273 research outputs found

    Perceptually Uniform Construction of Illustrative Textures

    Full text link
    Illustrative textures, such as stippling or hatching, were predominantly used as an alternative to conventional Phong rendering. Recently, the potential of encoding information on surfaces or maps using different densities has also been recognized. This has the significant advantage that additional color can be used as another visual channel and the illustrative textures can then be overlaid. Effectively, it is thus possible to display multiple information, such as two different scalar fields on surfaces simultaneously. In previous work, these textures were manually generated and the choice of density was unempirically determined. Here, we first want to determine and understand the perceptual space of illustrative textures. We chose a succession of simplices with increasing dimensions as primitives for our textures: Dots, lines, and triangles. Thus, we explore the texture types of stippling, hatching, and triangles. We create a range of textures by sampling the density space uniformly. Then, we conduct three perceptual studies in which the participants performed pairwise comparisons for each texture type. We use multidimensional scaling (MDS) to analyze the perceptual spaces per category. The perception of stippling and triangles seems relatively similar. Both are adequately described by a 1D manifold in 2D space. The perceptual space of hatching consists of two main clusters: Crosshatched textures, and textures with only one hatching direction. However, the perception of hatching textures with only one hatching direction is similar to the perception of stippling and triangles. Based on our findings, we construct perceptually uniform illustrative textures. Afterwards, we provide concrete application examples for the constructed textures.Comment: 11 pages, 15 figures, to be published in IEEE Transactions on Visualization and Computer Graphic

    Building the Science of Healthcare Public Reporting: Integrating Anecdotal Information to Enhance Sensemaking

    Get PDF
    Anecdotal information about a healthcare consumers\u27 interaction with care providers and hospital facilities is becoming increasingly available to the public in the form of YouTube videos and as discussion posts on peer-support groups. This form of information can potentially jeopardize the utility of reports generated by Federal entities as it potentially diverts consumer attention from more reliable measures of quality. This dissertation investigates how a health consumer\u27s choice of care is influenced by anecdotal information on the care process available on YouTube. This research then investigates the effect of information presentation methods such as narratives and active engagement with quality metrics to support the consumer\u27s ability to comprehend public report information. An initial study investigated the characteristics of information healthcare consumers are searching for on a peer-support group. By analyzing the discussions available on the support community of a major ovarian cancer support group, the Ovarian Cancer National Alliance (OCNA), this study investigated the type of information that newly diagnosed ovarian cancer patients and their supporters seek. Using content analysis, 206 publicly available discussions exchanged on OCNA were analyzed by two researchers. Each discussion point was classified into one of the three broad themes that emerged: ovarian cancer-specific, treatment-related, or coping information. The discussion points were further analyzed using a multinomial logit model to predict the type of the desired information based on the role of the person looking for the information, the disease phase in which the information was sought, the emotional status of the information seeker, and the stage of the cancer. Treatment-related material was the most sought-after information by patients, while coping information was most sought by supporters. When forum posts were negative in tone, the information seekers were more likely to be looking for ovarian cancer-specific information than either treatment-related information or coping information. The second study investigated the effect of the role of the sequence in which such public report statistics and anecdotal information are viewed by health consumers during the sensemaking process. The study used the scenario of a patient looking for health facility-related information and employed a 2 (anecdotal information presented as videos supporting and contradicting public report information) * 2 (phase of introduction of anecdotal information: early, late) between-subjects experimental design. The results found that when the phase of introduction of anecdotal information changed from early to late, and when the anecdotal information contradicted the public reports, the probability of choosing the correct facility changed from 0.41 to 0.69. The probability of choosing the correct facility was reduced by more than half, changing from 0.85 to 0.41, when contradicting, rather than supporting, anecdotal information was presented before the public reports. Participants placed significant emphasis on this initial information and found it difficult to change their initial perceptions when presented with the more reliable public reports. The third study investigated ways to enhance consumer understanding by integrating standardized quality metrics with anecdotal information using user experience design methodologies. Two-hundred individuals participated in this study. This study employed a 2 (public report information presented in the standard way, presented within an anecdote) * 2 (engagement with each quality metric: none, active) between-subjects experimental design. The results of the study found that the probability of choosing the correct facility changes from 0.71 to 0.88 when information was presented within a narrative rather than with the standard public report format. A final study evaluated whether the influential nature of inaccurate anecdotal videos could be attenuated by presenting public report information within a narrative with active engagement. The study used the scenario of a patient looking for dialysis facility-related information and employed between-subjects experimental design - inaccurate anecdotal information was presented either early or late in the sensemaking process. Ninety-eight individuals participated in the study. The results found no significant differences in the choice of the dialysis facility and level of confidence in the choice. Given that narratives have the power to impact choice and comprehension, there exists a need to conduct further investigation to develop comprehensive guidelines for the presentation of narratives that support the use of public report information

    The evaluation of bulbar redness grading scales

    Get PDF
    The use of grading scales is common in clinical practice and research settings. A number of grading scales are available to the practitioner, however, despite their frequent use, they are only poorly understood and may be criticised for a number of things such as the variability of the assessments or the inequality of scale steps within or between scales. Hence, the global aim of this thesis was to study the McMonnies/Chapman-Davies (MC-D), Institute for Eye Research (IER), Efron, and validated bulbar redness (VBR) grading scales in order to (1) get a better understanding and (2) attempt a cross-calibration of the scales. After verifying the accuracy and precision of the objective and subjective techniques to be used (chapter 3), a series of experiments was conducted. The specific aims of this thesis were as follows: • Chapter 4: To use physical attributes of redness to determine the accuracy of the four bulbar redness grading scales. • Chapter 5: To use psychophysical scaling to estimate the perceived redness of the four bulbar redness grading scales. • Chapter 6: To investigate the effect of using reference anchors when scaling the grading scale images, and to convert grades between scales. • Chapter 7: To grade bulbar redness using cross-calibrated versions of the MC-D, IER, Efron, and VBR grading scales. Methods: • Chapter 4: Two image processing metrics, fractal dimension (D) and % pixel coverage (% PC), as well as photometric chromaticity (u’) were selected as physical measures to describe and compare redness in the four bulbar redness grading scales. Pearson correlation coefficients were calculated between each set of image metrics and the reference image grades to determine the accuracy of the scales. • Chapter 5: Ten naïve observers were asked to arrange printed copies of modified versions of the reference images (showing vascular detail only) across a distance of 1.5m for which only start and end point were indicated by 0 and 100, respectively (non-anchored scaling). After completion of scaling, the position of each image was hypothesised to reflect its perceived bulbar redness. The averaged perceived redness (across observers) for each image was used for comparison to the physical attributes of redness as determined in chapter 4. • Chapter 6: The experimental setup from chapter 5 was modified by providing the reference images of the VBR scale as additional, unlabelled anchors for psychophysical scaling (anchored scaling). Averaged perceived redness from anchored scaling was compared to non-anchored scaling, and perceived redness from anchored scaling was used to cross-calibrate grades between scales. • Chapter 7: The modified reference images of each grading scale were positioned within the 0 to 100 range according to their averaged perceived redness from anchored scaling, one scale at a time. The same 10 observers who had participated in the scaling experiments were asked to represent perceived bulbar redness of 16 sample images by placing them, one at a time, relative to the reference images of each scale. Perceived redness was taken as the measured position of the placed image from 0 and was averaged across observers. Results: • Chapter 4: Correlations were high between reference image grades and all sets of objective metrics (all Pearson’s r’s≥0.88, p≤0.05); each physical attribute pointed to a different scale as being most accurate. Independent of the physical attribute used, there were wide discrepancies between scale grades, with sometimes little overlap of equivalent levels when comparing the scales. • Chapter 5: The perceived redness of the reference images within each scale was ordered as expected, but not all consecutive within-scale levels were rated as having different redness. Perceived redness of the reference images varied between scales, with different ranges of severity being covered by the images. The perceived redness was strongly associated with the physical attributes of the reference images. • Chapter 6: There were differences in perceived redness range and when comparing reference levels between scales. Anchored scaling resulted in an apparent shift to lower perceived redness for all but one reference image compared to non-anchored scaling, with the rank order of the 20 images for both procedures remaining fairly constant (Spearman’s ρ=0.99). • Chapter 7: Overall, perceived redness depended on the sample image and the reference scale used (RM ANOVA; p=0.0008); 6 of the 16 images had a perceived redness that was significantly different between at least two of the scales. Between-scale correlation coefficients of concordance (CCC) ranged from 0.93 (IER vs. Efron) to 0.98 (VBR vs. Efron). Between-scale coefficients of repeatability (COR) ranged from 5 units (IER vs. VBR) to 8 units (IER vs. Efron) for the 0 to 100 range. Conclusions: • Chapter 4: Despite the generally strong linear associations between the physical characteristics of reference images in each scale, the scales themselves are not inherently accurate and are too different to allow for cross-calibration based on physical redness attributes. • Chapter 5: Subjective estimates of redness are based on a combination of chromaticity and vessel-based components. Psychophysical scaling of perceived redness lends itself to being used to cross calibrate the four clinical scales. • Chapter 6: The re-scaling of the reference images with anchored scaling suggests that redness was assessed based on within-scale characteristics and not using absolute redness scores, a mechanism that may be referred to as clinical scale constancy. The perceived redness data allow practitioners to modify the grades of the scale they commonly use so that comparisons of grading estimates between calibrated scales may be made. • Chapter 7: The use of the newly calibrated reference grades showed close agreement between grading estimates of all scales. The between-scale variability was similar to the variability typically observed when a single scale is repeatedly used. Perceived redness appears to be dependent upon the dynamic range of the reference images of the scale. In conclusion, this research showed that there are physical and perceptual differences between the reference images of all scales. A cross-calibration of the scales based on the perceived redness of the reference images provides practitioners with an opportunity to compare grades across scales, which is of particular value in research settings or if the same patient is seen by multiple practitioners who are familiar with using different scales

    Rotor detection in atrial fibrillation

    Get PDF
    Atrial fibrillation (AF) is one of the most common arrhythmias in the clinical practice. Catheter ablation method was developed more than 20 years ago as an approach to terminate this rhythm disorder. Since its outbreak, this technique obtained international acceptance among the clinicians, and technological advances in this field increased its safety while reducing the procedure duration. However, there is no perfect AF treatment procedure described yet, since the understanding of the driving and sustaining AF mechanisms remains poor, with pulmonary vein isolation being the most common ablation strategy. Several theories try to explain the initiating and maintenance mechanisms of the AF, ranging from multiple wavelets propagating at random in the atria to ectopic focus fired from the pulmonary veins. Alternatively, spatiotemporal stable sources (rotors) have been proposed as the maintenance mechanism of AF. The most representative characteristic of a rotor is the re-entry spiral-like propagation pattern that the electrical wavefront exhibits as it propagates. The assessment of its presence and posterior ablation of the sites where rotors anchor might improve the success of AF ablation. Technical solutions emerged focusing on the rotor assessment problem. They base their methods on the reconstruction of the atrial activity using multi-electrode catheters and phase maps, in which they detect singularity points, the sites where rotors spin. The ablation of these sites showed promising results, but the difficulty to reproduce the results by other authors increased the controversy on this technique. In this Thesis we address the rotor detection problem in the time domain as opposed to current methods based on the phase domain of the signals. We develop a new method to identify local activation times (LATs) in unipolar electrograms (EGMs) recorded with multi-electrode catheters. We propose a new filtering scheme to enhance the activation component of the EGM while considerably reducing the presence of noise in the signal. This signal processing method reects the real activity of the tissue in contact with the electrode. It opposes the Hilbert transform (HT) used to extract the phase component of the signal, that do not correlate well with the temporal activations. With the EGM LATs we perform a spatial interpolation translating the electrode positions of the catheter into a regular 2D grid. This way we generate isochronal maps revealing the electrical wavefronts in the atrium. What is more, this step guarantees compatibility with multi-electrode catheters, not restricting the method to specific models. With the isochronal maps, we develop a new rotor detection algorithm based on the optical flow of the wavefront dynamics, and a rotation pattern match. Additionally, we develop a new method based on Granger's causality to estimate the directionality of the wavefronts, that provides an additional indicator for rotational patterns. We validate the methods using in silico and real AF signals. We implement these methods into a system that can assess the presence of rotational activation sites in the atrium. Our system is able to operate in realtime with multi-electrode catheters of different topologies in contact with the atrial wall. We integrate signal acquisition and processing in our system, allowing direct acquisition of the signals without requiring signal exportation from a recording device, which delays the clinical procedure. We address the computational time handicap by designing parallelizable signal processing steps. We employ multi-core processors and GPU based code to distribute the computations and minimize the processing times, achieving near real-time results. The results presented in this Thesis provide a new technical solution to detect the presence of rotational activity (rotors) in AF patients in real-time. Although the presence of rotational activity is itself controversial, we individually validate each of the steps of the procedure and obtain evidence of the presence of rotational activity in AF patients. The system has been also found useful to characterize the atrial sites where rotational activity was found in terms of spatial and voltage distribution. The results of this Thesis provide a new alternative to existing methods based on phase analysis and open a new research line in the detection of the mechanisms sustaining AF.La fibrilación auricular (FA) es una de las arritmias más comunes en la práctica clínica. Para tratar de terminar esta fibrilación en pacientes se desarrollo el método de ablación con catéter hace ya más de 20 años. Desde su puesta en marchar esta técnica ha ido ganando aceptación internacional por parte de la comunidad médica, y los avances tecnológicos desarrollados en esta línea han aumentado la seguridad y disminuido la duración del procedimiento. Sin embargo todavía no existe un tratamiento perfecto para tratar la FA, debido en parte a que el conocimiento de los mecanismos que inician y sostienen la fibrilación son limitados. Como método de ablación el aislamiento de las venas pulmonares prevalece como el más empleado en la práctica, pero se hace necesario el desarrollo de nuevos métodos para hacer frente al problema de la FA. Distintas teorías tratan de explicar los mecanismos de inicio y mantenimiento de la FA, desde unas basadas en la propagación de múltiples frentes de onda aleatorios en las aurículas, hasta las que basan su hipótesis en focos ectópicos disparados principalmente desde las venas pulmonares, entre otras teorías. Recientemente, una de estas teorías basada en fuentes espacio-temporalmente estables (rotores) se propuso como mecanismo de mantenimiento de la FA. La característica más representativa de un rotor es su patrón de reentrada en forma de espiral que realiza el frente de onda eléctrico en el tejido auricular. La evaluación de la presencia de rotores y la posterior de los sitios en los que se encuentren puede mejorar el éxito de la ablación en pacientes con FA. En vista de esta tendencia por la búsqueda de rotores se desarrollaron soluciones técnicas para la evaluación de zonas que alberguen actividad rotacional. Sus técnicas se basan en la reconstrucción de la actividad auricular empleando catéteres multi-electrodo y detectando puntos de singularidad en mapas de phase, esto es la posición en la aurícula en la que el rotor gira. La ablación de estos puntos mostró resultados prometedores, pero la dificultad por replicar los resultados por parte de otros autores incremento la controversia con respecto a esta técnica. En esta Tesis abordamos el problema de la detección de rotores en el dominio del tiempo, oponiéndonos a las técnicas actuales basadas en el dominio de la fase de las señales. Para ello hemos desarrollado un nuevo para identificar tiempos de activación local en electrogramas unipolares registrados con catéteres multi-electrodo. Para ello proponemos un nuevo método de filtrado para realzar la activación del electrograma reduciendo considerablemente la presencia de ruido en la señal. Con este procesado de la señal extraemos y reflejamos la actividad real del tejido en contacto con el electrodo. Al mismo tiempo nos oponemos a la transformada de Hilbert empleada para calcular la componente de fase de la señal, que es sabido no tiene una buena correlación con las activaciones temporales. Con los electrogramas y los tiempos de activación locales aplicamos una interpolación espacial logrando trasladar la posición de los electrodos en el catéter a una rejilla regular en 2D. Mediante este paso generamos mapas isócronos que reconstruyen los frentes de onda eléctricos que se propagan en la aurícula. Además, la interpolación nos permite garantizar una compatibilidad con otros catéteres multi-electrodos, no restringiendo el uso de nuestro método a modelos específicos. Con los mapas isócronos hemos desarrollado un nuevo algoritmo de detección de rotores basado en el flujo óptico de la dinámica del frente de onda que hacemos coincidir con un patrón de rotación. Adicionalmente hemos desarrollado un nuevo método basad en la causalidad propuesta por Granger para estimar la dirección de los frentes de propagación, que sirve como indicador adicional para encontrar patrones de activación rotacional. Hemos validado todos y cada uno de los métodos empleando señales in silico así como señales reales de pacientes con FA. En la parte de aplicación, hemos implementado los métodos en un sistema que evalúa la presencia de actividad rotacional en la aurícula. Nuestro sistema opera en tiempo real siendo compatible con catéteres multi-electrodo de diferentes topologías asegurando contacto con la pared auricular. Para evitar sobreextender el procedimiento clínico, hemos integrado las partes de adquisición y procesado de señal conjuntamente, lo que nos permite un registro de las señales directo sin viii necesidad de requerir un exportado adicional desde un sistema de registro. Para hacer frente al objetivo de presentar los resultados en tiempo real hemos diseñado todos los pasos de procesado de señal para que sean paralelizables. Para ello empleamos procesadores multinúcleo y código para ejecutar en tarjetas gráficas (GPUs) para distribuir las computaciones y minimizar el tiempo de procesado, logrando resultados en quasi tiempo real. Hemos empleado el sistema de detección de rotores para estudiar la distribución espacial y de voltaje de los sitios que muestran actividad rotacional en la aurícula. Aunque la presencia de actividad rotacional es en sí misma controvertida, hemos validad individualmente todos y cada uno de los pasos descritos obteniendo evidencia de la presencia de actividad rotacional en pacientes con FA.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Pablo Laguna Lasaosa.- Secretario: Pablo Martínez Olmos.- Vocal: Batiste Andreu Martínez Climen

    2014 SCAS Annual Meeting Program

    Get PDF

    Home & place making after stroke:Exploring the gap between rehabilitation and living environment

    Get PDF
    This thesis addresses the question why many stroke survivors, even when they have received optimal treatment in the rehabilitation center, fall into a black hole when they are at home. The goal is twofold: 1) to gain a better understanding of the experienced gap between the rehabilitation and living environment of stroke survivors, and 2) to help improve the transfer from the rehabilitation to the living environment with help of scientific knowledge. This thesis shows that to improve rehabilitation care till into the own living environment, available evidence-based knowledge should be enriched with practical knowledge of rehabilitation professionals and experience-based knowledge from stroke survivors and caregivers. Interviews with stroke survivors reveal that ‘being at home’ does not equal ‘feeling at home’. Resuming life at home after a stroke is very different from recovering in the rehabilitation environment. In order to better understand the problems, other theory is needed than only theory from rehabilitation medicine. This thesis provides a new theoretical perspective for rehabilitation medicine. We have viewed stroke survivors’ and their caregivers’ experiences through a socio-spatial lens. This results in a shift in focus from functional recovery to identity confusion and feeling at home at important places after stroke. It is recommended to have one professional in outpatient and home rehabilitation, who acts as a coach, and assists stroke survivors and caregivers in rebuilding meaningful and interconnected relationships with their lives, place by place
    corecore