
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

8-2006

Migration from Teleoperation to Autonomy via Modular Sensor Migration from Teleoperation to Autonomy via Modular Sensor

and Mobility Bricks and Mobility Bricks

Roselyne Dalanda Barreto
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Barreto, Roselyne Dalanda, "Migration from Teleoperation to Autonomy via Modular Sensor and Mobility
Bricks. " Master's Thesis, University of Tennessee, 2006.
https://trace.tennessee.edu/utk_gradthes/1499

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F1499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=trace.tennessee.edu%2Futk_gradthes%2F1499&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Roselyne Dalanda Barreto entitled "Migration from

Teleoperation to Autonomy via Modular Sensor and Mobility Bricks." I have examined the final

electronic copy of this thesis for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Master of Science, with a major in Electrical

Engineering.

Mongi Abidi, Major Professor

We have read this thesis and recommend its acceptance:

David Page, Seong Kong

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Roselyne Dalanda Barreto entitled
“Migration from Teleoperation to Autonomy via Modular Sensor and Mobility Bricks.” I
have examined the final electronic copy of this thesis for form and content and
recommend that it be accepted in partial fulfillment of the requirements for the degree of
Master of Science, with a major in Electrical Engineering.

Mongi Abidi

 Major Professor

We have read this thesis
and recommend its acceptance:

David Page

Seong Kong

Accepted for the Council:

Anne Mayhew

Vice Chancellor and
Dean of Graduate Studies

(Original signatures are on file with official student records.)

Migration from Teleoperation to
Autonomy via Modular Sensor and

Mobility Bricks

A Thesis
Presented For The

Master of Science Degree

The University Of Tennessee, Knoxville

Roselyne Dalanda Barreto

August 2006

ii

Acknowledgement
I would like to thank Dr. Mongi A. Abidi for giving me the chance to join the IRIS lab
and for making the preparation and completion of this thesis possible. His encouragement
and support throughout this experience have allowed me to have a great start in my
professional career. I sincerely appreciate the opportunity you have given me and I am
forever grateful.

I would like to acknowledge Dr. Andrei Gribok for advising me and guiding me through
my first year at the IRIS laboratory. I would like to thank to Dr. David Page for helping
me and keeping me focus towards the completion of this degree. I truthfully am thankful
for the incredibly helpful and understanding advisor you have been for me. Your advice
made me a better student and a better person.

I would like to mention my colleagues at IRIS and especially at IRIS West: Nikhil Naik,
Tom Wilson, Kim Kate and Doug Warren for making my experience at the lab
unforgettable. Special Thanks to Chang Cheng and Chung-Hao Chen for sharing their
programming skills, their work experience and their personal experience. I am lucky to
have work with all of you.

Last but not least I would like to thank my family for their constant emotional support. I
am hereby thanking my father Philippe Barreto, my sister Vanessa Barreto and my
brother Nilton Barreto. To my mother Marie Madeleine Spencer I say you have been the
greatest influence in my life always helping place me where I need to be. There is no way
to repay you but I would like you to know you are appreciated. Without all of you none
of this would have been possible.

iii

Abstract
In this thesis, the teleoperated communications of a Remotec ANDROS robot have been
reverse engineered. This research has used the information acquired through the reverse
engineering process to enhance the teleoperation and add intelligence to the initially
automated robot. The main contribution of this thesis is the implementation of the
mobility brick paradigm, which enables autonomous operations, using the commercial
teleoperated ANDROS platform. The brick paradigm is a generalized architecture for a
modular approach to robotics. This architecture and the contribution of this thesis are a
paradigm shift from the proprietary commercial models that exist today. The modular
system of sensor bricks integrates the transformed mobility platform and defines it as a
mobility brick. In the wall following application implemented in this work, the mobile
robotic system acquires intelligence using the range sensor brick. This application
illustrates a way to alleviate the burden on the human operator and delegate certain tasks
to the robot. Wall following is one among several examples of giving a degree of
autonomy to an essentially teleoperated robot through the Sensor Brick System. Indeed
once the proprietary robot has been altered into a mobility brick; the possibilities for
autonomy are numerous and vary with different sensor bricks. The autonomous system
implemented is not a fixed-application robot but rather a non-specific autonomy capable
platform. Meanwhile the native controller and the computer-interfaced teleoperation are
still available when necessary. Rather than trading off by switching from teleoperation to
autonomy, this system provides the flexibility to switch between the two at the operator’s
command. The contributions of this thesis reside in the reverse engineering of the original
robot, its upgrade to a computer-interfaced teleoperated system, the mobility brick
paradigm and the addition of autonomy capabilities. The application of a robot
autonomously following a wall is subsequently implemented, tested and analyzed in this
work. The analysis provides the programmer with information on controlling the robot
and launching the autonomous function. The results are conclusive and open up the
possibilities for a variety of autonomous applications for mobility platforms using
modular sensor bricks.

iv

Contents
1 Introduction...1

1.1 Overview... 1
1.2 Motivation... 2
1.3 Applications .. 4
1.4 Contributions... 7
1.5 Organization of this Thesis ... 8

2 Related Works...10
2.1 Overview... 10
2.2 Principle of Autonomy.. 10
2.3 Levels of Autonomy.. 17
2.4 Autonomous Methods Evaluation... 26

3 Migration to Autonomy ..31
3.1 Original System .. 31
3.2 Reverse Engineering ... 36
3.3 Computer Interface Teleoperation .. 37
3.4 Computer Integration .. 42

4 Implementation ...46
4.1 Preliminary Work on the ANDROS Mark VA.. 46
4.2 Making the ANDROS a Mobility Brick ... 54
4.3 Autonomous Navigation and Directed Imaging Robot (ANDIbot)...................... 58

5 Experimentation ..67
5.1 Characterization of the Strings.. 67
5.2 Characterization of the Algorithm .. 82

6 Conclusion ..87
6.1 Summary ... 87
6.2 Future Work .. 87

References..89
Appendices...97

Appendice A: Mark VA Repair .. 98
Appendix B: ANDROS F6A.. 102

Vita...110

v

Tables
Table 1: The first 18 characters of a string each correspond to an ASCCI code. 51
Table 2: The time comparison between the original algorithm and an accelerated

calibration program shows a problem with the new version of the code.................. 85
Table 3: The time comparison between the original algorithm and an accelerated turn

program show a nearly 50% reduction in time per loop... 85
Table 4: This table contains the character changes for body motions. 105
Table 5: This table contains the changes for vehicle drive motions. 105
Table 6: This table contains the changes corresponding to the speed settings. 106

vi

Figures

Figure 1: The images on the left describe a human operator conducting a vehicle
inspection. The images on the right show a robot conducting the same inspection. .. 6

Figure 2: This diagram show the general objective of this thesis and underlines its
contributions. .. 9

Figure 3: This figure show the original mechanical control panel for Remotec ANDROS
Mark VA. .. 32

Figure 4: This figure is a photograph of the Remotec ANDROS Mark VA. 33
Figure 5: This diagram shows examples of teleoperated robots and their basic structure.

... 35
Figure 6: This iconic representation of the sensor brick design shows the different blocks

that compose it. ... 38
Figure 7: These pictures show sensor bricks implemented at the IRIS laboratory [73]. .. 39
Figure 8: This image describes the mobility brick following the sensor brick design. 41
Figure 9: This figure shows a central computer, robots and bricks communicating

wirelessly. ... 43
Figure 10: A robot can be sent on a scouting mission equipped with one or more sensor

bricks... 45
Figure 11: This diagram illustrates the process of extracting data from the native

controller and storing it into a C++ program. ... 49
Figure 12: This picture shows the set up for capturing the strings. 49
Figure 13: This window is an example of a saved Kermit session................................... 50
Figure 14: The main window of the MFC Graphical User Interface for the ANDROS

Mark VA includes body functions in addition to vehicle drive motions.................. 53
Figure 15: The transition to the mobility brick implies the replacement of the RS-232

radio modems by an Ethernet connection... 54
Figure 16: This picture shows the version of the mobility brick without sensor brick. ... 57
Figure 17: The Experimental set up for the ANDIBot uses a shared processor between the

sensor and mobility brick.. 58
Figure 18: This diagram represents the top view of the system. The robot is equipped

with the range scanner (R). ... 60
Figure 19: This diagram shows the top view of the system with the variables used in the

wall following algorithm... 62
Figure 20: This flowchart shows the logic used in the wall following algorithm. 63
Figure 21: The brick carriage simply consists in an aluminum plate with constraints and

an aluminum bar that links it to the robot. The red strap and the rubber film under
the brick increase its stability.. 64

Figure 22: The top picture show the ANDROS without the brick and the bottom picture
includes the range brick strapped to the robot. ... 65

Figure 23: The back of the robot becomes the front in autonomous mode to avoid
obstruction of the laser from the arm.. 66

vii

Figure 24: The pictures on the left show the methodology in measuring the covered
distance for the same number of command strings. The pictures on the right are
close up images of the same process on both types of floors. 69

Figure 25: The rough data for backward and forward motion on a full battery appears
fairly consistent... 70

Figure 26: The fluctuation of the rough data around the average covered distance for each
different amount of command strings confirms the apparent data consistency except
for the shortest distance traveled... 71

Figure 27: Approximately the same results occur for the reverse motion as for the
forward motion.. 72

Figure 28: The relationship between the distance and the strings is almost linear........... 73
Figure 29: The effect of the floor on the robot’s performance is clearly visible in both

directions... 75
Figure 30: The difference in performance on concrete and on carpet is a considerable

13%. The bottom picture shows a slight difference between the forward and
backward motion, not noticeable in the top picture.. 76

Figure 31: The effect of a low supply voltage is even more visible than that of the type of
floor... 77

Figure 32: The effect of a low battery is roughly 17% in both directions. 78
Figure 33: The pictures on the left show the methodology in measuring the covered angle

for the same number of strings. The pictures on the right are close up images of the
same process on both types of floors. ... 80

Figure 34: The turning motion reinforces the conclusion made in the forward and
backward motions. .. 81

Figure 35: The three pictures show different shots of the testing set up. 83
Figure 36: The number of moves to be parallel to the wall decreases as d reaches 50 cm.

... 84
Figure 37: This image shows the wiring diagram for a DC shunt motor. 100
Figure 38: The debugging process showed that the motor was rotating and suggested that

the problem was mechanical not electrical. .. 100
Figure 39: A closer look to the mechanical shaft (to the right) connecting the drive motor

to the hub showed that the original part has been cut too short. 101
Figure 40: The ANDROS F6A includes new features and accessories.......................... 103
Figure 41: This testing set up is verifying the wire diagram. ... 107
Figure 42: This signal represents the output from the F6A OCU................................... 109

Chapter1 - Introduction 1

1 Introduction

1.1 Overview

Robotic Systems are a promising but challenging research area. While significant
progress has been made in teleoperation, research on full autonomy is still limited. It
usually focuses and performs better on autonomous navigation or simple assembly tasks.
Even as the studies on autonomous systems advance, in certain cases, for safety and
security reasons, removing the operator from the human-robot loop is not an option.
Instead, assisting the human operator by adding autonomous functions to a teleoperated
robot is the proposed goal of this work. There is usually a trade off when acquiring a
degree of autonomy; studies have shown that the robot’s effectiveness decreases as its
autonomy increases [1], [2] and [3]. This project however proposes to keep both
teleoperation and autonomy in the same system to minimize the trade offs and the
restricted applications. In other words, the objective of this thesis is to integrate both
teleoperation and autonomy into one system using mobility and sensor bricks.

Teleoperated robots are opposed to intelligent systems in that they absolutely require
human guidance. Autonomous systems use sensor to independently perceive and act on
their environment. This trend is referred to as active sensing as opposed to passive
sensing when the robot is only collecting data. Hence going from one system to another
involves adding sensors to the teleoperated robot. While the principle is simple, actually
adding sensors to a robot is a complicated task. Teleoperated machines usually include a
few simple sensors such as surveillance cameras. The visual output is typically sent to a
control station from which the robot is being controlled. Adding sensors to the robot
implies physically adding an on-board unit capable to access the sensors and control the
robot. In other words it means a lot of hardware changes need to be done before
autonomy takes place.

Autonomous robots also have built-in sensors such as range sensors and encoders that
they use to localize and position themselves. The focus of most self-sufficient robots is to
autonomously navigate through certain terrains or execute well-defined simple tasks.
This means that even when certain robots are autonomous or semi-autonomous they are
usually task specific. They have been built to meet a precise need. Therefore it seems like
going from teleoperation to autonomy also requires a predefined goal. When the
environment or circumstances change, the autonomous robot cannot adapt without adding
different sensors and corresponding self-ruling functions.

Chapter1 - Introduction 2

The migration from teleoperation to modular autonomy emphasizes two main points.
First this transition is simple and does not involve major hardware changes on the initial
system. Second, the autonomous functions are not limited to a few basic sensors and a
few specific applications. Overall the anticipated system combines teleoperation and
autonomy in a very advantageous way as it does not choose from either technology but
rather combines them into an easily convertible system. Before the theory and
methodology, resides the motivation of this work. A few examples of applications will
also help clarify the usefulness and need for this new hybrid robotic system.

1.2 Motivation

There are several motivation factors for creating a teleoperated robot with autonomous
capabilities, the main factor being keeping the security and safety of the operator. Other
issues are the modularity and flexibility of the system, which involves easily replacing,
updating or combining several kinds of sensors for data collection and data fusion.
Adding autonomy implies more efficiency and accuracy in a priori known environments.
Indeed in well-defined circumstances robots are much more efficient and precise than
human operator, especially untrained operators.

1.2.1 Safety and Efficiency
An appropriate example of robust teleoperated robots is the Remotec ANDROS robot
series. The company specializes in reconnaissance and hazardous waste or bomb disposal
robots. Remotec robots are designed to support the requirements and needs of federal,
state and municipal law enforcement agency Explosive Ordnance Disposal (EOD)
organizations [4]. ANDROS robots are designed to assist expert technicians when
performing remote reconnaissance, access, render safe, “pick up and carry away”
(PUCA) [4], and disposal during extremely hazardous explosive ordnance missions.
Those robust machines are capable to navigate in rough terrains, climb up to 37 degrees
stairs and withstand the force of minor explosions. Obviously in such delicate
circumstances human operators must supervise the robots. Therefore the main reason to
keep the teleoperation option in the new system is allowing the operator to take over at as
soon as a situation becomes too dangerous to be handled autonomously by the robot.
Beside the safety issue, certain tasks are just too complicated for the robot to undertake
unassisted. As much as robotic autonomy is being developed there are still challenges
that limit autonomous robots to simplistic tasks such as pulling, pushing and picking up
objects. Even if complex engineering systems are implemented for a robot to identify,
recognize and perform a task, an expert can be a lot more cost and time effective by
guiding a less complex machine in performing the same exact task.

1.2.2 Modularity and Flexibility
Robotics is moving toward modularity, flexibility and portability. Modular robotics
breaks unmanned systems up into several components. While components come together
to create one system, they are each semi-independent unit that can be reused, replaced,

Chapter1 - Introduction 3

removed, added or separately updated. The first great advantage of such a system is its
life-cycle cost. When one component breaks down the whole system does not go down as
technicians can easily find a replacement for the defective part. Hence the entire system
does not go to waste and there is no need to purchase a whole new one. Similarly when
there is maintenance or new development on parts of the system, it does not completely
become outdated and unusable since certain parts can be reused and reassembled with
updated components. At a larger scale than just one machine, modular robotics allows
parts to be interchangeable as needed between different robots. Another improvement in
this technology is the flexibility that it offers. In the case of the migration from
teleoperation to modular autonomy, the motivation is not to be so restricted in the kind of
autonomous function to be added. Indeed in this case, modular sensor bricks can, not
only be reused, replaced or independently be updated, but they can also be combined.
The term brick refers to an independent sensor system. Physically attaching the sensors to
the robot would limit the number and sorts of sensors to be linked to the system. Using
sensor bricks allows using any desired number of sensors, which is important for several
different kinds of autonomous functions, for data collection and data fusion. This way the
autonomous robot is not so task specific and can be fit to various and diverse
applications.

1.2.3 Autonomy and Capability
While part of the motivation behind this work is to keep the operator involved another
element is to alleviate his or her work. Indeed while human guidance is very important
and required in delicate bomb disposal operation, robots are generally a lot more efficient
than human operator in simple tasks performance. An untrained person cannot operate
most of the commercial robot. The operators must be trained and become expert
technicians. With time and experience one can acquire the dexterity necessary to operate
this heavy machinery. Adding semi-autonomous to autonomous functions to the control
systems makes it easier for a new operator to execute certain tasks. Considering that in a
priori known environment and well-defined circumstances a robot is more efficient than a
human, giving the robot a certain degree of autonomy can also help even the best-trained
operator. During operation, allowing the technician to focus on the most important
aspects of a certain task and delegating the rest to the robot can be a useful autonomous
feature. For example, while the operator is focusing on a manipulating task, the robot can
autonomously keep its own survival by avoiding collisions. This is however just one
illustration of autonomy. The greater motivation here is not to meet the need for a
specific application. It is rather to allow communication between a robot and various
sensors to execute diverse autonomous functions. The connection between a mobility
platform and several different kinds of sensor bricks allows the implementation of as
many autonomous functions from simple data collection to path planning and obstacle
avoidance.

Chapter1 - Introduction 4

1.3 Applications

The main applications of the projected system are security and safety oriented. An
obvious reason to operate or completely delegate a task to an unmanned system is to
protect human beings from probable or anticipated danger. This type of application best
fits organizations such as the Department Of Energy (DOE). Other applications are more
general and could be applied to fields such as the Automotive Research Center (ARC)
and others in which scanning processes are required.

Safety and security are at the core of DOE operations. For example DOE deals with
chemical safety, nuclear safety and hazardous waste transport. Teleoperated or
autonomous unmanned systems are desirable in such applications mainly to avoid contact
between human beings and potential harmful contamination. Among several scenarios
showing the usefulness of the anticipated system for the DOE, one major picture is the
crucial surveillance of its facilities. A semi-autonomous agency with DOE, which could
use surveillance robots, would be the National Nuclear Safety Agency (NNSA). NNSA
enhances national security through the military use of nuclear energy. It not only
improves nuclear weapons but also responds to nuclear and radiological emergencies in
the US and abroad. To prevent terrorists from accessing dangerous material, a robot
equipped with a surveillance camera and a range sensor can periodically go around the
perimeter of a particular building and look for intruders or other anomalies. This way an
operator does not have to constantly supervise the robot and will only be alerted in the
case of an emergency. It is safe since a robot cannot get hurt; it relieves the operator who
can focus on another important task. Moreover the robot behavior does not include loss
of focus, fatigue and other human imperfections.

The ARC develops simulations and designs for mobile platforms to later be applicable in
real environments. The work of ARC revolves around five thrusts areas. Throughout the
different thrusts areas, the main emphasize remains the collection and fusion of data.
Before modeling and simulation is possible data has to be scanned and analyzed. The
teleoperated or automated scanning process is a very useful application for ARC. Having
a robot communicating with the sensors involved is a practical and efficient way to
collect data on a precise path and at a constant speed. Of course the scanning vehicle
could be a car and not necessarily a robot. However as mentioned above driving a car can
imply more errors in the process. Moreover for huge profiling mission sending “a well-
organized army” of robots perceptibly has several advantages over sending drivers in
automobiles. There is also a reachability factor in the scanning process. A robot can
access remote areas that a human cannot or should not access. Aside from hazardous sites
where it would be undesirable to send a human, robots can scan hard-to-reach areas such
as the undercarriage of a car for example. The robot could also be a flying helicopter
scanning over a certain field. Using mobile platform equipped with sensors can redefine
and expand the meaning of scanning processes for ARC and other similar laboratories.

Chapter1 - Introduction 5

Under vehicle inspection is a scanning process of special interest at the Imaging,
Robotics and Intelligent Systems (IRIS) laboratory. It combines the security aspect and
the scanning process in an application for a teleoperated to autonomous system. The
teleoperation removes the operator from the scene out of a safety concern in the case of
hazardous material hidden in or under the car. Moreover scanning under a car with a
mirror on a stick only covers thirty to forty percent or the under carriage of a car. Hence
sending a robot with sensors under the vehicle is safer and more efficient than sending an
operator to conduct the inspection. An inspector may drive the robot to the vehicle and
then let the robot take over. Performing an autonomous scrutiny facilitates the task of the
operator, who may at time loose sight of the robot. Having access to several sensors
during the scanning process reveals more information than the eye can tell. For example
visual data can be deceptive. A fake muffler placed under the car could actually hide a
threat that a visual camera would not detect. Alternatively using an additional thermal
camera automatically reveals important details about what part should or should not be
hot while the engine is running. Similarly a range sensor can differentiate between the
picture of a muffler or a real muffler by providing 3-D information. Such complete
scanning can be extended to the inside of the car, or the inside of a suspicious room.
Figure 1 illustrates the difference between a human and a robot inspector.

Scouting missions are another promising application for the robot. With a few images of
a specific scene allowing the operator to simply point at objects of interests on a screen
instead of driving the robot to different places would be a great autonomous function to a
robust teleoperated robot. For example the operator would point to a suspicious object
and request a close up picture of that object. The robot would then take over, drive itself
to the target destination and come back with a picture. This mission implies that the robot
is equipped with at least a visual and range sensor to be able to avoid obstacles, reach its
target, collect data and home back to its original position. Such application is especially
desirable for agency such as the Weapon of Mass Destruction Civil Support Team. Those
military teams were established to protect U.S. citizen against the growing threat of
chemical and biological terrorism. They are spread out in the different states to support
state and local authorities in the event of incident involving weapons of mass destruction.
They are equipped with personal protective suits and decontamination kits. They carry
special equipment to detect the source of toxic agents, digital still and video camera and
other sophisticated tools to help identify the nature of the threat. Then they return to their
special communication van for modeling and simulation on the computer and for
laboratory analysis of potential samples. Some limitations include the fact that a man
should not stay in those suits for more than an hour, which implies several rotations
between several agents before the scene is completely analyzed. The analysis only starts
when the scouting process is over. Using an unmanned system equipped with several
sensors including chemical and biological sensors in particular allows continuing the
inspection as long as necessary. While the robot cannot get contaminated and can stay
exposed longer than a human without perishing, the operators inside the van can start
identifying the threat and react consequently. Guiding the robot when desired or pointing

Chapter1 - Introduction 6

Driver interrogation conducted by a human. Driver interrogation conducted by a robot.

Trunk inspection conducted by a human. Truck inspection by a robot.

Under vehicle inspection using a mirror. Under vehicle inspection by a robot.

Figure 1: The images on the left describe a human operator conducting a vehicle
inspection. The images on the right show a robot conducting the same inspection.

Chapter1 - Introduction 7

the robot to specific locations at time, they can thoroughly cover terrain through
communication with the robot and its sensors.

1.4 Contributions

The concept of an adjustable autonomy has been examined before under different angles,
especially the trade offs between an entirely autonomous system and a teleoperated robot.
While this topic will be discussed later in the literature review, one can say that in general
the work is usually done on a robot already built with the capability to support simple
autonomous function. Hence the first contribution is to reverse engineer an industrial
system and add a computer interface control to a commercial robot initially intended only
for teleoperation. This first step is crucial in order to later add intelligence to that robot. It
is an advantage because those robots are usually very robust and the only reason they do
not include multiple sensors are practicality and cost efficiency. Again as extra sensors
are added to a robot it becomes a little more task specific and therefore applications
restricted. Those are not desirable features for a company building series of robots. A
chemical sensor or a nuclear sensor is often meant for a particular application and would
be not be useful for a basic surveillance robot for example. The capability to reverse
engineer commercial robots and make them controllable through a computer interface is
an inexpensive advantageous alternative to built different specialized robots. Such system
can be converted first from the proprietary teleoperation to a complex teleoperation using
several special sensors. Its functionality can later be expanded through relatively simple
software changes versus complicated hardware changes.

The second contribution is an extended definition of a mobility platform as a mobility
brick. Mobile platforms are not an innovation, however they are usually perceived as
robots in themselves. Therefore they are either teleoperated or they integrate sensors with
on-board intelligence to navigate autonomously. The contribution here is to blend in this
definition with the whole brick concept. The notion of sensor brick has formerly been
established [5]; the idea of a mobility brick in the larger scope of an interoperable
Modular Robotic System is a major contribution of this thesis. Before any autonomy
takes place, the mobility brick paradigm provides the information necessary for any
operator to access the drive commands of the platform. In the greater picture of the
Sensor Brick Concept, different robotic platforms are transformed in series of mobility
bricks and are no longer controlled by their original proprietary controller. Instead, they
become accessible by various control units located in a central unit or other bricks. Any
computer equipped with the appropriate information can drive the mobility brick.

The last contribution is derived from this greater picture of the brick technology.
Acquiring autonomy through mobility and sensor bricks widens the areas of applications
especially when several sophisticated sensors are required. As different sensors can be
rotated or combined together the robots become more versatile. This project does not
propose to build a navigation or task specific autonomous robot but rather to allow

Chapter1 - Introduction 8

implementing several types or autonomy using the mobility and sensor bricks concept.
Figure 2 shows the main objective of this work and highlights the claimed contributions.

1.5 Organization of this Thesis

This document will be organized as follow; Chapter 2 will be a literature review to
acquire a general knowledge of the different kinds of teleoperated and autonomous
robots. In other words this chapter will attempt to examine the state of the art in robot
autonomy. Chapter 3 will discuss the core of the proposed concept. This chapter will
describe the transition from teleoperation from the proprietary control box to a computer
interface control box. After this reverse engineering section, Chapter 3 will explain the
subsequent evolution towards an autonomous robot using the sensor bricks. Chapter 4
will look more closely into the previously defined sensor and mobility bricks concept.
While Chapter 3 describes the theory of this research Chapter 4 will focus on the
implementation of the proposed idea. Chapter 5 will then present how the resulting
system has been tested and analyzed. Finally, Chapter 6 will conclude the thesis based on
its results and suggest future work to be conducted on this system or other prototypes.

Chapter1 - Introduction 9

Figure 2: This diagram show the general objective of this thesis and underlines its
contributions.

Reverse Engineering

Original
OCU

Robot

Original
OCU

Computer
Interface

Mobility
Bricks

Teleoperation

Autonomy

Sensor
Bricks

Computer
Integration

Reverse Engineer

Chapter 2 - Related Works 10

2 Related Works

Chapter 2 examines the state of the art of the research on autonomy. This chapter starts
by giving an overview of the autonomy concept, its origin and meaning. It further
discusses its principle and different levels. Finally the last section of this chapter
summarizes and analyzes the different methods to implement autonomy.

2.1 Overview

The word “automation” comes from the Greek word “autonomos” In the etymology of
the term autos means self and nomos means rule or law. That is to say that an
autonomous individual makes its own rules as opposed to following those of an external
governing power. Autonomous robots are aimed to be physical entities that can
accomplish useful tasks without human intervention. They are supposed to operate in an
unknown environment without receiving direct instructions from users. This is a very
complex project; therefore it involves several objective difficulties. The first section of
this chapter will help understand and explore the meaning of autonomy. This definition
implies various real-time difficulties and possible solutions, which will also be discussed
in the same section. The second section will look at the bigger picture about autonomous
systems. Without going into detailed implementation and architecture, it will concentrate
on the different levels of autonomy. As a complete evaluation of this broad subject is
beyond the scope of this review, it will examine the work of a few researchers on robots
with different degrees of autonomy. The last two sections will present important factors
to consider in going from teleoperation to autonomy.

2.2 Principle of Autonomy

As mentioned before autonomous systems are physical systems capable of operating
without direct human intervention. In other words it should perform its role while
maintaining its own viability [6]. This definition can be compared to that of a living
system, which also adapts to its environment for survival. Autonomous robots must adapt
to their environment even if those change. To be autonomous first implies being
automatic. In turn being automatic means sensing the environment and its impact on your
existence. Autonomy goes beyond automaticity in the sense that an autonomous robot not
only realizes the impact of the environment on its existence but further adapts to the
environment changes to insure its survival. Moreover this adaptation process has to
happen in real-time as opposed to studying an environment in advance before operating.
For example it is less complex to program a robot to go around an empty room without
human supervision or intervention than it is in a room filled with obstacles. It is also less
difficult to accomplish the same task in a room with obstacles when the programmer has
a priori knowledge on the room then it is when the environment is unknown. What will

Chapter 2 - Related Works 11

the robot do if the dimensions are different, if it comes to a still obstacle, a moving
obstacle? An automatic robot that ran in an unexpected wall will keep going against it
until its motors burn, while an autonomous robot will know to go around the obstacle.
This robot should not only know to adapt to the environment (avoid the wall) but also
learn from it. In other words it should remember the characteristics of this obstacle in
case it should take the same rout sometime later. In addition, according to Kasabov [7], if
it does encounter the same obstacle a second time it should have learned enough about it
to avoid it even more efficiently than the first time and this learning process should go on
as the robot finds itself in the same or similar situations. An Intelligent Agent System
(IAS) should then have parameters that represent short and long term memory, age,
forgetting, etc [6]. Kasabov [7] states that an IAS should be able to analyze itself in terms
of behavior, error and success.

2.2.1 Definition
Robotic systems are aimed to perform services. Autonomous robotic systems are aimed
to perform the same services while maintaining themselves. Those systems have to self-
govern themselves in order to insure their survival independently of external changes.
They have to be adaptive because users and environment change frequently. They have to
learn from the different circumstances they encounter and improve their existences.

2.2.2 Problems
From the definition above arise several problems, which reside in the process of
acquiring data and learning from the environment. The fact that the autonomous robot is
expected to adapt to its surroundings in real-time supposes that it is able to sense still and
moving object with respect to itself. Moreover autonomaticity supposes that the robot
already has a general knowledge about how to interpret and handle the sensors’
information.

2.2.3 Sensing
There are several issues in the sensing part of robot automation. The quality of sensor
information is influenced by sensor noise, the limited field of view, the condition of
observation, and the inherent difficulty of the perceptual interpretation process [6]. Thus
those issues have to do with how the robot receives the information from sensors.
Assuming the robot knows how to handle a specific situation, noise-corrupted
information may lead to a malfunction in the robot operation. Similarly limited field of
view may engender problems in the robot navigation and operation. The condition of
observation such as illumination, angle of view, motion and others all have to be taken
into consideration by the robot when sensing information to avoid misinterpretation. It is
easy to see how ambitious and complicated it is to want to attribute the human notion of
sensing to a robot.

Chapter 2 - Related Works 12

2.2.4 Control
Making sense of sensor information leads to the problem of controls in autonomous
robot. Once again for the robot to correctly interpret sensor information it needs to have
prior general knowledge about the environments in which it operates. An obvious
difficulty is that it is impossible to have complete and exact prior knowledge about these
environments. Real-world environments are characterized by a large amount of
uncertainty that even human beings cannot predict. Therefore it is impossible to prepare
the robot to handle all the situations that it will encounter. Problems can range from the
effects of varying environmental conditions on the robot sensors and traction
performance through to the need to deal with the presence of unexpected situations [6].

The goal for an autonomous robot control then would be to start with a basic database
about possible situations and later learn and improve its database with experience. This
simple, logic idea brings up another important issue in control systems called epistemic
actions. Epistemic actions require that the programmer build the “basic” database
mentioned earlier with additional rules so that the right actions are fired at the right time.
Epistemic actions not only need to be fired when information in the database is missing
but also when it is out of date [8]. Indeed the information in the database has to be kept
coherent with the sensory systems and the external world for appropriate reaction from
the robot. This cache system problem, called model coherence problem is an instance of a
more general problem in computer and robot design. Real robotic systems consist of
several sub-systems, clusters of sensors, motors and databases operating in parallel, on
separate processors. Often these simple processors don’t have their own operating
systems. Therefore all their information must be consistent with one another and the
external world as they are gathered in one central operating system.

In summary automated reasoning systems are typically built on a task-oriented model of
programming. Some basic prior knowledge is stored in a database of assertions in a
number of logical languages, indexed perhaps by predicate name [8]. The robot receives
information from sensors and functions by query. It asks the system about the findings of
the sensors, about how to handle them, finds the answer and reacts in the appropriate
manner. Ideally if the result of the query is missing or out of date it adds or modifies the
database. How this is done, or even how the database is filled in the first place is the
essence of the problems in control architectures of autonomous robots.

2.2.5 Control Architecture
Control architectures for autonomous robots should be able acquire sensory information,
adapt to unstructured changing environments and fire the desired reactive behavior. This
behavior can be to move in a certain direction or it can be task oriented. Autonomous
robots should be modular i.e. subdivided into smaller modules that can each easily be
replaced or updated without major software modifications to the main system. All those
facts need to be taken into account when building those robots. Several architectures have
been proposed including four main ones [9]:

Chapter 2 - Related Works 13

• In the NASREM architecture, developed by Albus, [10, 11], the information
passes through several processing stages until the system understands the current
situation. Then the commands are sent again to several modules until the desired
action is taken at the lowest levels.

• The subsumption architecture proposed by Brooks [12] is layered in several
communicating levels of competence. This architecture brings the robot to a
higher level of competence using higher layers with access to the lower layers of
operation. Lower layers operate at simpler and more basic levels.

• The Task Control Architecture (TCA) architecture, developed by Simmons [13,
14] includes a general purpose central unit linked to several task-specific
modules. This system is interconnected; there is no higher layer but rather a
common central control responsible for getting the right sensing information to
the right reactive module.

• The Local Area Augmentation System (LAAS) architecture, proposed by Alami
et al. [15], is composed of three layers. The highest level does the global
planning; the middle layers receives tasks from the higher level, supervise their
execution while being reactive to unexpected events. At the lowest level, the third
layer does elementary robot tasks and functions such as perception or motion.

Those four architectures are used separately or together to implement four main
paradigms for autonomous robots control systems.

• Sense-model-plan-act (SMPA). This basic idea is used in most autonomous
system. However the single route between sensing and acting causes undesirable
delays between the two. Hence this primary paradigm has been improved by
horizontal and vertical decompositions.

• Vertical decomposition, as its name indicates, vertically splits into hierarchical
levels. Sensing information and commands all flow up and down between the
different layers. Reasoning at higher levels implies more planning and less
interaction with the environment, hence less delays in reactions. This paradigm
however requires protocols between layers which reduces modularity and
expandability.

• Horizontal decomposition, as suggested by its name, this paradigm remains at a
simple low level of operation. It is very reactive because it uses the idea of a
central unit communicating with several modules without a hierarchical structure.

• Reactive systems are based on the fact that behaviors tend to be little or not goal
directed [9]. These systems neglect the model-plan part of the SMPA paradigm
and follow more of a sense act behavior.

Different architectures can be used to perform the same tasks. Some paradigms perform
better in different circumstances. While various scientists argue in favor or against
particular one, numerous researchers are supporters of hybrid architectures. In other

Chapter 2 - Related Works 14

words, they avoid the disadvantages of specific architectures and make the best of
advantages of others by combining them in the same systems.

2.2.6 Online Learning
An important general concept for autonomous robot is the concept of online learning
versus simulation. According to the definition of autonomy a fundamental requirement
for automated systems is that it be able to carry out tasks in the real world and in real
time. Moreover it must be able to adapt to its environment as it performs those tasks. Still
several scientists test their robots by using simulation. Results of simulation can easily be
criticized. Indeed numerous successful simulations will fail on real robots because of the
following reasons [6, 16].

• Numerical simulations do not usually consider all the physical laws of the
interaction of a real agent with its own environment, such as mass, weight,
friction, inertia, etc.

• Physical sensors deliver uncertain values, and commands to actuators have
uncertain effects, whereas simulative models often use grid-worlds and sensors
that return perfect information.

• Physical sensors and actuators, even if apparently identical, may perform
differently because of slight variations in the electronics and mechanics or
because of their different positions on the robot or because of changing weather or
environmental conditions.

Learning online enables the robot to adapt to real conditions and circumstances as
adaptive behaviors can only emerge from coupling the agent with its environment and not
from simulation.

Having underlined the advantages of online learning versus simulation in automation and
before looking into advanced research topics in this areas here are the most popular
methods to develop robotic agents.

2.2.7 Methods to Implement Autonomy

2.2.7.1 Path Planning
Once a robot is given a goal position; it determines a collision-free path to navigate
through from its initial to its final position. This process is called path planning and can
be categorized into global and local path planning. Global path planning is usually used
when the environment is known a priori. It is used with simple exact model of a real
environment. Again as discussed above, real-world environment are never simple
enough. Therefore for autonomous system local path planning is preferred. It is more
practical and is based on obstacle avoidance. The simplicity of this idea is attractive but it
has its problem also. Basing the motion only on avoiding obstacle could cause the vehicle
to get stuck in corners. For example if two different sensors are near obstacles and trying

Chapter 2 - Related Works 15

to move the robot in different directions it would get stuck. These situations would
translate in local minimum in the local path planning algorithms. Second, this method
causes unstable motion near obstacles. Typically there is no speed and direction control
integrated in those avoidance algorithms, which leads to sudden and unstable motion
when deviating the vehicles. The key idea here is adding mapping to this mechanism so
that the vehicle knows more about its surrounding when reaching an obstacles. As this
method does not however provide the robot with situation-action rules other methods
propose an alternative.

2.2.7.2 Neural Networks
Neural networks have the advantage to learn by example, generalize from those examples
and apply their resulting algorithms to specific situations. However these neural networks
require substantial data sets and representative patterns to characterize their environment
during training [3]. Moreover the number of hidden layers and nodes are parameters that
are fixed by the programmer. On the one hand, too many hidden units overfit the training
data and fail for testing data. On the other hand too few hidden layers produce a behavior
that is too generalized. Hence the programmer would have to have a lot of experience
with real environment and circumstances to implement the right number of layers. Again
even if it were possible to store enough data to navigate in unstructured changing
environment it would require a substantial amount of data.

2.2.7.3 Fuzzy Logic
This method seems to better solve the problem of unstructured changing environment.
Indeed Fuzzy Logic method provides means for mapping sensor information in real-time.
Again this is a major requirement for autonomous robots which must have a degree of
self-government in unknown environment without human intervention. The success of
Fuzzy Logic Control (FLC) is owed in a large part to the technology’s ability to convert
qualitative linguistic descriptions into complex mathematical functions and the ability to
deal with various situations without analytical model of the environment [8]. In other
words this methodology takes away the problem of having to mathematically describe an
environment that is unstructured, changing and described only qualitatively, inexactly
and uncertainly by sensors. This approach translates particular situation into functions
that the autonomous agent can understand. It is then particularly useful in the case of
obstacle avoidance. When compared with path planning this method provides actual
mapping of the surroundings and provides the vehicle with more information about what
to do after avoiding obstacles. When compared with the neural network approach, the
algorithm is not based on experience but on expert knowledge. This is because the rules
are based on physical meaning rather than on training and experimenting. Hence this
approach seems the best fit for autonomous robot navigation. However physically
describing very complex environments remains a challenge even for human experts.
Instead of a large amount of data (neural networks approach), a large amount of rules
have to be constructed to begin with. It is a tedious, time consuming process and leaves a
lot of room for research and improvement.

Chapter 2 - Related Works 16

2.2.7.4 Evolutionary Algorithms
This method is inspired by the principles of natural evolution and genetics [8]. Genetic
Algorithms (GA) uses processes such as selection, recombination and mutation to solve
robotic problems. Unlike fuzzy methods, evolutionary algorithms are based on global and
not iterative searches in the solution space. They are more efficient and faster than
iterative searches. The optimization process is simple and does not care about the
problem itself just about what solution best solves it.

The GA approach enriches the optimization environment for fuzzy systems [8]. As
mentioned before fuzzy rules can be very complex. However the GA approach assumes
that the solution space is complete and fixed and therefore cannot learn Online. An
attempt to solve this problem has been to develop the Experience Bank. As the robot
encounters problems it searches through this Experience Bank, if one of these
experiences solves the problem the search ends, otherwise each experiences are “graded”
on how well they fit this particular situation. The highest fitness experience is used as a
starting position to the lower level GA that is used to generate new solutions to the
current situation [8]. This approach preserve the advantages of easy searches and speeds
up the process of creating new solution space sections by starting at the best possible
place in this space. Scientists were inspired by the mechanism of biological organism
which functions according to two important processes, evolution and life long learning.
Evolution takes place naturally and affects the nature of the organism while life long
learning takes place at an individual level. Similarly the Fuzzy-Genetic system (the
Associative Experience Engine) [8] develops the evolution process; an online technique
is then added to implement the life long learning process.

2.2.7.5 Reinforcement Learning
This method is based on direct trial and error interactions with a dynamic environment.
Reinforcement Learning (RL) is a learning strategy that does not characterize a learning
problem. RL just considers possible behaviors, finds one reaction that performs well for
one particular problem and applies it. It does not try and optimize solution; it does not
care to know if another solution would have been better from a long term output point of
view. It is just important that it has a lot of action-reaction contact with its environment.
In other words the RL method looks at different situations as utility problems rather than
optimization problems. After interacting with its environment the robot must gather and
store lessons from its experiences. This approach contrasts with the traditional supervised
learning algorithms. Indeed RL works towards immediate rewards while supervised
learning works toward the best output from a given input. Another difference from
supervised learning is that on-line performance is important: the evaluation of the system
is often concurrent with learning (which seems attractive in online learning in
unstructured environments) [8].

Chapter 2 - Related Works 17

2.3 Levels of Autonomy

Robotics systems range from teleoperated to fully autonomous. In teleoperated systems
the human operator has full control over the robot’s behavior while there is no human
intervention in fully autonomous systems. Telerobotics describe robotic systems, which
despite human guidance have a degree of autonomy.

2.3.1 Telerobotics
Teleoperated robots require continual operator intervention to successfully perform a task
[17]. This type of robotic systems is used in delicate applications such as clearing
hazardous waste. In those dangerous cases, human operators are needed to maneuver the
robots to prevent accidents. Often operators only have a virtual contact with the robots
and need to be experienced and extremely precise in guiding the robots. Such operation is
recognized to be difficult on the users. In an attempt to solve this problem, Conway [18]
introduces the concept of “teleautonomy”. He discusses methods to generate intelligent
actions at distance. This method blends autonomy with human intervention. The degree
of autonomy that the robot should have is the subject of discussions especially in
hazardous tasks. Telerobotics blends human supervision with robot local intelligence.
While researchers debate on how much autonomy the robot should have in performing a
task, one safe focus in this matter is the robot equilibrium and survival. Sian, Yokoi,
Kajita and Tanie illustrate this point in several papers [19, 20] on which this section will
focus. Apart from walking pattern generation, the work previous to theirs has generally
focused on arm or head manipulation of a static body. The few work on whole body
motion has attempted to convert the body motion of an operator into command for the
robot. This work however is very involved, requires complex interface and still causes
problems such as difficulty in generating stable motions in real-time, due to geometrical
and dynamical differences between human operators and humanoid robots. These authors
propose a switching command based whole body teleoperation based on simple joystick
interface. The concept of integrating operator’s intention and robot autonomy is derived
from human motions, which are a mixture of conscious motions and unconscious
motions. When accomplishing a specific task, we consciously take actions while
unconsciously taking others to accommodate us in our task. For example while running
one focuses on his or her leg movements and unconsciously moves ones arm to stay
balanced. Based on this idea Sian, Yokoi, Kajita and Tanie [19] have developed a system
where depending on the objective of each task, the operator selects the specific part of the
robot he wishes to operate with. The operator does so with simple joystick control
without worrying about the robot balance. This autonomous motion of the robot is
insured using a trajectory of the target manipulation point and the robot balance as the
criteria for whole body motion generation. These scientists propose a method that divides
the body structure in several mechanisms corresponding to the main joints of the robot.
The operator controls the motion and velocity of each joint he wishes to operate. The
robot maintains itself using two principals.

Chapter 2 - Related Works 18

• Balance Autonomy Based on the measurement of the Zero Moment Point (ZMP)
this mechanism allows the robot to remain within the support polygon for
dynamically stable motion.

• CoM Position and Torso Orientation Modification Autonomy Based on the

measurement of the center of mass (CoM) and the orientation of the torso, the
stable reachable area of a humanoid robot can be extended [19].

The same authors added to their work by proposing an intuitive foot operation [20]. As
the previous one, this approach is based on the fact that with current recognition and
decision-making technology, human supervision is still necessary for humanoid robots.
Hence this method proposes to incorporate the operator’s foot command with the robot’s
autonomy in maintaining balance. Most of the work on humanoid robots’ autonomy
concentrates on generating walking pattern. The issue of real-time foot operation is rarely
discussed [20]. This paper emphasizes that one great advantage about humanoid robots is
that they have feet that can be used for more than walking. For example they can be used
to step on specific areas or to push an object around. In those cases it is important to
facilitate the operator’s work by allowing him to only transmit intuitive commands to the
robot and let the robot maintain its own balance. The contribution here is the Foot
Operation Autonomy.

2.3.2 Semi-Autonomy
Semi-autonomy also referred as scripted autonomy describes the systems in which the
user triggers behaviors in the robots through voice, touch or other mechanism. These
automated reasoning systems are typically built on a transaction-oriented model of
computation [8]. Knowledge is acquired from the environment and stored in the robot
database. Then the system translates queries sent by an operator into logical assertions.
Even assuming it is possible to clearly describe several queries so that the robot can
answer them, the problem occurs about how to fill the database. In the case of greatest
interest, the robot does not know its surroundings and its environment changes
frequently. However automated systems are not prepared for such cases, they assume all
the information they need is already stored in the database before operation. Semi-
autonomous behaviors can be triggered by different mechanisms. Language is a favorite
for researchers. This section will focus on such systems. They are called tagged behavior-
based systems.

2.3.2.1 The Bertrand System
The Bertrand system [21] is a database-free logic programming system that answers
block-world queries using real blocks and a real-time visual system [8]. This system
answers questions such as “Is there a blue object above a red object?” using visual
routine processor. The robot searches for blue block, and then looks right below. It finds
a red object and drives to the chosen block. If it had chosen the wrong blue object it
would have backtracked and searched for another blue object.

Chapter 2 - Related Works 19

2.3.2.2 The Ludwig system
Ludwig [22] is another simple natural-language question answering system based on
colors and special relations. It is grounded in real-time vision. It is different than the
Bertrand system in that it consists of parallel network communicating finite state
machines. Semantic analysis, synthetic analysis and visual processing occur in the
pipeline and the system keeps track of the relationship between those programs.

2.3.2.3 Improvement of the Bertrand-Ludwig Architecture
Hence Tagging provides an alternative mechanism for coordinating the different
representation of an object [8]. This approach does not require a complete database of
objects nor does it require passing complicated symbolic expressions between
components of a system. Moreover tagged behavior-based systems add to the traditional
qualities (simplicity, parallelism and efficiency) of behavior-based system by providing
additional flexibility and programmability. While the Bertrand-Ludwig architecture
works well for queries it does not work so well for controlling actions. It is also
dependant on the scene as the robot is seeing it a precise moment. If the scene changes,
the robot does not notice it. A forward-chaining inference system is needed to continually
re-compute computed inference. Tagging is only a partial solution to the problem of
representing predicate-argument structure. However not only does it apply to the
mechanism of the reasoning of several robots used nowadays but also improves it. The
robot Kludge [8] was programmed using the feed-forward tagging scheme to follow
simple natural language, such as “get the green ball”. Kludge is equipped with a 25-MIP
DSP board with an attached frame grabber and video camera. In addition Kludge uses an
odometry system which tracks the location of the object it identified using its visual
system in real-time. Kludge then uses this combination of mechanism to fire different
behaviors, like following a blue ball for example.

The unifying theme of these systems is to import useful features of traditional symbolic
AI systems into behavior-based systems without also importing the model-tracking and
model-coherence problems [8]. The goal for Cerebus [8] is to integrate the advantages
about the previous automated systems but also to be capable of limited reasoning. This
semiautonomous state gives the robot the ability to do the tasks of the Kludge project and
also to access its own internal state.

2.3.3 Full Autonomy
Fully autonomous systems describe systems operating without human intervention. Such
robots can only be implemented with the use of sophisticated sensors. They are divided in
two main categories: systems that have knowledge about their environment and systems
that operate in completely unknown environments. The robots with a priori knowledge
about their surroundings are still autonomous because they operated without input from
the user. They have learned various behaviors in a virtual environment before
autonomously repeating the same behaviors in real time.

Chapter 2 - Related Works 20

2.3.3.1 Learning by Demonstration
Yeasin and Chaudhuri [23] propose an approach to program a robot by demonstrating a
task several times in front of a binocular vision system. The motivation behind
programming a robot by demonstration is simple and compelling: a user knowing how to
perform a task should be sufficient to create a program to replicate the task [23]. This
idea of integrating perceptual information with human skill can help in developing a
flexible autonomous robot. Previous work, similar to works by Ude [24], has
concentrated on tracking the object the human was working on instead of tracking the
human hand. The key new idea is to help a robot observe a human performing a task,
understand it and generate the corresponding program to perform the same task. A similar
work has been done by Kuniyoshi [25] et al to track the motion of a human hand for
program generation. The endeavor of this paper is to develop a fast, efficient and robust
vision system, which is capable of extracting the sufficient statistics from the visual data,
captured during the demonstration of the task [23]. The proposed system is composed of
five major blocks:

• Data acquisition,
• Vision,
• Trajectory reconstruction,
• Task description, and
• Command generation module.

The data acquisition module captures the training data and the vision module extracts the
sufficient statistics from it to generate automatic commands for the robot controller [23].
The next module reconstructs an optimal path from the vision information. The task
description module subdivides the tasks in smaller task to facilitate the work of command
generation module. Billard and Matari [26] evaluate a model of human imitation of
abstract, two-arm movement. Input to this system are data from human arm movement
recorded using a video and marker based tracking systems. The goal here is to provide
the robot with on- and/or off-line learning or adaptive capabilities. Instead of adapting
through reprogramming the robot would adapt through demonstration. This method is
appealing, once again because demonstration is a natural and simple way for human-
robot interaction. Instead of trying to guide the robot through a task, the operator who
might not be familiar with the robot can just demonstrate how she/he would perform the
task. This approach makes the robot’s motion much smoother and flexible because it
directly follows human instruction. Several works on the same topic have been very task
specific whereas recently the focus is more on mechanisms of imitation in natural
systems. In other words this work ultimately aims for the implementation of a humanoid
robot. The endeavor is to, on the one hand, build biologically plausible models of animal
imitative abilities, and, on the other hand, develop architectures for visuo-motor control
and learning in robots which would show some of the flexibility of natural systems [26].
Billard and Matari [26] evaluate the model’s performance at reproducing human arm
movements. A simplified biologically inspired model of primate imitative ability is

Chapter 2 - Related Works 21

developed. It has different levels of attention for repeating known movements or learning
new movements. The recognition of the direction and orientation and the motion tracking
mechanism are based on visual information. The recognition of the direction and
orientation and the motion tracking mechanism are based on visual information. The
motor control, which activates the muscles, is hierarchical and composed of artificial
neural networks.

In a similar work, Aleotti, Caselli and Reggiani [27] argue that for tasks whose essential
features are known a priori, demonstrating in a virtual environment may improve
efficiency and reduce the trainer’s fatigue. It presents experiments in simple virtual tactile
fixtures in pick-and-place tasks. This approach assumes that trajectory will eventually be
computed by path planning based on actual location of objects and status of the working
environment. In the proposed robot teaching method, an operator, wearing a dataglove
with a 3D tracker, demonstrates the tasks in a virtual environment [27]. The system
translates actions into commands for the robot manipulator. Then the recognized task is
performed in a simulated environment for validation before being executed in the real
environment. This teaching by showing method includes three main phases:

• Task presentation - The user wearing the dataglove executes the intended task in a
virtual environment.

• Task analysis - The system analyzes the task and extracts a sequence of high-level
operations, taken from a set of rules defined in advance.

• Mapping - The synthesized task is mapped into basic operations and executed,
first in a 3D simulated environment and then by the robotic platform.

The robot is controlled by the programming by demonstration (PbD) application in a six
Degree Of Freedom (DOF) Puma 560 manipulator. A 2D vision system recognizes
objects in the real workspace and detects their initial configuration. The whole
application is built on top of a Common Object Request Broker Architecture (CORBA)-
based framework, which interconnects clients and servers while providing transparent
access to the various heterogeneous subsystems [28].

2.3.3.2 Autonomous Self Reconfiguring Robots
A parallel approach to robot autonomy it that of self-reconfiguring robots. Those robots
do not necessarily move but rather change their shape autonomously. An example on this
kind of robots would be the work of Rus and Vona on crystalline robots [29]. Crystalline
robots consist of modules that can aggregate together to form distributed robot systems
[29]. They are equipped with an actuation mechanism, which permits automated shape
metamorphosis. Self-reconfiguring robots consist of a set of identical robotic modules
that can autonomously and dynamically change their aggregate geometric structure to suit
different locomotion, manipulation, and sensing tasks [29]. The goal for assuming
different geometric shapes is to adapt to different environments. Self-reconfiguring
robots are subdivided into two groups: heterogeneous and homogeneous. Heterogeneous

Chapter 2 - Related Works 22

systems consist of different modules and homogeneous systems consist of identical
modules. In this case there is no path planning instead researchers implement local and
global self-reconfiguring planning. Rus and Vona introduce a new approach to
homogeneous self-reconfiguring robots based on a module called Crystalline Atom.
Inspired by muscles and amoebas, this module is actuated by expansion and contraction.
By expanding and contracting the neighbors in a connected structure, an individual
module can be moved in general ways relative to the entire structure [29]. In previous
papers the same authors presented this crystalline module [30] and a robot system
composed of 10 Crystalline Atoms [31]. Their latest work shows that Crystalline Atoms
satisfy sufficient conditions for a self-reconfiguring robot system. Traditional work in
this area involves cellular robotics like Fuduka’s method to coordinate a set of
specialized modules [32]. More work in this area includes a type of locomotion added to
the metamorphosis. Murata et al proposed a system of modules that can achieve planar
motion by walking over one another [33, 34] and moved to 3D motion [35]. The self-
reconfiguring planning in most cases is somewhat similar or inspired from one another
except in the case of Rus and Vona [29] who propose a new algorithm suitable for their
new actuation capabilities.

2.3.3.3 Homing
Homing is a term borrowed from biology, where it is usually used to describe the ability
of various living organisms such as insects, to return to their nest after having traveled a
long distance along a certain path [36]. In robotics, this term is used for the ability of the
robot to its initial (home) position after performing a certain task. The tendency in recent
researches is to move to visual or visual guided homing instead of sensory homing for
reasons that will be discussed in the second part of this section.

2.3.3.3.1 Non-Visual Homing
There have been various efforts of solving the problem of autonomous navigation in
robotics. Robots are usually equipped with non-visual sensors, such as range sensors. The
position of the robot is constantly recomputed with respect to an arbitrary absolute
coordinate system.

A good example of distance sensing is the work of Bizzantino et al. They describe a work
on a large laboratory testbed for space robotics, able to execute hierarchically organized
complex activities, to increase the degree of autonomy of the system [37]. This approach
uses a set of laser distance sensors to localize the true grasping positions. The resulting
system is able to perform several tasks such as closing a drawer without human
intervention and even when the robot is off the expected position by a few centimeters.
Space robots are probably one of the few applications where a high degree of autonomy
is not just desirable but rather mandatory. Indeed even if men wish to do the robot’s
work, space is not a natural environment for them and makes their performance of any
task very difficult. Previous similar attempt (CAT) [38] to solve this problem, especially
in grasping tasks, has been very dependant on the exact position of the object to be

Chapter 2 - Related Works 23

grasped. Errors of just a few millimeters caused failure in grasping and collisions. The
contribution of Bizzantino and al. has been to exploit the information of a set of laser
distance sensors to allow autonomous motion of the arm even if for unexpected reasons
the object to be grasped has been moved of several centimeters. Indeed an important part
of space robotics is SPARCO (SPAce Robot Controller), which provides powerful
motion control instructions. However, as mentioned before, this system does not handle
anomalies (non nominal configurations). If the object to grasp accidentally moves a few
millimeters from the expected position, collision occurs or an operator is needed to
readjust the settings. The new idea is to add a new action called CHECK. The CHECK
action completes all the initial actions in SPARCO by automatically and in real time
learning the actual robot position. This is done through a special configuration and
processing of distance sensors provided in this paper. In this new approach the
manipulated subjects are out of the nominal place of several centimeters, against the few
millimeters of the basic SPARCO release [37].

The previous example focused on grasping motion. Another area of interest in research is
just the mobility platform concept, which can be used for other purposes such as carrying
or dragging objects. In modular robotics that is a very important concept more
specifically in the Imaging Robotics and Intelligent Systems Lab in the Electrical and
computer Engineering Department at the University of Tennessee. Its sensory system is
based on modular brick sensors that have their own sensor, processing, power and
communication units. Hence the mobility platform becomes a mobility brick capable of
standing on its own. The general idea is that the mobility brick should be able to pick up
and carry a of the sensor brick and bring back scans to a passive operator. There are two
components of intelligent mobility: mobility capabilities and mobility control [39]. Those
two components of a mobile platform are self-descriptive; the first refers to its
characteristics and the second to its intelligence. Moore and Flann add the mobility
control is also subdivided in two components:

• First managing the “local dynamic” interactions between the vehicle and the
forces it encounters, intelligent vehicle-level control algorithms must be
developed and implemented to optimally maneuver the vehicle.

• Second, mission mobility and path planning is concerned with “global” motion
planning and navigation and is used to determine the part a vehicle should take to
pass through a given rejoin to achieve its objective.

For easy motion mobility platform usually incorporate omnidirectional wheel, hence the
name Omnidirectional Vehicle (ODV). The Utah State University (USU) has developed a
series of T ODV including the ARC III, a 45-lb small-scale robot [40] and the T2 [41], a
1480-lb robot. ODV are an innovation in mobile robotics as traditional concept use
vehicle steering mechanisms [42, 43]. This kind of vehicle uses skid steering and is
constrained by the direction of travel. The T series are not really omnidirectional as it
takes a finite time to turn a wheel to a new angle. However this type of vehicle is

Chapter 2 - Related Works 24

equipped with smart wheel with three degrees of freedom: height, steering and drive.
This combined with very fast turn rate motor result in a motion that is effectively
omnidirectional. Other researchers have developed ODV concepts that include fewer (3-
4) wheels [40, 44, 45, and 46]. The T series uses six wheels to get more power and tired
surface on the ground. Some researchers have also carefully built and studied the
particular behavior of different robots [47, 48 and 49]. The T series differs from these
previous works in the design of the smart wheel, with the slip ring that allows infinite
rotation of each wheel in either direction [39]. Hence Moore and Flann contribution is the
development of a task-based trajectory planning strategy combined with a first-
principles-derived, model-based controller developed specifically to exploit the mobility
capabilities of their specific robots. This strategy is characterized by a hierarchical task
decomposition approach. At a high level, a knowledge-based planner and a special
algorithm generate the vehicle path as a sequence of basic maneuvers. At the vehicle
level those maneuvers are converted in time-domain trajectories. At the lowest level
linear controllers drive the wheel’s low-level drive motor and steer the angle motor
controllers.

Sun and al. present a modeling and analysis method for the motion planning and control
of mobile robot systems in a hybrid fashion. Robotic systems obtain environmental
information from perceptive sensors and respond to the perceptions to execute the task
through decision and control process [50]. The Hybrid Automata perceptive model and
reference have both discrete and continuous components. The discrete layers enable the
robot system to plan and modify original path through switching. However in the case of
an obstacles for example, the reference is blocked and the robot only resumes its
operation after the obstacles are moved. Previous works on hybrid systems and hybrid
automata [51, 52, and 53] have lead to Brocket’s proposal of a motion description
language for kinetic state machines [54]. In this model machines are the continuous
analog of finite automata. However all the previous approaches use time as a reference
for both the discrete and continuous parts of the system. Sun proposes a new general
approach to sensory homing: instead of time, the control input is the new reference which
is a function of real-time sensory measurements as it is crucial for the reference to keep
evolving and not being blocked by unexpected obstacles. The hybrid perceptive
references enable both the continuous part and the discrete part of the system to deal with
unexpected events [50]. The discrete part keeps the perceptive reference evolving through
modifications of the original information. Both, the discrete and the continuous part are
integrated by the hybrid perceptive motion reference. This system has been implemented
using a Mobile Manipulator-Phantom Joystick teleoperation system consisting of a
Nomadic XR4000 mobile robot, a puma560 robot arm mounted on a mobile robot and a
phantom joystick controller. There are two PCs on board of the mobile robot (platform
and arm) and one for the joystick controller. The robot and the controller communicate
through the Internet.

Chapter 2 - Related Works 25

2.3.3.3.2 Visual Homing
Several approaches to robots autonomy have been inspired by insect physiology. Most of
these works were inspired by the pioneer work of Cartwight and Collet [55] on insect
behavior. According to them insects base their navigation on their memory of certain
landmarks locations. More work (Srinivasan et al. and Lambrinos et al.) [56, 57] later
reinforces the idea that insect navigation is based on specific landmarks and uses it for
robots navigation. These works use the fact that some insects would actually make
detours in their way to a target position just to pass by familiar locations. Works by
Lambrinos, Franz, Moller and Cassinis et al. [58, 59, 60, and 61] on autonomous robot
navigation exploits interesting findings about insects’ behavior. First insects use vision to
travel and they use very large fields of view. Second, they use certain parts of this stored
visual data to localize themselves. Finally and very interestingly 3D structure is not a
prerequisite for their navigation. Most of these works especially exploit the benefits of
the wide field of view. Argyros, Bekris and Orphanoudakis [36] take those facts into
consideration and propose a new approach to homing that exploits omni-directional
vision. Their method is based on a panoramic camera. It uses the fact that there are at
least three correspondence features between two panoramic views taken from two
different positions. Then, a control mechanism helps the robot move from one frame to
another. More explicitly when homing is activated the robot starts tracking specific
features of its environment (corners). The robot selects intermediate target positions (IPs)
on its original path. These IPs are visited sequentially as the robot travels toward its final
destination. A tracking mechanism allows the robot to compare images along its path. It
only needs to match 3 corners in order to move from one position to the next. This
homing scheme is based on the extraction of low-level sensory information, namely the
bearing angles of corners. Argyros et al. [36] implemented this method on a robotic
platform and the home position is reached with an accuracy of a few millimeters after a
journey of several meters. This approach could be qualified as homing as a solution for
global navigation. Homing has also been proposed as a solution for local navigation
problems [62]. Koku et al. [62] point out that several homing approaches methods usually
use egocentric navigation as a part of their homing algorithms [63] and propose a homing
method based solely on visual data. The proposed method is called Egocentric
Navigation or ENav. Other methods used egocentric navigation in addition to some
absolute information including the work of Gaussier, Pinette, Moller and Dai [64, 65, 66,
and 67]. ENav is based only on egocentric navigation. The robot has a perception of a
target position and a similar perception of the position where it currently is. It then scans
the view for object it recognizes and creates egocentric representation for them. The
comparison between the two helps direct it towards the right destination. This
information is referred to as the Sensory Egosphere (SES). A similar representation
called the Landmark Egosphere (LES) describes the target position. The robot is given
the LES and frequently creates the SES. This mechanism is usually done through
egocentric representation where landmarks are indexed based on their angular separation
with each other. A heading vector h computed by this method points the robot toward the
target point. The robot generates and updates the h vector and starts moving towards the

Chapter 2 - Related Works 26

target point until the SES and the LES are close enough to each other. The results
obtained from this method are beyond satisfactory as the error in reaching the destination
does not exceed the size of the robot. The particularity of this method is that is eliminates
the need for absolute landmarks and is based only on perception. Since it does not
involve mapping, the heading vector h does not have to point toward the final direction, it
just has to get a robot a little closer to the target point.

2.4 Autonomous Methods Evaluation

The research on autonomous robots is broad. As those research areas apply to various
different topics, they do not always compare to each other. Nor do they always complete
each other but rather they apply to different circumstances. This section will try to
categorize the methods to implement autonomy presented in section 3. It will point out
the ways and the circumstances where a certain method is preferable over another. In
other words it will present the applications and the limitations of those methods. Then it
will attempt to explain the trade off between teleoperation and autonomy. Finally this
analysis will propose an alternative to choosing, which is the purpose of this work.

2.4.1 Task Oriented Autonomy
Methods like Tagging and Programming by demonstration are mostly task oriented.
Some behavior-based methods may have commands such as “Go to the blue block”,
however the focus resides in recognizing and reaching the block rather than path planning
and obstacle avoidance. It is common to see behavior-based systems as incompatible with
autonomous operation. Hence research in this area is quite limited. Yet Horswill [8]
points out that it is not only compatible but also implementable. His project shows that it
is possible to program a robot to respond to users’ simple voice commands and perform
different tasks. The main reason why this method is neglected is the difficulty in
programming behavior-based systems. While reasoning systems use very advanced
languages, compilers and development environments, behavior-based system are still
written in simple languages such as C++. Programmers have to write codes in both
languages and then couple them, which is painful and error-prone, hence not practical.
Some equivalence between the two languages is needed to make the programming and
debugging easier and more efficient. Assuming such protocol is created, behavior-based
systems would still need to be couple with online-learning methods to be very useful.
Indeed they are task-oriented and so far they mostly assume a database of behaviors
already stored in the robot’s memory. This is when PbD (Programming by
Demonstration) becomes handy. This method could be used to fill up the database in the
tagging systems. Programming by demonstration goes beyond filling databases in robotic
systems. It does so simply by demonstrating a task to the robot. Any user can later
demonstrate rather complicated task for the robot to reproduce. Of course PbD is still
being studied and still needs improvements. The initial work on PbD often required
special hardware - not available for everyone - such as the dataglove with 3D tracker
used in the University of Parma, Italy [12]. While researchers are going towards visual

Chapter 2 - Related Works 27

tracking, other problems with this method involve singularity of trajectory and the
complexity of the underlying recognition and interpretation of movements. Another
problem with this method is that often the task has to be demonstrated several times
before the robot can execute it, which is not always possible in real time.

Both Behavior-based and PbD robots aim at task-oriented applications. Both methods
want to alleviate the responsibility of the user. In real-time end users with little or no
specific expertise might be required to program robot tasks. In fact most of the research
in humanoid robot aims at making robots a part of everyday human lives. Whether it is to
simply “fire” a behavior by voice commands for example or program a robot by simply
demonstrating a task, the goal is to produce a robot that is easy to use. The problem with
behavior-based methods as mentioned before is that the programming is very tedious and
does not yet incorporate online learning. So the user only has fixed preprogrammed and
specific tasks to execute. On the other hand, programming by demonstration allows more
flexible tasks as the operator simply demonstrates the chores to the robot. This method
does not only simplify the operator’s job but also the programmer’s. However in this
case, sophisticated hardware is generally required and as this method is still improving, it
generally takes several demonstrations to execute a simple task.

2.4.2 Mobile Autonomous Robots
The quest for a fully autonomous system has been one of the ultimate scientific goal in
the robotics community. However, most of the time, due to the limitation of the current
recognition and decision making technology the need for human intervention or
supervision is still essential in the unstructured real world. Teleautonomy and homing are
both going around this problem in their own distinct ways.

Teleautonomy attributes the robot with partial autonomy to ease the burden on the
operator. Although the operator may need expertise to manipulate the robot, the goal of
teleoperation is to make the operation as intuitive as possible. This method aims at
allowing the operator to concentrate on the core of the task being performed while
allowing the robot to autonomously maintain its balance and existence. By integrating the
operator’s intuition and the robot’s autonomy, telerobotics covers a very large range or
application in real-time and in changing unstructured environments. Homing also avoids
the task-oriented aspect of a number of autonomous systems by focusing on navigation
problems. In this case autonomous systems process perceptions (the environmental
information obtained from onboard sensors) and respond to the perceptions by changing
the original path planning and control schemes. Homing is subdivided in two categories,
sensory and qualitative homing. Sensory homing is based on the use of lasers or range
sensors to acquire 3D information and encoding information necessary to reconstruct or
map the environment. This method is then very concerned with sensor accuracy and
structure of the environment to ensure a collision free path for the robot. Errors and most
importantly cumulative errors in the sensing process can cause damages to the robot and
make this method quite unreliable over time. Indeed sensors can give different readings

Chapter 2 - Related Works 28

depending on location for example and the robot can easily get confused. Moreover in
this case, localization is a prerequisite of navigation since the use of a map suggests that
the robot should know where objects are with respect to itself. Certain robots do not
cover distances long enough to require maps. All those issues lead to more research as
well as to another homing method often referred to as visual homing. Indeed visual
homing eliminates the need for reliable sensors and uses vision which is much more
informative. This method provides the information “where is what” [13] which can
directly be used by the robot. This approach is then range-free. It is also map-free and
does not perform localization algorithms. The comparison of adjacent frames just
provides the robot with a vector to follow towards a target position.

Even though telerobotics and homing do not directly compare, they approach the
autonomous systems in similar ways. Neither of those two methods is focusing on fully
autonomous tasks performance. Telerobotics focuses on providing the robot with a
degree of autonomy while being operated. Homing focuses on providing the robot with
autonomy before or after performing a task, so that it can safely return or reach a home
position. It is easy to imagine how both methods could actually complete each other.
Assuming the robot autonomously knows where to go before and after a specific task, it
could safely reach those locations and wait for instructions. Then the operator could
perform that task without worrying about balancing or stabilizing the robot no matter
how complex the task is. Both methods have their advantages and drawbacks. Both
methods have a common advantage. They perform very well in real-time. On the one
hand, while telerobotics eases the burden on the operator but still requires his intervention
and supervision, homing does not. On the other hand while teleoperated systems can
perform tedious, complicated and sometimes dangerous tasks, homing focuses solely on
navigation.

2.4.3 Tradeoff between Teleoperation and Autonomy
Robotic systems range from fully teleoperated to fully autonomous. While a number of
scientists try to solve specific problems along this wide spectrum of systems, others
analyze the trade off in going from one to another. No system is better than another one
in terms of human dependency; they simply apply to different circumstances and various
degrees of complexity. While research is going forward in autonomous systems, studies
on teleoperated robots are more mature. The intuitive method to deal with avoiding
obstacles, dealing with communications delays, reacting to unexpected event and other
issues is to have human supervision. Teleautonomy is the next step in supervisory
control. While the operator only focuses on a specific task, the robot has a few basic self-
maintaining functions. One step further, fully autonomous systems do not require human
input. However along this progress the operational level of complexity has decreased.
Jacob W. Crandall and Michael A. Goodrich continue working on adjustable autonomy
[1] and argue [2] that in certain circumstances such as search and rescue or hazardous
waste removal, human operators are desirable. Unfortunately there is a limit to the
number of robot one man can efficiently handle. To analyze this issue, they present a

Chapter 2 - Related Works 29

theoretical framework for understanding how the expected performance of a particular
interaction scheme changes as the robots are neglected and as world complexity increases
[2]. Their way of doing do is to create a framework for characterizing the efficiency of
human robot interaction. In other word, they prove that the human robot performance
degrades as the operator neglects the robots, as the information and control scheme
deteriorate and as the complexity of the world increases. Their ultimate goal is to use this
study to better design control schemes to deal with those issues. Myra Wilson and Mark
Neal also examine the tradeoff between the increasing design and implementation effort
necessary as the system moves through the continuum from teleoperated to autonomous
and the amount of human intervention required [3]. Telerobotics describes system where
despite remote human supervision the robot has a degree of local autonomy. This case of
study uses a human shepherd herding a robotic sheep using robotic dogs. The behavior of
the sheepdogs varies from teleoperated to highly autonomous. This study reinforces a few
ideas. It is difficult for the operator to predict at distance the best behavior to initiate
locally (at the robot end) until the system is well understood. The appropriate behavior
can drastically ease the burden on the operator. However, engineering effort and
complexity in the system can easily have a negative impact on the systems requiring
more effort for implementation and more effort from the operator. This study confirms
the intuition that, complete automation is a time consuming and complex engineering
exercise [3]. Scientist generally agree that the reduction in operator intervention will only
decrease at the cost of an increasing engineering effort to fully understand the systems
itself and the real environment in which the robot interacts.

2.4.4 New Architecture for Teleoperated and Autonomous Unmanned
Systems: JAUS

In recent attempts to improve the research and applications of autonomous robots, the
Office of the Secretary of Defense Joint Robotic Program has developed a common,
domain level architecture into consumer, military and industrial unmanned systems.
More and more academic, military and commercial systems are adopting this Joint
Architecture for Unmanned Systems (JAUS). The Spartan Advanced Technology
Concept Demonstration SPAWAR Systems Center, San Diego developed a series of new
JAUS messages, including radar data transport and dynamic (on-route) re-configuration
of the waypoint route [68]. The Department of Mechanical and Aerospace Engineering of
the University of Florida at Gainesville participated in the DARPA Grand Challenge that
was held in March 2004. The system architecture of their system is also based on JAUS
[69]. As robotics is heading towards modularity, more and more products are aiming to
be JAUS compliant. Indeed JAUS promotes technology reuse and insertion. It defines a
set of reusable “components” and their interfaces [70]. Modularity is desirable for two
main reasons. First, if components are easily portable and attachable to a certain system,
whenever a component breaks down it is easily replaceable. It does not impact the whole
system and when it is fixed it is easily reusable by the same or another system. Second, as
technology advances, new parts can easily replace old ones or be inserted in addition to
previous components, as the architecture in place already supports more advanced

Chapter 2 - Related Works 30

capabilities [70]. Hence an implied advantage of this new architecture is simple
interoperability between different systems provided they all are JAUS compliant. In other
words provided they exchange the corresponding messages. To ensure that a system can
become JAUS compliant, the architecture cannot be dependant on a particular software or
hardware technologies. It is purely and simply based on messages exchanges between
components. As research on teleoperated and especially autonomous systems presents
numerous challenges, JAUS is a practical way to try and eliminate problems, such as
system dependencies.

Chapter 3 – Migration to Autonomy 31

3 Migration to Autonomy

The broad spectrum of robotic system expands from teleoperation to fully autonomous
robots. The ultimate goal of this work is to avoid parts of the restriction involved with
belonging to either end of this range by producing a three state machine able to be either
fully teleoperated or fully autonomous. The intermediate state being a computer
interfaced teleoperation. This state is slightly more flexible than the proprietary
teleoperation in the sense that it can be combined with modular sensor brick interfaces.
The self-ruling state goes one step further by using those sensor bricks to acquire a
degree of autonomy.

3.1 Original System

The transition starts with the original robust commercial system. The Original systems
targeted by this work are robust systems used mainly during delicate, potentially perilous
circumstances such as explosive or hazardous waste disposal. Commercial and military
teleoperated robots are being produced to keep men out of harm’s way during such
dangerous missions. Teleoperation implies that the system absolutely require human
input to function. A technician remotely maneuvers the robot using an Operator Control
Unit (OCU). This unit is usually easily portable or wearable. It can communicate via
cable or wirelessly. Figure 3 shows the wearable control panel for the ANDROS Mark
VA. In this case the control panel consists mainly of mechanical toggle switches and
potentiometers. The OCU takes the user input and transmits the data to the robot over a
serial RS-232 line. The switches allow for simultaneous control of multiple functions –
The toggle switch signals are independent until they are multiplexed and sent to the robot
in a serial data stream [71]. The software is simple, robust and processes data quickly.
This control system is very efficient. The emphasis is not on being fancy and
sophisticated but rather on building a reliable elementary system that works. This is the
general motivation for this type of robots control units. The mobile platform is similarly
very robustly built. Figure 4 shows the Remotec ANDROS Mark VA. Hence on the one
hand, the system can be trusted to survive difficult situation. However on the other hand
the operation of this robot should not be taken lightly either. Before driving the robot, one
usually has to go through a special training. An untrained operator cannot operate this
heavy piece of machinery. For example when the communication is not wireless, the
operator has to constantly avoid running into the fiber optic cable. The cable is very
resistant yet getting caught into the robot’s track can definitely damage it.

Chapter 3 – Migration to Autonomy 32

Figure 3: This figure show the original mechanical control panel for Remotec ANDROS
Mark VA.

Chapter 3 – Migration to Autonomy 33

Figure 4: This figure is a photograph of the Remotec ANDROS Mark VA.

Chapter 3 – Migration to Autonomy 34

Also while driving the robot while it is in line of sight is quite possible for a first time
user, this is not the case when the robot is in another room or simply when the operator’s
view of the robot is obstructed. In general an experienced operator remains at a safe
standoff distance either because the scene is hazardous or because it is simply
inaccessible (caves, tunnels and collapse structures). Meanwhile, the robot relays real-
time video, audio and occasionally other sensors’ readings. The advantages of such
systems are clearly apparent as they allow the operator to identify threats (mines, bombs,
enemy…) and to prepare before being exposed to it. Examples of such robots are the
ANDROS from Remotec, TALON produced by Foster Miller and the PackBot series
manufactured by iRobot. Naturally those robots are particularly well-built systems. They
can be operated in rough terrains and withstand minor explosions (See Figure 5). The
ANDROS can climb up to 37 degree-stairs while the PackBot scout is designed to
survive a 2 meter drop onto concrete [72]. Such features only begin to illustrate the
survivability of typical reconnaissance, surveillance and Explosive Ordnance Disposal
(EOD) robots. Standard accessories include driving, manipulating and surveillance
cameras. Global Position System (GPS) is also occasionally available. Those types of
sensors are basic for these robots and do not restrict their domain of application. That is
why, to avoid narrowing their clientele, manufacturers usually do not attach other more
specific operational requirements. Instead, they provide the user with additional power
outlet and Accessory Interface Mount (one or two). The interface for those extra sensors
is not embedded in the original system. The functionality of supplementary accessory has
to be simple. The user could add weapons as an accessory to the ANDROS for example;
the corresponding switch is simply “Fire Weapon”. More complicated accessory and
interfaces have to be specially ordered and integrated into the basic design. Teleoperated
systems rarely include degrees of autonomy. If they incorporate autonomous function at
all, it is usually a self-status checking, such as checking the charge of the battery or the
status of the wireless communication or other similar self-maintenance functions.

To summarize the characteristics of typical inspection teleoperated systems, their control
unit and the actual robots are very robust. They absolutely require the supervision and
intervention of an operator to function. They do not normally include various
sophisticated sensors neither do they usually provide involved autonomous functions.
They are mainly designed for real time hazardous missions providing the operator with
accurate immediate information about suspicious scenes and objects. Since the robot has
limited or no local intelligence a clumsy operator can lead to disasters. In addition, even
though there are different types of such robots being produced in the industry, there is no
interoperability between systems manufactured in different companies. Each system is
constructed using its own proprietary control system that is not directly translatable to
other system; payloads and manipulation appendages are generally not interchangeable
[5]. These hardware-based systems are also each difficult to upgrade. When there is a
situation, only technicians with complete knowledge of the robots’ engineering can debug
the problem. This process is time and labor consuming. Moreover as new models are
created previous versions become obsolete.

Chapter 3 – Migration to Autonomy 35

Figure 5: This diagram shows examples of teleoperated robots and their basic structure.

Original
OCU

Robot

http://www.irobot.com/

http://www.foster-miller.com/ http://www.remotec-andros.com/

Chapter 3 – Migration to Autonomy 36

3.2 Reverse Engineering

One of the goals of this project is to bring a commercial robust system from being
hardware-based to software-based without major changes to the original robot. The OCU
has to be easily reconnected to the robot when desirable. In this specific example, the
ANDROS Mark VA control unit is still entirely functional. No alterations were made to
the robot or to its OCU. Instead the original control panel was analyzed and decoded in
details in order to later mimic the control system from a regular PC.

The original OCU for a commercial robot is like a black box for people who are
unfamiliar to the manufacturers’ design. Moreover assuming an engineer has special
knowledge about a specific design (schematic, circuit design, source code…), this
knowledge is not directly applicable to another robot. Therefore the best way to analyze
the native control panel is to determine the output signals by observation. The work
described in the Implementation section primarily applies to the Remotec ANDROS
Mark VA. However similar process should apply to a comparable robot. Depending on
the particular system used the original OCU can more or less easy to be analyzed,
mapped and decrypted.

The process of capturing and retransmitting analog signals to a robot can be relatively
involved and may vary with different systems. There may be impedance matching effects
between OCU and robot. Impedance matching is the special connection between an
additional impedance to an existing one in order to accomplish a specific effect, usually
maximize a performance. It is recognized that to maximize the output power from a
source to a load the impedance of the load has to be the conjugate of that of the source. If
there is a similar specific association in the original system, replacing the OCU by a
computer may not be as trivial. Different devices are not always compatible with each
other in terms of voltages, frequency, noise tolerance etc. Even details such as the length
of a cable can make a difference in the accuracy of signals transmission. However there
are ways to solve this problem. There are standard electronic protocols that enable
different systems to “talk” to each other. The first important step in identifying the right
transition is to methodically and systematically characterize the native controller.
Visualizing and measuring the voltage and current levels helps settings targets for what
the new system needs to reproduce or in other words what the robot is expecting from the
new control box. Once the conversion is known extra hardware or software interfaces
can help build the gap between the proprietary OCU and the new control computer.
Those changes may happen at the peripheries of the original system or in the
programming they are not considered to be major changes in the original system. The
engineering inside the control panel and the robot are to remain unchanged and the robot
must remain operable by its original OCU.

Certain teleoperated systems are already using regular processors for controls, in which
case sending commands from a computer interface is clearly achievable. It is still

Chapter 3 – Migration to Autonomy 37

desirable and necessary to reverse engineer the control panel because even in those cases,
the control units and the mobile platforms are not interchangeable between different
systems. This step is en essential step in order to create an independent unit capable of
connecting with different additional sensor and mobility bricks.

3.3 Computer Interface Teleoperation

Reverse engineering the commercial system is important in order implement a computer-
interfaced teleoperation. This step allows establishing a connection between the original
system and sensors that were not initially built in without major hardware changes.
Through certain of those modular sensors, the robot can acquire autonomy. Although that
is the main goal of this work, the computer interface along with the sensor and mobility
bricks significantly expands the functionality of the original system. Indeed while
keeping the robustness of the industrial robot it provides the operator with additional
information about the scene to be inspected. The user drives the robot into desired places,
gets information from the sensors and reacts consequently. Each system is quasi-
independent, meaning each brick can be operated on its own or join efforts with other
systems to complete a particular mission or inspection. The Imaging Robotics and
Intelligent Systems laboratory has formulated the Brick Concept. Hence this section will
begin by presenting the sensor brick notion followed by the mobility brick idea and
finally the main OCU.

3.3.1 Sensor Brick
Modularity is an important piece of modern robotics. The brick concept follows this new
trend in its definition and its composition. It is an independent sensor unit. Considering
an under-vehicle robot for example, different bricks can easily be placed on, removed
from or combined together on the mobile platform at the operator’s will. If one brick
fails, the others are not affected. On the one hand the performance of one brick does not
depend on that of another one; on the other hand components of different bricks are
easily replaceable and interchangeable in the case of failure of a component. Indeed the
brick design includes four elementary blocks:

• Power,
• Acquisition (Sensor),
• Intelligent Systems and Computing (Pre-Processing), and
• Communication.

The sensing process starts with the Sensor block, which acquires the data. The pre-
processing block then processes this information. This step may involve low-level
processing of the acquired raw data such as noise removal or image sharpening for visual
data for example. The Communication block then relays the information to the operator
and the Power block fuels the whole system. Figure 6 shows an iconic representation of
the brick. Three bricks have been in their entirety in the IRIS lab, a thermal brick, a visual
brick and a range (laser) brick. (See Figure 7)

Chapter 3 – Migration to Autonomy 38

Figure 6: This iconic representation of the sensor brick design shows the different blocks
that compose it.

Communication

Power

Sensor

Pre-processing

Chapter 3 – Migration to Autonomy 39

Front View

Side View

Visual Brick

Thermal Brick

Range Brick

Figure 7: These pictures show sensor bricks implemented at the IRIS laboratory [73].

Chapter 3 – Migration to Autonomy 40

3.3.2 Mobility Brick
The mobility brick is defined similarly to the sensor brick. The acquisition block is
simply replaced by a mobility block. The brick can be seen as a mobile platform. It is a
robot which primary function is teleoperated or autonomous navigation. Several of those
robots already have on-board sensors and encoders. The emphasis in the mobility brick
concept is that the robot’s main purpose is to drive. Other subsystems such as sensor and
manipulator may later be added to it to increase its capabilities. It can be compared to the
JAUS primitive driver. Its functionality only includes basic driving and related mobility
functions. An example for the Remotec ANDROS would be lifting and lowering the
tracks on the robot. The Mobility brick can be independently operated using the
communication and pre-processing blocks to access it. The user has two options. He or
she can either directly send commands to the robot from a computer; or simply remote
login to the brick and drive it from the on-board computer. Figure 8 shows the structure
of the mobility brick based on the sensor brick design.

3.3.3 Main Control Unit
The operators control the sensor and mobility bricks from a central computer. The sensor
bricks transmit pre-processed information to the remote located central control computer.
The human operators monitor the inspection process, compare the images or data from
the various sensor modalities, and gather information to make future decisions with
respect to the system’s state (what sensors to use next, what should be the next sensor, the
order of use of the sensors, when to stop the process, etc) [5]. This is done either by
logging in remotely to the local computer on the brick or by communicating with the
brick using the appropriate Graphical User Interface (GUI). At the moment, each
mobility brick and sensor brick provide the user with a different GUI. As mobility is
being integrated in the brick concept, the system is moving towards incorporating several
sensor and robot information into the same interface. Having a unique GUI is a
convenience not a requirement. Indeed the fact that each brick provides the user with a
control system allows it to be used by different platforms or vice versa. There can be as
many monitoring windows as there are bricks used during on inspection including the
mobility brick.

The control unit can be compared to the native control panel of the commercial robot as it
relays real-time information to the operators. The technicians then analyze the data and
act subsequently. The main advantage here is the easy access to more sensors than in the
original system. Moreover in the case of a hazardous scene inspection for example,
instead of sending a robot and waiting for its return, the operators can directly determine
the nature of the threat and react consequently.

The ideal situation for the control unit would be to broadcast messages to all bricks using
a special message header. Each brick should have the ability to decode those messages

Chapter 3 – Migration to Autonomy 41

Sensor Brick

Mobility Brick

Figure 8: This image describes the mobility brick following the sensor brick design.

Communication

Power

Pre-processing

Mobility

Communication

Power

Sensor

Pre-processing

Chapter 3 – Migration to Autonomy 42

and decides its source and destination as well as its desired effect when applicable. The
sensor brick are passive sensors. Their sole purpose is to acquire data and make it
available for the user. The robot may carry the sensor during an entire mission, or place
them at specific places and leave them to be picked up later on. The sensors may already
have been placed overhead or in the corner of the room. Again, the modularity and the
wireless connection between subsystems allow very flexible applications and scenarios.
Meanwhile the central computer is at the highest level of the control structure, overseeing
and organizing the overall operation. As the number of bricks increases and the level of
autonomy increases, the control scheme gets more involved. In this initial state however,
the user logs into the passive bricks for display of the sensor data. Similarly the operator
can log into the mobility brick or control it from the main control unit. The greater
picture is to have an army or sensor and mobility bricks reporting to a central OCU.
Figure 9 illustrates this idea.

3.4 Computer Integration

Industries focusing on safety and hazardous tasks do not produce robots with advanced
autonomous functions and sophisticated built-in sensors. As previously discussed, there
are still serious challenges in building a fully autonomous, efficient and practical robot.
Moreover a majority of tasks in this particular domain are potentially harmful for human
being. Hence, it would be too risky to entirely give the decision making to the unmanned
system. The operator is still required at least to supervise the robot’s actions. Those are
two main reasons why commercial safety robots are generally not autonomous. Another
reason why they do not incorporate more sensors is that it narrows down their clientele.
All the clients can use a teleoperated robot and manipulate it to meet certain requirements
and needs. Not all users however need a chemical sensor on an autonomous robot or a
nuclear sensor for example. Since it is not nor cost-efficient neither time efficient to
produce enough robots for different areas of applications, industries produce basic and
robust teleoperated robot. In acquiring autonomy, the goal is to preserve the robustness
and durability of those systems by transforming them into mobility platforms. In other
words they become mobility bricks that can easily be combined with sensor bricks. The
wireless communication between bricks allows the transition from teleoperation to
autonomy to be simple and without major hardware changes to the original systems.
Indeed the brick can be stacked up on or carried by the robot or not even on the robot
itself. While the Ethernet connection allows the data to flow between the different
subsystems, the computer integration insures that each brick is able to analyze and
interpret the data and react accordingly.

Chapter 3 – Migration to Autonomy 43

Figure 9: This figure shows a central computer, robots and bricks communicating
wirelessly.

Chapter 3 – Migration to Autonomy 44

The technician can either use the teleoperation or when the complexity of the task
decreases he or she can delegate it to the robot. The mobility brick then takes the input
from the operator, decides which brick to use and what to do next. There are several ways
to achieve autonomy, unmanned system typically use encoders, lasers or visual sensors to
“feel” their environment. By using sensor bricks, the options are not limited, different
algorithms can be used on the same platform to produce different autonomous functions.
Visual homing can be performed using the visual brick; distance-based autonomy can be
achieved using the range sensor. A scouting mission requiring that the robot reaches a
target takes a visual scan and returns to its original position while avoiding obstacles
along its path would require at least the range and the visual bricks. This scenario can be
seen on Figure 10. While several methods to achieve autonomy can be implemented on
the robot using the appropriate sensor bricks, the transformed robot can be use for
autonomous data collection. For example the task may be as simple as going around a
room recording data and transmitting it back to the operating station in real time. The
unmanned system simply follows its path carrying a nuclear, chemical or biological
sensor. During autonomous navigation or data collection, the operator has the authority to
stop the process at any time. This is a safety measure; the operator has to be able to
interrupt the robot in the case that an anomaly occurs.

Chapter 3 – Migration to Autonomy 45

range visual

obstacle

target

Range Visual

Obstacle

Target

Mobility

range visual

obstacle

target

Range Visual

Obstacle

Target

Mobility

Figure 10: A robot can be sent on a scouting mission equipped with one or more sensor
bricks.

Chapter 4 – Implementation 46

4 Implementation

While Chapter 3 paints a general picture of this work, Chapter 4 will go into details in the
implementation of the proposed system. It will start by preliminary work on the
ANDROS Mark VA and describe the reverse engineering process as well as the
migration toward mobility brick and autonomous system.

4.1 Preliminary Work on the ANDROS Mark VA

In the fall of 2003 a senior design group in Electrical and Computer Engineering at the
University of Tennessee started reverse engineering this particular system. This Basic
process includes two main steps: Capturing the signals from the Native controller and
storing those strings inside a C++ program.

4.1.1 Previous Work on the ANDROS
The fall 2003 team aimed at replacing the original OCU of the ANDROS by a software-
based control system. Without specific knowledge about the engineering of the robot, the
group had to mimic the control signals from a touch-screen. The first step was to
intercept the signals coming out of the control box. The OCU transmits RS-232 signals to
the robot. To capture those signals the team opted for a program named KERMIT 95.
Kermit 95 (K95) is an extensible file transfer protocol first developed at Columbia
University in New York City in 1981 for transferring text and binary files without errors
between diverse types of computers [71]. Among the different types of connections that
this program can establish one of particular interest for this project were the serial port
connections. This feature allows establishing an RS-232 line between the PC and the
OCU. The control panel is powered separately from the robot, and connected to a PC
where a Kermit terminal is running. The user indicates the COM port and the baud rate
and the program automatically reads the serial data. The KERMIT software allows the
user to save the output in a text file. Hence the user can record and later analyze different
signals corresponding to as many toggle switches. Different control character strings
represented the different commands. The programmer then stores the strings into a
Paradigm C++ Lite program, which the TERN LCD touch-screen provides as a software
package. This software is simply a C++ package with various additional predefined
functions to facilitate the use of the touch-screen. The data was transmitted from the
touch screen to the ANDROS using MAXSTREAM wireless Stand Alone Radio
Modems. The units were formatted to transmit RS-232 data at a 1200-baud rate.

 Though parts of the logic behind the strings were understood, at the time the program
could not generate the strings. Instead the commands were stored unchanged from the
OCU. This was a considerable limitation since they were recorded under a specific set of
settings: Light OFF, Arm Speed HIGH and Vehicle Speed HIGH. While the characters

Chapter 4 – Implementation 47

changing for different functions and different settings were quickly and easily
identifiable, without the corresponding modified check sum character, the string was
incorrect. Therefore the touch-screen only sent fixed strings to the robot. Each user press
of a button sent one string. This method turned out to be slightly unpractical since to
generate a smooth motion the user had to keep clicking on the button at a fast pace.
Nevertheless this project established the first and crucial step towards a more
sophisticated software-based control system.

4.1.2 Moving towards a PC-Based OCU
The next step was to enhance the Senior Design project. Indeed in order to say that the
original control box has really successfully been replaced, the new system would have to
be closer to a “clone” of the analog box, which had not yet been done. The touch-screen
button did not reproduce the toggle switch effects of the native controller. The code did
not generate the string commands. Instead it copied and pasted a limited set of
commands. Before rectifying those two main dissimilarities, a new controller was
identified as a better fit for a software-based controller. Indeed the software used in the
touch screen was only applicable when using that specific touch-screen. It was not
portable to another touch screen or a computer. Moving toward a PC would keep the
advantages of the touch-screen and increase the portability of the program while
establishing the ground for later acquiring a degree of autonomy. Those advantages are
underlined below.

• In moving to PC the user does not loose the descriptive aspect of having a screen
with images and help menus. Instead this aspect is emphasized, as more and more
people are familiar with computer.

• A C++ program provides more flexibility in programming and allows feasible

transition between RS-232 to 802.11 g wireless system for example. This
transition allows the incorporation of this system in existing networks. (Modular
bricks in the IRIS lab)

• Ultimately the goal is to give ANDROS a degree of autonomy. This would later

require having a certain control unit on board. Hence moving to a computer-based
control system allows installing a local intelligent system while controlling the
robot from a remotely located second computer.

The change in devices starts with a stand-alone software such as C++. Microsoft
Foundation Classes, or MFC, is a Microsoft library that wraps portions of the Windows
API in C++ classes, forming an application framework. Classes are defined for several of
the handle-managed Windows objects and also for predefined windows and common
controls. This software eases the burden on the programmer by providing great features
such as very easy ways to create dialog boxes. MFC sorts the classes and variables,
creates header and source files etc. It helps programmer focus on the functions they are

Chapter 4 – Implementation 48

trying to implement rather than on organizing the environment and properly linking their
files and libraries. The code from the touch screen was not directly transferable to the
MFC project, however adding classes that allow the computer to open, and write to the
serial port was fairly simple in this new programming environment. The process of
capturing the strings and storing them into a new Graphical User Interface is illustrated
on Figure 11.

4.1.3 Enhanced Reverse Engineering
As shown in Figure 11, the reverse engineering process begins by breaking the original
connection from the robot to its controller and connecting the controller to a regular PC
instead. To improve the former work on the ANDROS, this work starts by reproducing
the Kermit experiment and capturing new strings.

4.1.3.1 The Kermit 95 Experiment
This experiment starts by establishing a communication between a regular PC and the
control box using Kermit. Once the send/receive cables were identified on the control
box, the PC and the box were connected using an RS232 cable. Figure 12 illustrates this
setup. The signals to be sent to the robot can be captured and read on the screen of the
computer through a Kermit terminal. The K95 software came with instructions on how to
read and capture the screen of signals from different sources such as selecting the serial
port and setting the speed of the exchanges. On the “session” has started, it is possible to
capture the Kermit Terminal content in a text file as illustrated in Figure 13. As shown in
this figure, the control box loops through as 21-character string constantly. Different
characters change depending on the selections made by the user. For example the
highlighted string in Figure 2-2 corresponds to the control command Torso Left. As the
user presses Torso Right, the 10th character changes from a 4 to an 8.

Example:

0A000C2004908C82C0Ëññ -- Torso Left
0A000C2008908C82C0Ïññ-- Torso Right

Using those exact strings and saving them into a C++ program causes the robot to react.
The first attempts to control the robot used a copy and past method and used unchanged
captured strings. While the robot was controllable from a regular computer equipped with
Visual Studio .NET application, the functionality in the first version of the GUI was still
the same as in the touch screen. There were two limitations in the previous versions of
this GUI. The first one was due to the special ASCII character at the end of each strings,
the second was in the functionality of the program itself.

Chapter 4 – Implementation 49

Figure 11: This diagram illustrates the process of extracting data from the native
controller and storing it into a C++ program.

Figure 12: This picture shows the set up for capturing the strings.

Robot

 PC
 MFC

Program RS-232 line

 PC

KERMIT RS-232 line

Original

OCU

Chapter 4 – Implementation 50

Figure 13: This window is an example of a saved Kermit session.

Chapter 4 – Implementation 51

4.1.3.2 The character sum
Even though only specific characters changed in the string for different body motions,
driving motions or settings options, whole new strings had to be sent for different
commands. Each character could not be independently changed since the original
program was unable to predict the appropriate corresponding character sum at the end of
the string.

The first attempt to solve this problem was to have a database of all the basic commands
under different set of settings. Even though memory is not an issue with the storage
capacity of computers nowadays, this method affects the flow of the program and
decreases its efficiency. Moreover it increases the time that one has to spend acquiring
data from the original system and the number of strings they are able to send back to the
robot. To be more specific, assuming a total of 22 basic body and driving motion
commands and assuming only 3 settings variables; if we reduce those variable to take just
2 values (HIGH and LOW or ON and OFF) this process already implies capturing (22 *
23) = 176 strings. Allowing those settings variables to take more values or increasing
their number makes this number go up exponentially. Again with the space and
processing speed available in computers now, that may not be a major problem however
in terms of data acquisition and programming having a database can easily become
tedious, time consuming and error prone.

A closer look to the ASCII character revealed that it was indeed a check sum. Without
the appropriate check sum, the robot does not respond to the command. This mechanism
constantly checks the validity of the commands before sending them to the robot. The
sum of the 18 previous characters after the separators (ññ) is compared to this last
character before sending the packet to the robot. The check sum is not a hexadecimal
accumulation of the other characters but the sum of their ASCII codes. Table 1 show the
ASCII codes for the letters and numbers that compose the first 18 characters of a string.

Table 1: The first 18 characters of a string each correspond to an ASCCI code.

Character ASCII Value Character ASCII Value
0 48 8 56
1 49 9 57
2 50 A 65
3 51 B 66
4 52 C 67
5 53 D 68
6 54 E 69
7 55 F 70

Chapter 4 – Implementation 52

Example using Table 1:

0A000C2008908C82C0Ïññ-- Torso Right

To generate the command Torso right from a constant signal, the programmer only needs
to change the 10th character of the string and then compute the sum:

S = 48 + 66 + 3*48 + 67 + 2*48 + 56 + 57 + 48 + 56 + 67 + 56 + 50 + 67 + 48

Once the sum S is divided by 256, the ASCII character corresponding to the residue is the
correct check sum to send to the robot.

With this simple change the last character is always correctly predictable. This important
modification allows an easy expansion of the project. Characters can be changed
individually for different functions or settings provided the correct sum is generated at
the end of the string. In other words there are no longer restrictions in number of
functions or setting to duplicate as the strings are not stored in the program but generated
at will.

4.1.3.3 The functionality
The first version sent one string with each click of the mouse just as the touch-screen did.
The problem with this method is that it is really difficult to accomplish continuous
motion. It is rather jerky and to approach a smooth motion the operator has to keep
clicking fast without interruptions. Needless to say it is unpractical and not intuitive.

The second version achieves smooth motion by starting a timer with just one click. When
the timer is started, it continuously sends a string at a fixed rate until the user stops the
timer. Even though this method seems a lot better especially for driving motion for
example it is still not practical. The Remotec ANDROS robots do not have limit
switches. The motor stalls for a period of time but the operator has to then stop the
motion by releasing the corresponding switch. The problem with the timer is that the
operator has to actually stop the timer by clicking on another button. Otherwise, the robot
can run into obstacles, and/or simply try a motion beyond its physical capabilities.
Therefore not only is this method not intuitive but it is dangerous for the environment and
for the robot.

The latest version of the GUI fixes those problems by using bitmap images instead of the
buttons provided by MFC. This program captures the signals from the mouse and when
the mouse is pressed down on a specific image it sends the corresponding strings. It does
so continuously until the mouse is released. This is the best analogy to the mechanical
switches on the original control box. This version of the GUI is shown on Figure 14.

Chapter 4 – Implementation 53

Figure 14: The main window of the MFC Graphical User Interface for the ANDROS
Mark VA includes body functions in addition to vehicle drive motions.

Chapter 4 – Implementation 54

4.2 Making the ANDROS a Mobility Brick

4.2.1 Wireless Connection
Once the logic of the strings was completely understood and duplicated the data was still
sent to the robot using the radio modems. The idea is to move to a mode of
communication that is not specific to the ANDROS but really easily integrated into the
Sensor Brick Concept. Also there was not yet an on-board intelligence. The data was
sent from the COM port of the computer to the radio modems and then finally to the
robot, creating a wireless RS-232 line between the PC and the ANDROS.

The mobility brick is defined similarly to the sensor brick. It is a mobile platform with its
pre-processing unit, communication unit and power. It is an independent unit that can be
operated on its own (teleoperated) or part of a more sophisticated autonomous system.
The communication block in the sensor brick typically remotely transmits data using
standard IEEE 802.11g. The wireless communication card (wireless Ethernet) is attached
to the computer motherboard. Any number of networks can be utilized with wireless
Ethernet devices [5]. Therefore the transition from the teleoperated robot to the mobility
brick implies the elimination and replacement of the RS232 wireless line by an Ethernet
connection (see Figure 15).

Figure 15: The transition to the mobility brick implies the replacement of the RS-232
radio modems by an Ethernet connection.

Main
Control

Mobility

Power

RS 232 RS 232 802.11 802.11

Pre-
processing

Communi-
cation

Chapter 4 – Implementation 55

4.2.2 JAUS Primitive Driver

4.2.2.1 JAUS Overview
The Joint Architecture for Unmanned Systems (JAUS) is the architecture defined for use
in the research, development and acquisition of Unmanned Systems [70]. This new
architecture is introduced in part I of the Reference Architecture (RA) Specifications.
Part II is the Message Definition and Part III is the Message Set. Both Parts explain in
more details how to go about creating a JAUS compliant system as JAUS is in a few
words a component based, message passing architecture [70].
To implement a JAUS compliant system one must understand JAUS language and
appropriately attribute the title of systems, sub-systems, node, component, instances and
messages.

• A System is a sub-grouping of sub-systems.
• A Sub-system independently performs one or more functions within a system.
• A Node defines a processing capability within a sub-system.
• A Component provides a unique functionality for the unmanned system and

within a node.
• An Instance allows redundancy and duplication of components.
• A Message is composed of a header and data transmitted between components.

The system, group of cooperating sub-systems is the highest level of the JAUS hierarchy.
At the second level, each independent and distinct sub-system performs one or more
functions within the system. The node is an assembly of hardware and software parts that
support a particular function in a sub-system. In other words, a node connects to a device
using the appropriate hardware and software required to operate that particular device.
The component/instance level is the lowest level. Generally speaking the component is an
executable task [70]. Instances allow component redundancy. JAUS indicates the
acceptable names and ID numbers for all systems, sub-systems and components. While
the engineers have a lot freedom to implement and name their systems, sub-systems and
nodes, all the components currently supported by JAUS are already specified. Hence if
the Developer chooses to add any of those components there already is a specific ID
number attributed to each one of them. There also is a degree of freedom of adding new
components and ID numbers. The JAUS components are grouped as follows [68]:

• Command and control components,
• Communication components,
• Platform components,
• Manipulator components, and
• Environmental components.

Chapter 4 – Implementation 56

4.2.2.2 Mobility Brick/Primitive Driver
A platform component of particular interest for this work is the Primitive Driver. The
definition of the mobility brick resembles that of the JAUS Primitive Driver. This
component performs basic driving and platform related mobility functions including
operation of common platform devices such as the engine and lights [70]. Hence it
appears that our mobility brick concept is that of the Primitive Driver. To be more
specific, the mobility brick can be identified to the Primitive Driver once it is JAUS
compliant. Since messaging is the base of this architecture a JAUS compliant system has
to be able to read and interpret JAUS messages as well as sending JAUS messages. In
this case, the Primitive Driver is the bottom of the typical Unmanned System Diagram.
Therefore the mobility brick mainly has to be able to receive and decode JAUS messages.
The pertinent information in the message header allows the pre-processing block to
decide whether or not it is the desired destination of a message and react consequently
when applicable.

JAUS is a software-architecture; components are not devices. This feature allows the
mobility brick to an independent subsystem. It can be controlled independently of other
subsystems or it can receive commands from an external device. We can identify two
components in the teleoperated system for the ANDROS: a System Commander (ID 40)
and a Primitive Driver (ID 33). While those ID numbers are predefined in the RA, there
is more freedom in numbering systems, subsystems and nodes. The control program for
the mobility brick includes two main functions, the commander (sender) and the driver
(receiver) components. The System Commander generates the JAUS messages and the
Primitive Driver is the receiver, which decodes those commands and performs the
corresponding driving commands. In other words in the main program when the user
presses a button, JAUS strings are created and sent to a Receiver function which
distinguishes between the header and the actual data to be transmitted to the mobility
platform. Again at this point, because of the simplicity of the system and the lack of
feedback from the robot, much of the header information is not yet pertinent to the
current system. For example given the small size of the data, there is no need for data
sequence at this point. The code only checks for the destination of the message and sends
the string to the robot only and only if it is the intended target. This makes a simple
compact system, which can later be expanded as more components, and nodes are added.

4.2.2.3 First Result
The first integration of the new software implemented and the mobility platform is shown
on Figure 16. The program is stored on a laptop; other computers may communicate with
the local computer using 802.11g while the connection between that computer and the
robot is established through an RS-232 link. The laptop is secured in a foam-filled casing
and the casing is fixed on a plate solidly attached to the robot. This system is simply a
mobility platform it does not include sensors, it does not perceive its environment and
does not take decisions. At this point it is an enhanced teleoperated system.

Chapter 4 – Implementation 57

Figure 16: This picture shows the version of the mobility brick without sensor brick.

Chapter 4 – Implementation 58

4.3 Autonomous Navigation and Directed Imaging Robot
(ANDIbot)

Once the original system has been reverse engineered, and once it has adopted a new
wireless communication it is ready to acquire autonomy. The user may teleoperate the
ANDIbot directly from a computer by running the controller program; or he/she can log
into the brick from a remote computer and control the robot from using a local program.
He or She may also use the System Commander program from the Main Unit with the
Primitive Driver code located on the robot. The control program in the Main Unit
includes an option for autonomous mode. Once this option is selected, the main computer
takes over the control of the robot until the operator intervenes or until it encounters an
anomaly. This computer uses the sensor brick to guide the mobility brick. The sensor gets
the information from the environment; the information is processed and exchanged
between the pre-processing blocks of both bricks. This information is used to determine
the robot’s next move. For practicality reasons, in the implementation both bricks will
share the preprocessing block as shown in Figure 17. In other words instead of installing
two on-board computers, the same processors gets the information from the sensor and
drive the mobility brick.

Figure 17: The Experimental set up for the ANDIBot uses a shared processor between
the sensor and mobility brick.

Theoretical Set Up Experimental Set Up

Processor

Processor

Sensor to Processor

Processor to Processor

Processor to Mobility

Sensor Brick

Mobility Brick

Processor

Processor to Mobility

Sensor to Processor

Sensor Brick

Mobility Brick

Chapter 4 – Implementation 59

4.3.1 Wall Following Algorithm

4.3.1.1 Configuration of the scanner on the robot
The implementation of this function starts by the positioning of the scanner on the robot.
The goal is for the robot to autonomously follow a wall. In order to do so, the robot has to
constantly locate the wall but also stay clear from obstacles in his direct path. The first
assumption is that the wall should always be to the left of the robot. This decision was
made arbitrarily since to cover a perimeter a person could as easily walk along the wall
clockwise as counter clockwise. Hence the view to the left of the robot is preset as the
wall. The front view is used to avoid collisions with objects on the robot’s path or to
detect a possible upcoming corner. The scanning angle that maximizes both the front
(dfront) and side view (dwall) of the robot is to be use for this application. Let Do be the
radial distance to detect obstacles. This distance represents the desired distance between
the robot and the wall. This distance is flexible and will be discussed subsequently. Let θ
be the difference in orientation between the range (R) scanner and the robot as shown in
the diagram in Figure 18 then:

Therefore to have dfront equal to dwall, the sine and the cosine of θ have to be the same. In
other words the angle that maximizes both views is a θ = 45°.

Once the orientation of the scanner has been determine, the exact position of the scanner
on the robot has to be set. The second assumption resides in the height of the scanner
relative to the ground. Any height on the 50 cm tall robot is a reasonable height to detect
the wall. However in terms of obstacle avoidance, an argument can be made that
obstacles will not necessarily be at the scanner’s height. For the time being the
assumption will be that obstacle will be tall enough (approximately 60 cm) to be detected
by the scanner placed on top of the robot. This is a practical assumption, since the chosen
height is not significantly above than ground level. Moreover the ANDROS is an all
terrain robot capable of climbing over small obstacle without loosing its balance.
Therefore the scanning will be one horizontally and at the fixed height of 60 cm.

The last adjustment made in the scanner-robot configuration is the switch between its
front and its back. Indeed the placement for robot accessories is in the back of the robot.
When the scanner is placed in this position, the robot’s arm has to be “parked” or
completely lowered so it is not in the way of the laser. To avoid confusion, the scanner
will be facing away from the arm and the reverse motion will become the forward motion
in autonomous mode. This feature will be emphasized in the hardware implementation
section.

sin(θ) =
dwall

2*Do

cos(θ) =
dfront

2*Do

and

Chapter 4 – Implementation 60

Figure 18: This diagram represents the top view of the system. The robot is equipped
with the range scanner (R).

x
 R

Robot

θ

Robot front
view

Wall

y

dview

dwall

Do

Chapter 4 – Implementation 61

4.3.1.2 Pseudo-code and diagram
The wall-following algorithm is simple. On the left side of the robot, the ANDIBot is
looking for the wall; it tracks down the beginning and the end of the wall within the
chosen scanning angle and computes their difference. More specifically it computes the
difference between their projections onto the y-axis. Within a certain threshold this
difference indicates that the robot and wall are aligned with one another. Beyond this
adjustable threshold, the YY difference indicates whether the robot is excessively going
towards the wall or away from the wall. If this is the case, the robot takes the
corresponding step to correct its position relative to the wall. Meanwhile, the ANDIBot is
constantly checking for obstacle in its front view as well. Whether it is a corner of the
wall or another obstacle it is ready to turn right to avoid collision. If at a certain point of
time an obstacle suddenly comes too close to the robot – adjustable by the programmer –
the robot will come to a complete stop. The program runs in an infinite loop until such
obstacle stops it or the operator does. Figure 19 is a diagram displaying the different
variables used in the program and Figure 20 shows how they are used in the system
flowchart. They are:

• d: This distance is the difference in the projections of the right and left ends of the
wall. The wall is only detected within a certain angle to the left of the robot. The d
or yydifference determines how aligned the robot is with the wall. A zero value
would be the ultimate case where the robot is perfectly parallel to the wall which
is not the most practical case. While an excessively greater value (beyond 1m)
will cause the robot to drive in zigzag.

• D: This distance is the distance at which the robot starts detecting a corner or an

upcoming obstacle. The maximum reliable obstacle detection for the sensor brick
is 4m. The ANDIBot is 1m long and that much distance has to be available during
a turning operation. Hence the bounds for this variable are 1-4m.

• θw and θf are the angles within which the robot is searching for the wall and

oncoming obstacle. While the maximum determined are 90 degrees to the left and
90degrees to the front, practical values may be adjusted depending on the desired
performance.

• Other controllable variable not shown on the diagram include Δθ. This variable

represents how much the robot corrects its trajectory when it is not parallel to the
wall or when it encounters a corner. This value is a number of strings that
correspond to a small angle. Also once it has established that it can go forward,
the robot has to decide how far to travel before checking on new sensor
information. This Δl is also a number of strings that corresponds to a distance.

Chapter 4 – Implementation 62

Figure 19: This diagram shows the top view of the system with the variables used in the
wall following algorithm.

 R

Robot

θ

θ

θf

Wall

y

x

Right End Y

Left End Y

d

D

Chapter 4 – Implementation 63

Compute d

Parallel
|d| < TH2

Go Forward

d > TH2

d < - TH2

Turn Left

Turn Right

No Corner
D> TH1

EXIT

Get Info
from Sensor

true

false

else

Turn Right

true

true

else

Calibration

No close
obstacle

Compute dCompute d

Parallel
|d| < TH2

Parallel
|d| < TH2

Go ForwardGo Forward

d > TH2d > TH2

d < - TH2d < - TH2

Turn LeftTurn Left

Turn RightTurn Right

No Corner
D> TH1

No Corner
D> TH1

EXITEXIT

Get Info
from Sensor

Get Info
from Sensor

true

false

else

Turn RightTurn Right

true

true

else

Calibration

No close
obstacle

No close
obstacle

Figure 20: This flowchart shows the logic used in the wall following algorithm.

Chapter 4 – Implementation 64

4.3.2 Hardware Implementation
The hardware implementation for the ANDIBot consists mainly of mounting the
ANDROS robot and the range sensor together. The brick sits on an aluminum base with
the same length and width. This aluminum plate is fixed on a stronger piece of aluminum
for support, which is in turn is attached to the robot through a solid bar. The way that this
bar is bolted onto the plate creates the 45 degree difference in orientation needed between
the robot and the scanner. To prevent the brick from sliding off the base, four pieces of
aluminum constrain its motion relative to the robot. In addition a rubber film placed onto
the plate increases the friction between the sensor brick and the plate. Finally a strap
solidly ties the sensor down its support. Figure 21 shows the aluminum base for the brick
before being mounted on the robot. Figure 22 shows the mobility platform with and
without the brick.

As previously mentioned the facade of the robot is inverted to avoid obstruction from the
arm. In other words the back of the robot becomes the front. The scanner faces away
from the robot arm as shown in Figure 23. The backward and forward directions are
switched and the autonomous navigation is possible independently of the position of the
manipulator.

Figure 21: The brick carriage simply consists in an aluminum plate with constraints and
an aluminum bar that links it to the robot. The red strap and the rubber film under the
brick increase its stability.

Chapter 4 – Implementation 65

Figure 22: The top picture show the ANDROS without the brick and the bottom picture
includes the range brick strapped to the robot.

Chapter 4 – Implementation 66

Figure 23: The back of the robot becomes the front in autonomous mode to avoid
obstruction of the laser from the arm.

Forward Direction Avoiding Obstruction from Arm

Chapter 5 – Experimentation 67

5 Experimentation

This chapter describes the analysis on the ANDIBot. The reverse engineering process
implies that the programmer does not have direct access to the motors, the controllers or a
of the robot’s electronics and mechanics. The only accessible control commands are
character strings. While those strings do provide information in terms of speed and
direction, they do not give distance data. This is understandable since the robot was
originally teleoperated. However, the ANDIBot needs units to decide how far to move in
distances and angles. Traditionally autonomous systems use encoders. The first objective
of this analysis is to provide the programmer with information that can be used similar to
an encoding system. The second part of Chapter 5 will analyze the performance of the
ANDIBot. Finally the last section of this chapter will summarize the observations made
throughout the analysis.

5.1 Characterization of the Strings

While the characterization of the strings is not an absolute measure of the robot’s motion,
neither is an encoder. This is where the range sensor brick comes into the picture, which
constantly re-evaluates the robot’s location. The battery level of the platform and the type
of floors it is traveling on are two important factors that can affect the accuracy of the
platform’s motion.

5.1.1 Straight Motion
For this motion, the number of strings ranges from 5 to 30 in 5-string increments. For
each set of commands (5, 10, 15, 20, 25, and 30 strings) there are ten trials, or a total of
60 data points in each direction.

For safety reasons, the upper limit of 30 strings corresponds to approximately 1m, which
is twice the obstacle threshold set in the algorithm. Moreover, once the robot receives a
set of strings, the only way to stop it from moving is to shut the system down.
Considering a dynamic environment it is dangerous to send an amount of strings
corresponding to a long distance.

5.1.1.1 Description of the experiment
The final version of the ANDIBot GUI sends command to the robot as long as the user is
pressing down on a bitmap image. This method does not allow counting the number of
strings actually sent to the robot, at least not easily. Hence for this experiment an older
version of the GUI that uses buttons provides the programmer to insert a for loop in the

Chapter 5 – Experimentation 68

button code and send a specific amount of strings in a single click. A mark on the floor
indicates the starting point of the robot and distance traveled after each of the ten
subsequent moves for the same command. Figure 24 shows the methodology for
measuring the distances on a flat concrete floor (low friction) and the higher friction
floor, a carpet. The instrument used in this case is a tape measurer marked to the tenth of
an inch.

5.1.1.2 General observations
The first two graphs shown in Figure 25 represent the forward and backward motion on a
full battery and are representative of the data sets at 90% of the full battery level. This
rough data shows a certain consistency of the measurements before averaging. With the
exception of the first data point in each set, which is taken, as the robot first starts
moving, the data points seem to closely follow a constant distance. This observation is
further confirmed in Figures 26 and 27, which show how the same data points vary
around the average in inches and in percentage of the average distance. The fluctuation in
inches reaches a maximum of 4.5 for the forward motion and 2.6 for the backward
motion. In terms of percentage those values correspond to a fluctuation of less than 10%
in most cases. This difference is obviously more visible within in the short distances,
notably in the case of a 5-string command. Figures 26 and 27 also confirm a higher
discrepancy between the starting point and the average. In the case of short distances this
phenomenon is more obvious. The difference comes from the fact that with the short
distances the 10 experiments did not require going back to a starting point. The robot
seemed to cover the smallest distance after it was turned on, and then stabilized around a
higher almost constant value. Therefore two important trends complement each other.
The ANDROS responds differently at start up then once it has received a couple of
commands, which also explains why it is the most inconsistent with short commands. By
the time the robot accelerates the command is over. Sending short packages of strings is
equivalent to sending short impulses and causes a rather jerky motion of the robot.

Figure 28 shows an almost linear relationship between the strings and the average
traveled distances for both directions. It also uncovers a small difference between the
forward and backward motions. The computed average difference is 3.91%, which means
the system is not exactly symmetric in straight motions. Measurements errors are not the
only cause of this variation; experiments also show that the robot does not move perfectly
in a straight line. This is more visible as the robot travels long distances. It shows that
despite the apparent straight motion caused by the forward and backward strings they
have been captured at a small angle off the right directions. The original joystick of the
ANDROS is a sensitive analog joystick and trying to capture 4 discrete directions
(Forward, Backward, Right and Left) with exactitude is not a simple task. In this case, the
error shows in the nearly 4% average difference between the two directions.

Chapter 5 – Experimentation 69

Figure 24: The pictures on the left show the methodology in measuring the covered
distance for the same number of command strings. The pictures on the right are close up
images of the same process on both types of floors.

Chapter 5 – Experimentation 70

Distances vs. Trial Number - Forward Motion

0
10
20
30
40
50
60
70
80
90

0 2 4 6 8 10 12

Trial Number

D
is

ta
nc

es
 in

 In
ch

es 5 Strings
10 Strings
15 Strings
20 Strigns
25 Strings
30 Strings

Distance vs. Number of Trials - Bacward Motion

0
10
20
30
40
50
60
70
80
90

0 2 4 6 8 10 12

Trial Number

D
is

ta
nc

e
in

 In
ch

es 5 Strings
10 Strings
15 Strings
20 Strings
25 Strings
30 Strings

Figure 25: The rough data for backward and forward motion on a full battery appears
fairly consistent.

Chapter 5 – Experimentation 71

Fluctuations around Average Distance vs. Trial
Number - Forward Motion

0

1

2

3

4

5

0 2 4 6 8 10 12

Trial Number

D
is

ta
nc

e
in

 In
ch

es 5 Strings
10 Strings
15 Strings
20 Strings
25 Strings
30 Strings

Fluctuations around Average Distance vs. Trial
Number - Forward Motion

0

5

10

15

20

25

0 2 4 6 8 10 12

Trial Number

D
is

ta
nc

e
in

 %
 o

f
A

ve
ra

ge

5 Strings
10 Strings
15 Strings
20 Strings
25 Strings
30 Strings

Figure 26: The fluctuation of the rough data around the average covered distance for
each different amount of command strings confirms the apparent data consistency except
for the shortest distance traveled.

Chapter 5 – Experimentation 72

Fluctuation around Average Distance - Backward
Motion

0
0.5

1
1.5

2
2.5

3

0 2 4 6 8 10 12

Trial Number

D
is

ta
nc

e
in

 In
ch

es 5 Strings
10 Strings
15 Strings
20 Strings
25 Strings
30 Strings

Fluctuation around Average Distance - Backward
Motion

0

5

10

15

20

25

0 2 4 6 8 10 12

Trial Number

D
is

ta
nc

e
in

 %
 o

f
A

ve
ra

ge

5 Strings
10 Strings
15 Strings
20 Strings
25 Strings
30 Strings

Figure 27: Approximately the same results occur for the reverse motion as for the
forward motion

Chapter 5 – Experimentation 73

Average Distances vs. Number of Strings

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40

Number of Strings

D
is

ta
nc

e
in

 In
ch

es

Average Forward
Distances
Average Backward
Distances

Figure 28: The relationship between the distance and the strings is almost linear.

Chapter 5 – Experimentation 74

5.1.1.3 Differences of performance across the floors
Figure 29 shows the average forward and backward motions per number of strings on the
flat concrete and on the carpet. The effect on both directions is not exactly the same but it
is minimal as shown twice in Figure 30. This experiment verifies the decrease in
performance on a higher friction floor. The difference is a significant roughly 13% and
becomes more and more visible as the traveled distance increases. The difference reaches
its maximum for the 5-string commands as in previous experiments.

5.1.1.4 Variation with battery level
The ANDROS requires a minimum of 24V to guaranty normal operation. As the voltage
drops under 24V, its efficiency quickly decreases. In this case a full battery will be
approximately 25V. A low battery level can go down to 15V however the robot starts
giving signs of malfunction before then and it is not recommended to operate the
ANDROS under 24V. Repeating the forward and backward experiments on concrete at a
battery level of 23V will give an idea of the effect of a decrease in supply voltage. Figure
31 shows the difference in performance when going from a full battery to a voltage of
23V. The decline in distance covered per number of strings is greater than in the case of
different types of floor. The discrepancy is a considerable 17% as shown in Figure 32.

The variation due to battery levels combined with that caused by the increased friction in
the previous experiment is equivalent to a decrease in covered distance of nearly 27.79%.
This significant decline explains why the same experiment on carpet required charging
the battery. At that point the robot is simply barely functional. A battery of 23V did not
allow properly driving the ANDROS on carpet. The battery level variation confirmed that
in order to be efficient, the robot has to be at least 24V. A smaller voltage may cause
awkward behavior. This effect is worst on rougher terrains. As the friction increases, the
robot needs more power to move and needs to be at least the nominal voltage level.
Another pertinent confirmation on Figure 31 is that the difference in performance due to
battery level clearly becomes more obvious as the distance increases. The operator may
not realize there is a problem for short commands, however as the number of strings
decreases the lag quickly becomes greater.

5.1.2 Turning Motion
For this motion the upper limit of strings reaches 180 degrees, which is twice as much as
the maximum turning angle implemented in the wall following algorithm. For each set of
commands (5, 10, 15, 20 and 25 strings) the experiment is repeated 10 times for a total of
50 data points.

Chapter 5 – Experimentation 75

Forward Motion on Low and High Friction Floors

0
10
20
30
40
50
60
70
80
90

0 10 20 30 40

Number of Strings

D
is

ta
nc

e
in

 In
ch

es

Flat Concrete
Carpet

Backward Motion on Low and High Friction Floors

0
10
20
30
40
50
60
70
80

0 10 20 30 40

Number of Strings

D
is

ta
nc

e
in

 In
ch

es

Flat Concrete
Carpet

Figure 29: The effect of the floor on the robot’s performance is clearly visible in both
directions.

Chapter 5 – Experimentation 76

Average % Difference between performance
on Flat Concrete and Carpet

Forward
Motion

Backward
Motion

0
10
20
30
40
50
60
70
80
90

100

A
vg

 %
 D

iff
. i

n
Tr

av
el

ed
 D

is
ta

nc
es

Average % Difference between performances
on Flat Concrete and Carpet

Forward
Motion

Backward
Motion

12.4
12.5
12.6
12.7
12.8
12.9

13
13.1
13.2
13.3
13.4
13.5

A
vg

 %
 D

iff
. i

n
Tr

av
el

ed
 D

is
ta

nc
es

Figure 30: The difference in performance on concrete and on carpet is a considerable
13%. The bottom picture shows a slight difference between the forward and backward
motion, not noticeable in the top picture.

Chapter 5 – Experimentation 77

Forward Motion on Concrete at Different Battery
Levels

0
10
20
30
40
50
60
70
80

0 10 20 30 40

Number of Strings

D
is

ta
nc

e
in

 In
ch

es

Flat Concrete - 25V
Falt Concrete - 23V

Backward Motion on Concrete at Different Battery
Levels

0

20

40

60

80

0 10 20 30 40

Number of Strings

D
is

ta
nc

e
in

 In
ch

es

Flat Concrete - 25V

Flat Concrete - 23V

Figure 31: The effect of a low supply voltage is even more visible than that of the type of
floor.

Chapter 5 – Experimentation 78

Average % Difference between Performances at
25 and 23V on Concrete

Forward
Motion

Backward
Motion

0

20

40

60

80

100

A
vg

 %
 D

iff
. i

n
Tr

av
el

ed
D

is
ta

nc
es

Average % Difference between Performances at
25 and 23V on Concrete

Forward Motion
Backward

Motion

0

5

10

15

20

A
vg

 %
 D

iff
 in

 T
ra

ve
le

d
D

is
ta

nc
es

Figure 32: The effect of a low battery is roughly 17% in both directions.

Chapter 5 – Experimentation 79

5.1.2.1 Description of the experiment
The principle for collecting data with the turning motion is the same as for the forward
and backward motion except that set-squared protractor replaces the tape measurer.
Figure 33 shows pictures of the process on concrete and on carpet.

5.1.2.2 General Observations
The analysis was the same as for straight motions. The protractor measures angles with a
precision of half a degree. Measurements of motion for each amount of strings yielded
the same angle except for the first data point in each set. Therefore there was little or no
variation between the ten trials’ angles. Figure 34 shows a more symmetric system in
terms or turning than in straight motion. The 4% distance difference in forward and
backward motion translates into a difference in left and right turning angles of less than
2% except for the 25-string commands. Figure 34 shows the results on concrete and
carpet as well as the same measurements at 25 and 23V. These graphs reinforce the
conclusions made in the forward and backward motions. While the effect of a high and
friction floor is noticeable, the impact of the battery level is more significant and reaches
peaks of 30% in turning motion. The turning motion appears more linear and predicable
below 15-string commands. Below that value the difference in performance on different
floors is also barely noticeable (less than 5%).

5.1.3 Summary
This evaluation shows that the string commands do not allow accurately predicting the
robot’s motion. The amount of friction decreases the forward and traveled distance by
approximately 10%. This percentage translates in a lower value in terms of turning
motions. The previous observation is valid on a full battery. A decrease in power supply
voltage considerably slows the robot down – an average of 17%. The combined effect of
a low battery and a high friction floor causes the robot not to be functional. This is a
corroboration of an expected phenomenon. Robots’ tracks provide a very good grip on
the floor. This is a desired feature especially in robot such as the ANDROS, which is
capable of climbing stairs and navigating through rough terrains. However it takes more
power to drive the robot on tracks. On a low battery the robot did not drive properly on
carpet. Hence the improvement in newer version of ANDROS robot: removable tires.
The study still provides the programmer with useful data when choosing the motion steps
for autonomous navigation particularly on lower friction grounds. The robot is more
stable and predictable when it receives more than 5-string commands. However, as the
number of strings increases the asymmetry of the motion, the effect of the floors’ friction
and the battery level become more important.

Chapter 5 – Experimentation 80

Figure 33: The pictures on the left show the methodology in measuring the covered
angle for the same number of strings. The pictures on the right are close up images of the
same process on both types of floors.

Chapter 5 – Experimentation 81

Average Turning Angle vs Number of Strings

0

50

100

150

200

250

0 5 10 15 20 25 30

Number of Strings

A
ng

le
 in

 d
eg

re
es

Left Turn

Right Turn

Average Turning Angle vs Number of Strings on Concrete and Carpet

0

50

100

150

200

250

0 5 10 15 20 25 30

Number of Strings

A
ng

le
 in

 d
eg

re
es Left Turn - Concrete

Right Turn - Concrete

Left Turn - Carpet

Right Turn - Carpet

Average Turning Angle vs Number of Strings on Concrete at 25 and 23V

0

50

100

150

200

250

0 5 10 15 20 25 30

Number of Strings

A
ng

le
 in

 d
eg

re
es Left Turn - 25V

Right Turn - 25V

Left Turn - 23V

Right Turn - 23V

Figure 34: The turning motion reinforces the conclusion made in the forward and
backward motions.

Chapter 5 – Experimentation 82

5.2 Characterization of the Algorithm

This section provides information about the wall following algorithm. Once launched, the
robot autonomously follows the closed loop described in Figure 35 until stopped by the
operator or a sudden close obstacle.

There were two main development from the algorithm described in Chapter 4. The first
attempt to enhance the algorithm through the calibration process was not conclusive. The
second attempt to do so though the turning process returned better results.

5.2.1 Calibration Process
This process describes the robot’s alignment to the wall. The variable d determines how
parallel the robot is to the wall. Ideally the left and right projections of the wall onto the
y-axis would yield a d equal to 0. The wall following algorithm does not require such
accuracy. To have an idea of how the number of moves needed to be parallel to the wall
varies with d, Figure 36 displays the result of a calibration experiment. Since there is a
correlation between the number of moves (1 string for small stepping angles) and the
angle, measurements will be done using the same angle of 45 degrees. The trend shown
in Figure 36 represents the average of 5 data points for each d. A computer program
consistently and accurately displays the number of moves to reach d and the only error
involved in this process is the operator’s accuracy in placing the robot at the correct
angle. The variation in moves is never more than 2. During each experiment a clock also
chronometers the calibration time. The average time per move is 2 seconds. The variable
d varies from 10 to 50 cm, which is 50% of the minimal distance between the wall and
the robot. In other words if the robot is one meter from the wall, a half meter error can
still be tolerated before reaching the obstacle threshold. Just as expected Figure 36 shows
that as d increases the number of moves decreases with a 40% reduction as d changes
from 10 to 50 cm. This different is roughly equivalent to a 0 to 20 degree-angle
difference in directions between the robot and the wall.

The basic version of the wall following function takes accurate data from the sensor. In
other words, the robot waits on exact position feedback from the range sensor before
aligning itself to the wall or taking a turn. Several experiments showed that the average
time the robot took to do one single loop was nearly 4 minutes with the lowest number of
moves. In a first attempt to speed this process up, the robot stopped checking on accurate
sensor data during the calibration. Table 2 shows the resulting time (in min) for the
original program and the fast calibration code necessary to go around the testing scene
once. This experiment was repeated 20 times; 10 measurements are shown in Table 2.

Chapter 5 – Experimentation 83

Figure 35: The three pictures show different shots of the testing set up.

Chapter 5 – Experimentation 84

Number of Moves to Be Parallel to the Wall

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

Variable d in cm

N
um

be
r o

f M
ov

es

Figure 36: The number of moves to be parallel to the wall decreases as d reaches 50 cm.

Chapter 5 – Experimentation 85

Table 2: The time comparison between the original algorithm and an accelerated
calibration program shows a problem with the new version of the code.

Trial
Number 1 2 3 4 5 6 7 8 9 10

Basic
Algorithm 4 3.6 4.33 4.5 3.8 4 3.75 4.125 4 3.9

Fast
Alignment 3 2.5 6 ∞ 2.5 ∞ 4 ∞ 3 ∞

Table 3: The time comparison between the original algorithm and an accelerated turn
program shows a nearly 50% reduction in time per loop.

Trial
Number 1 2 3 4 5 6 7 8 9 10

Basic
Algorithm 4 3.6 4.33 4.5 3.8 4 3.75 4.125 4 3.9

Fast Turn 2 2.5 2.5 2 2.5 2.5 3 2.5 2.5 2

The accelerated calibration first seems to show promising results as the robot took less
time to complete a loop with this algorithm. However sometimes it took more time, as it
remained stuck in the calibration process. In other words it would continuously turn left
and right without going forward. In certain cases it would eventually get out of the
situation. An infinite time indicates that the robot did not get out of the calibration
process unless moved by the operator.

This experiment emphasized the importance of acquiring correct data during the
calibration process even at the cost of time.

5.2.2 Turning Process
Since accelerating the calibration process did not successfully produce a better algorithm,
the second development in the wall following function is an attempt to accelerate the
turning process. The results of this second attempt to improve the ANDIBot’s
performance are recorded in Table 3. Not having the correct information during
calibration causes the algorithm to be unreliable and unpredictable. However not
knowing the accurate information during the turning process only causes the robot to
over turn; the robot receives several command strings before checking back on the sensor
information. This solution turned out to be a better idea and consistently improved the
robot’s performance by nearly 50% of the earlier time per loop.

Chapter 5 – Experimentation 86

After each over correction, the ANDIBot has to come back towards the wall. Even so, the
time saved by the fast turning considerably outweighs the time spent readjusting to the
correct path.

While the first section of the analysis helps characterize the string commands, this second
section describes the two key processes involved in the wall following algorithm. The
study of those mechanisms has help improve the algorithm, specifically the amount of
time necessary to go around one loop. The next chapter will conclude this work and
propose further possible enhancements.

Chapter 6 – Conclusion 87

6 Conclusion

6.1 Summary

This research has successfully reverse engineered the telecommunications of the
ANDROS Mark VA robot. This knowledge has been used to create a computer-
interfaced Control Unit. Controlling the robot using a computer has allowed the
integration of the new mobile platform in the modular Sensor Brick Concept as a
mobility brick. The integration of sensor bricks has upgraded the original teleoperation to
a more flexible system. The ability to wirelessly be connected to different modular
sensors makes the robot more adaptable to different scenarios of operation. Furthermore
it allows acquiring autonomous capability. This autonomous behavior acquired in such a
way is not restricted to one application; instead it varies with the type and number of
sensor bricks used.

A particular application of a wall following algorithm has been developed to illustrate
that idea. The mobility brick uses a range sensor brick to continuously follow a wall. The
resulting system has been tested and analyzed. The string commands sent to the robot can
be used as an encoding system to determine each one of the robot’s move. Since those
commands are not absolute, the range sensor constantly checks on the robot’s position.
The main processes involved in the algorithm are the calibration process used to align the
robot to the wall and the turning process. Both mechanisms have been analyzed to
maximize the performance of the algorithm. Overall, this example accomplishes its goal
of transforming a teleoperated robot into an autonomous robot while keeping its original
features.

6.2 Future Work

The current system is able to continuously follow a wall. In this experiment the wall is
continuous. Improving this algorithm would allow the robot to detect and enter doors.
One major challenge remains in following a fence instead of a wall. Another
enhancement could be that the robot finds a path between the wall and obstacle that
might be on its right. In other words enhancing this algorithm would imply covering all
the possible situations the robot might encounters while covering a perimeter.
Furthermore the ground in this experiment is a flat concrete ground; a slight progress
could be of taking the robot outdoors in a real environment and testing its performance.
This future work generally consists in increasing the complexity of the robot’s
environment.

Chapter 6 – Conclusion 88

So far the algorithm is very much local and the robot constantly faces a new situation and
takes the corresponding decision. There is no mapping involved. The robot strings
evaluation allows making longer and more precise moves and could be used as an
encoder. Evidently this method would be less reliable as it depends on battery level.
However there are several applications such as the one implemented in this work that do
not require as much accuracy as explosive disposal operation for example. This would
allow programmer to consider implementing path-planning algorithms on this system.

At the moment the system can receive messages from one computer at the time. The
wireless connection is manually established between the server and the client. While the
client does not consider where the commands are coming from, the controller only sends
information to one single client whose IP address is coded in the program. This method
can be extended to broadcasting to several mobility bricks from one single control unit.

ANDIBot is an autonomy capable robot. One autonomous function has been
implemented in the wall following algorithm. The key in implementing this algorithm has
been to be able to use the captured and analyzed information from the ANDROS in order
to control the robot. The mobility class in the program provides access the drive
commands of the robot. Therefore several more applications can be implemented and
added onto the ANDIBot. For example adding the visual, thermal or nuclear bricks to the
range scanner would allow various autonomous data collection missions. The range
sensor does not have to be used; visual homing could be implemented using the visual
sensor brick and appropriately reusing the mobility brick.

References 89

References

References 90

[1] J. W. Crandall and M. A. Goodrich, “Experiments in Adjustable Autonomy,” in
Proceedings of the Intl. Conference on Systems, Man, and Cybernetics, 1624-1629,
2001.

[2] J. W. Crandall and M. A. Goodrich, “Characterizing Efficiency of Human Robot

Interaction: A Case Study of Shared-Control Teleoperation,” in Procedings of the
2002 IEEE/RSJ Intl. Conference on Intelligent Systems EPFL, Lausanne
Switzerland. October 2002.

[3] M. Wilson and M. Neal, “Diminishing Returns of Engineering Effort in Telerobotic

Systems.” IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems
and Humans, 31(5): 459-465, September 2001.

[4] Operation and Maintenance Manual for ANDROS Mark VA Robot System,
 Remotec Inc., Clinton, TN, 2001.

[5] Tom Wilson, “A comparison or the Sensor Brick Concept as a Modular
 System Architecture to the Realtime Control System as the Operational
 Architecture,” M.S. thesis, University of Tennessee, Knoxville, TN, USA,
 2005.

[6] H. Hagras and T. Sobh, “Intelligent Learning and Control of Autonomous Robotic
 Agents Operating in Unstructured Environments,” University of Bridgeport, CT,
 USA, Tech. Rep. 2002.

[7] N. Kasabov and M. Watts, “Neuro-Genetic Information Processing for Optimisation
 and Adaptation in Intelligent Systems,” in Neuro-Fuzzy Techniques for Intelligent
 Information Processing, N. Kasabov and R. Kozma, Heidelberg Physica Verlag
 1999, pp. 97-110.

[8] I. Horswill, “Tagged Behavior-Based Systems: Integrating Cognition with
 Embodied Activity,” IEEE Intelligent Systems, pp 30-37. September/October 2001.

[9] A. A. D. Medeiros, “A survey of control architectures for autonomous mobile robots,”
 Journal of the Brazilian Computer Society, vol. 4, No. 3, Campinas Abr. 1998.

[10] J. S. Albus, H. G. McCain and R. Lumia, “NASA/NBS standard reference model for
 tele-robot control system architecture (NASREM),” Tech. Rep. 1235, National
 Institue of Standards and Technology, 1989.

[11] J. S. Albus, “Outline of a Theory of Intelligence,” IEEE Transactions on Systems,
 Man and Cybernetics, 21(3):473-509, May 1991.

References 91

[12] R. A. Brooks, “A Robust Layered Control System for a Mobile Robot,” IEEE
 Journal of Robotics and Automation, RA-2(1):14-23, March 1986.

[13] R.G. Simmons, “Concurrent Planning and Execution for Autonomous Robots,”
 IEEE Control Systems Magazine, 12(1): 46-50, 1992.

[14] R.G. Simmons, “Monitoring and Error Recovery for Autonomous Walking,” in
 Proceedings of IEEE International Conference on Intelligent Robots and Systems,
 Raleigh, USA, July 1992.

[15] R. Alami, R. Chatila, S. Fleury, M. Ghallab and F.F. Ingrand, “An Architecture for
 Autonomy,” in IJRR, Special Issue on “Integrated Architectures for Robot Control
 and Programming,” Spring 1998.

[16] L. Steels, “When are Robots Intelligent Autonomous Agents?” Journal of Robotics
 and Autonomous Systems, vol. 15, 1995, pp. 3-9.

[17] M. Wilson and M. Neal, “Diminishing Returns of Engineering Effort in
 Telerobotics,” IEEE Transactions on Systems, Man, and Cybernetics – Part A:
 Systems and Humans, vol.31, No. 5, September 2001.

[18] L. Conway, R. A. Volz, and M. W. Walker, “Teleautonomous systems: Protecting
 and coordinating intelligent action at a distance,” IEEE Transactions on Robotics
 and Automation, vol. 6, pp. 146–158, Apr. 1990.

[19] N. E. Sian, K. Yokoi, S. Kajita and K. Tanie, “Whole Body Teleopeation of a
 Humanoid Robot Integrating Operator’s Intention and Robot’s Autonomy,” in
 Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots
 and Systems, Las Vegas, Nevada. October 2003.

[20] E. Sian, K. Yokoi, S. Kajita, H. Saito and K. Tanie, “A Stable Foot Teleoperation
 Method for Humanoid Robots,” in Proceedings of the 2004 IEEE International
 Conference on Robotics and Automation. New Orleans, LA. April 2004.

[21] I. Horswill, “Visual Routines and Visual Search: A Real-Time Implementation and
 an Automata-Theoretic Analysis,” in Proceedings of the 1995 International Joint
 Conference on Artificial Intelligence, Morgan Kaufmann, San Francisco, 1995.

[22] R. Brooks, “A Robust Layered Control System for a Mobile Robot,” IEEE Journal
 of Robotics and Automation, vol. RA-2, no. 1, 1986, pp. 14–23.

[23] M. Yeasin and S. Chaudhuri, “Toward Automatic Robot Programming: Learning
 Human Skill from Visual Data,” IEEE Transactions on Systems, Man, and

References 92

 Cybernetics – Part B: Cybernetics, vol. 30, No. 1, February 2000.

[24] A. Ude, “Trajectory generation from noisy positions of object features for teaching
 robots robot paths,” in Robotics and Autonomous Systems, vol. 11, No. 2, pp. 113–
 127, 1993.

[25] Y. Kuniyoshi, H. Inoue, and M. Ibana, “Learning by watching: Extracting reusable
 task knowledge from visual observation from human performance,” IEEE
 Transaction on Robotics and Automation, vol. 10, pp. 799–822, June 1994.

[26] A. Billard and M. J. Matari, “Learning human arm movements by imitation:
 evaluation of a biologically inspired connectionist architecture,” in Robotics and
 Autonomous Systems 941, 2001, pp 1-16.

[27] J. Aleotti, S. Caselli and M. Reggiani, “Leveraging on a Virtual Environment for
 Robot Programming by Demonstration,” appears in: IROS 2003 Workshop on
 Robot Programming by Demonstration. Las Vegas, Nevada. October 2003.

[28] S. Bottazzi, S. Caselli, M. Reggiani, and M. Amoretti, “A Software Framework
 based on Real-Time CORBA for Telerobotic Systems,” in IEEE International
 Conference on Intelligent Robots and Systems, 2002.

[29] D. Rus and M. Vona, “A Basis for Self-reconfiguring Robots using Crystal
 Modules,” in Proceedings of the 2000 IEEE/RSJ International Conference on
 Intelligent Robots and Systems, 2000.

[30] D. Rus and M. Vona, “Self-Reconfiguration Planning with Unit Compressible
 Modules,” in Proceedings of the1999 IEEE International Conference on Robotics
 and Automation, pp 2513-2520, Detroit, MI, 1999.

[31] D.Rus and M. Vona, “A Physical Implementation of the Crystalline Robot,”
 submitted to the 2000 IEEE International Conference on Robotics and Automation,
 San Francisco, CA, 2000.

[32] T. Fukuda and Y. Kawauchi, “Cellular robotic system (CEBOT) as one of the
 realization of self-organizing intelligent universal manipulator,” in Proceedings of
 the IEEE Conference on Robotics and Automation, pp. 662-667, 1990.

[33] K. Tomita, S. Murata, E. Yoshida, H. Kurokawa, and S. Kokaji, “Reconfiguration
 method for a distributed mechanical system,” in Distributed Autonomous Robotic
 Systems 2, pp 17-25, Springer Verlag 1996.

[34] E. Yoshida, S. Murata, K. Tomita, H. Kurokawa, and S. Kokaji. Distributed

References 93

 Formation Control of a Modular Mechanical System,” in Proceedings of the 1997
 International Conference on Intelligent Robots and Systems, 1997.

[35] S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, and S. Kokaji. “A 3-D Self-
 Reconfigurable Structure,” in Proceedings of the 1998 IEEE International
 Conference on Robotics and Automation, Leuven, 1998.

[36] A. A. Argyros, K. E. Bekris and S. C. Orphanoudakis, “Robot Homing based on
 Corner Tracking in a Sequence of Panoramic Images,” Computer Vision and
 Robotics Laboratory, Institute of Computer Science Foundation for Research
 And Technology – Hellas (FORTH), Heraklion, Crete, Greece, Tech. Rep. 2001.

[37] P. Bizzantino, M. De Bartolomei, G. Magnani and G. Visentin, “Space Robot
 Autonomy Based on Distance Sensors,” in Proceedings of the 1998 IEEE
 International Conference on Robotics and Automation, Leuven, Belgium. May
 1998.

[38] CAT (Columbus Automation and Robotics Laboratory Testbed) developed by ESA
 (European Space Agency) currently installed at the Robotics and Teleoperation
 Laboratory of ESTEC (European Space research and Techology Centre) in
 Noordwijk, The Netherlands.

[39] K. L. Moore and N. Flann “A Six-Wheeled Omnidirectional Autonomous Mobile
 Robot”, expanded version of “Hierarchical task decomposition approach to part
 Planning and control for an omnidirectional autonomous mobile robot”, in
 Proceedings of 1999 IEEE International Symposium on Intelligent
 Control/Intelligent Systems and Semiotics, Cambridge, MA, September 1999.

[40] E. Poulson, J. Jacob, B. Gunderson, and B. Abbot, “Design of a robotic vehicle with
 self-contained intelligent wheels,” in Proceedings of SPIE Conference in Robotic
 and Semi-Robotic Ground Vehicle Technology, vol. 3366, Orlando, FL, pp. 68-73,
 April 15-16, 1998.

[41] C. Wood, M. Daidson, S. Rich, J. Keller, and R. Maxfield, “T2 omnidirectional
 vehicle mechanism design,” in Proceedings of the SPIE Conference in Mobile
 Robots XIV, Boston, MA, pp. 69-76, September 1999.

[42] M. Davidson and C. Wood, “Utah State University’s T2 ODV Mobility Analysis,”
 in Proceedings of the SPIE Conference on Unmanned Ground Vehicle Technology,
 vol. 4024-12, pp. 96-105, Orlando, FL, April, 2000.

[43] S. Rich, J. Keller, and C. Wood, “ODV mobility enhancement using active height
 control,” in Proceedings of the SPIE Conference on Unmanned Ground Vehicle

References 94

 Technology, vol. 4024-16, pp. 137-145, Orlando, FL, April, 2000.

[44] H. McGowen, “Navy omnidirectional vehicle (ODV) development and technology
 transfer opportunities,” Coastal System Station, Dahlgren Division, Naval Surface
 Warfare Division, Tech. Rep.

[45] M. Asama, M. Sato, H. Kaetsu, K. Osaki, A. Matsumoto, and I. Endo,
 “Development of an omnidirectional mobile robot with 3 DOF decoupling drive
 mechanism,” Journal of the Robotic Society of Japan, vol. 14 no.2, pp.95-100,
 1997 (in Japanese).

[46] A. Mutambara and H. Durrant-Whyte, “Estimation and control for a modular
 wheeled mobile robot,” IEEE Transactions on Control Systems Technology, vol. 8,
 no. 1, pp. 35-46, January 2000.

[47] A. Rodic and M. Vukobravotic, “Contribution to integrated control synthesis of road
 vehicles,” IEEE Transactions on Control System Technology, vol. 7no. 1, pp. 64-78,
 January 1999.

[48] R. Colyer and J. Economou, “Comparison of steering geometries for multi-wheeled
 vehicles by modeling and simulation,” in Proceeding of the 37th IEEE Conference
 on Decision and Control, pp. 3131-3133, Tampa, FL, December 1998.

[49] J. Economou and R. Colyer, “Modeling of skid steering and fuzzy logic vehicle
 ground interaction,” in Proceedings of 2000 American Control Conference, pp. 100-
 104, Chicago, IL, June 2000.

[50] Y. Sun, N. Xi and Y. Wang, “Modeling and Analysis of Perceptive Robot Controller
 Based on Hybrid Automata,” in Proceedings of the 2004 IEEE International
 Conference on Robotics and Automation, New Orleans, LA. April 2004.

[51] J. Lygeros, K. H. Johansson,S. N. Simic, J. Zhang, and S. S. Sastry, “Dynamical
 Properties of Hybrid Automata,” IEEE Transactions on Automatic Control
 vol.48, No.1, January 2003.

[52] H.Ye,A.N.Michel and L.Hou, “Stability Theory for Hybrid Dynamical System,”
 IEEE Transactions On Automatic Control, vol.43,No.43, April, 1998.

[53] S. Pettersson and B. Lennartson, Controller Design of Hybrid Systems, “Hybrid
 Systems,” vol. 1201 of Lecture Notes in Computer Science, Springer-Verlag,
 New York, 1993.

[54] R. W. Brockett, “Hybrid Model for Motion Control Systems,” in Perspectives in

References 95

 Control, Eds. H. Trantelman and J.C.Willems, pp.29-54, Birkhauser, Boston, 1993.

[55] B.A. Cartwright and T.S. Collett, “Landmark Maps for Honeybees,” Biology
 Cybernetics, 57, 85-93, 1987.

[56] T.S. Collett, “Insect Navigation en Route to the Goal: Multiple Strategies for the Use
 of Landmarks,” The Journal of Experimental Biology, 199, 227-235, 1996.

[57] M.V. Srinivasan, S.W. Zhang, M. Lehrer and T. S. Collett, “Honeybees Navigation
 en Route to the Goal: Visual Flight Control and Odometry,” The Journal of
 Experimental Biology, 199, 273-244, 1996.

[58] D. Lambrinos, R. Moller, T. Labhart, R. Pfeifer and R. Whener, “A Mobile Robot
 Employing Insect Strategies for Navigation,” Robotics and Autonomous systems,
 30, 39-64, 2000.

[59] M. Franz, B. Schilkopf, H. Mallot and H. Bulthoff, “Where Did I Take That
 Snapshot? Scene-based Homing by Image Matching,” Biological Cybernetics, 79,
 191-202, 1998.

[60] R. Moller, “Insect Visual Homing Strategies in a Robot with Analog Processing,”
 Biological Cybernetics, special issue: Navigation in Biological and Artificial
 Systems, Vol. 83, No. 3, 231-243, 2000.

[61] R. Cassinis, A. Rizzi, G. Bianco, N. Adami and P. Mosna, “ A Biologically-Inspired
 Visual Homing Method for Robots,” Workshop AIIA-IAPR-IC, Ferrara, 1998.

[62] A. B. Koku, A. Sekmen and D. M. Wilkes, “A Novel Approach to Robot Homing,”
 in Proceedings of 2003 IEEE Conference on Control Applications, vol. 2,
 pp. 1477 -1482.

[63] T. S. Levitt and D. T. Lawton, “Qualitative navigation for mobile robots,” Al, 44:
 305 -306, 1990.

[64] P. Gaussier, C. Joulian, S. Zrehen, J.P. Banquet and A. Revel. “Visual navigation in
 an open environment without a map,” in IEEE International Conference on
 Intelligent Robots and Systems, 545-550, 1997.

[65] B. Pinette, “Qualitative homing,” in Proceedings of IEEE International Symposium
 on Intelligent Control, 318-323, 1991.

[66] R. Moller, D. Lambrinos, R. Pfeifer, T. Labhart and R. Whener, “Modeling and
 navigation with autonomous agents,” in 5th International Conference on Simulation

References 96

 of Adaptive Behavior, 185-195, 1998.

[67] D. Dai and D. T. Lawton, “Range-free qualitative navigation,” in Proceedings of the
 IEEE International Conference on Robotics and Automation, 783-790, 1993.

[68] J. Ebken, M. Bruch and J. Lum. “Applying Unmanned Ground Vehicle

Technologies to Unmanned Surface Vehicles,” SPAWAR Systems Center, San
Diego, CA. Tech. Rep. 2005.

[69] C. D. Crane III, D. G. Armstrong Jr., M. W. Torrie and S. A. Gray, “Autonomous
 Ground Vehicle Technology Applied to the DARPA Grand Challenge,”
 ICCAS 2004.

[70] JAUS Working Group, 2002, “Joint Architecture for Unmanned Systems (JAUS):
 Reference Architecture Specification”, Version 3.0, Volume 2, The Joint
 Architecture for Unmanned Systems, http://www.jaugs.org, Feb 2003.

[71] M. Huff, R. Barreto, M. Dhikiri, J. Miltenberger, Q. Obitayo, B. Dhillon, J. Taylor
 and T. Wilson, “Remotec Control Panel Upgrade,” Tech. Rep. 2003.

[72] iRobot Incorporated, (2005). http://www.irobot.com/governmentindustrial.

[73] N. Naik, “Infrared Imaging Sensor Brick for Modular Robotics,” M.S. thesis,
 University of Tennessee, Knoxville, TN, 2004.

Appendices 97

Appendices

Appendices 98

Appendice A: Mark VA Repair

During the testing of the ANDIBot system the ANDROS robot broke down. The problem
was first noticed when the robot would not make a turn in either direction. The tracks
appeared to be turning but the robot would only go forward and backward. To start the
debugging process the robot was lifted up onto a table. The ANDROS was then
positioned on two pieces of wood placed between the tracks so that they could spin
freely. This set up allowed noticing that only one of the tracks was actually rotating,
giving a significant clue as to why the robot would only go two directions. With the robot
turned off, the broken track – right side – allowed a person to easily rotate it manually,
which explained why it appeared to be working on the ground. It was simply being
dragged by the left drive motor.

Those two simple steps seemed to indicate a problem with the driving DC motor for that
side. Figure 37 shows the wiring diagram of the DC Shunt Motor. It differs from the
series motor in that the field winding is connected in parallel with the armature instead of
in series. When the power is turned on, the high resistance of the shunt coil keeps the
current flowing in the main outer loop. The armature draws current to produce a magnetic
field strong enough to cause the armature shaft to start turning. Once the armature begins
to turn, it produces back EMF which in turn causes the current in the armature to start
decreasing. The amount of current the armature will draw is directly proportional to the
size of the load when the motor reaches constant full speed. Without the stat current
however the magnetic field is non existent and the shaft does not turn. Therefore one
should not be able to freely rotate the tracks when the power is off.

The first suspicion was then that the right drive motor was broken and needed to be
replaced. However once the robot was opened for further debugging as sown in Figure 38
that same motor was visibly rotating. The problem had to be the mechanical connection
between the motor and the right track. Indeed there is a metal shaft connecting the two
which teeth had been stripped over time. To confirm that the problem had been identified
the hub (see Figure 39) from the left side was placed on the right side and the track was
properly driven by the motor when the robot was turned on. Finally a new metal piece
was ordered from Remotec and machined by Doug Warren at the IRIS lab.

Once a piece has failed, the repairing task does not stop at isolating the defective part but
goes in determining what happened and how to prevent the same problem from occurring
again. There are several reasons that the erosion happened on the right side and not the
left track. The metal on that side could have been defective; the right side motor being
further away from the center of gravity of the robot could have experienced more
vibrations than the other side. Those reasons combined with time could have caused the
stripping of the teeth. However in this particular case, there was one clear problem with

Appendices 99

the part, only the top half of the splines was flattened. It seemed as the contact between
the shaft and the drive collar was not maximized. Some careful measurements determined
that the original part was incorrectly sized – cut too short – eventually causing failure.
Both parts are shown in Figure 39 below the two parts they are supposed to connect.

Since the place has been successfully isolated, debugged and corrected, the ANDROS is
fully functional.

Appendices 100

Figure 37: This image shows the wiring diagram for a DC shunt motor.

Figure 38: The debugging process showed that the motor was rotating and suggested that
the problem was mechanical not electrical.

Right Drive Motor

Shunt
Field

Armatur

Appendices 101

Drive collar Hub

New Shaft and Original Shorter Shaft

Figure 39: A closer look to the mechanical shaft (to the right) connecting the drive motor
to the hub showed that the original part has been cut too short.

Appendices 102

Appendix B: ANDROS F6A

This appendix describes the work done on another Remotec ANDROS robot. The same
work was done as in the case of the Mark VA with exceptions that are covered in this
section. The goal of this research is to help reproduce the accomplishments on the Mark
VA on a newer version of the ANDROS.

1 Overview
In the summer of 2004, the IRIS lab acquired a newer version of the ANDROS, the F6A
shown in Figure 40. The improvements include:

 A much faster baud rate (9600 vs. 1200)

 A 6 inches arm extension capability. This feature allows more delicate operation

of the arm

 4 removable wheels. This feature allows the robot to adapt easier to different

terrains. While the tracks provide a strong grip to the floor for operation such as
climbing stairs, they can make turning operation difficult on rough terrains. They
also require more power than the tires

 An additional camera between the robot’s tracks allows the operator to avoid

collision with obstacle that might not be visible on the surveillance camera

 A more intuitive control system with a drawing of the robot

 Finally the new robot incorporates a few more sophisticated functions such as

night vision and better graphics

This robot initially came with a fiber optic cable and was later replaced by a wireless
system. This is a great improvement since the operator had to constantly keep track of the
cable so that it does not get caught in the robot’s tracks. However this wireless system
only works with the native controller. Therefore to make a second mobility brick out of
this robot would still require reverse engineering and transition to another wireless
system such as 802.11g to be able to communicate with a computer.

Appendices 103

Figure 40: The ANDROS F6A includes new features and accessories.

Appendices 104

2 Mapping
The mapping for the F6A starts as the one for the Mark VA which was decoded in the fall
of 2003. Its objective is to capture the RS 232 signals emitted from the initial control box
using Kermit 95.

The new OCU comes with a Wire Diagram. In an attempt to access the body motion and
drive motions certain connections are not relevant. In other words there is not yet an
interest for the Radio Power, the Audio Controller, the Video out etc. There are only two
wire connections that could potentially be important: the “receive” and “weapon enable”.
In the initial mapping however only the “transmit” and “ground” lines are connected to
the “receive” and “ground” lines from an RS 232 cable and plugged into the COM port of
the computer.

This first KERMIT session on the new robot confirmed two improvements from the
previous system. First, the session, captured at 9600 bauds, confirmed a faster baud rate.
Second, the data strings were longer as expected since the F6A is a newer version of the
ANDROS robot and includes more functions (and therefore more characters in the
command strings).

3 Results
The mapping for the F6A was easier then the original mapping of the Mark VA. Indeed
knowing how the check sum works allows us to study the character that change for each
body function under a single set of settings versus repeating the mapping for all the
desired set of settings. The settings could then be revised separately. Later, when the
same body motion characters are changed under different settings the programmer can
just change the corresponding settings characters and accurately predict the ASCII
character.

Hence, the body functions and vehicle drive functions were captured under the following
settings: Light OFF, Vehicle Speed HIGH and Arm Speed HIGH.

Appendices 105

Table 4: This table contains the character changes for body motions.

Constant Signal ññ0A00182000907F7F3F0000FFFF02CF02ý
Front Track Up ññ1A00182000907F7F3F0000FFFF02CF02þ
Front Track Down ññ2A00182000907F7F3F0000FFFF02D002ê
Rear Track Up ññ4A00182000907F7F3F0000FFFF02D002ì
Rear Track Down ññ8A00182000907F7F3F0000FFFF02D002ð
Torso Left ññ0A00182004907F7F3F0000FFFF02D002ì
Torso Right ññ0A00182008907F7F3F0000FFFF02D002ð
Shoulder Up ññ0A00182001907F7F3F0000FFFF02D002é
Shoulder Down ññ0A00182002907F7F3F0000FFFF02CF02ÿ
Elbow Up ññ0A00182000947F7F3F0000FFFF02D002ì
Elbow Down ññ0A00182000987F7F3F0000FFFF02CF02�
Wrist Up ññ0A00182010907F7F3F0000FFFF02CF02þ
Wrist Down ññ0A00182020907F7F3F0000FFFF02CF02ÿ
Wrist Extend ññ0A00182000907F7F3F0004FFFF02D102í
Wrist Retract ññ0A00182000907F7F3F0008FFFF02D102ñ
Wrist Roll CW ññ0A00182080907F7F3F0000FFFF02D002ð
Wrist Roll CCW ññ0A00182040907F7F3F0000FFFF02D102í
Grip Open ññ0A00182000927F7F3F0000FFFF02D102ë
Grip Close ññ0A00182000917F7F3F0000FFFF02D102ê

Table 5: This table contains the changes for vehicle drive motions.

Left ññ0E0018200090FF803F0000FFFF02D002æ
Forward and Left ññ0E0018200090FDF13F0000FFFF02D002ó
Backward and Left ññ0A001820009080803F0000FFFF02CF02Ó
Backward ññ0A0018200090807B3F0000FFFF02CF02ä
Backward and Right ññ0A0018200090807A3F0000FFFF02CF02ã
Right ññ0A00182000907E7A3F0000FFFF02CF02÷
Forward and Right ññ0A00182000907E7E3F0000FFFF02CF02û
Forward ññ0E001820009077FF3F0000FFFF02D102í

Once the body function and vehicle drive characters were mapped we identified the
characters changing with 3 main settings, the same we previously used for the Mark VA
GUI: the Vehicle Speed, the Arm Speed and the light.

Appendices 106

Table 6: This table contains the changes corresponding to the speed settings.

Vehicle Speed
HIGH ññ0A00182000907F7B3F0000FFFF02D202æ
MEDIUM ññ0200182000907F7B3F0000FFFF02D202×
LOW ññ0200182000907F7A3F0000FFFF22D202Ø
Arm Speed
HIGH ññ0A00182000907F7A3F0000FFFF02CF02ø
MEDIUM ññ0A00182000907F7A1B0000FFFF02CF02ò
LOW ññ0A00182000907F7A000000FFFF02CF02ß

4 Programming changes
So far then the main changes between the two Remotec ANDROS robot systems seem to
be the speed and length of the strings. Hence the modifications in the program are first
the baud rate after opening the port and then the size of the buffer. What used to be a 21-
string character (buffer size = 22) became a 35-string data. Thus the changes in the main
file are fairly simple. The source file that needs the most adjustments is the program that
generates the special ASCII character. This check sum obviously is calculated for more
characters even though the logic is confirmed to be the same. This portion of the code did
not change as much as anticipated. Indeed the new features in the F6A have been
implemented to the right of the string, leaving the previous functions unchanged. For
example the first character controls the front and rear tracks the same way in both robots.
This element emphasizes the fact that the main code did not have to be adjusted beyond
the size and speed of the data.

5 Debugging
Despite apparent similarities between the two systems, the program for the F6A did not
cause a reaction from the robot during testing.

5.1 Software testing
To narrow down the possibilities of problems the debugging process starts by eliminating
possible software issues. A simple and crucial test consists in making sure the PC does
send out the correct data at the correct baud rate. Connecting both COM ports of the PC
to each other using a null modem and K95, the programmer can confirm that the new
code is sending strings at 9600 baud. A simple test further eliminates possibilities that the
code might not generate the accurate check sum. Instead of generating the strings in the
code, the programmer can directly copy and past a K95 captured string. This way, the
data going to the robot is exactly the data coming out of the control box. A last software
suspicion was that the robot might expect a constant signal in between string commands.

Appendices 107

However adding a constant signal to the code still did not create a response from the
F6A. After those simple check points, it appears to be that the problem might be a
hardware problem.

5.2 Hardware testing

Possible hardware problem include wire connections, hand-shaking between the OCU
and the robot and impedance matching.

Wire connection – A major hardware issue to solve is to make sure data is getting to the
robot. A previous test has shown that the data is in fact being sent through the serial
cable, the only question remaining is whether or not it is getting to the right inputs at the
robot. Once again a wiring diagram from Remotec indicates the Receive and Ground
lines on the robot. To double check the connection is a simple process: connecting only
the Transmit and Ground lines from the OCU to the corresponding Receive and Ground
from the robot. If the robot moves, it establishes that it is indeed receiving the data from
the OCU through the anticipated inputs. This test confirmed that the right connection is
established between the computer and the robot. The set up for this experiment is shown
in Figure 41.

Figure 41: This testing set up is verifying the wire diagram.

Hand-shake/ Feedback – Since the original mapping data is in fact directly being sent to
and received by the robot, the reason why it is still not responding is puzzling. One

OCU Robot

GND GND

 TX RX

Appendices 108

thought is that the robot is able to identify the source of the strings by a hand-shake
mechanism through the primary connection or through other wires. The previous
experiment however has shown that only two wires are involved in the transmission of
the strings. There is no feedback necessary from the robot, before it moves. The Receive
line from the OCU and the Transmit lines from the robot are not connected. Neither are
the other wire connections. However one needs to mention here that certain times, after
performing this experiment, the F6A would be temporarily unresponsive to its own OCU.
The following error would appear on the display: “Looking for Robot communicator”. At
this point the fact that there is no feedback is established; however the possibility that the
robot recognizes its OCU is not excluded.

Voltage or Impedance – The previous experiments indicate that the strings are being
transmitted from the computer to the robot. They are reaching the right inputs at the robot
end and yet not generating motion. Therefore we can conclude that the robot does indeed
notice a difference between the PC and its OCU. It seems to be a voltage, power or
impedance problem. The voltage output of the new OCU is shown in Figure 42. These
voltages levels are higher than a regular PC can output. This was not the case for the
Mark VA and is definitely part of the problem in this case.

6 Conclusion

The F6A is a newer more sophisticated version of ANDROS Robot than the Mark VA. It
offers various new features, despite keeping the same basic engineering. The only two
noticeable differences from a programming point of view are the length of the strings and
the baud rate. From a hardware stand point however there is a discrepancy between the
computer and the new robot’s OCU. This works suggest that solving this situation
implies successfully matching the PC and the OCU impedances.

Appendices 109

Figure 42: This signal represents the output from the F6A OCU.

Vita 110

Vita

Roselyne Dalanda Barreto was born on May 14, 1980, in Dakar, Senegal to Marie
Madeleine Spenser and Philippe Barreto. She received the Bachelor of Science in
Electrical Engineering in May 2004, from The University of Tennessee, Knoxville. She
accepted a graduate research assistantship in the Imaging, Robotics and Intelligence
(IRIS) Laboratory in August 2004. The completion of this Master’s degree is scheduled
for August 2006.

	Migration from Teleoperation to Autonomy via Modular Sensor and Mobility Bricks
	Recommended Citation

	Microsoft Word - Thesis20.doc

