
 
Both Behavior-based and PbD robots aim at task-oriented applications. Both methods 
want to alleviate the responsibility of the user. In real-time end users with little or no 
specific expertise might be required to program robot tasks. In fact most of the research 
in humanoid robot aims at making robots a part of everyday human lives. Whether it is to 
simply “fire” a behavior by voice commands for example or program a robot by simply 
demonstrating a task, the goal is to produce a robot that is easy to use. The problem with 
behavior-based methods as mentioned before is that the programming is very tedious and 
does not yet incorporate online learning. So the user only has fixed preprogrammed and 
specific tasks to execute. On the other hand, programming by demonstration allows more 
flexible tasks as the operator simply demonstrates the chores to the robot. This method 
does not only simplify the operator’s job but also the programmer’s. However in this 
case, sophisticated hardware is generally required and as this method is still improving, it 
generally takes several demonstrations to execute a simple task. 

2.4.2 Mobile Autonomous Robots 
The quest for a fully autonomous system has been one of the ultimate scientific goal in 
the robotics community. However, most of the time, due to the limitation of the current 
recognition and decision making technology the need for human intervention or 
supervision is still essential in the unstructured real world. Teleautonomy and homing are 
both going around this problem in their own distinct ways.  
 
Teleautonomy attributes the robot with partial autonomy to ease the burden on the 
operator. Although the operator may need expertise to manipulate the robot, the goal of 
teleoperation is to make the operation as intuitive as possible. This method aims at 
allowing the operator to concentrate on the core of the task being performed while 
allowing the robot to autonomously maintain its balance and existence. By integrating the 
operator’s intuition and the robot’s autonomy, telerobotics covers a very large range or 
application in real-time and in changing unstructured environments. Homing also avoids 
the task-oriented aspect of a number of autonomous systems by focusing on navigation 
problems. In this case autonomous systems process perceptions (the environmental 
information obtained from onboard sensors) and respond to the perceptions by changing 
the original path planning and control schemes. Homing is subdivided in two categories, 
sensory and qualitative homing. Sensory homing is based on the use of lasers or range 
sensors to acquire 3D information and encoding information necessary to reconstruct or 
map the environment. This method is then very concerned with sensor accuracy and 
structure of the environment to ensure a collision free path for the robot. Errors and most 
importantly cumulative errors in the sensing process can cause damages to the robot and 
make this method quite unreliable over time. Indeed sensors can give different readings 
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depending on location for example and the robot can easily get confused. Moreover in 
this case, localization is a prerequisite of navigation since the use of a map suggests that 
the robot should know where objects are with respect to itself. Certain robots do not 
cover distances long enough to require maps. All those issues lead to more research as 
well as to another homing method often referred to as visual homing. Indeed visual 
homing eliminates the need for reliable sensors and uses vision which is much more 
informative. This method provides the information “where is what” [13] which can 
directly be used by the robot. This approach is then range-free. It is also map-free and 
does not perform localization algorithms. The comparison of adjacent frames just 
provides the robot with a vector to follow towards a target position. 
 
Even though telerobotics and homing do not directly compare, they approach the 
autonomous systems in similar ways. Neither of those two methods is focusing on fully 
autonomous tasks performance. Telerobotics focuses on providing the robot with a 
degree of autonomy while being operated. Homing focuses on providing the robot with 
autonomy before or after performing a task, so that it can safely return or reach a home 
position. It is easy to imagine how both methods could actually complete each other. 
Assuming the robot autonomously knows where to go before and after a specific task, it 
could safely reach those locations and wait for instructions. Then the operator could 
perform that task without worrying about balancing or stabilizing the robot no matter 
how complex the task is. Both methods have their advantages and drawbacks. Both 
methods have a common advantage. They perform very well in real-time. On the one 
hand, while telerobotics eases the burden on the operator but still requires his intervention 
and supervision, homing does not. On the other hand while teleoperated systems can 
perform tedious, complicated and sometimes dangerous tasks, homing focuses solely on 
navigation. 

2.4.3 Tradeoff between Teleoperation and Autonomy 
Robotic systems range from fully teleoperated to fully autonomous. While a number of 
scientists try to solve specific problems along this wide spectrum of systems, others 
analyze the trade off in going from one to another. No system is better than another one 
in terms of human dependency; they simply apply to different circumstances and various 
degrees of complexity. While research is going forward in autonomous systems, studies 
on teleoperated robots are more mature. The intuitive method to deal with avoiding 
obstacles, dealing with communications delays, reacting to unexpected event and other 
issues is to have human supervision. Teleautonomy is the next step in supervisory 
control. While the operator only focuses on a specific task, the robot has a few basic self-
maintaining functions. One step further, fully autonomous systems do not require human 
input. However along this progress the operational level of complexity has decreased. 
Jacob W. Crandall and Michael A. Goodrich continue working on adjustable autonomy 
[1] and argue [2] that in certain circumstances such as search and rescue or hazardous 
waste removal, human operators are desirable. Unfortunately there is a limit to the 
number of robot one man can efficiently handle. To analyze this issue, they present a 
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theoretical framework for understanding how the expected performance of a particular 
interaction scheme changes as the robots are neglected and as world complexity increases 
[2]. Their way of doing do is to create a framework for characterizing the efficiency of 
human robot interaction. In other word, they prove that the human robot performance 
degrades as the operator neglects the robots, as the information and control scheme 
deteriorate and as the complexity of the world increases. Their ultimate goal is to use this 
study to better design control schemes to deal with those issues. Myra Wilson and Mark 
Neal also examine the tradeoff between the increasing design and implementation effort 
necessary as the system moves through the continuum from teleoperated to autonomous 
and the amount of human intervention required [3]. Telerobotics describes system where 
despite remote human supervision the robot has a degree of local autonomy. This case of 
study uses a human shepherd herding a robotic sheep using robotic dogs. The behavior of 
the sheepdogs varies from teleoperated to highly autonomous. This study reinforces a few 
ideas. It is difficult for the operator to predict at distance the best behavior to initiate 
locally (at the robot end) until the system is well understood. The appropriate behavior 
can drastically ease the burden on the operator. However, engineering effort and 
complexity in the system can easily have a negative impact on the systems requiring 
more effort for implementation and more effort from the operator. This study confirms 
the intuition that, complete automation is a time consuming and complex engineering 
exercise [3]. Scientist generally agree that the reduction in operator intervention will only 
decrease at the cost of an increasing engineering effort to fully understand the systems 
itself and the real environment in which the robot interacts.  

2.4.4 New Architecture for Teleoperated and Autonomous Unmanned 
Systems: JAUS 

In recent attempts to improve the research and applications of autonomous robots, the 
Office of the Secretary of Defense Joint Robotic Program has developed a common, 
domain level architecture into consumer, military and industrial unmanned systems.  
More and more academic, military and commercial systems are adopting this Joint 
Architecture for Unmanned Systems (JAUS). The Spartan Advanced Technology 
Concept Demonstration SPAWAR Systems Center, San Diego developed a series of new 
JAUS messages, including radar data transport and dynamic (on-route) re-configuration 
of the waypoint route [68]. The Department of Mechanical and Aerospace Engineering of 
the University of Florida at Gainesville participated in the DARPA Grand Challenge that 
was held in March 2004. The system architecture of their system is also based on JAUS 
[69]. As robotics is heading towards modularity, more and more products are aiming to 
be JAUS compliant. Indeed JAUS promotes technology reuse and insertion. It defines a 
set of reusable “components” and their interfaces [70]. Modularity is desirable for two 
main reasons. First, if components are easily portable and attachable to a certain system, 
whenever a component breaks down it is easily replaceable. It does not impact the whole 
system and when it is fixed it is easily reusable by the same or another system. Second, as 
technology advances, new parts can easily replace old ones or be inserted in addition to 
previous components, as the architecture in place already supports more advanced 
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capabilities [70]. Hence an implied advantage of this new architecture is simple 
interoperability between different systems provided they all are JAUS compliant. In other 
words provided they exchange the corresponding messages. To ensure that a system can 
become JAUS compliant, the architecture cannot be dependant on a particular software or 
hardware technologies. It is purely and simply based on messages exchanges between 
components. As research on teleoperated and especially autonomous systems presents 
numerous challenges, JAUS is a practical way to try and eliminate problems, such as 
system dependencies.  
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3 Migration to Autonomy 

The broad spectrum of robotic system expands from teleoperation to fully autonomous 
robots. The ultimate goal of this work is to avoid parts of the restriction involved with 
belonging to either end of this range by producing a three state machine able to be either 
fully teleoperated or fully autonomous. The intermediate state being a computer 
interfaced teleoperation. This state is slightly more flexible than the proprietary 
teleoperation in the sense that it can be combined with modular sensor brick interfaces. 
The self-ruling state goes one step further by using those sensor bricks to acquire a 
degree of autonomy.  

3.1 Original System 

The transition starts with the original robust commercial system. The Original systems 
targeted by this work are robust systems used mainly during delicate, potentially perilous 
circumstances such as explosive or hazardous waste disposal. Commercial and military 
teleoperated robots are being produced to keep men out of harm’s way during such 
dangerous missions. Teleoperation implies that the system absolutely require human 
input to function. A technician remotely maneuvers the robot using an Operator Control 
Unit (OCU). This unit is usually easily portable or wearable. It can communicate via 
cable or wirelessly. Figure 3 shows the wearable control panel for the ANDROS Mark 
VA. In this case the control panel consists mainly of mechanical toggle switches and 
potentiometers. The OCU takes the user input and transmits the data to the robot over a 
serial RS-232 line. The switches allow for simultaneous control of multiple functions – 
The toggle switch signals are independent until they are multiplexed and sent to the robot 
in a serial data stream [71]. The software is simple, robust and processes data quickly. 
This control system is very efficient. The emphasis is not on being fancy and 
sophisticated but rather on building a reliable elementary system that works. This is the 
general motivation for this type of robots control units. The mobile platform is similarly 
very robustly built. Figure 4 shows the Remotec ANDROS Mark VA. Hence on the one 
hand, the system can be trusted to survive difficult situation. However on the other hand 
the operation of this robot should not be taken lightly either. Before driving the robot, one 
usually has to go through a special training.  An untrained operator cannot operate this 
heavy piece of machinery. For example when the communication is not wireless, the 
operator has to constantly avoid running into the fiber optic cable. The cable is very 
resistant yet getting caught into the robot’s track can definitely damage it.  
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Figure 3: This figure show the original mechanical control panel for Remotec ANDROS 
Mark VA. 
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Figure 4: This figure is a photograph of the Remotec ANDROS Mark VA. 
 
 
 
 
 

 
 
 
 
 
 
 



 
 
 
 

Chapter 3 – Migration to Autonomy      34 
 

 
 

Also while driving the robot while it is in line of sight is quite possible for a first time 
user, this is not the case when the robot is in another room or simply when the operator’s 
view of the robot is obstructed. In general an experienced operator remains at a safe 
standoff distance either because the scene is hazardous or because it is simply 
inaccessible (caves, tunnels and collapse structures). Meanwhile, the robot relays real-
time video, audio and occasionally other sensors’ readings. The advantages of such 
systems are clearly apparent as they allow the operator to identify threats (mines, bombs, 
enemy…) and to prepare before being exposed to it. Examples of such robots are the 
ANDROS from Remotec, TALON produced by Foster Miller and the PackBot series 
manufactured by iRobot. Naturally those robots are particularly well-built systems. They 
can be operated in rough terrains and withstand minor explosions (See Figure 5). The 
ANDROS can climb up to 37 degree-stairs while the PackBot scout is designed to 
survive a 2 meter drop onto concrete [72]. Such features only begin to illustrate the 
survivability of typical reconnaissance, surveillance  and Explosive Ordnance Disposal 
(EOD) robots. Standard accessories include driving, manipulating and surveillance 
cameras. Global Position System (GPS) is also occasionally available. Those types of 
sensors are basic for these robots and do not restrict their domain of application. That is 
why, to avoid narrowing their clientele, manufacturers usually do not attach other more 
specific operational requirements. Instead, they provide the user with additional power 
outlet and Accessory Interface Mount (one or two). The interface for those extra sensors 
is not embedded in the original system. The functionality of supplementary accessory has 
to be simple. The user could add weapons as an accessory to the ANDROS for example; 
the corresponding switch is simply “Fire Weapon”. More complicated accessory and 
interfaces have to be specially ordered and integrated into the basic design. Teleoperated 
systems rarely include degrees of autonomy. If they incorporate autonomous function at 
all, it is usually a self-status checking, such as checking the charge of the battery or the 
status of the wireless communication or other similar self-maintenance functions.  
 
To summarize the characteristics of typical inspection teleoperated systems, their control 
unit and the actual robots are very robust. They absolutely require the supervision and 
intervention of an operator to function. They do not normally include various 
sophisticated sensors neither do they usually provide involved autonomous functions. 
They are mainly designed for real time hazardous missions providing the operator with 
accurate immediate information about suspicious scenes and objects. Since the robot has 
limited or no local intelligence a clumsy operator can lead to disasters. In addition, even 
though there are different types of such robots being produced in the industry, there is no 
interoperability between systems manufactured in different companies. Each system is 
constructed using its own proprietary control system that is not directly translatable to 
other system; payloads and manipulation appendages are generally not interchangeable 
[5]. These hardware-based systems are also each difficult to upgrade. When there is a 
situation, only technicians with complete knowledge of the robots’ engineering can debug 
the problem. This process is time and labor consuming. Moreover as new models are 
created previous versions become obsolete.  
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Figure 5: This diagram shows examples of teleoperated robots and their basic structure. 
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3.2 Reverse Engineering 

One of the goals of this project is to bring a commercial robust system from being 
hardware-based to software-based without major changes to the original robot. The OCU 
has to be easily reconnected to the robot when desirable. In this specific example, the 
ANDROS Mark VA control unit is still entirely functional. No alterations were made to 
the robot or to its OCU. Instead the original control panel was analyzed and decoded in 
details in order to later mimic the control system from a regular PC.  
 
The original OCU for a commercial robot is like a black box for people who are 
unfamiliar to the manufacturers’ design. Moreover assuming an engineer has special 
knowledge about a specific design (schematic, circuit design, source code…), this 
knowledge is not directly applicable to another robot. Therefore the best way to analyze 
the native control panel is to determine the output signals by observation. The work 
described in the Implementation section primarily applies to the Remotec ANDROS 
Mark VA. However similar process should apply to a comparable robot. Depending on 
the particular system used the original OCU can more or less easy to be analyzed, 
mapped and decrypted.  
 
The process of capturing and retransmitting analog signals to a robot can be relatively 
involved and may vary with different systems. There may be impedance matching effects 
between OCU and robot. Impedance matching is the special connection between an 
additional impedance to an existing one in order to accomplish a specific effect, usually 
maximize a performance. It is recognized that to maximize the output power from a 
source to a load the impedance of the load has to be the conjugate of that of the source.  If 
there is a similar specific association in the original system, replacing the OCU by a 
computer may not be as trivial. Different devices are not always compatible with each 
other in terms of voltages, frequency, noise tolerance etc. Even details such as the length 
of a cable can make a difference in the accuracy of signals transmission. However there 
are ways to solve this problem. There are standard electronic protocols that enable 
different systems to “talk” to each other. The first important step in identifying the right 
transition is to methodically and systematically characterize the native controller. 
Visualizing and measuring the voltage and current levels helps settings targets for what 
the new system needs to reproduce or in other words what the robot is expecting from the 
new control box.  Once the conversion is known extra hardware or software interfaces 
can help build the gap between the proprietary OCU and the new control computer. 
Those changes may happen at the peripheries of the original system or in the 
programming they are not considered to be major changes in the original system. The 
engineering inside the control panel and the robot are to remain unchanged and the robot 
must remain operable by its original OCU. 
 
Certain teleoperated systems are already using regular processors for controls, in which 
case sending commands from a computer interface is clearly achievable. It is still 
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desirable and necessary to reverse engineer the control panel because even in those cases, 
the control units and the mobile platforms are not interchangeable between different 
systems. This step is en essential step in order to create an independent unit capable of 
connecting with different additional sensor and mobility bricks. 

3.3 Computer Interface Teleoperation 

Reverse engineering the commercial system is important in order implement a computer-
interfaced teleoperation. This step allows establishing a connection between the original 
system and sensors that were not initially built in without major hardware changes. 
Through certain of those modular sensors, the robot can acquire autonomy. Although that 
is the main goal of this work, the computer interface along with the sensor and mobility 
bricks significantly expands the functionality of the original system. Indeed while 
keeping the robustness of the industrial robot it provides the operator with additional 
information about the scene to be inspected. The user drives the robot into desired places, 
gets information from the sensors and reacts consequently. Each system is quasi-
independent, meaning each brick can be operated on its own or join efforts with other 
systems to complete a particular mission or inspection. The Imaging Robotics and 
Intelligent Systems laboratory has formulated the Brick Concept. Hence this section will 
begin by presenting the sensor brick notion followed by the mobility brick idea and 
finally the main OCU.  

3.3.1 Sensor Brick 
Modularity is an important piece of modern robotics. The brick concept follows this new 
trend in its definition and its composition. It is an independent sensor unit. Considering 
an under-vehicle robot for example, different bricks can easily be placed on, removed 
from or combined together on the mobile platform at the operator’s will. If one brick 
fails, the others are not affected. On the one hand the performance of one brick does not 
depend on that of another one; on the other hand components of different bricks are 
easily replaceable and interchangeable in the case of failure of a component. Indeed the 
brick design includes four elementary blocks: 

•  Power, 
• Acquisition (Sensor), 
• Intelligent Systems and Computing (Pre-Processing), and 
• Communication. 

The sensing process starts with the Sensor block, which acquires the data. The pre-
processing block then processes this information. This step may involve low-level 
processing of the acquired raw data such as noise removal or image sharpening for visual 
data for example. The Communication block then relays the information to the operator 
and the Power block fuels the whole system. Figure 6 shows an iconic representation of 
the brick. Three bricks have been in their entirety in the IRIS lab, a thermal brick, a visual 
brick and a range (laser) brick. (See Figure 7) 
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Figure 6: This iconic representation of the sensor brick design shows the different blocks 
that compose it. 
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Figure 7: These pictures show sensor bricks implemented at the IRIS laboratory [73]. 
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3.3.2 Mobility Brick 
The mobility brick is defined similarly to the sensor brick. The acquisition block is 
simply replaced by a mobility block. The brick can be seen as a mobile platform. It is a 
robot which primary function is teleoperated or autonomous navigation. Several of those 
robots already have on-board sensors and encoders. The emphasis in the mobility brick 
concept is that the robot’s main purpose is to drive. Other subsystems such as sensor and 
manipulator may later be added to it to increase its capabilities. It can be compared to the 
JAUS primitive driver. Its functionality only includes basic driving and related mobility 
functions. An example for the Remotec ANDROS would be lifting and lowering the 
tracks on the robot. The Mobility brick can be independently operated using the 
communication and pre-processing blocks to access it. The user has two options. He or 
she can either directly send commands to the robot from a computer; or simply remote 
login to the brick and drive it from the on-board computer. Figure 8 shows the structure 
of the mobility brick based on the sensor brick design. 

3.3.3 Main Control Unit 
The operators control the sensor and mobility bricks from a central computer. The sensor 
bricks transmit pre-processed information to the remote located central control computer. 
The human operators monitor the inspection process, compare the images or data from 
the various sensor modalities, and gather information to make future decisions with 
respect to the system’s state (what sensors to use next, what should be the next sensor, the 
order of use of the sensors, when to stop the process, etc) [5]. This is done either by 
logging in remotely to the local computer on the brick or by communicating with the 
brick using the appropriate Graphical User Interface (GUI). At the moment, each 
mobility brick and sensor brick provide the user with a different GUI. As mobility is 
being integrated in the brick concept, the system is moving towards incorporating several 
sensor and robot information into the same interface. Having a unique GUI is a 
convenience not a requirement. Indeed the fact that each brick provides the user with a 
control system allows it to be used by different platforms or vice versa. There can be as 
many monitoring windows as there are bricks used during on inspection including the 
mobility brick. 
 
The control unit can be compared to the native control panel of the commercial robot as it 
relays real-time information to the operators. The technicians then analyze the data and 
act subsequently. The main advantage here is the easy access to more sensors than in the 
original system. Moreover in the case of a hazardous scene inspection for example, 
instead of sending a robot and waiting for its return, the operators can directly determine 
the nature of the threat and react consequently.   
 
The ideal situation for the control unit would be to broadcast messages to all bricks using 
a special message header. Each brick should have the ability to decode those messages  
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Figure 8: This image describes the mobility brick following the sensor brick design. 
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and decides its source and destination as well as its desired effect when applicable. The 
sensor brick are passive sensors. Their sole purpose is to acquire data and make it 
available for the user. The robot may carry the sensor during an entire mission, or place 
them at specific places and leave them to be picked up later on. The sensors may already 
have been placed overhead or in the corner of the room. Again, the modularity and the 
wireless connection between subsystems allow very flexible applications and scenarios. 
Meanwhile the central computer is at the highest level of the control structure, overseeing 
and organizing the overall operation. As the number of bricks increases and the level of 
autonomy increases, the control scheme gets more involved. In this initial state however, 
the user logs into the passive bricks for display of the sensor data. Similarly the operator 
can log into the mobility brick or control it from the main control unit. The greater 
picture is to have an army or sensor and mobility bricks reporting to a central OCU. 
Figure 9 illustrates this idea. 

3.4 Computer Integration 

Industries focusing on safety and hazardous tasks do not produce robots with advanced 
autonomous functions and sophisticated built-in sensors. As previously discussed, there 
are still serious challenges in building a fully autonomous, efficient and practical robot. 
Moreover a majority of tasks in this particular domain are potentially harmful for human 
being. Hence, it would be too risky to entirely give the decision making to the unmanned 
system. The operator is still required at least to supervise the robot’s actions. Those are 
two main reasons why commercial safety robots are generally not autonomous. Another 
reason why they do not incorporate more sensors is that it narrows down their clientele. 
All the clients can use a teleoperated robot and manipulate it to meet certain requirements 
and needs. Not all users however need a chemical sensor on an autonomous robot or a 
nuclear sensor for example. Since it is not nor cost-efficient neither time efficient to 
produce enough robots for different areas of applications, industries produce basic and 
robust teleoperated robot. In acquiring autonomy, the goal is to preserve the robustness 
and durability of those systems by transforming them into mobility platforms. In other 
words they become mobility bricks that can easily be combined with sensor bricks. The 
wireless communication between bricks allows the transition from teleoperation to 
autonomy to be simple and without major hardware changes to the original systems. 
Indeed the brick can be stacked up on or carried by the robot or not even on the robot 
itself. While the Ethernet connection allows the data to flow between the different 
subsystems, the computer integration insures that each brick is able to analyze and 
interpret the data and react accordingly.   
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Figure 9: This figure shows a central computer, robots and bricks communicating 
wirelessly.  
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The technician can either use the teleoperation or when the complexity of the task 
decreases he or she can delegate it to the robot. The mobility brick then takes the input 
from the operator, decides which brick to use and what to do next. There are several ways 
to achieve autonomy, unmanned system typically use encoders, lasers or visual sensors to 
“feel” their environment. By using sensor bricks, the options are not limited, different 
algorithms can be used on the same platform to produce different autonomous functions. 
Visual homing can be performed using the visual brick; distance-based autonomy can be 
achieved using the range sensor. A scouting mission requiring that the robot reaches a 
target takes a visual scan and returns to its original position while avoiding obstacles 
along its path would require at least the range and the visual bricks. This scenario can be 
seen on Figure 10. While several methods to achieve autonomy can be implemented on 
the robot using the appropriate sensor bricks, the transformed robot can be use for 
autonomous data collection. For example the task may be as simple as going around a 
room recording data and transmitting it back to the operating station in real time. The 
unmanned system simply follows its path carrying a nuclear, chemical or biological 
sensor. During autonomous navigation or data collection, the operator has the authority to 
stop the process at any time. This is a safety measure; the operator has to be able to 
interrupt the robot in the case that an anomaly occurs.   
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Figure 10: A robot can be sent on a scouting mission equipped with one or more sensor 
bricks.  
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4 Implementation 

While Chapter 3 paints a general picture of this work, Chapter 4 will go into details in the 
implementation of the proposed system. It will start by preliminary work on the 
ANDROS Mark VA and describe the reverse engineering process as well as the 
migration toward mobility brick and autonomous system.  

4.1 Preliminary Work on the ANDROS Mark VA 

In the fall of 2003 a senior design group in Electrical and Computer Engineering at the 
University of Tennessee started reverse engineering this particular system. This Basic 
process includes two main steps: Capturing the signals from the Native controller and 
storing those strings inside a C++ program.  

4.1.1 Previous Work on the ANDROS 
The fall 2003 team aimed at replacing the original OCU of the ANDROS by a software-
based control system. Without specific knowledge about the engineering of the robot, the 
group had to mimic the control signals from a touch-screen. The first step was to 
intercept the signals coming out of the control box. The OCU transmits RS-232 signals to 
the robot. To capture those signals the team opted for a program named KERMIT 95. 
Kermit 95 (K95) is an extensible file transfer protocol first developed at Columbia 
University in New York City in 1981 for transferring text and binary files without errors 
between diverse types of computers [71]. Among the different types of connections that 
this program can establish one of particular interest for this project were the serial port 
connections. This feature allows establishing an RS-232 line between the PC and the 
OCU. The control panel is powered separately from the robot, and connected to a PC 
where a Kermit terminal is running. The user indicates the COM port and the baud rate 
and the program automatically reads the serial data. The KERMIT software allows the 
user to save the output in a text file. Hence the user can record and later analyze different 
signals corresponding to as many toggle switches. Different control character strings 
represented the different commands. The programmer then stores the strings into a 
Paradigm C++ Lite program, which the TERN LCD touch-screen provides as a software 
package. This software is simply a C++ package with various additional predefined 
functions to facilitate the use of the touch-screen. The data was transmitted from the 
touch screen to the ANDROS using MAXSTREAM wireless Stand Alone Radio 
Modems. The units were formatted to transmit RS-232 data at a 1200-baud rate. 
 
 Though parts of the logic behind the strings were understood, at the time the program 
could not generate the strings. Instead the commands were stored unchanged from the 
OCU. This was a considerable limitation since they were recorded under a specific set of 
settings: Light OFF, Arm Speed HIGH and Vehicle Speed HIGH. While the characters 
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changing for different functions and different settings were quickly and easily 
identifiable, without the corresponding modified check sum character, the string was 
incorrect. Therefore the touch-screen only sent fixed strings to the robot. Each user press 
of a button sent one string. This method turned out to be slightly unpractical since to 
generate a smooth motion the user had to keep clicking on the button at a fast pace. 
Nevertheless this project established the first and crucial step towards a more 
sophisticated software-based control system.  

4.1.2 Moving towards a PC-Based OCU 
The next step was to enhance the Senior Design project. Indeed in order to say that the 
original control box has really successfully been replaced, the new system would have to 
be closer to a “clone” of the analog box, which had not yet been done. The touch-screen 
button did not reproduce the toggle switch effects of the native controller. The code did 
not generate the string commands. Instead it copied and pasted a limited set of 
commands. Before rectifying those two main dissimilarities, a new controller was 
identified as a better fit for a software-based controller. Indeed the software used in the 
touch screen was only applicable when using that specific touch-screen. It was not 
portable to another touch screen or a computer. Moving toward a PC would keep the 
advantages of the touch-screen and increase the portability of the program while 
establishing the ground for later acquiring a degree of autonomy. Those advantages are 
underlined below. 
 

• In moving to PC the user does not loose the descriptive aspect of having a screen 
with images and help menus. Instead this aspect is emphasized, as more and more 
people are familiar with computer. 

 
• A C++ program provides more flexibility in programming and allows feasible 

transition between RS-232 to 802.11 g wireless system for example. This 
transition allows the incorporation of this system in existing networks. (Modular 
bricks in the IRIS lab) 

 
• Ultimately the goal is to give ANDROS a degree of autonomy. This would later 

require having a certain control unit on board. Hence moving to a computer-based 
control system allows installing a local intelligent system while controlling the 
robot from a remotely located second computer.  

 
The change in devices starts with a stand-alone software such as C++. Microsoft 
Foundation Classes, or MFC, is a Microsoft library that wraps portions of the Windows 
API in C++ classes, forming an application framework. Classes are defined for several of 
the handle-managed Windows objects and also for predefined windows and common 
controls. This software eases the burden on the programmer by providing great features 
such as very easy ways to create dialog boxes. MFC sorts the classes and variables, 
creates header and source files etc. It helps programmer focus on the functions they are 
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trying to implement rather than on organizing the environment and properly linking their 
files and libraries. The code from the touch screen was not directly transferable to the 
MFC project, however adding classes that allow the computer to open, and write to the 
serial port was fairly simple in this new programming environment. The process of 
capturing the strings and storing them into a new Graphical User Interface is illustrated 
on Figure 11.  

4.1.3 Enhanced Reverse Engineering  
As shown in Figure 11, the reverse engineering process begins by breaking the original 
connection from the robot to its controller and connecting the controller to a regular PC 
instead. To improve the former work on the ANDROS, this work starts by reproducing 
the Kermit experiment and capturing new strings.  

4.1.3.1 The Kermit 95 Experiment 
This experiment starts by establishing a communication between a regular PC and the 
control box using Kermit. Once the send/receive cables were identified on the control 
box, the PC and the box were connected using an RS232 cable. Figure 12 illustrates this 
setup. The signals to be sent to the robot can be captured and read on the screen of the 
computer through a Kermit terminal. The K95 software came with instructions on how to 
read and capture the screen of signals from different sources such as selecting the serial 
port and setting the speed of the exchanges. On the “session” has started, it is possible to 
capture the Kermit Terminal content in a text file as illustrated in Figure 13. As shown in 
this figure, the control box loops through as 21-character string constantly. Different 
characters change depending on the selections made by the user. For example the 
highlighted string in Figure 2-2 corresponds to the control command Torso Left. As the 
user presses Torso Right, the 10th character changes from a 4 to an 8. 
 
Example: 
 
0A000C2004908C82C0Ëññ -- Torso Left 
0A000C2008908C82C0Ïññ-- Torso Right 
 
Using those exact strings and saving them into a C++ program causes the robot to react. 
The first attempts to control the robot used a copy and past method and used unchanged 
captured strings. While the robot was controllable from a regular computer equipped with 
Visual Studio .NET application, the functionality in the first version of the GUI was still 
the same as in the touch screen. There were two limitations in the previous versions of 
this GUI. The first one was due to the special ASCII character at the end of each strings, 
the second was in the functionality of the program itself. 
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Figure 11: This diagram illustrates the process of extracting data from the native 
controller and storing it into a C++ program. 
 
 
 
 
 

 
 

Figure 12: This picture shows the set up for capturing the strings. 
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Figure 13: This window is an example of a saved Kermit session. 
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4.1.3.2 The character sum  
Even though only specific characters changed in the string for different body motions, 
driving motions or settings options, whole new strings had to be sent for different 
commands. Each character could not be independently changed since the original 
program was unable to predict the appropriate corresponding character sum at the end of 
the string.  
 
The first attempt to solve this problem was to have a database of all the basic commands 
under different set of settings. Even though memory is not an issue with the storage 
capacity of computers nowadays, this method affects the flow of the program and 
decreases its efficiency. Moreover it increases the time that one has to spend acquiring 
data from the original system and the number of strings they are able to send back to the 
robot. To be more specific, assuming a total of 22 basic body and driving motion 
commands and assuming only 3 settings variables; if we reduce those variable to take just 
2 values (HIGH and LOW or ON and OFF) this process already implies capturing (22 * 
23) = 176 strings. Allowing those settings variables to take more values or increasing 
their number makes this number go up exponentially. Again with the space and 
processing speed available in computers now, that may not be a major problem however 
in terms of data acquisition and programming having a database can easily become 
tedious, time consuming and error prone.  
 
A closer look to the ASCII character revealed that it was indeed a check sum. Without 
the appropriate check sum, the robot does not respond to the command. This mechanism 
constantly checks the validity of the commands before sending them to the robot. The 
sum of the 18 previous characters after the separators (ññ) is compared to this last 
character before sending the packet to the robot. The check sum is not a hexadecimal 
accumulation of the other characters but the sum of their ASCII codes. Table 1 show the 
ASCII codes for the letters and numbers that compose the first 18 characters of a string.  
 

Table 1: The first 18 characters of a string each correspond to an ASCCI code. 
 
Character ASCII Value Character ASCII Value 
0 48 8 56 
1 49 9 57 
2 50 A 65 
3 51 B 66 
4 52 C 67 
5 53 D 68 
6 54 E 69 
7 55 F 70 
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Example using Table 1: 
 
0A000C2008908C82C0Ïññ-- Torso Right 
 
To generate the command Torso right from a constant signal, the programmer only needs 
to change the 10th character of the string and then compute the sum: 
 
S = 48 + 66 + 3*48 + 67 + 2*48 + 56 + 57 + 48 + 56 + 67 + 56 + 50 + 67 + 48  
 
Once the sum S is divided by 256, the ASCII character corresponding to the residue is the 
correct check sum to send to the robot.  
 
With this simple change the last character is always correctly predictable. This important 
modification allows an easy expansion of the project. Characters can be changed 
individually for different functions or settings provided the correct sum is generated at 
the end of the string. In other words there are no longer restrictions in number of 
functions or setting to duplicate as the strings are not stored in the program but generated 
at will.  

4.1.3.3 The functionality  
The first version sent one string with each click of the mouse just as the touch-screen did. 
The problem with this method is that it is really difficult to accomplish continuous 
motion. It is rather jerky and to approach a smooth motion the operator has to keep 
clicking fast without interruptions. Needless to say it is unpractical and not intuitive. 
  
The second version achieves smooth motion by starting a timer with just one click. When 
the timer is started, it continuously sends a string at a fixed rate until the user stops the 
timer. Even though this method seems a lot better especially for driving motion for 
example it is still not practical. The Remotec ANDROS robots do not have limit 
switches. The motor stalls for a period of time but the operator has to then stop the 
motion by releasing the corresponding switch. The problem with the timer is that the 
operator has to actually stop the timer by clicking on another button. Otherwise, the robot 
can run into obstacles, and/or simply try a motion beyond its physical capabilities. 
Therefore not only is this method not intuitive but it is dangerous for the environment and 
for the robot.  
 
The latest version of the GUI fixes those problems by using bitmap images instead of the 
buttons provided by MFC. This program captures the signals from the mouse and when 
the mouse is pressed down on a specific image it sends the corresponding strings. It does 
so continuously until the mouse is released. This is the best analogy to the mechanical 
switches on the original control box. This version of the GUI is shown on Figure 14.  
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Figure 14: The main window of the MFC Graphical User Interface for the ANDROS 
Mark VA includes body functions in addition to vehicle drive motions. 
 

 
 
 
 
 
 
 
 
 



 
 
 
 

Chapter 4 – Implementation      54 
 

 
 

4.2 Making the ANDROS a Mobility Brick 

4.2.1 Wireless Connection 
Once the logic of the strings was completely understood and duplicated the data was still 
sent to the robot using the radio modems. The idea is to move to a mode of 
communication that is not specific to the ANDROS but really easily integrated into the 
Sensor Brick Concept.  Also there was not yet an on-board intelligence. The data was 
sent from the COM port of the computer to the radio modems and then finally to the 
robot, creating a wireless RS-232 line between the PC and the ANDROS.  
 
The mobility brick is defined similarly to the sensor brick. It is a mobile platform with its 
pre-processing unit, communication unit and power. It is an independent unit that can be 
operated on its own (teleoperated) or part of a more sophisticated autonomous system. 
The communication block in the sensor brick typically remotely transmits data using 
standard IEEE 802.11g. The wireless communication card (wireless Ethernet) is attached 
to the computer motherboard. Any number of networks can be utilized with wireless 
Ethernet devices [5]. Therefore the transition from the teleoperated robot to the mobility 
brick implies the elimination and replacement of the RS232 wireless line by an Ethernet 
connection (see Figure 15). 
 
 
 
 
 

 

Figure 15: The transition to the mobility brick implies the replacement of the RS-232 
radio modems by an Ethernet connection. 
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4.2.2 JAUS Primitive Driver 

4.2.2.1 JAUS Overview 
The Joint Architecture for Unmanned Systems (JAUS) is the architecture defined for use 
in the research, development and acquisition of Unmanned Systems [70]. This new 
architecture is introduced in part I of the Reference Architecture (RA) Specifications. 
Part II is the Message Definition and Part III is the Message Set. Both Parts explain in 
more details how to go about creating a JAUS compliant system as JAUS is in a few 
words a component based, message passing architecture [70]. 
To implement a JAUS compliant system one must understand JAUS language and 
appropriately attribute the title of systems, sub-systems, node, component, instances and 
messages.  
 

• A System is a sub-grouping of sub-systems. 
• A Sub-system independently performs one or more functions within a system. 
• A Node defines a processing capability within a sub-system. 
• A Component provides a unique functionality for the unmanned system and 

within a node. 
• An Instance allows redundancy and duplication of components. 
• A Message is composed of a header and data transmitted between components. 

 
The system, group of cooperating sub-systems is the highest level of the JAUS hierarchy. 
At the second level, each independent and distinct sub-system performs one or more 
functions within the system. The node is an assembly of hardware and software parts that 
support a particular function in a sub-system. In other words, a node connects to a device 
using the appropriate hardware and software required to operate that particular device. 
The component/instance level is the lowest level. Generally speaking the component is an 
executable task [70]. Instances allow component redundancy. JAUS indicates the 
acceptable names and ID numbers for all systems, sub-systems and components. While 
the engineers have a lot freedom to implement and name their systems, sub-systems and 
nodes, all the components currently supported by JAUS are already specified. Hence if 
the Developer chooses to add any of those components there already is a specific ID 
number attributed to each one of them. There also is a degree of freedom of adding new 
components and ID numbers. The JAUS components are grouped as follows [68]: 
 

• Command and control components,  
• Communication components, 
• Platform components, 
• Manipulator components, and 
• Environmental components. 
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4.2.2.2 Mobility Brick/Primitive Driver 
A platform component of particular interest for this work is the Primitive Driver. The 
definition of the mobility brick resembles that of the JAUS Primitive Driver.  This 
component performs basic driving and platform related mobility functions including 
operation of common platform devices such as the engine and lights [70]. Hence it 
appears that our mobility brick concept is that of the Primitive Driver. To be more 
specific, the mobility brick can be identified to the Primitive Driver once it is JAUS 
compliant. Since messaging is the base of this architecture a JAUS compliant system has 
to be able to read and interpret JAUS messages as well as sending JAUS messages. In 
this case, the Primitive Driver is the bottom of the typical Unmanned System Diagram. 
Therefore the mobility brick mainly has to be able to receive and decode JAUS messages. 
The pertinent information in the message header allows the pre-processing block to 
decide whether or not it is the desired destination of a message and react consequently 
when applicable.  
 
JAUS is a software-architecture; components are not devices. This feature allows the 
mobility brick to an independent subsystem. It can be controlled independently of other 
subsystems or it can receive commands from an external device. We can identify two 
components in the teleoperated system for the ANDROS: a System Commander (ID 40) 
and a Primitive Driver (ID 33). While those ID numbers are predefined in the RA, there 
is more freedom in numbering systems, subsystems and nodes. The control program for 
the mobility brick includes two main functions, the commander (sender) and the driver 
(receiver) components. The System Commander generates the JAUS messages and the 
Primitive Driver is the receiver, which decodes those commands and performs the 
corresponding driving commands. In other words in the main program when the user 
presses a button, JAUS strings are created and sent to a Receiver function which 
distinguishes between the header and the actual data to be transmitted to the mobility 
platform. Again at this point, because of the simplicity of the system and the lack of 
feedback from the robot, much of the header information is not yet pertinent to the 
current system. For example given the small size of the data, there is no need for data 
sequence at this point. The code only checks for the destination of the message and sends 
the string to the robot only and only if it is the intended target. This makes a simple 
compact system, which can later be expanded as more components, and nodes are added. 

4.2.2.3 First Result 
The first integration of the new software implemented and the mobility platform is shown 
on Figure 16. The program is stored on a laptop; other computers may communicate with 
the local computer using 802.11g while the connection between that computer and the 
robot is established through an RS-232 link. The laptop is secured in a foam-filled casing 
and the casing is fixed on a plate solidly attached to the robot. This system is simply a 
mobility platform it does not include sensors, it does not perceive its environment and 
does not take decisions. At this point it is an enhanced teleoperated system. 
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Figure 16: This picture shows the version of the mobility brick without sensor brick. 
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4.3 Autonomous Navigation and Directed Imaging Robot 
(ANDIbot) 

Once the original system has been reverse engineered, and once it has adopted a new 
wireless communication it is ready to acquire autonomy.  The user may teleoperate the 
ANDIbot directly from a computer by running the controller program; or he/she can log 
into the brick from a remote computer and control the robot from using a local program. 
He or She may also use the System Commander program from the Main Unit with the 
Primitive Driver code located on the robot. The control program in the Main Unit 
includes an option for autonomous mode. Once this option is selected, the main computer 
takes over the control of the robot until the operator intervenes or until it encounters an 
anomaly. This computer uses the sensor brick to guide the mobility brick. The sensor gets 
the information from the environment; the information is processed and exchanged 
between the pre-processing blocks of both bricks. This information is used to determine 
the robot’s next move. For practicality reasons, in the implementation both bricks will 
share the preprocessing block as shown in Figure 17. In other words instead of installing 
two on-board computers, the same processors gets the information from the sensor and 
drive the mobility brick. 
 
 
 
 
 
 

 
Figure 17: The Experimental set up for the ANDIBot uses a shared processor between 
the sensor and mobility brick. 
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4.3.1 Wall Following Algorithm 

4.3.1.1 Configuration of the scanner on the robot 
The implementation of this function starts by the positioning of the scanner on the robot. 
The goal is for the robot to autonomously follow a wall. In order to do so, the robot has to 
constantly locate the wall but also stay clear from obstacles in his direct path. The first 
assumption is that the wall should always be to the left of the robot. This decision was 
made arbitrarily since to cover a perimeter a person could as easily walk along the wall 
clockwise as counter clockwise. Hence the view to the left of the robot is preset as the 
wall. The front view is used to avoid collisions with objects on the robot’s path or to 
detect a possible upcoming corner. The scanning angle that maximizes both the front 
(dfront) and side view (dwall) of the robot is to be use for this application. Let Do be the 
radial distance to detect obstacles. This distance represents the desired distance between 
the robot and the wall. This distance is flexible and will be discussed subsequently. Let θ 
be the difference in orientation between the range (R) scanner and the robot as shown in 
the diagram in Figure 18 then: 
 

                                                               
 
Therefore to have dfront equal to dwall, the sine and the cosine of θ have to be the same. In 
other words the angle that maximizes both views is a θ = 45°. 
 
Once the orientation of the scanner has been determine, the exact position of the scanner 
on the robot has to be set. The second assumption resides in the height of the scanner 
relative to the ground. Any height on the 50 cm tall robot is a reasonable height to detect 
the wall. However in terms of obstacle avoidance, an argument can be made that 
obstacles will not necessarily be at the scanner’s height. For the time being the 
assumption will be that obstacle will be tall enough (approximately 60 cm) to be detected 
by the scanner placed on top of the robot. This is a practical assumption, since the chosen 
height is not significantly above than ground level. Moreover the ANDROS is an all 
terrain robot capable of climbing over small obstacle without loosing its balance. 
Therefore the scanning will be one horizontally and at the fixed height of 60 cm. 
 
The last adjustment made in the scanner-robot configuration is the switch between its 
front and its back. Indeed the placement for robot accessories is in the back of the robot. 
When the scanner is placed in this position, the robot’s arm has to be “parked” or 
completely lowered so it is not in the way of the laser. To avoid confusion, the scanner 
will be facing away from the arm and the reverse motion will become the forward motion 
in autonomous mode. This feature will be emphasized in the hardware implementation 
section. 

sin(θ)  =   
dwall

2*Do

cos(θ)  =   
dfront

2*Do

and 
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Figure 18: This diagram represents the top view of the system. The robot is equipped 
with the range scanner (R). 
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4.3.1.2 Pseudo-code and diagram 
The wall-following algorithm is simple. On the left side of the robot, the ANDIBot is 
looking for the wall; it tracks down the beginning and the end of the wall within the 
chosen scanning angle and computes their difference. More specifically it computes the 
difference between their projections onto the y-axis. Within a certain threshold this 
difference indicates that the robot and wall are aligned with one another. Beyond this 
adjustable threshold, the YY difference indicates whether the robot is excessively going 
towards the wall or away from the wall. If this is the case, the robot takes the 
corresponding step to correct its position relative to the wall. Meanwhile, the ANDIBot is 
constantly checking for obstacle in its front view as well. Whether it is a corner of the 
wall or another obstacle it is ready to turn right to avoid collision. If at a certain point of 
time an obstacle suddenly comes too close to the robot – adjustable by the programmer – 
the robot will come to a complete stop. The program runs in an infinite loop until such 
obstacle stops it or the operator does. Figure 19 is a diagram displaying the different 
variables used in the program and Figure 20 shows how they are used in the system 
flowchart.  They are: 
 

• d: This distance is the difference in the projections of the right and left ends of the 
wall. The wall is only detected within a certain angle to the left of the robot. The d 
or yydifference determines how aligned the robot is with the wall. A zero value 
would be the ultimate case where the robot is perfectly parallel to the wall which 
is not the most practical case. While an excessively greater value (beyond 1m) 
will cause the robot to drive in zigzag. 

 
• D: This distance is the distance at which the robot starts detecting a corner or an 

upcoming obstacle. The maximum reliable obstacle detection for the sensor brick 
is 4m. The ANDIBot is 1m long and that much distance has to be available during 
a turning operation. Hence the bounds for this variable are 1-4m. 

 
• θw and θf are the angles within which the robot is searching for the wall and 

oncoming obstacle. While the maximum determined are 90 degrees to the left and 
90degrees to the front, practical values may be adjusted depending on the desired 
performance. 

 
• Other controllable variable not shown on the diagram include Δθ. This variable 

represents how much the robot corrects its trajectory when it is not parallel to the 
wall or when it encounters a corner. This value is a number of strings that 
correspond to a small angle. Also once it has established that it can go forward, 
the robot has to decide how far to travel before checking on new sensor 
information. This Δl is also a number of strings that corresponds to a distance. 
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Figure 19: This diagram shows the top view of the system with the variables used in the 
wall following algorithm. 
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Figure 20: This flowchart shows the logic used in the wall following algorithm. 
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4.3.2 Hardware Implementation 
The hardware implementation for the ANDIBot consists mainly of mounting the 
ANDROS robot and the range sensor together. The brick sits on an aluminum base with 
the same length and width. This aluminum plate is fixed on a stronger piece of aluminum 
for support, which is in turn is attached to the robot through a solid bar. The way that this 
bar is bolted onto the plate creates the 45 degree difference in orientation needed between 
the robot and the scanner. To prevent the brick from sliding off the base, four pieces of 
aluminum constrain its motion relative to the robot. In addition a rubber film placed onto 
the plate increases the friction between the sensor brick and the plate. Finally a strap 
solidly ties the sensor down its support. Figure 21 shows the aluminum base for the brick 
before being mounted on the robot. Figure 22 shows the mobility platform with and 
without the brick. 
 
As previously mentioned the facade of the robot is inverted to avoid obstruction from the 
arm. In other words the back of the robot becomes the front. The scanner faces away 
from the robot arm as shown in Figure 23. The backward and forward directions are 
switched and the autonomous navigation is possible independently of the position of the 
manipulator.  
 
 
 
 
 

 

 
 

Figure 21: The brick carriage simply consists in an aluminum plate with constraints and 
an aluminum bar that links it to the robot. The red strap and the rubber film under the 
brick increase its stability. 
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Figure 22: The top picture show the ANDROS without the brick and the bottom picture 
includes the range brick strapped to the robot. 
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Figure 23: The back of the robot becomes the front in autonomous mode to avoid 
obstruction of the laser from the arm. 
 
 

Forward Direction Avoiding Obstruction from Arm 
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5 Experimentation 

This chapter describes the analysis on the ANDIBot. The reverse engineering process 
implies that the programmer does not have direct access to the motors, the controllers or a 
of the robot’s electronics and mechanics. The only accessible control commands are 
character strings. While those strings do provide information in terms of speed and 
direction, they do not give distance data. This is understandable since the robot was 
originally teleoperated. However, the ANDIBot needs units to decide how far to move in 
distances and angles. Traditionally autonomous systems use encoders. The first objective 
of this analysis is to provide the programmer with information that can be used similar to 
an encoding system. The second part of Chapter 5 will analyze the performance of the 
ANDIBot. Finally the last section of this chapter will summarize the observations made 
throughout the analysis.  

5.1 Characterization of the Strings 

While the characterization of the strings is not an absolute measure of the robot’s motion, 
neither is an encoder. This is where the range sensor brick comes into the picture, which 
constantly re-evaluates the robot’s location. The battery level of the platform and the type 
of floors it is traveling on are two important factors that can affect the accuracy of the 
platform’s motion.  

5.1.1 Straight Motion 
For this motion, the number of strings ranges from 5 to 30 in 5-string increments. For 
each set of commands (5, 10, 15, 20, 25, and 30 strings) there are ten trials, or a total of 
60 data points in each direction.  
 
For safety reasons, the upper limit of 30 strings corresponds to approximately 1m, which 
is twice the obstacle threshold set in the algorithm. Moreover, once the robot receives a 
set of strings, the only way to stop it from moving is to shut the system down. 
Considering a dynamic environment it is dangerous to send an amount of strings 
corresponding to a long distance.  

5.1.1.1 Description of the experiment 
The final version of the ANDIBot GUI sends command to the robot as long as the user is 
pressing down on a bitmap image. This method does not allow counting the number of 
strings actually sent to the robot, at least not easily. Hence for this experiment an older 
version of the GUI that uses buttons provides the programmer to insert a for loop in the 
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button code and send a specific amount of strings in a single click. A mark on the floor 
indicates the starting point of the robot and distance traveled after each of the ten 
subsequent moves for the same command. Figure 24 shows the methodology for 
measuring the distances on a flat concrete floor (low friction) and the higher friction 
floor, a carpet. The instrument used in this case is a tape measurer marked to the tenth of 
an inch.  

5.1.1.2 General observations 
The first two graphs shown in Figure 25 represent the forward and backward motion on a 
full battery and are representative of the data sets at 90% of the full battery level. This 
rough data shows a certain consistency of the measurements before averaging. With the 
exception of the first data point in each set, which is taken, as the robot first starts 
moving, the data points seem to closely follow a constant distance. This observation is 
further confirmed in Figures 26 and 27, which show how the same data points vary 
around the average in inches and in percentage of the average distance. The fluctuation in 
inches reaches a maximum of 4.5 for the forward motion and 2.6 for the backward 
motion. In terms of percentage those values correspond to a fluctuation of less than 10% 
in most cases. This difference is obviously more visible within in the short distances, 
notably in the case of a 5-string command. Figures 26 and 27 also confirm a higher 
discrepancy between the starting point and the average. In the case of short distances this 
phenomenon is more obvious. The difference comes from the fact that with the short 
distances the 10 experiments did not require going back to a starting point. The robot 
seemed to cover the smallest distance after it was turned on, and then stabilized around a 
higher almost constant value. Therefore two important trends complement each other. 
The ANDROS responds differently at start up then once it has received a couple of 
commands, which also explains why it is the most inconsistent with short commands. By 
the time the robot accelerates the command is over. Sending short packages of strings is 
equivalent to sending short impulses and causes a rather jerky motion of the robot.  
 
Figure 28 shows an almost linear relationship between the strings and the average 
traveled distances for both directions. It also uncovers a small difference between the 
forward and backward motions. The computed average difference is 3.91%, which means 
the system is not exactly symmetric in straight motions. Measurements errors are not the 
only cause of this variation; experiments also show that the robot does not move perfectly 
in a straight line. This is more visible as the robot travels long distances. It shows that 
despite the apparent straight motion caused by the forward and backward strings they 
have been captured at a small angle off the right directions. The original joystick of the 
ANDROS is a sensitive analog joystick and trying to capture 4 discrete directions 
(Forward, Backward, Right and Left) with exactitude is not a simple task. In this case, the 
error shows in the nearly 4% average difference between the two directions.  
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Figure 24: The pictures on the left show the methodology in measuring the covered 
distance for the same number of command strings. The pictures on the right are close up 
images of the same process on both types of floors. 
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Distance vs. Number of Trials - Bacward Motion
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Figure 25: The rough data for backward and forward motion on a full battery appears 
fairly consistent. 
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Fluctuations around Average Distance vs. Trial 
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Figure 26: The fluctuation of the rough data around the average covered distance for 
each different amount of command strings confirms the apparent data consistency except 
for the shortest distance traveled. 
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Figure 27: Approximately the same results occur for the reverse motion as for the 
forward motion 
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Figure 28: The relationship between the distance and the strings is almost linear. 
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5.1.1.3 Differences of performance across the floors 
Figure 29 shows the average forward and backward motions per number of strings on the 
flat concrete and on the carpet. The effect on both directions is not exactly the same but it 
is minimal as shown twice in Figure 30. This experiment verifies the decrease in 
performance on a higher friction floor. The difference is a significant roughly 13% and 
becomes more and more visible as the traveled distance increases. The difference reaches 
its maximum for the 5-string commands as in previous experiments.  

5.1.1.4 Variation with battery level 
The ANDROS requires a minimum of 24V to guaranty normal operation. As the voltage 
drops under 24V, its efficiency quickly decreases. In this case a full battery will be 
approximately 25V. A low battery level can go down to 15V however the robot starts 
giving signs of malfunction before then and it is not recommended to operate the 
ANDROS under 24V. Repeating the forward and backward experiments on concrete at a 
battery level of 23V will give an idea of the effect of a decrease in supply voltage. Figure 
31 shows the difference in performance when going from a full battery to a voltage of 
23V.  The decline in distance covered per number of strings is greater than in the case of 
different types of floor. The discrepancy is a considerable 17% as shown in Figure 32.  
 
The variation due to battery levels combined with that caused by the increased friction in 
the previous experiment is equivalent to a decrease in covered distance of nearly 27.79%. 
This significant decline explains why the same experiment on carpet required charging 
the battery. At that point the robot is simply barely functional. A battery of 23V did not 
allow properly driving the ANDROS on carpet. The battery level variation confirmed that 
in order to be efficient, the robot has to be at least 24V. A smaller voltage may cause 
awkward behavior. This effect is worst on rougher terrains. As the friction increases, the 
robot needs more power to move and needs to be at least the nominal voltage level. 
Another pertinent confirmation on Figure 31 is that the difference in performance due to 
battery level clearly becomes more obvious as the distance increases. The operator may 
not realize there is a problem for short commands, however as the number of strings 
decreases the lag quickly becomes greater.  

5.1.2 Turning Motion 
For this motion the upper limit of strings reaches 180 degrees, which is twice as much as 
the maximum turning angle implemented in the wall following algorithm. For each set of 
commands (5, 10, 15, 20 and 25 strings) the experiment is repeated 10 times for a total of 
50 data points.   
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Forward Motion on Low and High Friction Floors
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Backward Motion on Low and High Friction Floors
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Figure 29: The effect of the floor on the robot’s performance is clearly visible in both 
directions. 
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Figure 30: The difference in performance on concrete and on carpet is a considerable 
13%. The bottom picture shows a slight difference between the forward and backward 
motion, not noticeable in the top picture. 
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Backward Motion on Concrete at Different Battery 
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Figure 31: The effect of a low supply voltage is even more visible than that of the type of 
floor. 
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Figure 32: The effect of a low battery is roughly 17% in both directions. 
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5.1.2.1 Description of the experiment 
The principle for collecting data with the turning motion is the same as for the forward 
and backward motion except that set-squared protractor replaces the tape measurer. 
Figure 33 shows pictures of the process on concrete and on carpet. 

5.1.2.2 General Observations 
The analysis was the same as for straight motions. The protractor measures angles with a 
precision of half a degree. Measurements of motion for each amount of strings yielded 
the same angle except for the first data point in each set. Therefore there was little or no 
variation between the ten trials’ angles. Figure 34 shows a more symmetric system in 
terms or turning than in straight motion. The 4% distance difference in forward and 
backward motion translates into a difference in left and right turning angles of less than 
2% except for the 25-string commands. Figure 34 shows the results on concrete and 
carpet as well as the same measurements at 25 and 23V. These graphs reinforce the 
conclusions made in the forward and backward motions. While the effect of a high and 
friction floor is noticeable, the impact of the battery level is more significant and reaches 
peaks of 30% in turning motion. The turning motion appears more linear and predicable 
below 15-string commands. Below that value the difference in performance on different 
floors is also barely noticeable (less than 5%). 

5.1.3 Summary 
This evaluation shows that the string commands do not allow accurately predicting the 
robot’s motion. The amount of friction decreases the forward and traveled distance by 
approximately 10%. This percentage translates in a lower value in terms of turning 
motions. The previous observation is valid on a full battery. A decrease in power supply 
voltage considerably slows the robot down – an average of 17%. The combined effect of 
a low battery and a high friction floor causes the robot not to be functional. This is a 
corroboration of an expected phenomenon. Robots’ tracks provide a very good grip on 
the floor. This is a desired feature especially in robot such as the ANDROS, which is 
capable of climbing stairs and navigating through rough terrains. However it takes more 
power to drive the robot on tracks. On a low battery the robot did not drive properly on 
carpet. Hence the improvement in newer version of ANDROS robot: removable tires. 
The study still provides the programmer with useful data when choosing the motion steps 
for autonomous navigation particularly on lower friction grounds. The robot is more 
stable and predictable when it receives more than 5-string commands. However, as the 
number of strings increases the asymmetry of the motion, the effect of the floors’ friction 
and the battery level become more important.  
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Figure 33: The pictures on the left show the methodology in measuring the covered 
angle for the same number of strings. The pictures on the right are close up images of the 
same process on both types of floors. 
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Figure 34: The turning motion reinforces the conclusion made in the forward and 
backward motions. 
 



 
 
 
 

Chapter 5 – Experimentation      82 
 

 
 

5.2 Characterization of the Algorithm 

This section provides information about the wall following algorithm. Once launched, the 
robot autonomously follows the closed loop described in Figure 35 until stopped by the 
operator or a sudden close obstacle.  
 
There were two main development from the algorithm described in Chapter 4. The first 
attempt to enhance the algorithm through the calibration process was not conclusive. The 
second attempt to do so though the turning process returned better results.  

5.2.1 Calibration Process 
This process describes the robot’s alignment to the wall. The variable d determines how 
parallel the robot is to the wall. Ideally the left and right projections of the wall onto the 
y-axis would yield a d equal to 0. The wall following algorithm does not require such 
accuracy. To have an idea of how the number of moves needed to be parallel to the wall 
varies with d, Figure 36 displays the result of a calibration experiment. Since there is a 
correlation between the number of moves (1 string for small stepping angles) and the 
angle, measurements will be done using the same angle of 45 degrees. The trend shown 
in Figure 36 represents the average of 5 data points for each d. A computer program 
consistently and accurately displays the number of moves to reach d and the only error 
involved in this process is the operator’s accuracy in placing the robot at the correct 
angle. The variation in moves is never more than 2. During each experiment a clock also 
chronometers the calibration time. The average time per move is 2 seconds. The variable 
d varies from 10 to 50 cm, which is 50% of the minimal distance between the wall and 
the robot. In other words if the robot is one meter from the wall, a half meter error can 
still be tolerated before reaching the obstacle threshold.  Just as expected Figure 36 shows 
that as d increases the number of moves decreases with a 40% reduction as d changes 
from 10 to 50 cm. This different is roughly equivalent to a 0 to 20 degree-angle 
difference in directions between the robot and the wall. 
 
The basic version of the wall following function takes accurate data from the sensor. In 
other words, the robot waits on exact position feedback from the range sensor before 
aligning itself to the wall or taking a turn.  Several experiments showed that the average 
time the robot took to do one single loop was nearly 4 minutes with the lowest number of 
moves. In a first attempt to speed this process up, the robot stopped checking on accurate 
sensor data during the calibration. Table 2 shows the resulting time (in min) for the 
original program and the fast calibration code necessary to go around the testing scene 
once. This experiment was repeated 20 times; 10 measurements are shown in Table 2.  
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Figure 35: The three pictures show different shots of the testing set up. 
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Figure 36: The number of moves to be parallel to the wall decreases as d reaches 50 cm. 
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Table 2: The time comparison between the original algorithm and an accelerated 
calibration program shows a problem with the new version of the code. 
 

Trial 
Number 1 2 3 4 5 6 7 8 9 10 

Basic 
Algorithm 4 3.6 4.33 4.5 3.8 4 3.75 4.125 4 3.9 

Fast 
Alignment 3 2.5 6 ∞ 2.5 ∞ 4 ∞ 3 ∞ 

 
 

Table 3: The time comparison between the original algorithm and an accelerated turn 
program shows a nearly 50% reduction in time per loop.  
 

Trial 
Number 1 2 3 4 5 6 7 8 9 10 

Basic 
Algorithm 4 3.6 4.33 4.5 3.8 4 3.75 4.125 4 3.9 

Fast Turn 2 2.5 2.5 2 2.5 2.5 3 2.5 2.5 2 
 
 
The accelerated calibration first seems to show promising results as the robot took less 
time to complete a loop with this algorithm. However sometimes it took more time, as it 
remained stuck in the calibration process. In other words it would continuously turn left 
and right without going forward. In certain cases it would eventually get out of the 
situation. An infinite time indicates that the robot did not get out of the calibration 
process unless moved by the operator.  
 
This experiment emphasized the importance of acquiring correct data during the 
calibration process even at the cost of time.  

5.2.2 Turning Process 
Since accelerating the calibration process did not successfully produce a better algorithm, 
the second development in the wall following function is an attempt to accelerate the 
turning process. The results of this second attempt to improve the ANDIBot’s 
performance are recorded in Table 3. Not having the correct information during 
calibration causes the algorithm to be unreliable and unpredictable. However not 
knowing the accurate information during the turning process only causes the robot to 
over turn; the robot receives several command strings before checking back on the sensor 
information. This solution turned out to be a better idea and consistently improved the 
robot’s performance by nearly 50% of the earlier time per loop.  
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After each over correction, the ANDIBot has to come back towards the wall. Even so, the 
time saved by the fast turning considerably outweighs the time spent readjusting to the 
correct path.  
 
While the first section of the analysis helps characterize the string commands, this second 
section describes the two key processes involved in the wall following algorithm. The 
study of those mechanisms has help improve the algorithm, specifically the amount of 
time necessary to go around one loop. The next chapter will conclude this work and 
propose further possible enhancements.  
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6 Conclusion 

6.1 Summary 

This research has successfully reverse engineered the telecommunications of the 
ANDROS Mark VA robot. This knowledge has been used to create a computer-
interfaced Control Unit. Controlling the robot using a computer has allowed the 
integration of the new mobile platform in the modular Sensor Brick Concept as a 
mobility brick. The integration of sensor bricks has upgraded the original teleoperation to 
a more flexible system. The ability to wirelessly be connected to different modular 
sensors makes the robot more adaptable to different scenarios of operation. Furthermore 
it allows acquiring autonomous capability. This autonomous behavior acquired in such a 
way is not restricted to one application; instead it varies with the type and number of 
sensor bricks used.  
 
A particular application of a wall following algorithm has been developed to illustrate 
that idea. The mobility brick uses a range sensor brick to continuously follow a wall. The 
resulting system has been tested and analyzed. The string commands sent to the robot can 
be used as an encoding system to determine each one of the robot’s move. Since those 
commands are not absolute, the range sensor constantly checks on the robot’s position. 
The main processes involved in the algorithm are the calibration process used to align the 
robot to the wall and the turning process. Both mechanisms have been analyzed to 
maximize the performance of the algorithm. Overall, this example accomplishes its goal 
of transforming a teleoperated robot into an autonomous robot while keeping its original 
features. 

6.2 Future Work 

The current system is able to continuously follow a wall. In this experiment the wall is 
continuous. Improving this algorithm would allow the robot to detect and enter doors. 
One major challenge remains in following a fence instead of a wall. Another 
enhancement could be that the robot finds a path between the wall and obstacle that 
might be on its right. In other words enhancing this algorithm would imply covering all 
the possible situations the robot might encounters while covering a perimeter. 
Furthermore the ground in this experiment is a flat concrete ground; a slight progress 
could be of taking the robot outdoors in a real environment and testing its performance. 
This future work generally consists in increasing the complexity of the robot’s 
environment.  
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So far the algorithm is very much local and the robot constantly faces a new situation and 
takes the corresponding decision. There is no mapping involved. The robot strings 
evaluation allows making longer and more precise moves and could be used as an 
encoder. Evidently this method would be less reliable as it depends on battery level. 
However there are several applications such as the one implemented in this work that do 
not require as much accuracy as explosive disposal operation for example. This would 
allow programmer to consider implementing path-planning algorithms on this system. 
 
At the moment the system can receive messages from one computer at the time. The 
wireless connection is manually established between the server and the client. While the 
client does not consider where the commands are coming from, the controller only sends 
information to one single client whose IP address is coded in the program. This method 
can be extended to broadcasting to several mobility bricks from one single control unit.  
 
ANDIBot is an autonomy capable robot. One autonomous function has been 
implemented in the wall following algorithm. The key in implementing this algorithm has 
been to be able to use the captured and analyzed information from the ANDROS in order 
to control the robot. The mobility class in the program provides access the drive 
commands of the robot. Therefore several more applications can be implemented and 
added onto the ANDIBot. For example adding the visual, thermal or nuclear bricks to the 
range scanner would allow various autonomous data collection missions. The range 
sensor does not have to be used; visual homing could be implemented using the visual 
sensor brick and appropriately reusing the mobility brick.  
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Appendice A: Mark VA Repair 

During the testing of the ANDIBot system the ANDROS robot broke down. The problem 
was first noticed when the robot would not make a turn in either direction. The tracks 
appeared to be turning but the robot would only go forward and backward. To start the 
debugging process the robot was lifted up onto a table. The ANDROS was then 
positioned on two pieces of wood placed between the tracks so that they could spin 
freely. This set up allowed noticing that only one of the tracks was actually rotating, 
giving a significant clue as to why the robot would only go two directions. With the robot 
turned off, the broken track – right side – allowed a person to easily rotate it manually, 
which explained why it appeared to be working on the ground. It was simply being 
dragged by the left drive motor. 
 
Those two simple steps seemed to indicate a problem with the driving DC motor for that 
side. Figure 37 shows the wiring diagram of the DC Shunt Motor. It differs from the 
series motor in that the field winding is connected in parallel with the armature instead of 
in series. When the power is turned on, the high resistance of the shunt coil keeps the 
current flowing in the main outer loop. The armature draws current to produce a magnetic 
field strong enough to cause the armature shaft to start turning. Once the armature begins 
to turn, it produces back EMF which in turn causes the current in the armature to start 
decreasing. The amount of current the armature will draw is directly proportional to the 
size of the load when the motor reaches constant full speed. Without the stat current 
however the magnetic field is non existent and the shaft does not turn. Therefore one 
should not be able to freely rotate the tracks when the power is off. 
 
The first suspicion was then that the right drive motor was broken and needed to be 
replaced. However once the robot was opened for further debugging as sown in Figure 38 
that same motor was visibly rotating. The problem had to be the mechanical connection 
between the motor and the right track. Indeed there is a metal shaft connecting the two 
which teeth had been stripped over time. To confirm that the problem had been identified 
the hub (see Figure 39) from the left side was placed on the right side and the track was 
properly driven by the motor when the robot was turned on. Finally a new metal piece 
was ordered from Remotec and machined by Doug Warren at the IRIS lab.  
 
Once a piece has failed, the repairing task does not stop at isolating the defective part but 
goes in determining what happened and how to prevent the same problem from occurring 
again. There are several reasons that the erosion happened on the right side and not the 
left track. The metal on that side could have been defective; the right side motor being 
further away from the center of gravity of the robot could have experienced more 
vibrations than the other side. Those reasons combined with time could have caused the 
stripping of the teeth. However in this particular case, there was one clear problem with 
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the part, only the top half of the splines was flattened. It seemed as the contact between 
the shaft and the drive collar was not maximized. Some careful measurements determined 
that the original part was incorrectly sized – cut too short – eventually causing failure. 
Both parts are shown in Figure 39 below the two parts they are supposed to connect. 
 
Since the place has been successfully isolated, debugged and corrected, the ANDROS is 
fully functional. 
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Figure 37: This image shows the wiring diagram for a DC shunt motor. 
 
 
 

 

 

Figure 38: The debugging process showed that the motor was rotating and suggested that 
the problem was mechanical not electrical. 
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Figure 39: A closer look to the mechanical shaft (to the right) connecting the drive motor 
to the hub showed that the original part has been cut too short. 
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Appendix B: ANDROS F6A 

This appendix describes the work done on another Remotec ANDROS robot. The same 
work was done as in the case of the Mark VA with exceptions that are covered in this 
section. The goal of this research is to help reproduce the accomplishments on the Mark 
VA on a newer version of the ANDROS.  
  
1 Overview 
In the summer of 2004, the IRIS lab acquired a newer version of the ANDROS, the F6A 
shown in Figure 40. The improvements include: 
 

 A much faster baud rate (9600 vs. 1200) 
 
 A 6 inches arm extension capability. This feature allows more delicate operation 

of the arm 
 
 4 removable wheels. This feature allows the robot to adapt easier to different 

terrains. While the tracks provide a strong grip to the floor for operation such as 
climbing stairs, they can make turning operation difficult on rough terrains. They 
also require more power than the tires 

 
 An additional camera between the robot’s tracks allows the operator to avoid 

collision with obstacle that might not be visible on the surveillance camera 
 
 A more intuitive control system with a drawing of the robot  

 
 Finally the new robot incorporates a few more sophisticated functions such as 

night vision and better graphics 
 
This robot initially came with a fiber optic cable and was later replaced by a wireless 
system. This is a great improvement since the operator had to constantly keep track of the 
cable so that it does not get caught in the robot’s tracks. However this wireless system 
only works with the native controller. Therefore to make a second mobility brick out of 
this robot would still require reverse engineering and transition to another wireless 
system such as 802.11g to be able to communicate with a computer.  
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Figure 40: The ANDROS F6A includes new features and accessories. 
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2 Mapping 
The mapping for the F6A starts as the one for the Mark VA which was decoded in the fall 
of 2003. Its objective is to capture the RS 232 signals emitted from the initial control box 
using Kermit 95.  
 
The new OCU comes with a Wire Diagram. In an attempt to access the body motion and 
drive motions certain connections are not relevant. In other words there is not yet an 
interest for the Radio Power, the Audio Controller, the Video out etc. There are only two 
wire connections that could potentially be important: the “receive” and “weapon enable”. 
In the initial mapping however only the “transmit” and “ground” lines are connected to 
the “receive” and “ground” lines from an RS 232 cable and plugged into the COM port of 
the computer.  
 
This first KERMIT session on the new robot confirmed two improvements from the 
previous system. First, the session, captured at 9600 bauds, confirmed a faster baud rate. 
Second, the data strings were longer as expected since the F6A is a newer version of the 
ANDROS robot and includes more functions (and therefore more characters in the 
command strings). 
 
3 Results 
The mapping for the F6A was easier then the original mapping of the Mark VA.  Indeed 
knowing how the check sum works allows us to study the character that change for each 
body function under a single set of settings versus repeating the mapping for all the 
desired set of settings. The settings could then be revised separately. Later, when the 
same body motion characters are changed under different settings the programmer can 
just change the corresponding settings characters and accurately predict the ASCII 
character. 
 
Hence, the body functions and vehicle drive functions were captured under the following 
settings: Light OFF, Vehicle Speed HIGH and Arm Speed HIGH. 
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Table 4: This table contains the character changes for body motions. 
 
Constant Signal ññ0A00182000907F7F3F0000FFFF02CF02ý 
Front Track Up ññ1A00182000907F7F3F0000FFFF02CF02þ 
Front Track Down ññ2A00182000907F7F3F0000FFFF02D002ê 
Rear Track Up ññ4A00182000907F7F3F0000FFFF02D002ì 
Rear Track Down ññ8A00182000907F7F3F0000FFFF02D002ð 
Torso Left ññ0A00182004907F7F3F0000FFFF02D002ì 
Torso Right ññ0A00182008907F7F3F0000FFFF02D002ð 
Shoulder Up ññ0A00182001907F7F3F0000FFFF02D002é 
Shoulder Down ññ0A00182002907F7F3F0000FFFF02CF02ÿ 
Elbow Up ññ0A00182000947F7F3F0000FFFF02D002ì 
Elbow Down ññ0A00182000987F7F3F0000FFFF02CF02�
Wrist Up ññ0A00182010907F7F3F0000FFFF02CF02þ 
Wrist Down ññ0A00182020907F7F3F0000FFFF02CF02ÿ 
Wrist Extend ññ0A00182000907F7F3F0004FFFF02D102í 
Wrist Retract ññ0A00182000907F7F3F0008FFFF02D102ñ 
Wrist Roll CW ññ0A00182080907F7F3F0000FFFF02D002ð 
Wrist Roll CCW ññ0A00182040907F7F3F0000FFFF02D102í 
Grip Open  ññ0A00182000927F7F3F0000FFFF02D102ë 
Grip Close ññ0A00182000917F7F3F0000FFFF02D102ê 
 
 

Table 5: This table contains the changes for vehicle drive motions. 
 
Left ññ0E0018200090FF803F0000FFFF02D002æ 
Forward and Left ññ0E0018200090FDF13F0000FFFF02D002ó 
Backward and Left ññ0A001820009080803F0000FFFF02CF02Ó 
Backward ññ0A0018200090807B3F0000FFFF02CF02ä 
Backward and Right ññ0A0018200090807A3F0000FFFF02CF02ã 
Right ññ0A00182000907E7A3F0000FFFF02CF02÷
Forward and Right ññ0A00182000907E7E3F0000FFFF02CF02û 
Forward ññ0E001820009077FF3F0000FFFF02D102í 
 
 
Once the body function and vehicle drive characters were mapped we identified the 
characters changing with 3 main settings, the same we previously used for the Mark VA 
GUI: the Vehicle Speed, the Arm Speed and the light. 
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Table 6: This table contains the changes corresponding to the speed settings. 
 
Vehicle Speed 
HIGH ññ0A00182000907F7B3F0000FFFF02D202æ
MEDIUM ññ0200182000907F7B3F0000FFFF02D202× 
LOW ññ0200182000907F7A3F0000FFFF22D202Ø 
Arm Speed 
HIGH ññ0A00182000907F7A3F0000FFFF02CF02ø
MEDIUM ññ0A00182000907F7A1B0000FFFF02CF02ò
LOW ññ0A00182000907F7A000000FFFF02CF02ß 
 
 
4 Programming changes 
So far then the main changes between the two Remotec ANDROS robot systems seem to 
be the speed and length of the strings. Hence the modifications in the program are first 
the baud rate after opening the port and then the size of the buffer. What used to be a 21-
string character (buffer size = 22) became a 35-string data. Thus the changes in the main 
file are fairly simple. The source file that needs the most adjustments is the program that 
generates the special ASCII character. This check sum obviously is calculated for more 
characters even though the logic is confirmed to be the same. This portion of the code did 
not change as much as anticipated. Indeed the new features in the F6A have been 
implemented to the right of the string, leaving the previous functions unchanged. For 
example the first character controls the front and rear tracks the same way in both robots. 
This element emphasizes the fact that the main code did not have to be adjusted beyond 
the size and speed of the data.  
 
5 Debugging  
Despite apparent similarities between the two systems, the program for the F6A did not 
cause a reaction from the robot during testing. 
  
5.1 Software testing 
To narrow down the possibilities of problems the debugging process starts by eliminating 
possible software issues. A simple and crucial test consists in making sure the PC does 
send out the correct data at the correct baud rate. Connecting both COM ports of the PC 
to each other using a null modem and K95, the programmer can confirm that the new 
code is sending strings at 9600 baud. A simple test further eliminates possibilities that the 
code might not generate the accurate check sum. Instead of generating the strings in the 
code, the programmer can directly copy and past a K95 captured string. This way, the 
data going to the robot is exactly the data coming out of the control box. A last software 
suspicion was that the robot might expect a constant signal in between string commands. 
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However adding a constant signal to the code still did not create a response from the 
F6A. After those simple check points, it appears to be that the problem might be a 
hardware problem. 
 
5.2 Hardware testing 
 
Possible hardware problem include wire connections, hand-shaking between the OCU 
and the robot and impedance matching. 
 
Wire connection – A major hardware issue to solve is to make sure data is getting to the 
robot. A previous test has shown that the data is in fact being sent through the serial 
cable, the only question remaining is whether or not it is getting to the right inputs at the 
robot. Once again a wiring diagram from Remotec indicates the Receive and Ground 
lines on the robot. To double check the connection is a simple process: connecting only 
the Transmit and Ground lines from the OCU to the corresponding Receive and Ground 
from the robot. If the robot moves, it establishes that it is indeed receiving the data from 
the OCU through the anticipated inputs. This test confirmed that the right connection is 
established between the computer and the robot. The set up for this experiment is shown 
in Figure 41. 
 
 
 
 
 

 

 

 

Figure 41: This testing set up is verifying the wire diagram. 
 
 
 
 
 
Hand-shake/ Feedback – Since the original mapping data is in fact directly being sent to 
and received by the robot, the reason why it is still not responding is puzzling. One 
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thought is that the robot is able to identify the source of the strings by a hand-shake 
mechanism through the primary connection or through other wires. The previous 
experiment however has shown that only two wires are involved in the transmission of 
the strings. There is no feedback necessary from the robot, before it moves. The Receive 
line from the OCU and the Transmit lines from the robot are not connected. Neither are 
the other wire connections. However one needs to mention here that certain times, after 
performing this experiment, the F6A would be temporarily unresponsive to its own OCU. 
The following error would appear on the display: “Looking for Robot communicator”.  At 
this point the fact that there is no feedback is established; however the possibility that the 
robot recognizes its OCU is not excluded. 
 
Voltage or Impedance – The previous experiments indicate that the strings are being 
transmitted from the computer to the robot. They are reaching the right inputs at the robot 
end and yet not generating motion. Therefore we can conclude that the robot does indeed 
notice a difference between the PC and its OCU. It seems to be a voltage, power or 
impedance problem. The voltage output of the new OCU is shown in Figure 42. These 
voltages levels are higher than a regular PC can output. This was not the case for the 
Mark VA and is definitely part of the problem in this case.  
 
6 Conclusion 
 
The F6A is a newer more sophisticated version of ANDROS Robot than the Mark VA. It 
offers various new features, despite keeping the same basic engineering. The only two 
noticeable differences from a programming point of view are the length of the strings and 
the baud rate. From a hardware stand point however there is a discrepancy between the 
computer and the new robot’s OCU. This works suggest that solving this situation 
implies successfully matching the PC and the OCU impedances.  
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Figure 42: This signal represents the output from the F6A OCU. 
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