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Abstract

Atrial fibrillation (AF) is one of the most common arrhythmias in the clinical

practice. Catheter ablation method was developed more than 20 years ago as

an approach to terminate this rhythm disorder. Since its outbreak, this technique

obtained international acceptance among the clinicians, and technological advances

in this field increased its safety while reducing the procedure duration. However,

there is no perfect AF treatment procedure described yet, since the understanding

of the driving and sustaining AF mechanisms remains poor, with pulmonary vein

isolation being the most common ablation strategy.

Several theories try to explain the initiating and maintenance mechanisms of

the AF, ranging from multiple wavelets propagating at random in the atria to

ectopic focus fired from the pulmonary veins. Alternatively, spatiotemporal stable

sources (rotors) have been proposed as the maintenance mechanism of AF. The

most representative characteristic of a rotor is the re-entry spiral-like propagation

pattern that the electrical wavefront exhibits as it propagates. The assessment of

its presence and posterior ablation of the sites where rotors anchor might improve

the success of AF ablation.

Technical solutions emerged focusing on the rotor assessment problem. They

base their methods on the reconstruction of the atrial activity using multi-electrode

catheters and phase maps, in which they detect singularity points, the sites where

rotors spin. The ablation of these sites showed promising results, but the difficulty

to reproduce the results by other authors increased the controversy on this tech-

nique. In this Thesis we address the rotor detection problem in the time domain

as opposed to current methods based on the phase domain of the signals.

We develop a new method to identify local activation times (LATs) in unipolar

electrograms (EGMs) recorded with multi-electrode catheters. We propose a new

filtering scheme to enhance the activation component of the EGM while consider-

ably reducing the presence of noise in the signal. This signal processing method

reflects the real activity of the tissue in contact with the electrode. It opposes the
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Hilbert transform (HT) used to extract the phase component of the signal, that

do not correlate well with the temporal activations. With the EGM LATs we per-

form a spatial interpolation translating the electrode positions of the catheter into

a regular 2D grid. This way we generate isochronal maps revealing the electrical

wavefronts in the atrium. What is more, this step guarantees compatibility with

multi-electrode catheters, not restricting the method to specific models. With the

isochronal maps, we develop a new rotor detection algorithm based on the optical

flow of the wavefront dynamics, and a rotation pattern match. Additionally, we

develop a new method based on Granger’s causality to estimate the directionality

of the wavefronts, that provides an additional indicator for rotational patterns.

We validate the methods using in silico and real AF signals.

We implement these methods into a system that can assess the presence of

rotational activation sites in the atrium. Our system is able to operate in real-

time with multi-electrode catheters of different topologies in contact with the atrial

wall. We integrate signal acquisition and processing in our system, allowing direct

acquisition of the signals without requiring signal exportation from a recording

device, which delays the clinical procedure. We address the computational time

handicap by designing parallelizable signal processing steps. We employ multi-core

processors and GPU based code to distribute the computations and minimize the

processing times, achieving near real-time results.

The results presented in this Thesis provide a new technical solution to detect

the presence of rotational activity (rotors) in AF patients in real-time. Although

the presence of rotational activity is itself controversial, we individually validate

each of the steps of the procedure and obtain evidence of the presence of rotational

activity in AF patients. The system has been also found useful to characterize the

atrial sites where rotational activity was found in terms of spatial and voltage

distribution. The results of this Thesis provide a new alternative to existing meth-

ods based on phase analysis and open a new research line in the detection of the

mechanisms sustaining AF.

vi



Resumen

La fibrilación auricular (FA) es una de las arritmias más comunes en la práctica

cĺınica. Para tratar de terminar esta fibrilación en pacientes se desarrolló el método

de ablación con catéter hace ya más de 20 años. Desde su puesta en marchar esta

técnica ha ido ganando aceptación internacional por parte de la comunidad médica,

y los avances tecnológicos desarrollados en esta ĺınea han aumentado la seguridad

y disminuido la duración del procedimiento. Sin embargo todav́ıa no existe un

tratamiento perfecto para tratar la FA, debido en parte a que el conocimiento de

los mecanismos que inician y sostienen la fibrilación son limitados. Como método

de ablación el aislamiento de las venas pulmonares prevalece como el más empleado

en la práctica, pero se hace necesario el desarrollo de nuevos métodos para hacer

frente al problema de la FA.

Distintas teoŕıas tratan de explicar los mecanismos de inicio y mantenimiento

de la FA, desde unas basadas en la propagación de multiples frentes de onda aleato-

rios en las auŕıculas, hasta las que basan su hipótesis en focos ectópicos disparados

principalmente desde las venas pulmonares, entre otras teoŕıas. Recientemente,

una de estas teoŕıas basada en fuentes espacio-temporalmente estables (rotores) se

propuso como mecanismo de mantenimiento de la FA. La caracteŕıstica más rep-

resentativa de un rotor es su patrón de reentrada en forma de espiral que realiza

el frente de onda eléctrico en el tejido auricular. La evaluación de la presencia de

rotores y la posterior de los sitios en los que se encuentren puede mejorar el éxito

de la ablación en pacientes con FA.

En vista de esta tendencia por la búsqueda de rotores se desarrollaron solu-

ciones técnicas para la evaluación de zonas que alberguen actividad rotacional.

Sus técnicas se basan en la reconstrucción de la actividad auricular empleando

catéteres multi-electrodo y detectando puntos de singularidad en mapas de phase,

esto es la posición en la auŕıcula en la que el rotor gira. La ablación de estos pun-

tos mostró resultados prometedores, pero la dificultad por replicar los resultados

por parte de otros autores incrementó la controversia con respecto a esta técnica.
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En esta Tesis abordamos el problema de la detección de rotores en el dominio del

tiempo, oponiéndonos a las técnicas actuales basadas en el dominio de la fase de

las señales.

Para ello hemos desarrollado un nuevo para identificar tiempos de activación

local en electrogramas unipolares registrados con catéteres multi-electrodo. Para

ello proponemos un nuevo método de filtrado para realzar la activación del elec-

trograma reduciendo considerablemente la presencia de ruido en la señal. Con

este procesado de la señal extraemos y reflejamos la actividad real del tejido en

contacto con el electrodo. Al mismo tiempo nos oponemos a la transformada de

Hilbert empleada para calcular la componente de fase de la señal, que es sabido

no tiene una buena correlación con las activaciones temporales. Con los electro-

gramas y los tiempos de activación locales aplicamos una interpolación espacial

logrando trasladar la posición de los electrodos en el catéter a una rejilla regu-

lar en 2D. Mediante este paso generamos mapas isócronos que reconstruyen los

frentes de onda eléctricos que se propagan en la auŕıcula. Además la interpolación

nos permite garantizar una compatibilidad con otros catéteres multi-electrodos,

no restringiendo el uso de nuestro método a modelos espećıficos. Con los mapas

isócronos hemos desarrollado un nuevo algoritmo de detección de rotores basado

en el flujo óptico de la dinámica del frente de onda que hacemos coincidir con un

patrón de rotación. Adicionalmente hemos desarrollado un nuevo método basad

en la causalidad propuesta por Granger para estimar la dirección de los frentes de

propagación, que sirve como indicador adicional para encontrar patrones de acti-

vación rotacional. Hemos validado todos y cada uno de los métodos empleando

señales in silico aśı como señales reales de pacientes con FA.

En la parte de aplicación, hemos implementado los métodos en un sistema

que evalúa la presencia de actividad rotacional en la auŕıcula. Nuestro sistema

opera en tiempo real siendo compatible con catéteres multi-electrodo de diferentes

topoloǵıas asegurando contacto con la pared auricular. Para evitar sobreextender

el procedimiento cĺınico, hemos integrado las partes de adquisición y procesado

de señal conjuntamente, lo que nos permite un registro de las señales directo sin
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necesidad de requerir un exportado adicional desde un sistema de registro. Para

hacer frente al objetivo de presentar los resultados en tiempo real hemos diseñado

todos los pasos de procesado de señal para que sean paralelizables. Para ello

empleamos procesadores multinúcleo y código para ejecutar en tarjetas grágicas

(GPUs) para distribuir las computaciones y minimizar el tiempo de procesado,

logrando resultados en quasi tiempo real. Hemos empleado el sistema de detección

de rotores para estudiar la distribución espacial y de voltaje de los sitios que

muestran actividad rotacional en la auŕıcula. Aunque la presencia de actividad

rotacional es en śı misma controvertida, hemos validad individualmente todos y

cada uno de los pasos descritos obteniendo evidencia de la presencia de actividad

rotacional en pacientes con FA.
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1
Introduction

1.1 Relationship with Published Work

This thesis is based on and therefore partially coincides with the following pub-

lished contributions:

• Chapters 3 and 4: Gonzalo R. Ŕıos-Muñoz, Ángel Arenal, and Antonio Artés-

Rodŕıguez. Real-Time Rotational Activity Detection in Atrial Fibrillation.

Front. Physiol., 9:208, mar 2018. [102].

• Chapter 5: David Luengo, Gonzalo Ricardo Rios Munoz, Victor Elvira,

Carlos Sanchez, and Antonio Artes-Rodriguez. Hierarchical Algorithms for

Causality Retrieval in Atrial Fibrillation Intracavitary Electrograms. IEEE

J. Biomed. Heal. Informatics, pages 1–1, 2018. [75].

The thesis is also related to conference publications [114, 104, 105, 113, 28, 74,
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Chapter 1. Introduction

73]. We also issued a patent application as a result of the work developed in the

thesis concerning the rotational activity detection system [103]. Additionally, the

ongoing work derived from the thesis is expected to give continuity to this research

line [33, 32, 99, 100, 101].

1.2 Problem Statement and Motivation

AF is one of the most frequently sustained arrhythmias in clinical practice [63].

Common AF symptoms are weakness, breath shortness, dizziness, heart palpita-

tions or fatigue, although some patients may not experiment any symptoms at all

making AF difficult to diagnose in these cases. While in itself AF is not fatal,

it can result into serious life threatening complications in the long run, with AF

being associated to increased morbidity and mortality [131].

In a healthy heart, the heart chambers contract sequentially in a synchronized

order. First the upper chambers of the heart (the atria) receive blood from the

body and contract, pumping blood into the lower chambers (the ventricles). After

the atria contract, the ventricles expel the blood to the rest of the body by similar

muscular contraction. This synchronized pumping mechanism is the normal activ-

ity of the heart, and its regular rhythm is called the sinus rhythm (SR). However

in an AF episode this rhythm is disturbed, with the atria being irregularly and

rapidly activated. This prevents the atria from fully contract, producing an irregu-

lar contraction of the ventricles, because the atrioventricular (AV) node connecting

the chambers is still operative. Figure 1.1 exemplifies the difference between SR

and AF in signals recording the heart activations in an electrocardiogram (ECG).

The regular rhythm is disrupted, and its rate becomes irregular and often rapid.

The inability to effectively contract decreases the blood flow to the ventricles

and increases the formation of a blood clot, and therefore the risk for stroke.

A stroke is the major AF complication and occurs when there is a significant

reduction or blockage of the blood flow delivered to the brain, causing permanent

damage, severe disability or even death. Stroke is mostly caused by a blood clot,

a clump of of blood that clusters changing into a semi-solid or gel-like state that
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Chapter 1. Introduction

Figure 1.1: Examples of ECG recordings showing different rhythms. Top. Regular SR.

Bottom. Irregular AF

can partially or totally block the delivery of blood to the body.

The underlying mechanisms initiating and sustaining AF are still under de-

bate. During the past decades several theories on the initiation and maintenance

mechanisms driving AF have been proposed: focal theory, multiple wavelet theory

[50], reentries [38, 68], or even transmural endo-epicardial conduction [37]. This

situation prevents electrophysiologists to cure the arrhythmia with surgical proce-

dures and/or antiarrhythmic drugs, limiting the outcome of the treatments. All

these theories and experimental findings are reviewed in Section 1.5.

1.3 Electrical Activity of the Heart

1.3.1 Heart Physiology

The heart is an organ allocated in the thoracic cage between the lungs, and it

is mainly composed of muscular tissue (myocardium). The myocardium inner

lining is called endocardium, and covers the heart chambers. The outer lining is

the epicardium, and the pericardium, an external fibroserous sac, lines the whole

heart. The later is filled with liquid to protect the whole heart from shocks and

external threats. The heart is in charge of delivering blood to the rest of the

body, and its structure can be equivalently seen as two parallel blood pumps, see

Figure 1.2. Each pump (left and right) receive the blood in the atrium (upper

11



Chapter 1. Introduction

chamber), pushes it to the ventricle (lower chamber) and then expels it to the

lungs and the rest of the body.

Figure 1.2: Anatomy of the heart chambers representing the right atrium (RA), left atrium

(LA), right ventricle (RV), and left ventricle (LV). Pulmonary veins are also included as

darker circles inside the left atrium. The blood flow of the heart is represented with arrows.

The normal flow starts by receiving non-oxygenated blood at the right atrium.

The blood goes to the right ventricle through the tricuspid valve, and then it

travels to the lungs, where the blood is oxygenated. After that, the oxygenated

blood enters the left atrium, goes through the mitral valve into the left ventricle,

and it is expelled to the rest of the body.

The periodic mechanical movements of the heart define the cardiac cycle. The

diastole happens when the chamber is being filled with blood, and the systole refers

to the blood ejection caused by the fast contraction of the cardiac muscle. During

the filling event (diastole), the chambers are at their resting state, i.e., relaxed,

allowing the blood to enter. The blood ejection (systole) pumps the blood out

to the lungs and the body when the ventricles contract. The normal contraction-

ejection flow can be simplified to: atria filling, atria contraction, ventricle filling,

and ventricle contraction.

12



Chapter 1. Introduction

Figure 1.3: The cell cycle showing the different phases of the cardiac action potential

(AP).

1.3.2 Cardiac Action Potential

The mechanical contraction of the heart is possible thanks to the ionic fluxes

channels located in the cardiac cell membranes. The variation of the membrane

electric potential enables the activation of the myocardial cells. The cells trigger

an activation which propagates to the surrounding neighboring cells, and thus

the electrical impulse advances through the whole heart causing the mechanical

contraction. The different electrical stages of the cell, the AP, define the cell cycle,

see Figure 1.3, and it is composed of:

• Phase 0 : When the cell is at rest, the influx of sodium ions increases the

potential of the membrane. When the voltage value exceeds a threshold a

rapid depolarization occurs, reflected in the AP as a sharp upstroke.

• Phase 1: The sodium channels start to close and the outward potassium

channels create an early repolarization that tries to bring the cell to its

resting state.

• Phase 2: The repolarization is slowed down by the flux of calcium ions,

which compensates the outward potassium channels at Phase 1. Phase 2

also receives the name of Plateu phase.

• Phase 3: The final rapid repolarization returns the membrane potential

to its resting state.

13



Chapter 1. Introduction

• Phase 4: At this stage the cell is at its resting level, with a membrane

potential of [−70,−80] mV.

After a refractory period the cell is available to be depolarized once again.

This refractory characteristic prevents the cells to be depolarized too soon, which

would interrupt the proper functioning of the heart. During the refractory period

the cell is able to recover from the previous activation and gets ready for the next

depolarization to occur.

1.3.3 Electrical Cardiac Propagation

The whole cardiac activity is ruled by electrical impulses generated by the natural

peace makers of the heart. The electrical stimulus starts at the sinus node and

propagates through the myocardium cardiac tissue, following a bundle network

which carries the activation signal, see Figure 1.4. In a healthy individual the

sinus node induces a normal heart rhythm, or SR, of 60 − 100 beats per minute

(bpm). As it propagates, the electrical impulse (signal) causes the contraction of

the atrial chambers, delivering blood to the ventricles. The signal is delayed at

the AV node, so there is enough time for the ventricles to be filled.

Once the electrical impulse leaves the AV node, the His bundle conducts the

stimulus to the Purkinje fibers (fast conductive fibers), which manage a coordi-

nated contraction of the ventricles, resulting in the ejection of blood out of the

heart, and the end of the cardiac cycle.

1.4 Signals in Electrophysiology

Clinicians have access to a variety of tools to assist them in the diagnosis of cardiac

arrhythmias based on the electrical activations of the heart. They perform elec-

trical activity measurements to observe non-periodic rhythms, abnormal electrical

conduction, or even to evaluate infarction and fibrosis scenarios. In this section

we present the most common signals used for studying arrhythmias.

The measurement system used to register the heart activity varies with the
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Chapter 1. Introduction

Figure 1.4: Electrical conduction system of the heart. Nodes and bundles propagate the

electrical impulse across the heart to perform the contraction that delivers blood to the

rest of the body.

observation scale. For instance, as a first diagnosis approach, the electrophysi-

ologist may require to analyze the signals acquired with surface skin-electrodes,

while a thorough study would involve the use of invasive catheters to record local

intracardiac activity at specific regions of the heart.

1.4.1 Electrocardiograms

The ECG is the main diagnosis tool used in clinical practice. It records the electric

cardiac activity with external electrodes placed on the skin of the patient. The elec-

trodes register the electrical field generated by the heart as the electrical impulse

propagates across the myocardium. The propagation of the electrical wavefronts

through the surrounding tissue allows the electrical current to be measured with

these electrodes, obtaining the ECG signals.

The resulting ECG signal exhibits differentiated morphology shapes. In Fig-

ure 1.5 we include the most characteristic representation of the ECG, comprising:

the P wave, QRS complex and the T wave. This morphology segmentation cor-

responds to the path that the electrical impulse follows throughout the heart (top

to bottom). The depolarization of both atria produces the P wave, and once it

reaches the ventricles their depolarization generates the QRS complex. After the
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Chapter 1. Introduction

Figure 1.5: I-lead ECG wave.

ventricular depolarization, the T wave is the result of the repolarization of the

ventricles. The return to the resting state allows the chambers to be filled with

blood once again (diastole). It is important to bring attention to the absence of

atrial repolarization contribution to the ECG. The reason is that the larger size

of the ventricles makes the depolarization QRS complex to occlude the coexisting

atrial repolarization, which is smaller in amplitude.

The most common employed electrode layout for ECG recording is the 12-lead

ECG. The body surface electrodes are placed on the skin according to the positions

displayed in Figure 1.6. The differential (bipolar) voltage of the electrodes results

in a total of 12 ECG signals revealing the cardiac activity. These signals are filtered

to enhance the ECGs and to remove any noisy contributions that may distortion

or interfere with the signals. Finally, the 12 ECG signals can be displayed so the

physicians can analyze them. In Figure 1.7 we show an illustrative example of the

12-lead ECG signals for the specific case of an AF patient.

1.4.2 Intracardiac Electrograms

One more useful diagnosis tool is the intracardiac EGM. In EGMs signals the

recording electrode is in direct contact with the cardiac tissue. EGMs provide

information concerning the local tissue surrounding the electrode. They record

the ionic activity beneath the electrode, transforming the ionic activity of the

cardiac cells into electrical currents that can be converted into readable voltage

signals by electronic devices.
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Figure 1.6: Electrode placement illustration for the 12-lead ECG visualization.

The recording electrodes are normally embedded in a catheter that is advanced

intravenously into the heart chambers (atria or ventricles), veins or arteries. There

is a wide variety of catheters in clinical practice, with different number of elec-

trodes, geometry and size, see examples in Figure 1.8. The electrodes register low

voltage signals, which require filtering and enhancement by electronic equipment,

generally performed by an operational amplifier. These devices provide differential

voltage measurements, i.e., the difference between one electrode (positive) and a

reference signal (negative). In general when using an operational amplifier, the

positive and the negative electrode are referred as anode and cathode respectively.

Besides intracardiac multi-electrode catheters other techniques like the voltage

clamp can be employed to read the intracellular action potential of the cell mem-

brane of a single cell, and also epicardial patches can be placed on the heart to

read epicardial potentials. For simplicity and due to the scope of this thesis, we

just mention these techniques to register EGM signals and we focus the attention

on multi-electrode catheter acquisition.

Essentially, unipolar and bipolar configurations are used when using multi-

electrode catheters. In Figure 1.9 and Figure 1.10 we include a representative

example of the signals visualized during an ablation procedure using bipolar and

unipolar configurations respectively. Unipolar EGMs are obtained using an elec-
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Figure 1.7: Illustration of the 12 lead ECG signals for a patient with AF.

trode in contact with the cardiac tissue as the positive input (anode), and a ref-

erence at infinity distance as the negative electrode (cathode). In practice, Wil-

son central terminal (WCT) is commonly used as the distant reference electrode.

Bipolar EGMs involves computing the difference between two electrode signals,

reflecting the local activity between the electrodes.

The main characteristics of the EGMs configurations are directionality, tem-

poral resolution and spatial resolution, see Table 1.1.

Directionality is defined as the ability to give information about the direction

of the wavefront, see illustration in Figure 1.11. In the bipolar case depending on

the electrode orientation with respect to the incoming wavefront, the morphol-

ogy of the bipolar signal gets modified, reaching the worst case scenario when
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(a) (b) (c)

(d) (e) (f)

Figure 1.8: Intracardiac catheters. (a) Thermocool R© (Biosense Webster, Diamond Bar,

California, USA)mapping and ablation catheter. (b) PentaRay R© (Biosense Webster, Di-

amond Bar, California, USA)mapping catheter. (c) Lasso R© (Biosense Webster, Diamond

Bar, California, USA)mapping catheter. (d) Advisor HD
TM

grid (Abbott, St. Jude Medi-

cal, St. Paul, Minnesota, USA)mapping catheter. (e) Constellation
TM

(Boston Scientific,

Natick, MA, USA)mapping catheter. (f) Intellamap Orion
TM

(Boston Scientific, Natick,

MA, USA)mapping catheter.

the propagation direction is perpendicular to the line connecting both electrodes,

see Figure 1.11B. In this specific case, the two electrodes record almost identical

activity, resulting in a flat bipolar signal containing no information, as seen in

Figure 1.11B. The optimal bipolar case is achieved when the wavefront is paral-

lel to the electrodes position, see Figure 1.11A. In this case the electrodes record

different signals and the bipolar signal contains a voltage fluctuation between the

unipolar activations.

Fortunately unipolar EGMs contain information about the direction of the

wavefront regardless of the direction of the wavefront. When the wavefront ap-

proaches the electrode a positive deflection is recorded, and as the wavefront moves
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Figure 1.9: Commonly employed ECG and bipolar EGM signals in AF ablation pro-

cedures. In the example the bipolar measurements for all the branches (A-E) of a

PentaRay R©catheter are shown together with two tetrapolar catheters, one placed at the

coronary sinus (SC Dist, SC Prox) and the other employed to map and ablate (Map 1-2,

3-4).

away a negative contribution appears, providing information about the direction-

ality of the wavefront. Morphology in this case does not vary with the direction
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Figure 1.10: Unipolar signals obtained with the electrodes of a PentaRay catheter, with

each branch labeled A-E containing 4 electrodes. The signals show the same recording

temporal window as the bipolar ones in Figure 1.9

of the activation as it does in the bipolar recording. The only disadvantage is

that unipolar EGMs suffer from far-field activity, but this undesired effect can be

removed with filtering and cancellation techniques.

Temporal resolution is the ability to recognize the LAT when the wavefront
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Directionality

Unipolar Can be extracted from morphology.

Bipolar Wave direction alters the morphology.

Temporal resolution

Unipolar Accurate LAT identification.

Bipolar Not well defined LAT identification.

Spatial resolution

Unipolar Good resolution but contains far-field activity.

Bipolar Resolution depends on electrode distance. No far-field contribution.

Table 1.1: Summaray detailing the different unipolar and bipolar configuration character-

istics.

arrives at a certain electrode, see Figure 1.12. In unipolar EGMs this happens when

there is a sudden deflection in the signal. The time instant corresponding to the

local activation matches the point of maximum negative slope, see signals U1 and

U2 in Figure 1.12. Hence the first derivative of the signal dVdt can be used to identify

LATs. However in the bipolar case this local detection becomes a problem, since

there is no full agreement on the methods and approaches to identify the LATs.

Signal B1-2 in Figure 1.12 exemplifies the irregular shape of the bipolar signal,

where the LATs cannot be accurately identified. It is common to use the maximum

voltage value of the EGM as the LAT, while other techniques detect the bipolar

onset and offset interval to estimate the LAT [39]. Other authors use a library of

manually labelled EGM activation times and compare the matching of these LAT

templates with the bipolar EGM signals to identify the LAT [125]. Additionally,

when facing complex EGMs most of these techniques fail to be robust.

Spatial resolution is the ability to establish the tissue area location which

produces the recorded action potential, see Figure 1.13 for an illustrative example

on this feature. Unipolar EGMs exhibit the local activity of the area surrounding

the distal input (furthest electrode with respect to the operator). Due to being

using a distant reference electrode, far-field activity is also recorded. This activity
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Figure 1.11: Directionality of unipolar and bipolar signals. A. Wavefront approaching par-

allel to the electrodes U1-U2 line, resulting in a bipolar signal with noticeable activations.

B. Wavefront approaching perpendicular to the electrodes U3-U4 line, both electrodes

record almost identical signal resulting in a bipolar signal reflecting poor local activations.

interferes with the EGM of the tissue in contact with the electrode, thus providing

a poor signal to noise ratio (SNR). In the bipolar configuration this problem is

solved because of the subtraction involved in the differential operation. When the

source of the noise is far enough both electrodes record similar additive noise, then

when the differential signal is calculated the noisy contributions are canceled out,

improving the SNR. Moreover, bipolar EGMs reflect the local activity taking place

around and between the electrodes gap, and the smaller this gap is the bigger the

spatial resolution. This effect on the distance of the electrodes involved in the

differential operation of the bipolar configuration is exemplified in Figure 1.13. In

Figure 1.13A the electrodes U1 and U2 are close to each other if compared to the

electrode pair U1-U3 in Figure 1.13B. The closer the electrodes are, the higher the
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Figure 1.12: Temporal resolution of unipolar and bipolar signals. In the figure the LATs

in the unipolar signals U1 and U2 are clearly defined by the time instant of the maximum

negative value of dVdt . However for the bipolar signal B1-2 the accurate LAT identification

is not so well defined.

spatial resolution is, narrowing the electrical phenomenon happening between the

electrodes. As the electrodes separate the shape of the bipolar signal losses spatial

resolution, since the activations in the unipolar signals get delayed. In this case it

is not so easy to characterize the concrete point in the space producing the signal.

1.4.3 Optical Mapping

The optical mapping systems provide direct imaging of the electrical activity of

the heart. These techniques are based on the response provided by fluorescent

dyes that are voltage sensitive to the electrical activity. The dye adheres to the

cellular membrane of the cells emitting a light whose frequency directly depends

on the membrane voltage variation. This way using high spatial and temporal

resolution cameras, the cardiac action potential can be recorded at multiple sites

simultaneously. With this technique a bidimensional image of the electric activity

is obtained.

In the images each pixel represents the average action potential of the region

in the field of view of the camera for that specific pixel. With the optical mapping

systems the mechanisms of electrical propagation and cell level events can be

studied. Optical mapping is usually employed in experimental studies with in vivo
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Figure 1.13: Spatial resolution of unipolar and bipolar signals. In the bipolar signals

spatial resolution is lost as the distance between the electrodes involved in the differential

operation increases. A. Electrodes are close and provide good spatial resolution. B.

Electrodes are further away making the shape of the bipolar signal to be altered losing

the ability to accurately define the activity of a local site.

hearts and cultivated monolayer cardiac cells.

1.5 Study of Atrial Fibrillation

1.5.1 Atrial Fibrillation Triggering and Maintenance Mechanisms

The first reference to AF dates back to 1909, when Thomas Lewis conceived experi-

ments to better understand the ”auricular fibrillation” [69]. His findings suggested

reentry as an early theory mechanism behind the AF. Additionally, other studies

had also considered the initial idea of random distributed sources in the atrium,

Winterberg 1907 [133], or close circuit propagation in the atria, Mines 1913 [82],
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as possible causes of AF. These were the most trusted hypothesis until 1948, when

Scherf conducted a series of experiments to conclude that an ectopic focus such

as a rapid stimulus of the atrial tissue could be the cause of AF [116]. One of

his most remarkable discoveries was the observation of refractory islands of tissue

formed as the impulse advanced into the atrium. These islands of refractory tissue

resulted into reentry waves, which he did not considered to be the cause of AF

but a concomitant feature accompanying the ectopic focus theory. Nowadays, the

ectopic focus hypothesis triggering AF is one of the plausible AF theories due to

the new findings and experiments performed in the last decades.

Besides the new findings on AF achieved by that time, this theory was eclipsed

by the observations made by Moe [83]. In his experiments Moe confirmed the

ideas of refractoriness stated by Scherf, and he concluded that strands or islets of

refractory tissue generating reentry waves became fractionated into independent

daughter wavelets, which could sub-divide again into more offsprings of the first

wave. This was the basis of the multiple wavelet hypothesis, a new alternative to

the previous proposed theories. In 1964 Moe proved that random propagation of

waves in an non-homogeneous tissue might be the cause of AF using computational

models [84]. At this point the AF was considered a self-sustained process. Moe

considered that the major mechanism behind AF was due to reentry, but he also

realized that the irregular atrial activation might possibly involve other factors

like single/multiple fast discharging ectopic focus, or rapidly propagating circus

movement.

For decades reentry was the leading theory mechanism for AF, until new tech-

nical advances became available. In 1985 using electrode based electrical recording

technology, Allessie demonstrated that multiple waves could maintain AF [7]. The

wavelet hypothesis stated that a minimum number of simultaneous wavelets would

perpetuate AF. At least 4 to 6 wavefronts were necessary to sustain the fibrilla-

tory process, while a smaller number of wavefronts would combine into a single

one restoring the SR.

This theory could explain the maintenance mechanism of AF, however it did
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Figure 1.14: AF timeline.

not clarify the initiation of the arrhythmia. In 1998, new observations made by

Haissaguerre brought back the attention on ectopic focus firing the AF [50]. He

found fast activation foci to be triggering AF and that they were mostly distributed

at the pulmonary veins. This region is characterized by the union of atrial and
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(a) (b) (c)

Figure 1.15: AF theories. (a) Focal theory. (b) Multiple wave theory. (c) Rotor theory.

vein tissue whose heterogeneous interconnection could explain the initiation of the

arrhythmia. In the experiments he was able to prove that focal ectopic triggers

could fire AF, and also promoted the endocardial catheter ablation as a treatment

for AF patients.

At the same time, spatiotemporal stable sources (rotors) were proposed as the

maintenance mechanism of AF, Jalife 1998, 2002, 2004 [55, 57, 56], and Beren-

feld 2001 [18]. The theory of circle reentry had already been introduced by Lewis

and then Allessie et al in the 19070s [5], but rotors proposed that the wavefront

curvature could intensely bend and became the center of the reentry, with ap-

proximated zero conduction velocity at its centermost point. This way rotors are

conceived as functional reentry, in opposition to anatomical reentries where the

wavefront pivots around regions of non-excitable tissue. The higher activation rate

of the rotors with respect to SR allows this kind of wavefronts to activate the sur-

rounding tissue and dominate the activation of the atria over the SR. In in silico

simulations and preclinical experiments rotors were formed and maintained when a

wavefront interacts with obstacles, scars, or heterogeneous tissues with anisotropic

conduction. The conduction of velocity and the refractoriness of the tissue became

important features as they might be involved in the development and generation

of rotors. Unfortunately, in the clinical practice the role of rotors as AF drivers

is still controversial, with no confirmation nor acceptance of the rotor paradigm,

Narayan 2014 [86], Allessie 2014 [8, 4].

After this brief historic introduction, all the theories can be condensed into

three main groups:
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Focal theory: those supporting the disorganized activity generated after the

fractionation of the wavefronts triggered from a focal discharge in the atrium,

see Figure 1.15A. With studies supporting pulmonary veins as the most likely

regions to be the source of these rapid focal discharges, Chen 1999 [30], and also

contemplating other areas to be responsible for focal discharges, e.g. the coronary

sinus, superior vena cava, left posterior wall, or crista terminalis, Tsai 2000 [126],

Lin 2003 [71].

Multiple wave theory: comprising the supporters of multiple wavelets prop-

agating at random in the atrial tissue, see Figure 1.15B. They suggest that a

minimum number of simultaneous wavelets would perpetuate AF. Although its

maintenance possibly involves some form of reentry circuit caused by wavebreaks

[121].

Rotor theory: those in favor of a self-sustained vortex of rotational activity,

which can be stable and anchored at a specific region of the atria, or that may

drift throughout the tissue, see Figure 1.15C. The rotor can sustain AF becoming

the principal driver of the the arrhythmia due to the development of a functional

reentry that enables the self-perpetuation of the rotational vortex.

1.5.2 Atrial Fibrillation Classification

As recommended by the European Society of Cardiology, the AF diagnosis requires

a documentation of the rhythm with an ECG recording [63]. The signals must

show the principal characteristics of the AF: irregular ventricle activations and

the unperceptive vanished P-waves. In the event of AF, the P-wave corresponding

to the depolarization of the atria is no longer present and it is replaced by fast

fibrillatory waves. The fibrillatory period of the AF normally comprises 300 to 600

bpm, i.e., a frequency interval of 5− 10 Hz (beats per second). The first channel

in Figure 1.7 corresponding to the I-lead exemplifies the absence of P-wave. If we

compare it to the pattern in Figure 1.5 we can see how the P-wave disappears.

Besides the absence of P-wave in the ECG, AF is also characterized by the

irregular activation of the ventricles. This is manifested in the variability of the
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interval between R-peak activations in the ECG, see R-peak intervals in Figure

1.7.

As for the classification, AF can traditionally be divided into five types attain-

ing to the duration, spontaneous termination and presentation of the AF episodes,

see Table 1.2 [63]. There is no unique classification for AF, and other authors

may include different classification criteria depending on the characteristics of the

patient, or the suspected causes of the arrhythmia, e.g. focal AF triggered by ec-

topic activations, Left ventricle (LV) dysfunction, onset of AF after mayor surgery,

patients with inherited cardiomyophaties, athletes, or gen carriers associated with

AF.

AF pattern Definition

First diagnosed AF that has not been diagnosed before, irrespective of the

duration of the arrhythmia or the presence and severity of

AF-related symptoms.

Paroxysmal Self-terminating, in most cases within 48 hours. Some AF

paroxysms may continue for up to 7 days. Cardioverted

episodes within 7 days should be considered paroxysmal.

Persistent AF that lasts longer than 7 days, including episodes that are

terminated by cardioversion, either with drugs or by direct

current cardioversion, after 7 days or more.

Long-standing

persistent

Continuous AF lasting for ≥ 1 year when it is decided to

adopt a rhythm control strategy.

Permanent AF that is accepted by the patient (and physician). Hence,

rhythm control interventions are, by definition, not pursued

in patients with permanent AF. Should a rhythm control

strategy be adopted, the arrhythmia would be re-classified

as ’long-standing persistent AF’.

Table 1.2: Traditional AF classification (adapted from [63]).
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1.5.3 Therapies

The discrepancy on the mechanisms triggering and sustaining AF contributed to

the support of different treatments to tackle the termination of this arrhythmia. To

this end, the main approaches are surgical and pharmacological therapies, which

are normally combined to improve the success. However, the effectiveness of the

treatments for AF still remains suboptimal if compared to other common arrhyt-

mias.

Antiarrhythmic drug therapy.

The administration of pharmacological drugs has different purposes, such as the

anticoagulation of blood to reduce the generation of clots, the control of the cardiac

frequency, the maintenance of the SR, chemical cardioversion, and the prevention

of AF episodes from happening. The administration of pharmacological drugs can

affect the excitability and conduction velocity of the cardiac tissue, increase the

refractory period to prevent reentrant waves to prevail, or even extend the action

potential duration (APD). Hence, the prescription of drugs depends on the patient

and the ionic mechanisms which are affected by the treatment. Per contra, drug

therapy does not only affect the atrial tissue but causes frequent side effects that

may even increase the rate of mortality [89, 90].

Electrical cardioversion therapy.

An electric shock is delivered to restore SR, and dates back to 1962 [72]. The

electrical discharge interrupts the the whole electric activity of the heart allowing

the restitution of the natural heart rhythm. This is a common therapy which is

normally employed when the drug therapy presents no success. After cardioversion

drug administration is commonly used to prevent the arrhythmia to recur and to

reduce blood clot formation.
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Ablation therapy.

When drug therapy and electrical cardioversion present no effectiveness to prevent

the AF from recurring, catheter based ablation is employed. This treatment de-

livers radiofrequency energy to the atrial tissue, heating the area in contact with

the catheter tip generating a lesion. After the lesion heals it becomes a scar which

presents no electrical conduction capability. Ablation can also be performed by

cryoablation, an alternative that uses a refrigerant to freeze the tissue creating a

lesion that also disables its conductivity properties.

Ablation allows electrophysiologist to remodel the electrical behavior of the

heart. Following evidences on ectopic foci triggering AF near the pulmonary veins

[50], pulmonary vein isolation (PVI) became one of the most common clinical

procedures based on the ablation principle. Since the pulmonary veins are believed

to be responsible for ectopic discharges that may initiate and maintain AF, the

PVI technique creates a linear lesion around the pulmonary veins to disconnect

them from the rest of the atrial tissue. This way if any spontaneous activation

initiated at the pulmonary veins tries to propagate it will be block by the linear

lesions, preventing it to trigger or sustain the arrhythmia. Additional ablation

lines can be also created to isolate other regions related to ectopic activations,

e.g. the cava veins or the atrial appendages. The effectiveness of this technique

in patients differs depending on the AF development state, with higher success in

patients with paroxysmal AF than those with persistent AF [29].

In order to improve the success rate new ablation guided procedures were devel-

oped based on different perpetuating mechanisms. One of the first was based on the

identification and later ablation of atrial regions exhibiting complex fractionated

atrial electrograms (CFAEs). The CFAEs are EGMs which become fractionated

due to slow conductivity regions, focal micro-reentries, pivot/anchor points or by

the multiple wavefront collission [6]. They were believed to be responsible for

AF maintenance, as their existence possibly allowed the harboring of AF drivers.

However, clinical studies based on this technique provided no significant success,

setting aside this approach at the moment in favor of other methods [96].
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Other studies based their approach on the activation frequency of the atrial

regions, with higher frequencies assumed to be driving AF. The sequential analysis

of the dominant frequency (DF) performed on the registered EGMs generates the

frequency gradient of the atria. The DF provides a frequency measurement in

hertz (Hz) of the fundamental frequency of the signal. The DF involves signal

preprocessing and calculating the maximum peak in the frequency spectrum of

the signal. The studies on DF guided ablation showed comparable success to the

PVI procedure, but still presented no promising results for persistent AF [12, 13].

Furthermore, there exist different opinions on the stability of the detected pattern

activity in time, since normally signals during AF are not perdiodic or present

repetitive patterns [58].

Other AF methods based on the identification of focal and rotational drivers

were proposed to guide the ablation [85]. By analyzing the EGMs recorded by

basket catheters they aim to locate the position of the AF drivers, but their success

remains controversy [17].

1.5.4 Electrophysiology Laboratory Equipment

With the emergence of catheter ablation procedures the electrophysiologists just

required a fluoroscopy system to guide the catheter into the heart and the position

to deliver the radiofrequency energy, plus a recording system to display the EGMs

measured by the electrodes in the catheter. See Figure 1.16 for a fluoroscopy image

example.

The main disadvantage of the fluoroscopy based ablation is the vast radiation

time that is delivered to the patient. With the goal of reducing the radiation ex-

posure new non-fluoroscopy systems were developed. The basis of these systems,

also known as electroanatomical mapping (EAM) systems, resides in their capabil-

ity to spatially locate the catheter without fluoroscopy visual confirmation. This

technological advantage reduces the radiation exposure time drastically.

The EAM systems locate the catheter electrodes using magnetic or impedance

measurements. They work in a similar way, but depending on the commercial
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Figure 1.16: Fluoroscopy image example during a clinical procedure. Catheters can be

visualized and their position inside the heart chambers can be verified. Figure adapted

from [11].

system they measure the magnetic field strength or the impedance variation of

the electrodes with respect to reference patches. These patches are placed near

the patient or in direct contact with the skin of the patient. With the reference

patches the EAM systems can triangulate the position of the electrode. The most

known commercial EAM systems are the CARTO R© 3 (Biosense Webster, Diamond

Bar, California, USA), EnSite
TM

NavX
TM

(Abbott, St. Jude Medical, St. Paul,

Minnesota, USA), and RHYTHMIA HDx
TM

(Boston Scientific, Natick, MA, USA).

In Figure 1.17 we include screen shots of the different EAM systems during different

atrial volume reconstructions.

EAM systems can perform a volume reconstruction of the veins, arteries and

heart chambers as the catheter moves. They also display the EGM and provide

the information recorded by the electrodes of the catheter. They can relate the

information of the acquired signals with their position in the reconstructed volume.

This way they generate 3D maps characterizing the cardiac tissue, e.g. unipolar-

bipolar voltage, activation times, or impedance values. This information is useful
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Figure 1.17: Most common EAM systems in the clinical practice. A. CARTO R© 3

(Biosense Webster, Diamond Bar, California, USA). B. EnSite
TM

NavX
TM

(Abbott, St.

Jude Medical, St. Paul, Minnesota, USA). C. RHYTHMIA HDx
TM

(Boston Scientific,

Natick, MA, USA).
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Figure 1.18: Electrophysiology equipments in AF ablation procedures. From left to right,

we have a 3D EAM system for anatomic reconstruction and clinical guidance, a recording

system that registers and keeps track of all intracavitary and external signals, and the

fluoroscopy imaging system that provides live x-ray image to check the catheter position

within the heart and to guide the transeptal puncture.

for studying the arrhythmia mechanisms driving or sustaining the fibrillation.

They also offer compatibility to integrate computed tomography (CT) or mag-

netic resonance imaging (MRI) scans into the systems. The reconstructed 3D EAM

volume can be merged with the previously generated scans to confirm their sim-

ilarity, and to check specific heart characteristics that can complement the EAM

shell, e.g. fibrotic tissue, infarcted areas, unusual morphology, or veins distribu-

tion. Since the EAM system provides catheter navigation as the electrophysiologist

operates and advances the catheter, tags can be placed on the 3D maps to highlight

interest points.

An example of the common equipment setup employed in an electrophysiology

laboratory is shown in Figure 1.18. The signals recorded by the catheter or skin-

electrodes are split and fed to the different systems. The setup usually contains 3D

EAM for anatomic reconstruction and clinical guidance. Simultaneously, signals

are filtered, enhanced, and stored using an operational amplifier and a recording

system, and a fluoroscopy imaging system is used to verify the catheter position

and to guide the transeptal puncture.
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1.5.5 Clinical Solutions

PVI remains the most employed ablation procedure tackling AF termination.

Based on the ectopic firing at the pulmonary veins, it tries to electrically isolate the

veins from the rest of the left atrium. To help in the procedure, electrophysiologists

use EAM and fluoroscopy systems to assist them while advancing the catheter and

in the radio-frequency energy delivery to create the tissue lesion. Other studies

based on CFAEs, or those creating additional ablation lines with or without PVI

lines also employ the same equipment.

Alternatively to PVI, in recent years new solutions (equipments) have been de-

veloped to study the existence of rotors and their relationship with AF termination.

The temporal stability characteristic of a rotor and its spiral wave pattern, com-

pared to the multiple wavelet irregular propagation, facilitates the development

of new algorithms that could detect and confirm the role of rotors as AF drivers.

These works detect and characterize drivers using imaging of complex activation

patterns. Specific examples are the invasive systems RhythmView
TM

(Abbott,

Topera Medical, San Diego, CA, USA)[88], CARTOFINDER
TM

(Biosense Web-

ster, Diamond Bar, California, USA)[35], AcQMap R© (Acutus Medical, Carlsbad,

CA, USA)[47, 78], and non-invasive CardioInsight
TM

(Medtronic, Minneapolis,

MN, USA)[134].

The RhythmView
TM

system, one of the leading technologies in clinical practice,

was developed as part of the Focal Input and Rotor Modulation (FIRM) method

[88]. For the detection of rotors, the method requires two basket catheters deployed

in both atria, exporting the data to perform offline signal processing, and one

trained operator to determine the presence of the rotors. The method is based

on the detection of electrode local activation to construct isochronal maps. Then,

it performs phase analysis by directly applying the Hilbert transform to unipolar

EGMs to detect phase singularity points where the tip of the rotor spins [49].

Despite of its promising preliminary results, the above described method presents

several limitations: The phase mapping correlates poorly with temporal activation

maps [130]. The method needs two basket catheters, which is intrusive for the pa-
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tient. The catheter topology presents no efficient deployment and electrode contact

[67]. The low spatial resolution mapping of the atria, is prone to false detections

[111]. The solution requires signal exportation plus post-processing, which ex-

tends the duration of the clinical procedure and prevents reproducibility of results

[25, 17].

Similar to RhythmView
TM

, the novel CARTOFINDER
TM

software was devel-

oped to detect and characterize drivers in AF [35], with recent studies confirming

rotational activations [26]. This solution also employs a basket catheter to ac-

quire the signals and identify rotational repetitive activation patterns (RAPs).

The main difference with respect to RhythmView
TM

resides in the identification

of the unipolar activation in a determined time window defined by the bipolar

information of the electrode pairs. The detection of RAPs is based upon visual

inspection. The compatibility with the CARTO R© 3 3D electroanatomical system

allows CARTOFINDER
TM

to project the activations onto the electroanatomical 3D

map, instead of unfolding the atrium into a 2D grid for visualization. However,

as it requires the use of basket catheters, CARTOFINDER
TM

presents the same

limitations in terms of electrode deployment and atrial contact as RhythmView
TM

.

The AcQMap R©system employs a basket catheter with 48 electrodes and 48

ultrasound transducers to perform non-contact 3D electroanatomical reconstruc-

tion and signal acquisition. The ultrasound technology generates maps faster than

by using traditional mapping catheters. The electrical activations are calculated

with algorithms applied to intracardiac voltage signals and represented as unipolar

voltage and Dipole DensityTM maps. This system has the advantage of embed-

ding the generated activation maps in the 3D anatomical model for visualization.

Nevertheless, the non-contact feature is sensitive to the distance of the electrode

to the atrial wall and catheter positioning.

Equally important, non-invasive methods (body invasion and skin cut is pre-

vented) aim to characterize AF prior to the surgical procedure. One example is

the CardioInsight
TM

, based on a multi-electrode vest recording body surface ECGs

which are combined with CT scan data. While the system is able to display 3D
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cardiac epicardial activation maps, it has potential limitations compared to inva-

sive approaches which map endocardial tissue. The assessment of drivers is limited

in some particular regions like the septal area, and some tissues between the body

surface and the epicardium may affect the signals. Finally, the signal to noise

ratio of the system limits its accuracy in the detection for short and small ampli-

tude drivers, and it may not correlate with reentries identified by other systems,

although important advances focusing on demonstating this correspondance have

been done [108].

1.6 Objectives

The main goal of this thesis is to provide new tools and methods for real-time

rotational activation assessment in AF ablation procedures. We want to make

use of current available technologies, using using EGMs signals recorded with

multi-electrode catheters that provide electrical information of the tissue in direct

contact with the electrodes. We want to assess rotational activity detection with

new original alternatives to identify electrode LATs and new methods capable

of detecting rotational activity, see Figure 1.19. We want to study if reentries

can be explained by micro-rotors (which are too small to be mapped with other

catheter models or missed by phase analysis approaches). This way we want to

help electrophysiologists to further investigate the AF initiation and maintenance

mechanisms, which still remain poor and controversial.

One of our objectives is to deliver results in real-time to minimize the procedure

duration and to ease the electrophysiologists work. What is more, we want to offer

compatibility to different existing catheter topologies, not being restricted to use

one model in particular as other solutions do. Additionally, we also want to unveil

the directionality of the electrical wavefronts registered in the EGMs by multi-

electrode catheters. By knowing the propagation relationships between electrode

pairs anomalous wavefront activity can be detected.

Finally, we want to integrate all the new signal processing methodology elabo-

rated for the thesis into a clinical solution to transfer the theoretical methods into
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Figure 1.19: Assessment of rotational activation detection based on theactivation times

registered with multi-electrode catheters.

practice. We expect the new methods to be of assistance in new and undergoing

clinical studies with the final objective of terminating AF.

1.7 Organization and Contributions

This thesis is organized as follows.

Chapter 2 Estimation of Local Activation Times in Unipolar Elec-

trograms. We devote this chapter to the detection of LATs in unipolar EGMs.

The methodology is based on the research presented in [102]. From raw EGMs

acquired with multi-electrode catheters during AF ablation procedures, we filter

the signals and obtain a surrogate of the slope component of the signal. Then,

we detect the LAT instants for each individual EGM recording. The methods

were validated using in silico simulation scenarios and compared to other existing

approaches to assess its performance and validity.

In silico simulations are powerful tools for the understanding and managing

of AF, since they mimic the behavior of the human physiology. They provide

realistic ground truth data which become useful to validate new algorithms and
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methods. We generated the signals in a controlled environment, which grants

the reproducibility of the results. And what is more important, variations in the

simulation parameters can be performed at inexpensive cost.

Chapter 3 Rotational Activity Detection. This chapter is devoted to the

detection of rotational activity in real-time from LAT maps. We address rotational

detection in the time domain as an alternative to other methods based on phase

mapping. We perform a 2D interpolation of the signals with respect to the position

of the electrodes in the catheter, and we build the LAT maps. We employ optical

flow techniques to extract the dynamics of the wavefronts. We detect rotational

activity based on a pattern match approach. The methodology comprising this

chapter is presented in [102]. The method was validated using in silico scenarios

and applied to real AF signals to assess its efficacy.

Chapter 4. Causality Retrieval in Atrial Fibrillation. We analyze the

causal relationship between EGMs signals. The methodology of this chapter was

presented in [73, 74, 75]. We propose a hierarchical discovery algorithm to estimate

the propagation of the wavefront flow based on Granger’s causality surrogate mea-

surements. We developed and studied new causality-related indices based on the

causal strength of the signals to discover the activation interrelationships in signals

recorded by multi-electrode catheters. This way we obtain a graph based repre-

sentation of the atrial activity, where rotational activation can be distinguished

if the graph presents circular distribution. We validated the method using in sil-

ico and real signals, and we compared it against other existing methods based on

Granger’s causality.

Chapter 5 Clinical Applications. We cover the clinical application of the

methods, including the implementation of the rotational activity detection system

operating in real-time. To that end, we took advantage of the parallel processing

capabilities of the graphical processing units (GPUs) technology and multicore

central processing units (CPUs), and we designed all the methods to be mostly

parallelizable. We extended the study on rotational activations with the combi-

nation of the rotational detection feature of our system and the electroanatomical
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maps of the heart. This way we studied the spatial distribution in the atrium

of rotational activation sites. We also characterized the rotor sites in terms of

their voltage with measurements registered with the EAM systems. For these

studies we developed new tools to analyze and review all the data, i.e., EGMs

and 3D electroanatomical maps. The applications in this chapter were included

in [28, 102, 104, 105, 113, 114], and a patent application regarding the whole

rotational activity system [103].

Chapter 6 Conclusions. Finally, we summarize the main contributions of

this thesis and highlight potential research lines to be considered as future work.

The thesis contributions have been published in international journals [102, 75],

and conference publications [114, 104, 105, 113, 28, 74, 73]. We also issued a patent

application as a result of the work developed in the thesis concerning the rotational

activity detection system [103], Additionally, the ongoing work derived from the

thesis is expected to give continuity to this research line [33, 32, 99, 100, 101].
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2
Estimation of Local Activation Times in

Unipolar Electrograms

2.1 Introduction

The local activation time (LAT) detection problem in intracavitary electrograms

(EGMs) consists in identifying the precise time instant in which the electrical

activation wavefront is right beneath the electrode recording the heart tissue. An

accurate estimation of the activity in all the electrodes allows us to unveil the

heart activity and this way study the arrhythmia. From the electrode activation

patterns we can analyze features such as the directionality of the wavefront, detect

anomalous-related patterns possibly associated to the maintenance mechanisms

that perpetuate the arrhythmia, or even reconstruct the wavefronts with a visual

representation to understand the behavior of the fibrillatory process.
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In the literature the LAT detection problem depends on the configuration of

the EGM acquisition, i.e., unipolar or bipolar. Bipolar signals offer higher spatial

information, since the recording shows the local activity of the tissue compris-

ing the gap between the electrodes contributing to the differential measurement.

Although the bipolar configuration is preferred in terms of noise reduction, the

accuracy in LAT detection is ambiguous due to the shape of the signal, see Fig-

ure 2.1, with different LAT definition methods proposed in the literature [19]. On

the other hand, unipolar signals offer higher temporal resolution when detecting

the LATs of the wavefronts if compared to bipolar signals, which obscure the mor-

phology of the atrial waveform. In the unipolar case, the LAT can be easily related

to the time instant of maximum negative slope [19], i.e., the local minimum values

of the first derivative dV
dt . What is more, the signal obtained with the unipolar

electrode recording the extracellular tissue voltage and its LAT was demonstrated

to be related to the cellular action potential (AP) voltage (Vm) [123], where the

maximum upstroke of the AP defined by dVm
dt corresponds to the maximum −dV

dt

value of the extracellular voltage [27].

However, unipolar EGM acquisitions are exposed to far-field components. They

record the combined contribution of both atrial and ventricular activations. This

is a widely known disadvantage, since the bigger size of the ventricle makes the

ventricular activation to become the dominant contribution of the EGM, overlaying

the atrial component. Fortunately there exist methods to overcome this problem

based on the estimation of the ventricle contribution and its subtraction from

the unipolar recording. Literature usually refer to them as ventricle cancellation

methods.

In the event of noisy and complex fractionated EGMs the LAT identification

can be challenging. This originated the development of alternative methods to

detect LATs, including the analysis of the frequency domain [58, 59], and the

reconstruction of the instantaneous phase of unipolar EGMs using the Hilbert

transform (HT) [22, 110, 65]. The HT is a linear operator employed to obtain the

instantaneous phase and frequency of a signal, namely s(t). The transformation
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Bipolar EGM (U1-U2)

Figure 2.1: Unipolar and bipolar EGM comparison. Top to bottom first unipolar channel

(U1), second unipolar channel (U2), and finally the bipolar channel obtain by the differ-

ential subtraction of U1− U2. The LAT of both unipolar segments can be defined at the

point of maximum −dVdt , whereas the bipolar LAT cannot be so easily defined.

45



Chapter 2. Estimation of Local Activation Times in Unipolar Electrograms

involves the calculation of the function

HT (s(t)) =
1

π
P

∫ ∞
−∞

s(t)

s(t− τ)
, (2.1)

where variable P stands for the Cauchy principal value of the integral, and τ is the

time-embedding lag. A signal and its HT are mathematically orthogonal over the

infinite interval, thus a plot of s(t) versus H(s(t)) yields to rotations in the phase

plane. From the pair of signals the phase can be extracted as the angle defined

between them. There exist several alternatives for the formulation of the phase

θ(t), this is one of them [65]

θ(t) = arctan

( −(s(t)− s∗)
HT (s(t))− s∗

)
, (2.2)

where s∗ is the phase plane origin that serves as reference to calculate the phase,

which is defined in the interval θ ∈ [−π, π] radians. This one is a modified version

from the standard formulation that can be found in diverse toolboxes by setting

s∗ = 0.

The phase information is commonly employed to see the fluctuation in time of

the signals, and also to see its repetitive patterns. Although the activity in the

signal can be visualized using its phase information, the exact LAT of the EGM

cannot be accurately defined, since there is no direct correspondence between the

depolarization instant in the EGM and the phase of the signal. For example a

value of θ(t) = π radians corresponds to a peak in phase, but it does not imply

a direct correspondence with a LAT in the EGM, that can happen at any phase

value depending on the signal.

One of the problems when calculating the phase component is the selection of τ ,

which affects the outcome of the HT. During Atrial fibrillation (AF) the activations

happen irregularly in time and their morphology changes, so the selection of τ

is not unique as the signal evolves with time. Solutions for this problem have

been proposed in the literature, with methods taking into account the fibrillatory

scenario applying signal preprocessing detrending or wavelet transformation among

other solutions [22, 65].
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Additionally, noisy signals can distortion the instantaneous phase, since a small

amplitude variation can be analyzed as a phase transition. After all and due to

the intrinsic nature of the HT, a time domain activation method is recommended

to be used in parallel to avoid false or missing activations [130].

In this chapter, we use unipolar EGMs as input signals to perform LAT detec-

tion in the time domain. First, in Section 2.2.1 we correct the baseline wandering

of the unipolar EGM and electrocardiogram (ECG) signals, an undesired low fre-

quency component introduced by the respiratory movement of the patient and

instrument motion. Secondly, we apply an algorithm to cancel the ventricle con-

tribution based on [122]. This way we obtain EGMs containing the isolated local

atrial contribution only, while disposing the far-field effect.

In Section 2.2.2, we introduce a new filtering method for unipolar signals, which

enhances the slope of the voltage deflections related to the depolarization of the

tissue beneath the electrode. Our method estimates the slope of the signal, while

filtering out the contribution of noisy sources, obtaining a signal in which the

LATs can be identified. The final LAT detection step is based on an exponential

thresholding algorithm [16], with modifications to suit the enhanced signal. The

method adapts continuously to variations in the amplitude of the slope, mainly

produced by the displacement of the electrode due to the activity of the heart.

2.2 Local Activation Time Identification

2.2.1 Signal Pre-processing and Ventricle Cancellation

Unipolar signals suffer from baseline drift, also called baseline wandering, a low-

frequency artifice that appears in ECG signals in the 0.05− 1 Hz frequency band

[1]. It is caused by the respiration of the patient when the thoracic cage spans and

shrinks, producing a small displacement in the position of the surface electrodes

placed on the chest of the patient, and also in the intracavitary catheter electrodes.

This small distortion makes the baseline voltage of the signals to fluctuate in time,

(see Figure 2.4A). The motion and manipulation of certain instruments inside the
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Median Filter (500 ms)

x[n]

−

y[n]

Figure 2.2: Baseline wander removal system using a median filter (MF).

operating room also interfere with the signals, and spikes of great amplitude may

appear in the acquisition registers. What is more, additional noisy sources may

contribute to the baseline drift, such as power supply noise at 50Hz (or 60Hz), but

this is commonly removed with a Notch filter at the specified working frequencies.

For removing the baseline wandering, we estimate the DC signal component

applying a causal median filter of 500 ms window length [36], and subtract it

from the unipolar signal eliminating the drift effect (Figure 2.4B). The equivalent

system representation is shown in Figure 2.2. It contains a MF to extract the

baseline contribution, which is latter subtracted from the input signal. We choose

the median filter approach rather than other methods in the literature, such as

finite impulse response (FIR) filter [136], beat-to-beat mean [122], moving average

based filters [60, 34], independent component analysis (ICA) [51], empirical model

decomposition (EMD) [20], or discrete wavelet transformation (DWT) [70]. MF

offers simplicity, we only need to calculate the median of N past samples to obtain

the filter output, while other methods involve more complex and time consuming

implementations. Any of these methods would interfere with our objective to

deliver real-time results.

The MF acts as a low-pass filter, and it preserves signal structures, such as

deflection or edges. If the median filter is applied recurrently to the same signal,

it will converge into a signal invariant to additional filtering. In the literature

this is called root signal, but a similar signal can be obtained using a single filter

of a high enough size. In our case, we identify the baseline wander as the root

signal contained in the ECG or EGM signal. We contemplated median filters in

cascade configuration as in [36], but authors lacked to include scientific reasoning

of the signal processing foundation supporting this method. To extract the root
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signal, we use a single median filter following the block diagram in Figure 2.2,

instead of implementing the multiple cascade configuration. Empirically, bigger

filters converge faster to the root signal [10], although shorter filters provide better

resolution, as a result of including smaller structures from the input signal that

are maintained in the output. However, baseline wander exhibits slow amplitude

variation with time, so the inclusion of small structures during the filtering process,

like the cascade configuration proposes, is not advantageous for estimating the

baseline signal.

With the purpose of validating this assumption, we evaluated the performance

of a two stage median filter with sizes N1 = 200 ms and N2 = 600 ms, as proposed

in [36], with a single median filter of size N = 500 ms. We tested both methods on

ECG and unipolar EGM signals. By looking at Figures 2.3A and 2.3B, we see that

both implementations behave similarly, and implementing the single median option

is computationally cheaper and faster than the dual ensemble. This evidence

supports our single MF approach.

Unipolar recordings are also affected by far-field signal contributions. The

stronger ventricle signal overlays the atrial activity which has a lower amplitude,

occluding atrial activations in the EGMs recordings (see Figure 2.4B). To cancel

the ventricle contribution and recover the hidden atrial activations, we calculate

the ventricle unipolar pattern affecting each electrode signal. This is done simi-

larly to the average beat subtraction method described in the literature [122], and

current EP mapping solutions [35]. We calculate independent patterns for each

channel as the electrodes record different atrial positions. To this end, the catheter

is assumed to be stationary during the signal acquisition.

A reference ECG signal identifies the scope of the ventricular contribution in

the unipolar signals. The ventricle onset and offset are associated in the ECG to

the Q-peak and to the T-wave end time instants respectively, as Figure 2.5A shows.

The number of beats included for analysis varies depending on the heart rate of the

patient and the duration of the acquisition. For this reason we set the minimum

signal acquisition time to be at least 10 seconds, i.e., 10 beats for a 60 beats per
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Figure 2.3: Baseline wandering examples in ECG and EGM signals. The figure exemplifies

the comparison of one single median filter of size N = 500 ms versus two cascade MFs

of sizes N1 = 200 ms and N2 = 600 ms. (a) ECG signal and its baseline wander. (b)

Unipolar EGM signal ans its baseline wander for the same acquisition interval as the ECG

in (a). Both figures show in red the baseline component obtained with one filter and in

blue when using the cascade system.

minute (bpm) rhythm. We guarantee at least 5 consecutive QRST complexes for

a minimum heart rate of 30 bpm. Having 5 QRST complexes is enough to perform

ventricle cancellation as demonstrated in other studies [67]. The 2nd DWT scale

of the ECG signal, using Daubechies DB4 wavelet, detects the R-peaks locations

R
(i)
j [31]. Superscript i = 1, . . . , N corresponds to the i-th channel, and subscript

j = 1, . . . , J refers to the j-th ventricle activation in the ECG signal containing a

total of J activations. This scale corresponds to the 0− 125 Hz frequency band of
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Figure 2.4: Signal processing for LAT detection in unipolar EGMs. A. Raw unipolar EGM

with ventricle contribution overlaying atrial activations delimited in dark and light gray for

the QRS and ST intervals respectively. Level zero DC in dashed red shows the wandering

DC offset affecting the signal. B. Signal after baseline wandering correction. C. Signal

after ventricle cancellation, recovering occluded atrial activations shown in green. D.

Linear pattern approximation of the unipolar slope β[n] (M = 30 ms in the example). E.

Unipolar LATs in red detected from β+[n] in blue using an exponential decaying threshold,

Th[n] in dashed green line.
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Figure 2.5: Ventricle cancellation in unipolar EGMs. (a) AF ECG with the reference

points highlighted in red used for calculating the ventricle pattern. We can see the ab-

sence of a P wave, characteristic of AF since the atrium is not properly depolarized. (b)

Averaged ventricle pattern in black calculated using 36 segments of unipolar channel i.

Segments corresponding to the QR, RS and ST subintervals are represented in red, green

and blue respectively.

the signal for a sampling frequency fs = 1 KHz. This frequency band covers the

typical 0.05− 100 Hz processing bandwidth for diagnostic ECG signals [129].

We threshold the signal and detect the R-peaks. A local search (±20 ms)

corrects the R
(i)
j time shifts when the DWT peak is converted back to the original

scale. Once R
(i)
j is found, a local search to the left of R-Peaks obtains the Q-Peaks

in the ECG signal. The minimum in the [R
(i)
j − 50 ms, R

(i)
j − 10 ms] interval

corresponds to the Q
(i)
j locations. Following the same searching procedure, the

S-Peak is the minimum located within the [R
(i)
j + 5 ms, R

(i)
j + 50 ms] temporal

window. An algorithm designed for positive T-waves detects the T-wave ends

[136]. From all the external ECG leads the method needs one exhibiting T-wave

concave morphology, i.e., lead I, V3, V4, or V5. The area under the curve is

calculated using a 32 ms length overlapping sliding window with a one sample

shift in an interval containing the T-wave. The time instant maximizing the area

value gives the T
(i)
j location.

Then, for each i-th channel we align all the unipolar segments in the range
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[Q
(i)
j , T

(i)
j ] and obtain the ventricle pattern as the median of the channel segments

(Figure 2.5B). The T-wave contribution to the unipolar signal is smaller than the

QRS complex, for this reason we represent the QS and ST sub-intervals overlaying

the atrial signal in dark and light gray respectively in Figure 2.4A-C. To cancel

every ventricle contribution, the pattern and each segment are aligned before sub-

traction. The time shift is given by the maximum correlation time instant between

the two signals. Finally, the pattern subtraction removes the ventricle contribution

from the unipolar segment (Figure 2.4C).

2.2.2 Detection of Local Activation Times

Depolarizations are characterized by an abrupt deflection of the action potential

recorded by the catheter. Depending on different factors (i.e., conduction speed,

atrium area, antiarrhythmic drugs) the downward slope duration of an atrial ac-

tivation varies. Figure 2.6 shows this variation with falls lasting 23, 29, 26, 25,

and 33 ms. We propose a new method to identify local activation times (LATs)

in EGMs by searching a pattern exhibiting a linear deflection.

We approximate the EGM signal x[n] by the linear function in the interval

defined by a 2M + 1 samples window centered at time instant n0, expressed as

x̂ [n] = β[n0](n− n0), for n ∈ [n0 −M,n0 +M ], (2.3)

where β[n0] represents the function slope value at time n0. We estimate β[n0] by

minimizing the Mean Square Error (MSE) of the error function ζ[n0] defined as

ζ [n0] =
M∑

n=−M
|x[n0 + n]− x̂[n]|2 =

M∑
n=−M

|x[n0 + n]− β[n0] · n|2. (2.4)

We include the β̂MSE [n0] derivation. We calculate the first derivative of ζ[n0] with

respect to β[n0], and set it to zero,

∂ζ [n0]

∂β[n0]
=

∂

∂β[n0]

{
M∑

n=−M
|x[n0 + n]− β[n0] · n|2

}
(2.5)

=

M∑
n=−M

{
− 2n · x[n0 + n] + 2n2 · β[n0]

}
(2.6)

= 0. (2.7)
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Figure 2.6: Unipolar recording after ventricle cancellation with depolarizations in red and

their durations annotated between dashed lines in black.

Solving for β[n0] in Equation (2.5), we obtain the value of β[n0] minimizing

the MSE,

β̂MSE [n0] =

M∑
n=−M

n · x[n0 + n]

M∑
n=−M

n2

. (2.8)

The denominator of Equation (2.8) is a constant that depends on the window

length M which simplifies the expression to

β̂MSE [n0] =M ·
M∑

n=−M
n · x[n0 + n], (2.9)

where M =

(
M∑

n=−M
n2

)−1

.

Additionally, we characterize the linear pattern approximation, which applied

to EGMs resembles the outcome of a first derivative operator multiplied by the

constant that depends on the window size M . The expression in Equation (2.9)
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Figure 2.7: Signal slope characterization. A. Top. Unipolar signal first derivative. Bot-

tom. Unipolar signal slope approximation for different window length values, M in ms. B.

Frequency response of the equivalent filter h[n] in Equation (2.10) for different M values.

can be seen as a filter with impulse response

h[n] =M ·
M∑

τ=−M
τ · δ[n− τ ], (2.10)

and frequency response H(f) (Figure 2.7B), equivalent to a discrete-time low pass

differentiator. In section 2.3 Results, we analyze the effects of selecting the window

length M on the amplitude and frequency components of the signal.

In the following, and since there is no ambiguity, we shall drop the subindex in

the n0 and simply refer to it as n. The signal β[n] (Figure 2.4D) is inverted and

rectified obtaining a new signal β+[n] (Figure 2.4E). The inversion pairs deflections

with positive peaks of the signal, and the rectification discards the atrial compo-

nents with positive slope. Then, the position of the positive peaks are assumed to

correspond to the LATs.

The amplitude of the β+[n] peaks varies from activation to activation. These

deviations are a consequence of the constant heart activity that prevents the elec-

trodes from having a uniform atrial contact, resulting in amplitude changes. An

exponentially decaying threshold after a peak detection is implemented to search

for the local activation times [16]. The threshold Th[n] is updated at each time
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instant as

Th[n] =


(Mi − σ)e−

Mi−σ
τ

(n−(ni+b)) + σ, if n > ni + b,

Mi, if ni < n ≤ ni + b.

(2.11)

Variables Mi and ni are the amplitude and time instant of the last detected peak.

Time variable τ defines the decay rate of the exponential function. The constant σ

specifies a lower limit for the threshold, filtering out small interferences or weak far-

field contributions. The threshold is initialized to M0 = σ. Close depolarizations

are physiologically improbable due to the refractory period of the tissue. To avoid

false positives in this period, the threshold maintains its value for a blank period b

before detecting a new peak. The algorithm detects a local activation time when

a peak of the signal is above the threshold value, as Figure 2.4E shows. A local

search for possible undetected peaks in a window of length b around each detected

peak prevents false local maxima to be considered as activation instants.

2.3 Results

We evaluated the LATs detection in real AF and computer model EGMs. We

validated our method by direct look at the EGMs and LATs outcomes with expert

knowledge from electrophysiologists and fine adjustment of the parameters taking

into account noise reduction, electrode adjacency to maximize the detection of

activations (for both real and simulated signals). We considered a range of 20−40

ms as the span of a depolarization, which corroborates previous results [135, 87].

We used the unipolar signal in Figure 2.6 to analyze the filtering effect of

parameter M comparing it with the unipolar signal first derivative used by other

authors to identify LATs. Our method provides a smoother and less noisy signal

than the one obtained with the first derivative, see Figure 2.7A. This makes it

easier to identify the LATs, where our method presents high β̂MSE [n] values when

the pattern matches a deflection.

In terms of frequency effects, small values of M produce a higher cut-off fre-

quency, whereas big values of M present a more restrictive low pass characteristic
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which filters more noise, see Figure 2.7B. This is helpful in noisy EGMs, where

small residual peaks appear, and complementary, the exponential decaying thresh-

old demonstrated to recover from false high peaks. The steep threshold drop avoids

LAT error propagation that would lead to miss the next atrial activations. Value τ

was set empirically to τ = 3.5 ·10−3 by reviewing atrial activations. We also found

threshold parameter b crucial in the event of fragmented EGMs, by adjusting the

blank period to several ms (60 ms) the fragmented activity can be detected and

taken into account in the reconstructed wavefront. This value was selected to be

above the classical dominant frequency (DF) range of 4 − 9 Hz shown by most

studies [112]. On the other hand, higher values would not allow the threshold to

decay fast enough for the next activation to be detected, missing LATs. The value

of b = 60 ms was also proposed according to the closeness of consecutive atrial

activations and the recovery time for the exponential threshold to reach its mini-

mum value σ. When the next activation exhibited smaller peak amplitude, values

greater than 60 ms incurred in missing atrial activations, since the threshold was

not fast enough to decay and identify the β+[n] positive peak. We tried different

values for b and finally selected b = 60 ms.

In terms of amplitude, the window selection has a direct effect on the amplitude

of the filtered signal. From Figure 2.7A (bottom) we can see this behavior as the

value of the window M is increased. The signal becomes softened at the expense

of reducing its amplitude. The same interpretation is derived from the frequency

response analysis in Figure 2.7B, where the amplitude of the frequency spectrum

becomes reduced as M increases.

After analyzing the effect on the window length selection, we can conclude

that employing an over-sized window length would lead the peaks to be less well

defined because the signal becomes flatter, but as an advantage unipolar noise is

greatly reduced. On the other hand, having a window too narrow (small M) would

produce sharper transitions but would be more sensitive to small deflections that

might be miss-detected as LATs.

Furthermore, we want to compare our LAT detection method versus the phase
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Figure 2.8: Signal slope and Hilbert transform phase comparison. A. Unipolar signal.

Bottom. Unipolar signal slope approximation for different window length values, M in ms.

B. Hilbert transform phase applied to the signal in A. C. Unipolar slope approximation

applied to the signal in A, M = 30 ms. Red circles denote the LATs calculated with our

method

signal obtained with the Hilbert transform [66]. One representative example com-

paring both methods is shown in Figure 2.8A-C, using the same unipolar signal

as in Figure 2.6. In the example, our method is able to capture all the activa-

tion time instants, denoted as diamonds Figure 2.8C. We can clearly identify the

missing phase transition at the 4th and 5th atrial activations. In this situation

the Hilbert transform is not reliable, confirming previous results on weak correla-

tion between phase and activation maps [130]. Moreover, the Hilbert transform

requires an estimation of the signal period, calculated as the dominant frequency

of the segment which can vary in time. Additionally in Figure 2.8B we can see

how the first phase transition drops from π to −π radians preceding the first two

activations (34 ms and 13 ms respectively), and after them it gets delayed (10 ms)

in the third activation. This is a meaningful variation that may lead to a potential
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misinterpretation of the atrial activity. Since our method relies on beat to beat

detection it does not shift the LATs from activation to activation.

2.4 Conclusions

We identify that LAT information in unipolar EGMs can be of potential value as

an alternative to phase mapping analysis. More particularly, our EGM filtering

and LAT detection approach emerges as an alternative for EGM signal processing,

being extendable to other kind of biological signals, e.g. electroencephalograms,

electromyograms, or galvanic skin response.
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3
Rotational Activity Detection

3.1 Introduction

Rotors and their associated re-entry spiral waves are suggested to play an impor-

tant role in the mechanism perpetruating Atrial fibrillation (AF) [92]. By defini-

tion, re-entrant waves rotate around a singularity phase point, and its detection is

normally assessed by the identification of the center of rotation.

In the late eighties the analysis of the phase concerning the study of cardiac

fibrillation was first introduced by Winfree [132]. By defining a time delay τ ,

he plotted the state variable V (t) versus a delayed version at time instant t − τ
V (t+ τ), obtaining a phase-space trajectory which encompassed a fixed origin, see

Figure 3.1(A-C). In the AF context, intracardiac electrograms (EGMs) or voltage

values generated by an excitable-propagation models play the role of the state

variable, defined as V (t), with V (t+ τ) being its delayed value.
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Figure 3.1: Figure extracted from [22]. A. Isochronal map for a computer simulated

scenario. B. Measured transmembrane signal V (t). C. Phase excursion of the signal in

(B) with τ = 3.

To guarantee linear independence between V (t) and V (t+ τ), their correlation

function is calculated and τ is normally chosen as the first zero crossing [2]. Finally,

the spatial phase map can be calculated for all coordinates (x, y) of a spatial 2D

grid as

θ(x, y, t) = arctan

[
V (x, y, t+ τ)− Vmean(x, y)

V (x, y, t)− Vmean(x, y)

]
, (3.1)

where Vmean(x, y) is the mean voltage value at location (x, y) and θ ∈ [−π, π]

radians.

The main drawback of this practice lies in the errors associated to a poor choice

of τ , and the fact that the resultant phase-space trajectories may not encircle the

origin reference. Analytically, a small value of τ is equivalent to a high correlation

of the variables, hence the signal V (t) can be approximated to V (t) ≈ V (t+τ). In

this case, the phase points will lie in the diagonal of the phase-space. On the other

hand, setting a large of τ value may lead to high uncorrelated data deforming and

stretching the trajectory. Additionally, rotors may drift and suffer morphology

changes, so the optimal τ may differ along time.

To better visualize all the information isochronal maps are normally employed.

They spatially represent the value of a variable, e.g. voltage or phase component,

in a color-coded image like the one displayed in Figure 3.1A. These maps are

commonly used when representing the cardiac electrical wavefronts and the voltage

values in electroanatomical mapping (EAM) systems.

For the detection of rotors current solutions base their assessment in the iden-

62



Chapter 3. Rotational Activity Detection

tification of phase singularities (PSs) contained in the isochronal phase maps of

the mapped atrial tissue. By definition, ”A spatial phase singularity is a site in

an excitable medium at which the phase of the site is arbitrary; the neighbouring

elements exhibit a continuous progression of phase that is equal to ±2π around this

site” [49].

PSs represent points whose surrounding neighbors follow the complete [−π, π]

interval [49, 21]. In the event of a re-entrant spiral wave, the tip of the rotor is

surrounded by points ranging all the stages of the action potential (activation-

recovery) cycle, defining a PS at that location. Therefore the analysis of the phase

descriptor in these locations becomes of great interest to detect rotational activity.

The PS is described in terms of topologic charge nt [46, 81] 1,

nt ≡
1

2π

∮
c
∇θ∆~dl, (3.2)

where the line integral is calculated over the path described by ~l on a closed curve

c around the topological point and θ(~r) stands for the local phase. As nt is an

integer value its sign reflects the clockwise/counterclockwise rotation.

If we apply the gradient of the phase to a wave vector field, ~k(~r, t) ≡ θ(~r, t),

evaluating nt for a closed path in the limit as the area goes to zero, we see that nt

is proportional to the curl of the wave vector

∇×~k =

∣∣∣∣∣∣∣∣∣
~x ~y ~z

∂
∂x

∂
∂y

∂
∂z

kx ky kz

∣∣∣∣∣∣∣∣∣ =

(
∂kx
∂y
− ∂ky
∂z

)
~x+

(
∂kz
∂x
− ∂kx
∂z

)
~y+

(
∂ky
∂x
− ∂kx
∂y

)
~z. (3.3)

At a location [m,n, p] the integral can be rewritten as

∮
c
∇θ∆~dl ∝ ∇x ⊗ ky +∇y ⊗ kx, (3.4)

where ⊗ is a convolution operator, ∇x and ∇y are the convolution kernels

∇x =

+1 −1

0 0

 ∇y =

−1 0

1 0

 . (3.5)

1Also used in [21, 23, 137]
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As explained before, the choice of τ becomes a limitation when calculating

phase-maps, Bray et al [22] developed a procedure for detecting PS points regard-

less of τ . In this algorithm, already mentioned in Chapter 2, they alleviate this

disadvantage by subtracting the average mean of the signal and employing the

Hilbert transform (HT).

The HT is a robust approach to calculate instantaneous phase [22, 128, 94,

127]. When assuming stationarity and linearity, autoregressive moving average

(ARMA), principal component analysis (PCA) or independent component anal-

ysis (ICA) are frequently used to decompose the signal. Similarly, fast Fourier

transform (FFT) is of great help as it describes the frequency spectrum of the

signal, where the main limitation is satisfying Nyquist’s criterion. Problem arises

when signal is nonstationary, nonlinear and noisy, as it happens with intracavitary

signals during AF. Under these circumstances, HT is preferred because it expresses

frequency as a rate of change in phase, allowing changes in the frequency along

time, while contributing with high temporal resolution of rapid changes in the

state variables for phase, amplitude and frequency.

Taking as analytic signal V (t) with real and imaginary parts Vr(t) and Vi(t)

respectively,

HT (V (t)) =
1

π
P

∫ −∞
∞

V (t′)

(t− t′)dt
′, (3.6)

where P is the Cauchy Principal Value. This expression gives a point in the

complex plane for every signal sample. Following these points in time, a circular

trajectory is obtained reflecting the rotation of the tip of a vector, see Figure 3.1C.

The amplitude A(t) and phase θ(t) of the vector can be computed as

A(t) =
√
v2(t) + u2(t) θ(t) = arctan

(
Vi(t)

Vr(t)

)
(3.7)

Literature on tracking rotors relies on the trajectory described by the tip of

a re-entrant wave [128]. By plotting the PS in time, the path described by a

drifting rotor can be followed, also called filament. The path described by the

tip of the rotor is also called filament. In our problem we need to represent the
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individual electrode signals into an isochronal representation to track the rotational

activity of the wavefronts. To achieve such task, in Section 3.2.1 we perform spatial

interpolation to reconstruct the wavefront and this way visualize the atrial activity.

Data interpolation is used to improve the spatial resolution of the acquired signals,

easing the spatial analysis of the fibrillation process. The interpolation method

obtains a 2D grid combining the spatial information of the electrode positions, and

the enhanced signal obtained from the unipolar recordings, prior to the activation

detection step. The electrode locations are fixed to represent the catheter when it

is fully spread, but that also means the method is compatible with other catheters

with different electrode layout distributions.

After the interpolation, in Section 3.2.2 we calculate the local activation times

(LATs) for every node in the interpolated grid applying the LAT detection method

introduced in Chapter 2. Once the LAT step is done, in Section 3.2.3 we apply a

novel algorithm based on the optical flow of correlative isochronal maps containing

the LAT information of the grid. We capture the wavefront dynamics with a

pattern match approach and a double threshold detector, which is able to identify

the rotational activity present in isochronal maps.

3.2 Rotational Activity Detection

3.2.1 Interpolation

In the atrium, depolarization flanks propagate locally as a consequence of the

ionic sodium currents firing the cardiac cells through neighboring atrial tissue.

We use signal spatial interpolation to represent the atrial activity in the area

covered by the catheter. The subsequent processing thus becomes independent of

the electrode topology employed. We have several potential magnitude candidates

for interpolation: unipolar signals, local activations, and unipolar slopes. From

the interpolation candidates, unipolar signals after ventricle cancellation produce

noisy and ambiguous maps. The noise component inherent in the unipolar signal

affects the LATs outcome, therefore performing an interpolation with noisy data
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is not recommended and should be avoided. Local activation times using binary

signals (value 1 for LATs and 0 otherwise) offer poor discontinuous representation

when recovering wavefronts. This interpolation does not preserve the dynamics of

the wavefront since the nodes are only active one time instant corresponding to

the LAT of the electrode associated to the grid node. To overcome these potential

issues we choose to interpolate the signal β[n]. It provides a continuous transition,

noise reduction, and contains information about the activation measures, coherent

with the depolarization propagation basis in the atrium.

For the interpolation, we use a 2 dimensional (2D) squared grid consisting of

J × J nodes, namely nj,k with j, k ∈ [1, J ], representing the atrial tissue covered

by the catheter. The grid size is also related to the spatial resolution, e.g. for

a PentaRay R© (Biosense Webster, Diamond Bar, California, USA)catheter range

of 32 mm and J = 32 each node represents 1 mm2. In the grid, each β(i)[n]

signal is mapped to the fixed spatial coordinate proportional to their location

in the physical catheter, referring to these information nodes as n(i). All these

nodes belong to the set N . Grid nodes containing no signal are filled by means

of interpolation using Shepard’s method [120]. This interpolation technique uses

inverse distance weighting to find an interpolated value based on the signals β(i)[n]

for i = 1, . . . , N , and their node positions in the grid n(i). The function for

obtaining the interpolated signal β(j,k)[n] is defined as

β(j,k)[n] =


β(i)[n], if n(j,k) ∈ N ,∑N

i=1 w
(i)(n(j,k))·β(i)[n]∑N

i=1 w
(i)(n(j,k))

, otherwise,
(3.8)

where

w(i)(n(j,k)) =
1

d(n(j,k), n(i))p
, (3.9)

being d(·, ·) any distance metric operator and p a positive real number power

parameter. We use the Euclidean distance between the node positions since we

employ two dimensional coordinates. In presence of 2D data, choosing p ≤ 2

causes the interpolated data to be dominated by far away points, so choosing

p = 3 or 4 provides a better interpretation of local region information. After the
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Figure 3.2: Spatial interpolation with different catheter layouts. A: Pentameric catheter

with 20 electrodes. B: Circular catheter with 20 electrodes. C: Circular catheter with 10

equally spaced electrodes.

interpolation, we apply LATs detection to all the grid nodes. While electrode

positions are assumed to be not known in our method, Eq. (3.8) and Eq. (3.9)

can be easily adapted to reflect variable electrode position dependency in time and

update the grid positions accordingly, see Figure 3.2.

The interpolation method necessarily needs reliable ground truth data to prove

its efficacy. For this reason we validated the spatial interpolation using in silico

signals generated from a realistic atrial 3D model developed at the Karlsruhe

Institute of Technology [117]. The model implements fiber orientation, spatial

heterogeneities, and anisotropy conduction for both conduction velocity and ionic

currents. Simulations were performed as in a previous study [115], with the AF-

remodeled version of the cellular model by [77]. Simulations were run with the

software Elvira [52], and unipolar pseudo-electrogram (pEGM) were calculated at

each of these electrodes [14]. The integration time step for the 3D atria simula-

tions was 0.04 ms to properly generate the fast upstrokes of the action potential.

The output voltages were post-processed every 1 ms to match the real AF signal
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Figure 3.3: In silico simulation scenarios. A: Sinus rhythm, 500 ms period. B: Rotor. C:

Chaotic wavefront collisions.

acquired at a sampling frequency of fs = 1 KHz.

In the in silico simulations (Figure 3.3), we considered different activity scenar-

ios: sinus rhythm, rotor, and chaotic wavefront collisions exhibiting different prop-

agation directions. The stimulation protocol applied a periodic stimuli for the sinus

rhythm case, and forced extra-stimuli to generate reentries and fibrillatory behav-

ior for the other cases. The recording positions in the atrium were manually chosen

for the three scenarios. We deployed a squared 16x16 node grid, emulating 256

different electrodes recording the pEGM and action potential (AP) signals. The

grid was seized to fit the same area as the one covered with a PentaRay R©catheter.

We simulated 10 seconds at a sampling frequency fs = 1 KHz.

3.2.2 Isochronal Activation Maps

From the LATs, we represent the activations on the grid using isochronal maps

[54]. We employ a visualization similar to other authors [9, 88, 15]. The map

takes value 0 when the node is active and linearly decrements its value until next

activation occurs. For this purpose, we introduce a new variable a[n] expressing

the elapsed time since the last activation occurred. We use a simple linear function

that decrements its value every time instant when there is no new activation, see
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Figure 3.4 (Bottom). This new variable can be formally specified as

a[n] =


0, if β+[n] is a maximum,

a[n− 1]− 1, otherwise.

(3.10)
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Figure 3.4: Activation detection example. Top. A segment of β+[n] is shown in red to-

gether with its threshold value in green (amplitude values have been amplified). Bottom.

Linear function representing the time since the last detected activation.

For visual representation, the last P previous time instants of the signal are

displayed (e.g. P = 40 ms), with smaller intervals producing narrower wavefronts.

The most recent activated node will take a hotter color (red) and will cool down as

time passes (blue) until a new activation occurs. Figure 3.5 provides an example

of isochronal maps for P = 50 ms, one acquired during sinus rhythm (SR) and the

other in the event of a rotational atrial activation.

3.2.3 Optical Flow

We propose to detect the presence of rotational activity on the isochronal maps

estimating their optical flow [91]. Given two consecutive images (Figure 3.6A-B),

it returns the velocity vectors ~u and ~v based on the difference of the two images,

providing the propagation direction of the atrial wavefronts at each grid node, as

Figure 3.6C shows.
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Figure 3.5: Real data propagation. Signals acquired with a PentaRay R©catheter at 8 dif-

ferent time instants showing the thresholded grid in the [−P, 0] ms range when a wavefront

propagates, P = 50 ms. A. Sinus rhythm activity propagating from top to bottom. B.

Propagation exhibiting counterclockwise rotational activity.

Defining image intensity I(~x, t) as a function of time t and space ~x = [x, y]T ,

the intensity translation can be expressed as

I(~x, t) = I(~x+ ~r, t+ 1), (3.11)

where ~r = [u, v]T is the 2D velocity vector. In our case, I(~x, t) corresponds to the

elapsed time since an activation occurred at node nj,k. Although many estimation
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Figure 3.6: Optical flow. Horn-Schunck method on two consecutive images [53]. A:

Isochronal frame at t − 1. B: Isochronal frame at t. C: Velocity vectors applying Horn-

Schunck method to the frames. D: Clockwise rotation mask, grid size J = 32 nodes.

approaches exist in the literature [43], an early method proposed by Horn and

Schunck is used, based on non-parametric motion models and assuming smoothness

in the whole image flow [53]. They proposed an energy functional for the flow

E(~r) =

∫∫
((∇I · ~r + It)

2 + λ(‖∇u‖2) + ‖∇v‖2))dxdy. (3.12)

The solution to this equation can be iteratively computed for u and v, the two

components of the velocity vector ~r. It obtains the partial derivatives fx, fy, and

ft by 2D-convolution of the images It and It−1 with respect to the convolution
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kernels Kx,Ky and Kt, namely

fx = It ∗Kx + It−1 ∗Kx, (3.13)

fy = It ∗Ky + It−1 ∗Ky, (3.14)

ft = It ∗Kt − It−1 ∗Kt, (3.15)

where the convolution kernels are

Kx =
1

4

−1 1

−1 1

 , (3.16)

Ky =
1

4

−1 −1

1 1

 , and (3.17)

Kt =
1

4

1 1

1 1

 . (3.18)

Values u and v are approximated by iteratively calculating N times the solutions

for

un = ūn − fx[(fx · ūn) + (fy · v̄n) + ft]

α2 + f2
x + f2

y

, (3.19)

vn = v̄n − fy[(fx · ūn) + (fy · v̄n) + ft]

α2 + f2
x + f2

y

, (3.20)

for n = 1, . . . , N and u0 = 0, v0 = 0, where α is the smoothing factor and the

local averages ūn and v̄n are calculated as

ūn = un−1 ∗ K̄, (3.21)

v̄n = vn−1 ∗ K̄, (3.22)

with the averaging kernel

K̄ =


1
12

1
6

1
12

1
6 0 1

6

1
12

1
6

1
12

 . (3.23)

This method to approximate the integration and derivatives allows a large system

of linear equations to be solved by iterative computation. We found N = 25

iterations to be enough to approximate the derivatives, since larger values produced

72



Chapter 3. Rotational Activity Detection

almost identical results. The regularization parameter α provides global smoothing

on the grid. For the computations, we selected a value α = 1 which makes the

propagation of information over far distant points in the image possible.

We apply the HS method to the reconstructed wavefront images at each time

instant, obtaining a two element vector ~rj,k = [uj,k, vj,k]
T for each node. Vectors

are normalized so |~rj,k| = 1, and ~rj,k = [0, 0]T if there is no propagation.

We introduce a circular pattern, see Figure 3.6D, consisting of unitary vectors

~cj,k = [dj,k, ej,k]
T arranged in a spiral-like layout satisfying

~cj,k =


dj,k = sin(αj,k + π

2 ), for j, k ∈ [1, J ],

ej,k = cos(αj,k + π
2 ), for j, k ∈ [1, J ],

(3.24)

where αj,k is the angle defined by each node nj,k and the pattern center located

at nj∗,k∗ calculated as

αj,k = atan2

(
d(j, j∗)

dist(k, k∗)

)
, (3.25)

where in this case the distance operator d(A,B) (introduced in Eq. 3.9) stands for

the euclidean distance between two points A and B.

This layout serves as comparison mask to quantify the rotation level. Vector

velocity components of the wavefront and the reference mask are split into matrices

[U,V] and [Û, V̂] respectively. We apply element-wise scalar product at each

time instant n to calculate the rotational intensity, normalized with respect to the

number of nodes constituting the J-squared grid, as

T [n] =
1

J2

J∑
i=1

J∑
j=1

uj,k[n]dj,k[n] + vj,k[n]ej,k[n]. (3.26)

The following step performs time integration of T [n] in a range of γ samples. Only

values contained in the time interval [n−γ, n] are included to capture the wavefront

dynamics, obtaining the expression for our new indicator

Γ[n] =

n∑
τ=n−γ

T [τ ]. (3.27)

We detect rotational activity when Γ[n] exhibits high or low values above or below

a double decision threshold ±Γth, see Figure 3.7A-C and Figure 3.8A-C. The sign
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determines the circular direction of the wavefront, clockwise or counterclockwise.

Depending on the chosen spin turn of the reference mask, i.e., if clockwise, positive

Γ[n] peaks correspond to clockwise rotations and negative values to counterclock-

wise gyres.

3.3 Results

3.3.1 Signal Interpolation Results

We used in silico signals to validate the wavefront reconstruction. From the

256 pEGM signals, we chose 20 signals according to the spatial position of the

PentaRay R©electrodes in the grid. We obtained their slope information β[n], per-

formed the interpolation and the LATs detection to obtain the reconstructed wave-

fronts. To evaluate the outcome of the interpolation method, we also processed the

whole 256 pEGMs grid to obtain the isochronal propagation so we could compare

both interpolations.

We evaluated the interpolation reconstruction for different M , p and σ param-

eter values. We quantified the interpolation performance by measuring the LATs

relative root mean square error (rRMSE) between the interpolated and full grid

versions for all the parameter combinations. The rRMSE is defined as:

rRMSE =

√
1
N

N∑
n=1

J∑
i=1

J∑
j=1

(
Li,j [n]− L̂i,j [n]

)2

√
1
N

N∑
n=1

J∑
i=1

J∑
j=1

(Li,j [n])2

, (3.28)

where Li,j [n] and L̂i,j [n] are the full grid and interpolated LAT signals at node ni,j

and time instant n ∈ [1, N ] samples. The Li,j [n] and L̂i,j [n] take value 0 when a

LAT is detected and linearly decrease their values until a new activation occurs. We

used value ranges M = 2, 3, 4, . . . , 20, p = 1, 2, 4 and σ = 0.05, 0.06, . . . , 0.29, 0.30.

Best error results were achieved for p = 4 in all cases. Figure 3.9 shows the

rRMSE values for the M and σ combinations for p = 4. For the rotor case

(Figure 3.9A) the value minimizing the reconstruction error was rRMSE = 0.314
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Figure 3.7: Rotational activity detector in in silico signals. Detection performed on the

three simulation scenarios. The method detects rotational activation if the value of Γ[n]

exceeds the upper threshold +Γth or falls below the lower threshold −Γth. The sign of

Γ[n] reflects the rotational gyre direction, being positive if the gyre matches the rotation

mask spin (clockwise/counterclockwise depending on the chosen pattern), or negative if

the propagation rotates in the opposite mask direction. For the simulation cases we applied

the detection on the full Γ[n] and the interpolated Γ̂[n] grids to compare both outcomes.

Signals from top to bottom: A. Sinus rhythm. B. Rotor. C. Chaotic wavefront collision.

Parameters were γ = 150 samples and Γth = γ/7.
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Figure 3.8: Rotational activity detector in real AF signals. Detection performed on the

three real AF signals from three different patients. Same methods and parameters are

applied as in Figure 3.7. A. Sustained multiple rotational activation example. B. Non-

sustained multiple gyre rotations. C. Another example of rotation detection.
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(rRMSE mean ± std, 0.348 ± 0.025) achieved for p = 4, M = 20 and σ = 0.14.

Sinus rhythm (Figure 3.9B) scored rRMSE = 0.121 (0.131 ± 0.011) for p = 4,

M = 2 and σ = 0.05, and the wave collision case (Figure 3.9C) rRMSE = 0.337

(0.357± 0.019) for p = 4, M = 20 and σ = 0.12.

Figure 3.9: Shepard’s interpolation method performance. The rRMSE is represented for

each case for p = 4. A. Rotor. rRMSE = 0.314 for p = 4, M = 20 and σ = 0.14. B. Sinus

rhythm. rRMSE = 0.121 for p = 4, M = 2 and σ = 0.05. C. Chaotic. rRMSE = 0.337

for p = 4, M = 20 and σ = 0.12.

The interpolation using Shepard’s method was compared against bilinear in-

terpolation. Statistical significance analysis was perform, comparing the rRMSE

group means and standard deviations using the Kruskal-Wallist test. Significance

was considered for a two-sided p-value (p) of less than 0.01. The minimum rRMSE

for rotor case was rRMSE = 0.328 (0.375±0.026) for M = 20 and σ = 0.14 (same

parameters as the Shepard’s approach). The SR case achieved rRMSE = 0.120

(0.126 ± 0.012) for M = 6 and σ = 0.28, and the chaotic case rRMSE = 0.362

(0.401 ± 0.026) for parameters M = 16 and σ = 0.21. In the rotor and chaotic

cases the bilinear interpolation offered significant worse minimum error than the

one obtained with the Shepard’s interpolation method (p = 7.6 × 10−59 and

p = 4.6× 10−110 respectively). Only in the sinus rhythm case the bilinear interpo-

lation was significantly better than the Shepard’s method, rRMSE = 0.120 and

rRMSE = 0.121 respectively (p = 4.6 × 10−43). Since the system is expected to

operate when patients are in AF, Shepard’s interpolation method provides better

performance. We include the Figure 3.10 for the three in silico scenarios rRMSE,

analogous to Figure 3.9.

We now study the effect on the interpolation performance when a catheter
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Figure 3.10: Bilinear interpolation method performance. The figure shows the rRMSE

for the bilinear interpolation applied to the three in silico scenarios, and serves as direct

performance comparison to the Shepard’s interpolation method in Figure 3.9. A. Rotor.

rRMSE = 0.328 for M = 20 and σ = 0.14. B. Sinus rhythm. rRMSE = 0.120 for

M = 6 and σ = 0.28. C. Chaotic. rRMSE = 0.362 for M = 16 and σ = 0.21.

branch differs from the fixed position in the grid for the three in silico cases. To

characterize this behavior, we rotated the positions of one of the branches of the

catheter, i.e., the PentaRay R©model, from its predefined position. We rotated the

4 electrodes in the branch covering a rotation range [−θ, θ], with θ = 2π
5 radians

(or 72o), establishing as rotation limits the angle where the branch overlaps its

two neighboring branches. At the rotated electrode positions we took the signals

from the full simulated grid and used them to perform the interpolation on the

fixed interpolation positions. This way the interpolation maintains the fixed elec-

trode layout but the information signals come from shifted positions emulating

the behavior of the catheter when a branch does not match the predefined layout.

We iterated in steps of θ
20 and calculated the rRMSE for all the rotated interpola-

tions. We include the results in the Figure 3.11. The figure shows the interpolation

rRMSE for the three cases in the [−θ, θ] in radians and also with respect the length

of the arc of the rotation angle. The arc length is calculated from the circumfer-

ence of radius 32 mm determined by the most distant PentaRay R©electrode with

respect to the center of the catheter. The rRMSE remains almost the same for

a rotation of π
50 radians (±2 mm) and worsens as the rotation angle moves away

from the reference fixed position.

The interpolated reconstructions for the parameters minimizing the rRMSE

criterion in the three in silico cases were presented to the electrophysiologists for
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Figure 3.11: Rotated electrode performance. The figure shows the rRMSE when the

electrodes in a catheter branch are rotated an angle θ from the predefined interpolation

position. The top x-axis covers the [−θ, θ] angle range for θ = 2π
5 radians (or 72o). The

bottom x-axis is in linear units and represents the length of the rotated arc of the 32 mm

circumference containing the most distal electrode of the PentaRay R©catheter. The figure

displays the three in silico cases: rotor, SR and chaotic wavefronts. The rRMSE error

remains almost identical for a shift of ±2 mm.

final validation. They agreed that the sinus rhythm and the rotor cases presented

almost identical representation compared to the simulated ground truth. The wave

collisions case also exhibited good results in the presence of chaotic behavior. In

all the cases the interpolation managed to recover all the activations present in the

pEGM grid, and the wavefront morphologies also matched the original ones. This

evaluation supports the effectiveness of the proposed interpolation method, and

discards any interpolation effect that may introduce uncertainty in the rotational

activity detection system.

3.3.2 Rotational Activity Detection Results

The lack of available rotor signals, not even being a consensus about their exis-

tence, presents a challenge when evaluating the system’s ability to detect rotors.

For this reason scientists resort to in silico simulated environments to test their
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methods. We applied the detection on the three in silico scenarios for the full

and interpolated grids, with γ = 150 (150 ms window for fs = 1 KHz), obtaining

signals Γ[n] and Γ̂[n] respectively. As shown in Figure 3.7 A-C, the interpolated

and the full versions behave similarly when we capture their dynamics with the

rotation mask. We set the same threshold Γth = ±γ/7 for the three cases, which

succeeded to completely detect the rotor simulation during the whole interval the

spiral is active, Figure 3.7B. In the sinus rhythm case, 3.7A, no rotational activity

is detected, as expected from its homogeneous propagation. The chaotic wave-

front collisions, Figure 3.7C triggers the detector at some points in the full grid

Γ[n] signal. The randomness of the activation makes the wavefront to partially

rotate around the grid center, but since the rotation is not sustained in time nor

exhibits a complete turn it does not yield a false detection positive.

The results using the in silico simulations allowed us to adjust the system

parameters to automatically detect rotational activity in real-time in patients.

We acquired signals from 28 AF patients using the PentaRay R©catheter mapping

different atrial areas per patient. We created a database with more than 600

registers containing EGM and electrocardiogram (ECG) signals. We analyzed the

EGMs and reconstructed wavefronts, and conclude that the in silico simulations

threshold value of Γth = γ/7 exhibited great detection performance for rotational

activity in real AF signals. As detection examples, we include the Γ[n] signal of a

rotational activation detected in three of the patients, Figure 3.8A-C. We acquired

the signal at fs = 1 KHz and used γ = 150 to match the same integration interval

as the computer simulations.

In the first example, Figure 3.8A, Γ[n] captures the atrial activity as it per-

forms multiple continuous gyres around the center in the 2-5 seconds interval.

The method also captures activations that exhibit single or incomplete gyres. A

couple of not maintained rotations are also captured at the beginning and end

of the acquisition, 0-1 seconds and 9-10 seconds intervals respectively. This is

important since the gyre incompleteness can be related to areas in which the ac-

tivation experiments a change of direction that may explain AF maintenance, or
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can be even related to meandering rotational activation. In the second example,

Figure 3.8B, the wavefronts describe a multiple gyre between 1.2-1.8 seconds that

evolves into some incomplete gyres, around 4.3, and 8.7 seconds. The incomplete

gyre at 4.3 seconds precedes a complete gyre at 5.3 seconds. In the third example,

Figure 3.8C, we show another case of multiple gyre detection at the 4.7-5.4 seconds

interval which evolves into a incomplete gyre at time instant 5.74 seconds. The

activity triggers again the detector at 7 seconds, and again detects a multiple gyre

around the end of the acquisition, interval 9.2-9.5 seconds. With these examples

we show the capability of the system to detect rotational activation concerning

incomplete, complete and multiple gyres. The latter, exceeds the threshold for a

more prolonged duration in time, which is useful to differentiate the complexity of

the gyre.

Additionally, the method is robust against non-centered rotational activations.

We tested the rotational activity detection robustness against non-centered rota-

tional activations. Figure 3.12 shows the scalar product T [n] (Eq.(3.26)) between

the reference mask and its shifted version in the ~u and ~v axis, emulating a rotation

whose center moves away from the origin. With no shift, the pattern overlaps

itself and the scalar product is maximum. If the center of rotation moves further,

T̄ decreases its value. For a distance of 0.3J nodes, the scalar product scores

70% of the centered pattern value, i.e., 10 nodes with J = 32 or 19 nodes with

J = 64, capturing the rotational activity. The approximate J correspondence in

mm attaining the PentaRay R©catheter coverage when it is fully deployed is 32 mm.

That means that for a rotational activity mask shifted 0.3J we capture at least

70% of its dynamics at 9.6 mm, which extends the operative physical range of the

detector.

3.4 Conclusions

We present a new signal processing method to assess rotational activity in isochronal

maps generated from AF EGMs. By analyzing the time domain, our approach op-

poses the classical detection performed on phase maps, which are known to exhibit
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Figure 3.12: Detection robustness. Scalar product for the rotation mask in Figure 3.6D,

when it is compared with its shifted version in the ~u axis (blue), ~v axis (green) and the

~u− ~v diagonal (red). The shift is expressed in J units (nodes).

bad correlation with temporal activations. We have validated and analyzed the

performance of our methods using both in silico and real AF signals, giving addi-

tional support to our findings.

In silico simulations need to be part of any new method development, as they

provide validation tools, reproducibility and variety in controlled scenarios. The in

silico signal simulations have been proven useful to validate the interpolation of the

signals as prior step to reconstruct the propagation grid. This provided us with a

framework to study how the selection of the different parameters affect the signal

processing steps. Using a value of σ which is too large prevents the detection

of LATs, while a large value of M also limits the LAT detection because the

signal is low-pass filtered and attenuated. With the study of different parameter

combinations, we reached a compromise between the noise reduction and the LAT

detection, which succeeded to minimize the error committed when interpolating

the signals.

The unavailability of the electroanatomical 3D system to provide the real-time

position of the electrodes forces our method to rely on a fixed layout. This con-
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straint requires the electrophysiologist to operate the catheter and align it to the

fixed electrode layout. But on the other hand, this ensures the electrode contact

against the atrial wall, and helps to better interpret the behavior of local atrial

areas complementary to other methods based on basket catheters. We analyzed

the effect of a branch drift with respect to the reference layout, concluding that

a shift of ±2 mm produces almost identical results as the correctly placed elec-

trodes, Figure 3.11. We note that some areas of the left atrium cannot be so easily

mapped, since deployment of catheters sometimes presents a challenge even for

experienced electrophysiologists. But this goes in parallel with basket catheters,

whose geometry does not allow to access and map certain areas due to limited cov-

erage and deformations of the catheter. Further studies on tissue characterization

could relate atrial areas of restricted access with measurable indices, e.g. bipolar

voltage or impedance values.
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4
Causality Retrieval in Atrial Fibrillation

4.1 Introduction

Atrial fibrillation (AF) is a cardiac pathology characterized by a rapid and un-

synchronized contraction of the atria. The lack of satisfactory performance of

RF ablation strategies for some patients is our main motivation. We believe that

there is an urgent need of more advanced signal processing and machine learn-

ing methods that can assist cardiologists during RF ablation therapies. These

techniques should focus on determining the direction of information transfer in

the multiple electrograms (EGMs) recorded in the electrophysiology laboratory.

This information will help both to better understand the propagation of the ac-

tion potential (AP) inside the atria of AF patients and to identify candidate sites

for radio frequency (RF) ablation. With these goals in mind, Granger causality

(G-causality or GC) is a well established methodology to infer causal relations
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among multiple time series [24]. Several authors have investigated the inference

of causality relationships among different biomedical signals [42, 64]. In partic-

ular, causality discovery tools have been extensively used in neurology [24], and

Granger’s causality (GC) has been used to investigate the relationship between

several physiological time series (heart period, arterial pressure and respiration

variability) [41, 95]. The use of partial directed coherence to investigate propaga-

tion patterns in intra-cardiac signals was considered in [98, 97], whereas GC maps

have been built in [106, 109, 107]. However, all of these approaches are based on

the standard approach to causality discovery, i.e., computing the pairwise or full-

conditional G-causality as described in Section 4.2. More recently, [3] proposed

alternative multi-variate causality measures that involve the computation of GC

conditioned only on neighbor nodes.

In this chapter, a hierarchical framework for causality retrieval in EGMs is

described. The first stage of the proposed methodology consists of finding the

EGM having the “strongest” GC links with other EGMs and selecting it as the

root node. The remaining nodes are then processed sequentially, starting from the

set of candidate children of the root node. Two alternative algorithms are pro-

posed for this purpose: global search causal retrieval (GS-CaRe) and local search

causal retrieval (LS-CaRe). GS-CaRe processes the candidate children of the cur-

rent node sequentially according to their causal strength, accepting them as true

children if their GC is statistically significant conditioned on all the previously

accepted children. LS-CaRe also processes the candidate children sequentially, but

only takes into account the neighbor nodes, thus avoiding many false alarms. An

exhaustive evaluation of the proposed algorithms has been performed, using both

synthetic signals and annotated real-world signals from AF patients acquired at the

electrophysiology laboratory of Hospital General Universitario Gregorio Marañón

(HGUGM). Note that the GS-CaRe algorithm was already described in [73, 74].

With respect to [73, 74], a completely novel algorithm (LS-CaRe) is proposed, and

an exhaustive set of simulations (using synthetic and real data) are performed to

validate both algorithms.
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The rest of the chapter is organized as follows. Firstly, Section 4.2 provides

an introduction to Granger causality, describing both pairwise and conditional

causality. The notation used throughout the text is also summarized here in Table

4.1. Then, Section 4.3 describes the two hierarchical causality discovery algorithms

proposed: GS-CaRe and LS-CaRe. This is followed by Section 4.4, where numerical

experiments (using both synthetic and real data) are used to validate the developed

algorithms. Finally, the chapter is closed in Section 4.5 with a discussion that

includes potential future lines.

4.2 Granger Causality

4.2.1 Pairwise Causality

Let us assume that we have N samples of a multi-variate time series composed of

Q interrelated signals, xq[n] for q = 1, . . . , Q and n = 0, 1, . . . , N − 1. Granger

causality measures the increase in predictability on the future outcome of a signal,

xq[n], given the past values of another signal, x`[n] with ` 6= q, with respect to the

predictability achieved by taking into account only past values of xq[n] [24, 48]. In

brief, G-causality determines whether past values of x`[n] can be useful to forecast

future values of xq[n] or not.

To provide a rigorous formulation of GC, let us define the linear autoregressive

(AR) predictor for xq[n] given its past samples (i.e., the q-th self-predictor) as

x̂q[n] = x̂q→q[n] =

M∑
m=1

αqq[m]xq[n−m] = α>qq~xq[n], (4.1)

where M is the order of the predictor, obtained typically using some penalization

for model complexity to avoid overfitting [124]; αqq[m] are the coefficients of the

model; αqq = [αqq[1], . . . , αqq[M ]]> and α>qq denotes the transpose of αqq; and

~xq[n] = [xq[n−1], . . . , xq[n−M ]]>. Similarly, let us define the linear autoregressive

(AR) predictor for xq[n] given the past samples of both xq[n] and x`[n] (i.e., the

cross-predictor from the `-th signal to the q-th signal) as

x̂`→q[n] = α>qq~xq[n] + α>`q~x`[n] = x̂q[n] + α>`q~x`[n], (4.2)
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Variable Description

xq[n] Observed signals (1 ≤ q ≤ Q, 0 ≤ n ≤ N − 1).

M`q Maximum delay in the prediction from the `-th to the q-th signal. Can be

user-defined or determined automatically.

~x`[n] Vector containing all the previous M`q samples of

x`[n]: ~x`[n] = [x`[n− 1], . . . , x`[n−M`q]]
>.

α`q[n] Coefficients of the linear predictor from the `-th to the q-th signal.

α`q Vector containing all the coefficients of the linear predictor from the `-th to

the q-th signal: α`q = [α`q[1], . . . , α`q[M`q]]
>.

G`→q Pairwise G-causality strength from the `-th signal to the q-th signal.

~G Pairwise G-causality strength matrix s.t. ~G`,q = G`→q for 1 ≤ `, q ≤ Q.

C`q Pairwise G-causality connectivity from the `-th signal to the q-th signal,

C`q = χp(G`→q).

~C Pairwise G-causality connection matrix s.t. ~C`,q = Jχ(G`→q) ≥ γpK, i.e.,

~C`,q = 1 if χ(G`→q) ≥ γp and ~C`,q = 0 otherwise.

γp Threshold used to determine whether a causal link exists or not. It is a function

of the user-defined p-value.

G`→q|I Conditional G-causality strength from the `-th signal to the q-th signal given

the set of nodes in I.

~GI Conditional G-causality strength matrix s.t. ~GI(`, q) = G`→q|I .

C`→q|I Conditional G-causality connectivity from the `-th signal to the q-th signal

given the set of nodes in I.

~CI Conditional G-causality connection matrix s.t. ~CI(`, q) = Jχ
(
G`→q|I

)
≥ γpK.

Cq = cand{iq} Set of candidate sons of the q-th node (1 ≤ q ≤ Q).

Sq = son{iq} Set of sons of the q-th node (1 ≤ q ≤ Q).

Pq = pa{iq} Set of parents of the q-th node (1 ≤ q ≤ Q).

Table 4.1: Summary of the main notation used in the definition of the hierarchical Granger

causality algorithm.

where α`q = [α`q[1], . . . , α`q[M ]]>; ~x`[n] = [x`[n−1], . . . , x`[n−M ]]>; and x̂q[n]

is given by (4.1).

The residual errors of these two predictors in (4.1) and (4.2) can now be defined

as εq[n] = xq[n]− x̂q[n] and ε`→q[n] = xq[n]− x̂`→q[n], respectively. The pairwise

G-causality strength is then measured by the logarithm of the ratio of the two
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variances of the residuals [44]:

G`→q = ln
Var(εq[n])

Var(ε`→q[n])
. (4.3)

Note that Var(ε`→q[n]) ≈ Var(εq[n]) when ~x`[n] does not provide any useful in-

formation with respect to xq[n], whereas Var(ε`→q[n]) < Var(εq[n]) if ~x`[n] allows

us to improve the prediction of xq[n]. Hence, 0 ≤ G`→q < ∞, with larger values

of G`→q indicating a stronger evidence of causality from ` to q. Using these pair-

wise values, we can build a pairwise G-causality strength matrix, ~G, such that its

(`, q)-th entry is given by1

~G`,q =


G`→q, ` 6= q;

0, ` = q.

(4.4)

Finally, it is important to remark that we should add a causality link from `

to q only when the decrease in the residual’s noise variance from (4.1) to (4.2) is

statistically significant. In order to construct this causality graph, we define the

pairwise G-causality connection matrix, ~C, whose (`, q)-th element is

~C`,q =


1, χ(G`→q) ≤ γ;

0, χ(G`→q) > γ,

(4.5)

where χ(G`→q) denotes some appropriate statistic and γ is the threshold value

(i.e., significance level) used to determine whether the value of G`→q is statistically

significant. In order to retrieve the potential causality link between two nodes, we

resort to p-values, and thus we denote γ = γp [45].2 The typical values of p in

biomedical engineering which will be used here are p = 0.05, p = 0.01 or p = 0.001.

1Note that Var(εq→q[n]) = Var(εq[n]), since x̂q[n] = x̂q→q[n], and thus the definition in (4.4)

is consistent with (4.3), since Gq→q[n] = ln 1 = 0.
2Let us note that some alternative and more complicated approaches than p-values have been

proposed in the literature [79]. However, p-values are simple to understand and set by the users,

their use is widespread in biomedical applications (as well as in other scientific areas), and they

are enough for our purposes. Indeed, we have tested several values of p in the simulations (see

Section 4.4), noticing that the value of p has little influence on the results, as long as it is small

enough (i.e., p ≤ 0.05).
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Finally, for the sake of simplicity we will use the following short-hand notation for

~C`,q in (4.5):

~C`,q = Jχ(G`→q) ≤ γpK, (4.6)

where JLCK = 1 if the logical condition LC is true and JLCK = 0 otherwise (i.e.,

if LC is false), whereas γp is the threshold value obtained from the corresponding

user-defined p-value.

4.2.2 Conditional Causality

Unfortunately, pairwise GC is unable to discriminate between direct causation

(e.g. x1[n] → x3[n]) and indirect causation (e.g. x1[n] → x2[n] → x3[n]). In

both cases, the pairwise G-causality approach would lead to ~C1,3 = 1, implying

that x1[n] has caused x3[n]. However, when building the causality network we

are only interested in direct causes, since all the spurious links created by indirect

causes may obscure the flow of information among signals. In order to avoid

these undesired links returned by pairwise causality, conditional G-causality was

introduced in [44]. In short, conditional GC attempts to determine whether x`[n]

has caused xq[n] given another set of intermediate signals.

In order to provide a precise mathematical definition of conditional GC, let us

define the set containing the indexes of the conditioning variables as I. Following

a similar procedure as before, we define the conditional self-predictor

x̂q|I [n] = α>qq~xq[n] +
∑
r∈I

α>rq~xr[n], (4.7)

where αrq = [αrq[1], . . . , αrq[M ]]> and ~xr[n] = [xr[n − 1], . . . , xr[n −M ]]> for

all r ∈ I, and the conditional cross-predictor from the `-th signal (with ` /∈ I) to

the q-th output

x̂`→q|I [n] =α>qq~xq[n] +
∑
r∈I

α>rq~xr[n] + α>`q~x`[n]

=x̂q|I [n] + α>`q~x`[n]. (4.8)

Now, by defining the residual errors from the conditional predictors as εq|I [n] =

xq[n] − x̂q|I [n] and ε`→q|I [n] = xq[n] − x̂`→q|I [n], the conditional G-causality
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strength can be defined, in a similar way to (4.3), as

G`→q|I = ln
Var(εq|I [n])

Var(ε`→q|I [n])
. (4.9)

Again, 0 ≤ G`→q|I < ∞, with larger values of G`→q|I indicating a stronger ev-

idence of causality from ` to q given the set of signals in I; and we define two

conditional connection/strength GC matrices, ~GI and ~CI , whose (`, q)-th elements

are, respectively, ~G`,q|I = G`→q|I and ~C`,q|I = Jχ(G`→q|I) ≤ γpK.
Note that the pairwise GC connection/strength matrices are unique, whereas

many conditional GC connection/strength matrices can be constructed. The

most usual situation is setting I = S¬` = {1, . . . , ` − 1, ` + 1, . . . , Q} =

{1, . . . , Q} \ {`} and constructing the full conditional GC connection/strength

matrices as ~G`,q|S¬` = G`→q|S¬` and ~C`,q|S¬` = Jχ(G`→q|S¬`) ≤ γpK, respectively.

However, conditional causality can also be used to build hierarchical models by

conditioning on specific sets of nodes in a structured way, as described in Section

4.3.

4.3 Hierarchical Granger Causality for Intracavitary

Electrograms

On the one hand, pairwise GC may provide misleading results, as discussed in Sec-

tion 4.2.1. On the other hand, the “brute-force approach” to conditional causality

(i.e., applying conditional causality on the whole data set all at once) may obscure

some of the existing relationships. Let us consider again the three-node causal net-

work x1[n] → x2[n] → x3[n]. Now, by applying the full-conditional GC approach

we would typically obtain a single dependence relation: G1→2|3 = 1. The other

desired link, x2 → x3, would typically not be included, since G2→3|1 = 0 unless

a very short lag (M) is used to ensure that only signals from neighbor nodes are

taken into account (i.e., that the contribution of x1[n − 1], . . . , x1[n −M ] to the

prediction of x3[n] is negligible).

Under these circumstances, we propose two hierarchical methods that are able

to exploit the advantages of both approaches while minimizing their drawbacks.
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Both algorithms start by searching for the node with the “strongest” G-causality

links with the remaining nodes and selecting it as the root node.3 Then, the chil-

dren of the root node are processed, adding new causality links if the corresponding

causality test is passed. This process is repeated iteratively until there are no more

nodes to process and a poly-tree has been constructed. The assumed premises are

the following:

1. No feedback links can exist from lower nodes to higher nodes in the hierar-

chy. This restriction is a consequence of the refractory period of the AP: a

period of time following the excited phase when additional stimuli evoke no

substantial response [61].4

2. Causal interactions typically occur between neighbor nodes. This behavior

is due to the continuous propagation of the waveform through the cardiac

tissue.

In the sequel, we first describe the common initial step (i.e., the selection of the

root node) and then we detail the two hierarchical causality algorithms proposed:

GS-CaRe and LS-CaRe.

3Note that the proposed framework essentially tries to identify the propagation direction of

the action potential (AP). In order to do so, we propose a hierarchical approach based on Granger

causality (although other causality measures could also be used) to measure the direction of the

transfer of information throughout the available electrodes. In this setting, the root node becomes

the entry point of the waveform to the set of electrodes, and thus it is essential to determine the

desired propagation direction.
4Note that this assumption holds regardless of the type of catheter used, as long as the mea-

surements taken by this catheter are all concentrated in a certain area of the atria (i.e., it may

not hold for basket catheters that try to cover the whole atrium). The only exception for the

circular catheter used in the experiments (see Section 4.4) concerns the initial and final points in

the hierarchy when we have circular dependencies like the ones shown in Figures 4.3(p), (n) and

(o). In this case our algorithm is unable to discover this last connection, and thus would always

have at least one missing link.

92



Chapter 4. Causality Retrieval in Atrial Fibrillation

4.3.1 Initialization: Selecting the Root Node

The initialization stage, which is common for both the GS-CaRe and the LS-CaRe

algorithms, seeks to find the optimal root node for the causal graph. This is done

by computing the pairwise GC among all nodes and selecting the one with the

“strongest” causal connections to other nodes. More precisely, the steps performed

to select the root node are the following:

1. Compute Gq→` and G`→q (for `, q = 1, . . . , Q−1), and set the corresponding

entries in ~G and ~C.

2. Calculate the GC strength of the q-th node (q = 1, . . . , Q− 1) as the sum

of the strength of its causal links to the remaining nodes:

gq =

Q∑
`=1

~Gq,` =

Q∑
`=1

Gq→`. (4.10)

Calculate also the number of links for each node as

Kq =

Q∑
`=1

~Cq,` =

Q∑
`=1

Jχ(Gq→`) ≤ γpK. (4.11)

3. Determine the node with the largest number of outgoing causal links (i.e.,

links from that source node to some other sink node), selecting it as the root

node:5

i1 = arg max 1 ≤ q ≤ Q Kq, (4.12)

with gq being used only to discriminate among nodes with identical values

of Kq.

4.3.2 Global Search Hierarchical Algorithm (GS-CaRe)

The GS-CaRe algorithm was initially proposed in [73] and later on refined in [74].

Figure 4.1 shows the flow diagram of the GS-CaRe algorithm. After the selection

5In [73], the root node was obtained by maximizing gq instead of Kq, but we have observed

that this can lead to an erroneous selection of the root node when a single very strong causal

connection (i.e., a single very large value of ~G) dominates over the rest.
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of the root node, as described in Section 4.3.1, GS-CaRe sets the root node as the

current node and processes this current node (e.g. node i) recursively as shown in

Figure 4.1:

• Finds the candidate children of the current node, Ci = cand{i} = {` : ~Ci,` =

1}, using pairwise GC.6

• Sorts the candidate children according to their pairwise GC strength, in such

a way that Gi→Ci(1) ≥ Gi→Ci(2) ≥ Gi→Ci(3) ≥ · · ·

• Finds the true children sequentially using conditional GC, starting with the

“strongest” candidate and conditioning on all the previously accepted true

children.

If the current node has some true children, the strongest one is selected as the

current node, removed from the true children list and the aforementioned process

is repeated again. It the current node does not have any true children (either

because they have already been processed or because the end of the causality

chain has been reached), then the parent of the current node is set as the current

node and the process is repeated again. The algorithm ends when the current

node is again the root node and does not have true children to process anymore.

At the end of this process, GS-CaRe returns the strength/connection GC matrices,

~G and ~C, which define a poly-tree with its children and parents.

4.3.3 Local Search Hierarchical Algorithm (LS-CaRe)

Figure 4.2 shows the flow diagram of the LS-CaRe algorithm. LS-CaRe processes

the nodes directly according to their causal strength (starting from the root node,

which is the “strongest” one), considering only causal links among neighbors up

to a maximum user-defined distance, dmax. First of all, let us define the distance

among nodes as

d(`, q) = min{((`− q))Q, ((q − `))Q}, (4.13)

6Note that the search for candidate children is only performed on the currently unprocessed

nodes. See [73] or [74] for further details.
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Figure 4.1: Flow diagram of the GS-CaRe algorithm.

for any `, q ∈ {1, 2, . . . , Q} and with ((·))Q denoting the modulo operation, i.e.,

for any three integer numbers m, k and Q, m = ((k))Q ⇔ k = rQ + m, where

r and m are the only integers such that −∞ < r < ∞ and 0 ≤ m ≤ Q − 1.

Then, using the Kq computed in Section 4.3.1, construct an ordered set of nodes,
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I = {i1, i2, . . . , iQ} with i1 being the root node, such that K` ≥ Kq for all ` < q.7

Initialize the set of neighbors of each node by including only the own nodes (i.e.,

N (0)
q = {q} for q = 1, . . . , Q). Set q = 1 and d = 1. Now, the LS-CaRe algorithm

proceeds in the following way:

1. Update the set of neighbors by including those neighbors at distance d from

iq, i.e., set N (d)
q = N (d)

q ∪ L(d)
q with

L(d)
q = {` : d(iq, `) = d, ` = 1, . . . , Q}. (4.14)

Hence, N (d)
q includes now all those nodes whose distance to node iq is lower

or equal than d.

2. For any node ` ∈ L(d)
q , add an edge from iq to ` if Ciq→` = 1 and the following

two conditions are fulfilled:

(a) There is no connection from any of the neighbors in N (d−1)
q to/from iq.

Mathematically, defining

E(d)
q =

∑
`∈N (d−1)

q

(
C`→iq + Ciq→`

)
, (4.15)

an edge can only be added if E(d)
q = 0. This condition implies that edges

should not be added to nodes far away if connections to closer nodes

already exist.

(b) The `-th node is not already connected, i.e.,
∑Q

j=1Cj→` = 0 or
∑Q

j=1C`→j =

0.

3. If q < Q, then set q = q + 1 and return to step 1. Otherwise, set q = 1 and

check d. If d < dmax, set d = d+ 1 and return to step 1.

At the end of this process, GS-CaRe returns again the strength/connection GC

matrices, ~G and ~C, for the whole set of nodes.

7As indicated in Section 4.3.1, when K` = Kq for two nodes ` and q, we use g` and gq to break

the tie.
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Figure 4.2: Flow diagram of the LS-CaRe algorithm.

4.4 Numerical Experiments

In this section, we first define the performance measures that will be used in Section

4.4.1. Then, we describe the numerical experiments performed using synthetic

data in Sections 4.4.2 and 4.4.3. Finally, the validation using annotated real data

is provided in Section 4.4.4. In order to implement the four algorithms tested

in this section (GS-CaRe, LS-CaRe, the pairwise approach and the full-conditional

method), we have used the Granger causal connectivity (GCCA) toolbox [118].
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4.4.1 Methods and Performance Measures

In order to gauge the performance of the two novel hierarchical algorithms (LS-

CaRe and GS-CaRe), we compare them against the following methods:

• Pair: pairwise causality discovery approach, which simply performs a pair-

wise causality check among all nodes.

• Full: full-conditional causality discovery technique, which performs a causal-

ity check among pairs of nodes conditioned on all the other nodes.

• Alcaine et al.: the approach proposed in [3], which defines a local propaga-

tion direction measure based on conditional causality relations among four

adjacent nodes.

For this comparison we use several standard statistical performance measures. Let

us denote the true causal connection from the `-th to the q-th EGM (with ` 6= q)

as ~C`,q,
8 and the estimated one as ~̂C`,q. Noting that our main goal is discovering

the causal links among the different EGMs, we can have the following situations:

• True positive (TP): The correct detection of an existing causal link, i.e.,

~C`,q = ~̂C`,q = 1.

• False negative (FN): The failure to detect an existing causal link, i.e.,

~C`,q = 1 and ~̂C`,q = 0.

• True negative (TN): The correct absence of a non-existing causal link,

i.e., ~C`,q = ~̂C`,q = 0.

• False positive (FP): The detection of a causal link when no causal link

truly exists, i.e., ~C`,q = 0 and ~̂C`,q = 1.

Let us denote the total number of positive cases (i.e., true causal links) as P, the

total number of negative cases (i.e., non-existing or false causal links) as F, and

8Remember that ~C`,q = 1 corresponds to the presence of a causal link and ~C`,q = 0 corresponds

to the absence of that causal link.
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the total number of possible connections as T = Q(Q − 1). Now, we can define

the following performance measures:9

• Sensitivity: Also known as True Positive Rate (TPR). Measures the pro-

portion of causal links that are correctly identified out of the total number

of causal links:

TPR =
TP

P
=

TP

TP + FN
. (4.16)

• Specificity: Also known as True Negative Rate (TNR). Measures the pro-

portion of non-existing causal links that are correctly identified:

TNR =
TN

F
=

TN

TN + FP
. (4.17)

• Accuracy: Measures the proportion of true causal detections (both for exist-

ing and non-existing links) among the total number of possible connections:

Acc =
TP + TN

T
=

TP + TN

TP + FP + TN + FN
. (4.18)

• F-Score: Also known as F1 score. An alternative global measure of per-

formance, obtained as the harmonic mean of sensitivity and precision (also

known as Positive Predictive Value (PPV), and defined as PPV = TP/(TP+

FP)):

F1 =
PPV× TPR

PPV + TPR
=

2TP

2TP + FP + FN
. (4.19)

Altogether, these complementary measures provide a complete characterization of

the performance of the different algorithms. On the one hand, a high sensitivity

implies a low rate of false negatives, indicating that the method is unlikely to miss

existing causal links (i.e., all the true causal relations in the data are likely to be

discovered). On the other hand, a high specificity is related to a low level of false

positives, meaning that the algorithm is unlikely to introduce spurious causal links

(i.e., all the causal links introduced are likely to correspond to true links). Finally,

the accuracy and the F-Score provide a single global performance measure that

takes into account both the false positives and the false negatives.

9Note that the range for all the performance measures is from 0 to 1, with 1 indicating the

best possible result and 0 indicating the worst one.
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4.4.2 Simple Synthetic Intracardiac Electrograms

In this section, we test the performance of the two algorithms proposed (LS-CaRe

and GS-CaRe) on simple synthetic EGMs. In order to generate these signals, the

network of modified stochastic FitzHugh-Nagumo (FH-N) oscillators described in

[32, 75] has been used as in silico model. FH-N oscillator networks are a simple,

well-known and widely used model for waveform propagation in excitable media

[61]. In cardiology, the FH-N equations can be used to replicate the AP of the

sinoatrial node, and the FH-N dynamics has also been applied in the study of

cellular coupling or the mechanism of defibrillation [62]. Regarding the analysis

of AF, this model does not generate realistic EGMs in the time domain, but it is

able to reproduce the propagation patterns observed in real patients. Therefore,

we believe that it is a useful model to perform an initial validation of the proposed

methods.

In Appendix B we include the description of the FH-N model equations and

the simulation setup. Using this model, we have generated a database composed

of 17 sets of synthetic multi-variate EGMs that mimic AP wavefront propagation

patterns observed in real signals. Rotors are generated by applying a forcing signal

at one node right after the wavefront has passed through it. Then, we select 10

nodes from the 2D grid according to a circular layout resembling the topology of

a 10-pole spiral catheter. With the virtual recording electrodes placed at these

locations, the 9 synthetic bipolar EGMs used in the simulations are obtained.

Figure 4.3 shows the different propagation patterns (see also the accompanying

videos in the supplementary material in [75]), grouped into three categories:

• Single, corresponding to the AP wavefront propagation pattern observed

when a single-loop rotor is present.

• Flat, associated to a flat propagation pattern (as observed when the catheter

is placed far away from the focal source) plus a double-loop rotor (except in

the first case).

• Circular, where a circular propagation pattern (corresponding to the catheter
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 4.3: Different propagation patterns generated by the synthetic signal simulator.

(a)–(f): Flat 1–6. (g)–(l): Circular 1–6. (m)–(q): Single 1–5. (r): Legend.
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being placed close to the focal source) plus a double-loop rotor (once more,

in all cases except for the first one) is observed.

The following information is shown in Figure 4.3:

• Wavefront propagation: Orange swirls of different intensities to show the

local propagation pattern and direction of the electrical wavefront.

• Nodes: The locations of the nodes of the virtual recording device. Red and

blue circles are used to denote source and sink nodes, respectively.

• The true causal links (blue lines and arrows) among the synthetic EGMs.

Figure 4.4 shows an example of the noiseless synthetic signals for three cases (single

1, flat 2 and circular 4), altogether with the intensity plots (using black squares

for the ones and white squares for the zeros) of their true causality matrices.

In the first experiment, we analyze the performance of the different methods (in

terms of the F-score) as a function of the two parameters of the model: the p-

value and the lag (M). Tables 4.2 and 4.3 show the results. On the one hand,

in Table 4.2 it can be seen that the results are rather stable with respect to the

p-value, with slight decreases in performance for all the methods at low signal to

noise ratios (SNRs) and small increases at large SNRs. On the other hand, from

Table 4.3 we notice that a similar situation occurs (except for the full-conditional

approach) for M . Therefore, instead of selecting specific values of p and M for

the subsequent simulations, we present the results averaged over all the considered

significance levels (p ∈ {0.05, 0.01, 0.001, 0.0001}) and orders of the AR models

(M ∈ {10, 15, 20, 25, 30}).
Figures 4.5(a)–(c) show the averaged sensitivity (TPR), specificity (TNR) and

F-score for the different methods tested. Alcaine’s approach attains the best per-

formance in terms of TPR and F-score (followed closely by LS-CaRe in both cases),

whereas LS-CaRe attains the best TNR (with Alcaine’s method performing slightly

worse). The pairwise approach achieves good TPR values, but its performance is

very poor in terms of TNR. On the contrary, the full-conditional and GS-CaRe

techniques obtain good TNR values, but very poor TPRs. The F-score for these
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Figure 4.4: Top. Example of the nine synthetic signals (ordered from bottom to top as

1 → 9) generated for three different cases: Single 1, Flat 2, and Circular 4. Bottom.

Binary intensity plots of the true causality matrices ~C. A black square corresponds to

~C`,q = 1, whereas a white square means ~C`,q = 0.
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Method p-value (SNR = 10 dB)

0.05 0.01 0.001 0.0001

Full 0.3891 0.3768 0.3022 0.2373

Pair 0.4724 0.4908 0.4773 0.4522

GS-CaRe 0.3357 0.3391 0.3178 0.2866

LS-CaRe(dmax = 1) 0.8505 0.8237 0.7628 0.7004

LS-CaRe(dmax = 2) 0.8488 0.8268 0.7702 0.7137

LS-CaRe(dmax = 3) 0.8525 0.8301 0.7842 0.7334

Alcaine et al. [3] 0.7742 0.7829 0.7745 0.7767

Method p-value (SNR = 40 dB)

0.05 0.01 0.001 0.0001

Full 0.4184 0.4551 0.4726 0.4691

Pair 0.4340 0.4620 0.4838 0.4791

GS-CaRe 0.3075 0.3328 0.3290 0.3584

LS-CaRe(dmax = 1) 0.7820 0.8272 0.8386 0.8111

LS-CaRe(dmax = 2) 0.7808 0.8301 0.8355 0.8152

LS-CaRe(dmax = 3) 0.7822 0.8287 0.8424 0.8268

Alcaine et al. [3] 0.8756 0.8805 0.8801 0.8805

Table 4.2: F-Score for the different methods tested as a function of the p-value used for

M = 10 and two values of SNR.
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Method M (SNR = 10 dB)

10 15 20 25 30

Full 0.3891 0.2567 0.0634 0.0126 0.0029

Pair 0.4724 0.3916 0.3308 0.3096 0.2973

GS-CaRe 0.3357 0.2978 0.2689 0.2584 0.2264

LS-CaRe(dmax = 1) 0.8505 0.8157 0.7755 0.7423 0.6879

LS-CaRe(dmax = 2) 0.8488 0.8221 0.8041 0.7714 0.7116

LS-CaRe(dmax = 3) 0.8525 0.8219 0.7943 0.7733 0.7161

Alcaine et al. [3] 0.7742 0.8108 0.8402 0.8852 0.8944

Method M (SNR = 40 dB)

10 15 20 25 30

Full 0.4184 0.3935 0.1082 0.0206 0.0056

Pair 0.4340 0.3915 0.3295 0.3036 0.2829

GS-CaRe 0.3075 0.2958 0.2726 0.2443 0.2238

LS-CaRe(dmax = 1) 0.7820 0.8615 0.8168 0.7750 0.7013

LS-CaRe(dmax = 2) 0.7808 0.8649 0.8309 0.7957 0.7145

LS-CaRe(dmax = 3) 0.7822 0.8669 0.8193 0.7870 0.7227

Alcaine et al. [3] 0.8756 0.8534 0.8916 0.8914 0.9089

Table 4.3: F-Score for the different methods tested as a function of the lag (M) used for

p = 0.05 and two values of SNR.
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Figure 4.5: Averaged results, over the considered significance levels (p ∈
{0.05, 0.01, 0.001, 0.0001}) and orders of the AR models (M ∈ {10, 15, 20, 25, 30}), for

the synthetic signals using different performance measures (sensitivity, specificity and F-

score). (a)–(c) Using the simple model of Section 4.4.2. (d)–(f) Using the more realistic

model of Section 4.4.3.
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three cases (pairwise, full-conditional and GS-CaRe) is much lower than the F-score

of Alcaine’s method and LS-CaRe. Note the threshold effect in the sensitivity and

F-score: below a certain SNR (around 0 dB) all methods fail. This effect is rather

common in statistical inference problems (e.g. see Figure 1 in [93], Figure 2 in [76]

or Figure 6 in [40]), and here is due to the incorrect estimation of the underlying

AR models used for GC computation: no causal links are detected at all, and thus

the sensitivity and F-score are zero, whereas the specificity is close to one.

Finally, Figure 4.6 shows examples of true causal connections and recovered

causality maps (using SNR = 20 dB, M = 10, p = 0.05 and dmax = 1 for LS-CaRe)

for three cases: single 1, flat 2, and circular 4. All the methods add many spurious

links, except for LS-CaRe and Alcaine’s approach, which recover causality maps

similar to the true ones.

4.4.3 Realistic Synthetic Electrograms

As a second case study, realistic electrograms were simulated using a complete 3D

model of human atria [117]. Simulations were performed as in a previous study

[115]: cellular electrophysiology was simulated using an AF-remodeled version of

the Maleckar et al. model [77], whereas propagation of the action potential was

computed by solving the monodomain equation with a finite element method-

based software called ELVIRA [52]. The integration time-step used for the 3D

atria simulations was 0.04 ms, so that the fast upstrokes of the action potentials

could be properly generated, but the output voltages were only post-processed

every 1 ms, facilitating comparison with real AF signals, typically acquired at 1

kHz (see Section 4.D). Three situations were simulated for 10 seconds each: sinus

rhythm (periodic stimulation at the sinoatrial node every 500 ms), stable rotor

at the right atrial appendage (not significant wavefront meandering during the

whole simulation of AF), and chaotic activity at the right atrium (collisions of

wavefronts, unstable rotors, and large wavefront meandering). In order to analyze

the efficacy of the hierarchical algorithms, two grids of 16x16 virtual electrodes

located at 2 mm distance from the atrial surface were used to compute unipolar
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Figure 4.6: Synthetic signals: example of the true causality graphs [(a), (g) & (m)] and

the graphs recovered using the pairwise approach [(b), (h) & (n)], the full-conditional

technique [(c), (i) & (o)], GS-CaRe [(d), (j) & (p)], LS-CaRe [(e), (k) & (q)], and Alcaine et

al. [3] [(f), (l) & (r)] for three different cases. (a)–(f) Single 1. (g)–(l) Flat 2. (m)–(r)

Circular 4. Red lines with no arrowhead correspond to bidirectional causal links.
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Figure 4.7: Real AF signals: example of the true causality graph (a), and the graphs

recovered using the pairwise approach (b), the full-conditional technique (c), GS-CaRe

(d), LS-CaRe (e), and Alcaine et al. [3] (f) for a real signal. Red lines with no arrowhead

correspond to bidirectional causal links.

electrograms: one in the right atrial appendage, and the other in the center of the

right atrium.

Figure 4.5(d)–(f) shows that the results for this more realistic model are similar

to those of the simpler one: LS-CaRe and Alcaine’s method still attain good values

of TPR, TNR and F-score (although lower than in the previous example); the

pairwise approach achieves good values of TPR, but poor values of TNR and F-

score; and GS-CaRe and the full-conditional scheme obtain a good TNR, but not

so good values of TPR and F-score. Indeed, the main difference with respect to

the simpler model is that LS-CaRe obtains a better performance than Alcaine’s

method for the three performance measures.

4.4.4 Real Atrial Fibrillation Signals

Intracavitary EGMs were recorded in 5 patients with persistent AF prior to an

ablation procedure in the electrophysiology laboratory at HGUGM. Using a 10

pole spiral catheter Lasso R© (Biosense Webster, Diamond Bar, California, USA),

9 bipolar signals were obtained and bass-pand filtered within the 30-500 Hz band

using the LABSYSTEM
TM

Pro EP Recording system (Boston Scientific, Natick,

MA, USA). Data was digitized at 16-bit resolution with 1 kHz sampling frequency,

and exported using custom software implemented in LabVIEW
TM

(National In-

struments, Austin, TX, USA). Signals were visually inspected and annotated for
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Signal Pairwise Full GS-CaRe LS-CaRe Alcaine et al.[3]

1 0.323 0.245 0.173 0.512 0.702

2 0.400 0.390 0.277 0.703 0.707

3 0.344 0.257 0.247 0.379 0.446

4 0.394 0.410 0.321 0.822 0.801

5 0.257 0.189 0.212 0.396 0.581

6 0.426 0.291 0.411 0.685 0.553

7 0.323 0.228 0.260 0.565 0.500

8 0.282 0.203 0.158 0.498 0.500

9 0.347 0.271 0.139 0.525 0.349

10 0.474 0.515 0.367 0.713 0.701

Avg. ± Std. 0.357 ± 0.066 0.300 ± 0.105 0.257 ± 0.090 0.580 ± 0.146 0.584 ± 0.141

Table 4.4: F-Score for the different methods tested averaged over the five lags and the

four significance levels considered.

Signal Pairwise Full GS-CaRe LS-CaRe Alcaine et al.[3]

Sensitivity 0.661± 0.206 0.477± 0.198 0.244± 0.103 0.606± 0.177 0.611± 0.133

Specificity 0.772± 0.085 0.815± 0.075 0.935± 0.020 0.951± 0.016 0.947± 0.019

Accuracy 0.761± 0.062 0.782± 0.060 0.866± 0.021 0.916± 0.025 0.913± 0.029

F-Score 0.357± 0.066 0.300± 0.105 0.257± 0.090 0.580± 0.146 0.584± 0.141

Table 4.5: Averaged results for several performance metrics, the five lags and the four

significance levels considered.

rotor presence by electrophysiologists from HGUGM. A total of 10 short EGM seg-

ments where the signal can be considered stationary were used as dataset for our

algorithm, including 6 cases exhibiting normal AP wavefront propagation (wedge

shaped) and 4 with circular propagation patterns (rotors). For all the cases, ground

truth graphs displaying the electrode activation sequences from source to sink

node(s) were constructed. An example of one true causality graph, altogether

with the reconstructed causality graphs is shown in Figure 4.7. Note again the

good performance of LS-CaRe and Alcaine’s methods, especially compared to the

large number of spurious links introduced by the pairwise, full-conditional and

GS-CaRe approaches.

The results for the 10 real signals tested are displayed in Tables 4.4 (F-Score

for each case) and 4.5 (sensitivity, specificity, accuracy and F-Score averaged over
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the 10 cases). The following conclusions can be drawn from these two tables:

• The pairwise approach attains the highest sensitivity, with Alcaine’s method

and LS-CaRe obtaining slightly worse results. The full-conditional approach

and GS-CaRe obtain much lower sensitivity values, due to the large number

of true causal connections missed.

• In terms of specificity, LS-CaRe, GS-CaRe and Alcaine’s methods behave

much better than the other two (with LS-CaRe performing slightly better

than Alcaine’s). This is due to the fact that the other two approaches intro-

duce many more false positives.

• In terms of global performance, LS-CaRe provides the best accuracy and

Alcaine’s method attains the highest F-score. The global performance of the

other three methods is much worse, with the pairwise approach attaining the

lowest accuracy and GS-CaRe the lowest F-score.

4.5 Conclusions

A generic hierarchical framework and two specific algorithms for causality retrieval

in intracavitary EGMs, based on G-causality, have been described in this chapter.

Both algorithms rely on the initial discovery of the root node, but the influence

of this node on their performance is very different: GS-CaRe depends critically on

a proper selection of this root node, since a global search is then started from it

and an erroneous choice invariably leads to poor results, whereas LS-CaRe only

needs this root node as the starting point for its local search and thus is much

more robust with respect to an erroneous selection. This robustness, altogether

with the reduced number of false alarms introduced by the local search, explains

the much better performance of LS-CaRe, which shows a comparable performance

to the method proposed in [3] by Alcaine et al. Indeed, both LS-CaRe and Al-

caine’s approach have the same goal: restricting the search for causal connections

to neighbors. However, the procedures followed to achieve this goal are very dif-

ferent: defining a novel local propagation direction measure (Alcaine’s) and per-
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forming a structured hierarchical search (LS-CaRe). From a clinical point of view,

the developed methods can be used by cardiologists for two purposes: (1) discrim-

inating among different propagation patterns (e.g. flat or circular propagation vs.

rotors); and (2) determining the direction of the received AP wavefront. In future

work, we plan to incorporate other alternative measures of causality, like trans-

fer entropy or the phase slope index, as well as Alcaine’s novel local propagation

direction measure, into the flexible framework described here.
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5
Clinical Applications

5.1 Introduction

This chapter is devoted to the developed clinical tools and the analysis of the

Atrial fibrillation (AF) signals acquired as a result of the implementation in the

clinical practice of the signal processing methods introduced in the previous chap-

ters. As we already outlined in Chapter 1, one of the objectives of this thesis is

the assessment of rotational activity detection in live AF procedures. Therefore

we need to employ an existing platform or develop our own system to achieve

such goal. Unfortunately, the limited and restrictive features of the commercial

solutions installed in electrophysiology (EP) laboratories, i.e., electroanatomical

mapping (EAM) and signal recording systems, forced us to face the challenge of

developing our own system from scratch. Normally, conventional EP systems do

not allow to directly access the feed of EP signals (electrograms (EGMs) and elec-
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trocardiograms (ECGs), and most of the times the only option is to export the

data to a binary or text file and load it into an external system. The main disad-

vantage of this approach is the time spent in exporting and importing the data,

which impedes to perform any task in real-time. This alternative remains subop-

timal for our real-time result presentation purpose. For this reason we decided to

develop our own signal processing system, taking advantage of the analog output

signals offered by an operational amplifier installed in the EP laboratory at the

Hospital General Universitario Gregorio Marañón (HGUGM), LABSYSTEM
TM

Pro EP Recording system (Boston Scientific, Natick, MA, USA).

In this system we implemented the complete rotational activity detection so-

lution comprising: signal acquisition, signal processing and result presentation.

Additionally the registers acquired during the AF procedures allowed us to fur-

ther extend our study to both test the capabilities of our new system, and to

perform a thorough analysis of the signals and their relationship to the possible

mechanisms driving or sustaining AF. We make use of electroanatomical maps

generated during the signal acquisition stage used to assess rotational activity.

5.2 Rotational Activation Detection System

The rotational activity detection system is based on an analog to digital converter

(ADC), a processing unit and a monitor to display the results 1. The system

can be easily integrated with other equipment commonly used in EP laboratories,

as shown in Figure 5.1. In the examples and previous chapters of this thesis,

we consider a pentametric shape catheter that consists on five branches with 4

electrodes, 20 in total, but other models can be used, i.e., circular, spiral, or

basket.

The amplifier at the laboratory provides unipolar intracavitary EGMs from a

1Appendix A further details the implementation and hardware specifications for the rotational

activity detection system, i.e., specifications, connectivity and technical settings. The signals

acquired with this system are used in Chapters 2, 3, and 4 to validate and test the methods and

algorithms.
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Figure 5.1: Electrophysiology equipments in AF ablation procedures. From left to right,

we have a 3D EAM system for anatomic reconstruction and clinical guidance, a recording

system that registers and keeps track of all intracavitary and external signals, and the

rotational detection system highlighted in red which identifies the presence of rotors and

displays results in real-time. We intentionally omit the fluoroscopy imaging system for the

sake of simplicity.

Figure 5.2: Signal processing unit diagram implementing the rotational activity detection

system. It receives as inputs N unipolar EGMs and one ECG lead, processes the signals

and presents results in real-time.

multi-electrode catheter, and a reference external ECG. Although bipolar signals

are preferred in clinical practice because of the far-field cancellation feature, they

lack to provide precise local electrical activation information, as the electrical acti-

vation time instant cannot be accurately identified [119]. For this reason unipolar

configuration is preferred as the electrical activation timing is well defined by the

point of maximum negative slope, and therefore activation maps can be built, on

the expense of recording far-field ventricle activity, which can be later removed by

using signal processing techniques. Other mapping solutions, i.e., RhythmView
TM

(Abbott, Topera Medical, San Diego, CA, USA), CARTOFINDER
TM

(Biosense

Webster, Diamond Bar, California, USA), or AcQMap R© (Acutus Medical, Carls-

bad, CA, USA), also employ unipolar signals [88, 35, 47].
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The sequence of operations to detect rotational activity from the acquired

signals is shown in Figure 5.2. These steps comprehend the implementation of

the methods presented in Chapter 2 and Chapter 3 into a functional clinical sys-

tem. Following the steps detailed in Figure 5.2, we remove the baseline wandering

present in unipolar signals and cancel the ventricle contribution to isolate the atrial

activations. Then, we approximate the slope of the the unipolar deflections related

to the activation times of the atrium. By applying signal spatial interpolation on

a regular bidimensional grid, we achieve independence from the catheter topology

employed for mapping the atrium. Finally, we identify atrial activation times and

perform the rotational activity detection. Wavefront propagation intervals where

the value of Γ[n] (see Chapter 3 Section 3.2.3) exceeds the detection threshold

are presented to the electrophysiologist in a monitor inside the operating room at

reduced speed, as Figure 5.3 shows. Finally, the rotor location in the atrium can

be annotated on any 3D EAM system as guiding reference during ablation.

5.3 Spatial Analysis of Rotational Activity in Atrial

Fibrillation

The implementation of the rotational activity detection system allowed us to reg-

ister EGM signals from patients with persistent AF at different sites in the left

atrium. We built a database containing the intracavitary EGMs and external

ECGs recorded during the ablation procedures at the hospital. To assess the

ability of the system to detect rotational activity, we used registers from 28 differ-

ent patients who underwent radiofrequency ablation for pulmonary vein isolation

(PVI) at the HGUGM. The signals were recorded prior to the ablation procedure.

Catheters were inserted through the femoral vein to the coronary sinus, and via

transseptal puncture to the left atrium. A PentaRay R© (Biosense Webster, Dia-

mond Bar, California, USA)catheter with 2−6−2 mm inter electrode spacing was

employed to assist in the anatomical mapping, and to record the intracavitary sig-

nals at 1 KHz sampling frequency. Each recording consists of 16 channels, i.e., 15
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Figure 5.3: Operating room monitors during the AF ablation procedure. Right to left,

real-time ratational activity detection system, EP signal recording system, idle screen,

fluoroscopy image, and 3D EAM navigation system. Upper monitor displays the vital

signs of the patient.

intracardiac EGMs and one additional external ECG lead. We require the catheter

to remain stable during the acquisition, branches to be spread for full-coverage as

displayed in Figure 5.4, and the electrodes to be in contact with the atrial wall.

The total number of recorded files is 602 (21.5±8.26 areas per patient). Addi-

tionally a 3D map of the left atrium created by the CARTO R© 3 (Biosense Webster,

Diamond Bar, California, USA)system is included in the database for each patient

entry, an example of one of the maps can be found in Figure 5.5. All visited

atrium locations where the catheter was placed during the anatomical mapping

were annotated in the electroanatomical map.

With all this information we reviewed the EGM signals and the isochronal

maps containing the reconstructed electrical activity of the atrium, and proceeded

to label the sites in which rotational activity was found. The sites were labeled ac-

cording to the complexity of the gyre, i.e., no gyre, incomplete gyre, complete gyre,
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Mean ± SD or %

Male Sex 81%

Age (years) 60.2± 6.8

Weight 88.8± 15.7

Size (cm) 168.2± 21.9

Body mass index (kg/m2) 29.9± 4.8

AF to Perst-AF diagnosis (months) 18.6± 19.3

Diabetes Mellitus 18.5%

CHA2DS2VASC Score 1.52± 1.2

Hypertension 44%

Antiarrhythmic Treatment 44.4%

AVN Blocker Treatment 85.2%

LA diameter (mm) 44± 5.2

LVEF (%) 56.5± 9.2

Table 5.1: Population statistics of the 28 database registers used for the analysis.
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Figure 5.4: Catheter layout during acquisition. A. Adequate deployment with all the

branches equally spread. B. Inadequate deployment with overlapping branches.

and multiple gyre. We include an illustrative example of the gyre classification in

Figure 5.6. We define a complete gyre when the activation pattern exhibits a ro-

tation and any of the electrodes in the first activated branch is activated again. A

multiple gyre is labeled when the wavefront performs consecutive complete gyres.

In the incomplete gyre the activation exhibits circular patterns but the first ac-

tivated branch is not reactivated. The rest of the patterns and activations are

included into the no gyre group.

Once the signals were reviewed and classified according to the gyre complexity

by two independent annotators, we studied the spatial position in the atrium

where they were acquired using the acquisition points in the electroanatomical 3D

maps. For this task, we divided the left atrium into 12 different areas, and for

each recording, we associated the location of the atrium wall region covered by the

center of the acquisition catheter to one of these areas. In our 2D representation

of the left atrium, we sliced and unfolded the atrial chamber as Figure 5.7 shows.

As shown in Table 5.2, the areas are named as suggested by [80] with right and

left subdivisions, and labeled 1 to 12 following no specific ordering. Pulmonary

veins are represented by thick black rectangles, and their left-to-right connection

with a bold line. Left atrial appendage is removed from the illustration and only
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Figure 5.5: Projection of the left atrium from the reference 3D model used for annotation.

The map contains one annotated point in red.

(a) (b) (c) (d)

Figure 5.6: Gyre complexity classification. (a) No gyre. (b) Incomplete gyre. (c) Complete

gyre. (d) Multiple gyre.

its border which is connected to the atrium is included, represented by thick grey

lines in areas (1) and (9).

This study has a twofold objective, the first one is to assess the existence of

rotational activations and to analyze if rotational sites are related or not to specific

atrial regions, what would help us to better understand the mechanisms behind

AF maintenance.

The second objective of this study is to evaluate the mapping functionality of

the acquisition stage, i.e., study if there are some regions in which the catheter

signal acquisition experiments limitations in terms of correct deployment and sta-

bility. For this reason we checked the positions of the catheter branches at the
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Figure 5.7: Layout of the atrial areas. Pulmonary veins are represented as black circles

and their left-to-right junction is highlighted. Left atrial appendage is removed from the

illustration, and only its border connected to the atrium is included, represented in thick

gray lines.

# Area # Area

1 Left roof wall 7 Left floor wall

2 Right roof wall 8 Right floor wall

3 Left superior posterior wall 9 Superior lateral wall

4 Right superior posterior wall 10 Inferior lateral wall

5 Left inferior posterior wall 11 Superior septum wall

6 Right inferior posterior wall 12 Inferior septum wall

Table 5.2: Names and labels for the left atrium divisions.
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Figure 5.8: 2D spatial distribution of the rotational activity sites with adequate catheter

deployment. Gyre complexity classification was used attaining: no gyre, incomplete gyre,

complete gyre, and multiple gyres.

Figure 5.9: Sites where the catheter experimented inadequate deployment. Note the point

density around the pulmonary veins showing the difficulty of mapping these areas.
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Figure 5.10: 3D spatial representation of the rotational acitivity sites, analogous to the

2D representation in Figure 5.8. Gyre complexity classification: no gyre, incomplete gyre,

complete gyre, and multiple gyres.

Figure 5.11: 3D spatial representation of the sites with inadequate catheter deployment,

analogous to the 2D representation in Figure 5.9.
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acquisition time with the help of the EAM system, and labeled those acquisitions

with inadequate deployment, see example in Figure 5.4, and represented using the

same 12-area division, as in Figure 5.7. The adequate points are displayed in Fig-

ure 5.8, and the inadequate catheter deployment positions in Figure 5.9. We also

represented the points into the 3D left atrium regarding the same adequate and

inadequate criteria for the points, Figures 5.10 and 5.11 respectively.

In the registers, the majority of the sites evaluated showed rotational con-

duction to some degree. As Figure 5.8 shows, the spatial representation of the

rotational sites showed no association with any particular left atrium location.

This provides evidence of the possibility of rotors not anchoring to specific atrial

regions, but to appear at different sites in the atrium.

We found pulmonary veins to be more difficult to map as their morphology

and the constant heart activity prevent the catheter to remain stable and fully

spread if compared with other regions like the posterior wall or the atrial roof.

This study also allowed us to improve the acquisition step prior to applying the

activation detection algorithm. At the same time these acquisitions allowed the

electrophysiologists involved in the study to get familiar with the protocol and the

system requirements.

5.4 Substrate Characterization of Rotational Activa-

tion Sites

We consider that additional study on the spatial information of the rotational ac-

tivation sites may increase our knowledge about the driving mechanisms behind

AF. For this purpose we extended the spatial analysis of the areas found with

rotational activity in the Section 5.3, and included the voltage information pro-

vided by the EAM systems. With this approach, we try to characterize the points

related to rotational activation and analyze if there is a measurable feature, e.g.

the electroanatomical voltage maps, that might help us to identify rotor harboring

sites. This analysis offers an advantageous insight to those areas which present lim-
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ited access to multi-electrode catheters, or on those sites where catheter stability

cannot be ensured.

We included 28 consecutive persistent AF patients referred for first ablation,

the same signal database as we used in Section 5.3. We employed the rotational

activity detection system to process the signals in real-time and automatically

assessed the presence of rotors. The acquisition and the high density EAM was

performed using the PentaRay R©catheter and CARTO R© 3 system. The catheter

was required to remain stable and fully spread during the acquisition of the signals.

Recordings were acquired for at least 10 seconds per site and the catheter’s position

was annotated in the 3D map. The system detected rotational activity, generating

a video for each site containing rotational atrial wavefronts using isochronal maps.

Similarly to the previous section the same gyre complexity annotation was used

again attaining incomplete, complete, multiple or no gyres. Rotational activity

was defined for complete o multiple gyres. Finally, electroanatomical maps were

exported offline to a text file so we could measure the bipolar voltages of the

registered sites of the left atrium.

The electroanatomical voltage maps provide detailed information of the atrial

tissues, with current technologies guaranteeing measurements with real electrode

contact on the atrial wall. Additionally, they characterize the atrial anatomy

achieving a spatial location accuracy of ±1 mm. They also compensate the heart

movement activity, generating trustful maps on which we can rely to perform

further analysis. Apart from unipolar-bipolar voltage maps they also provide

impedance values and even propagation maps of the electrical cardiac activity.

To make the most of the electroanatomical maps, we developed a novel software

application to review and analyze these maps in detail. We developed a custom

application specifically designed to read 3D electroanatomical maps and compute

voltage measurements given a point in the atrial chamber. Our purpose is to

create a software based platform for the electrophysiologists so they can handle

the electroanatomical map reviewing in different devices, i.e., PC or laptop, as an

alternative to the review application offered by the EAM systems. Our application
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Figure 5.12: Concentric circles used to measure the bipolar voltage in the 3D elec-

troanatomical maps. The inner circle is defined for a diameter φi = 10 mm, and the

outer circle for a diameter of φo = 30 mm that comprises the total coverage of the

PentaRay R©catheter.

contains similar reviewing tools as the ones provided by the EAM systems, like the

thresholded visualization of the unipolar-bipolar maps, or the interactive 3D view

to freely check any atrial region. Furthermore, the customization of the software

presents flexibility to be adapted to the specific needs of the study.

In the study, although the location accuracy achieved by the CARTO R© 3

system is ±1 mm, we propose to use two concentric circular measurements to

analyze the tissue voltage to compensate any displacement of the catheter during

the acquisition. For each rotor site in the voltage map we define an inner circle of

diameter φi = 10 mm to analyze the tissue where the rotor spins/anchors, and an

outer circle of diameter φo = 30 mm, see Figure 5.12. These circles encompass the

operational coverage of the PentaRay R©catheter that was employed for mapping

the atrium and signal acquisition in this study.

The application automatically calculates the mean voltage at the circles and

presents it in the developed graphical user interface, as Figure 5.13 shows. For the

measurements, we only take into account real voltage points. To exclude mapped

areas exhibiting low voltage data density, a minimum number of 10 real voltage
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Figure 5.13: General view of the graphical user interface developed for the novel software

tool implemented for electroanatomical map analysis. In the application any point in the

3D map can be interactively selected, and the voltage values from unipolar and bipolar

maps are automatically computed and displayed.

values per site is set for the rotor points to be included in the analysis. This also

removes points that are projected on the 3D map shell that were acquired too far

from the atrial surface, this is outliers that may alter the results.

We evaluated a total of 603 registers (mean 21 sites/patient). We rejected 214

due to inadequate deployment or noisy signals. Rotational activity was found in

243 sites (the remaining 146 sites exhibited no rotations). For the voltage analysis

we included 93 sites exhibiting complete or multiple gyres, and discarded 150 sites

with no agreement between annotators or that contained fewer than 10 real voltage

points in the 3D map.

The mean bipolar voltages for all labels were 0.65 ± 0.38 mV (mean±std) for

the inner circle, and 0.61 ± 0.31 mV in the outer one. Table 5.3 summarizes the

statistics of the bipolar voltage study.

The voltage distributions of the two concentric circles are displayed in Fig-

ure 5.14. The histograms and the content of Table 5.3 describe the voltage at the

rotational activation sites. The voltage is centered around 0.65 mV, with the inner
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Statistics Inner Bipolar Outer Bipolar

Voltage (mV) Voltage (mV)

#Rotor sites 93 93

Mean 0.6533 0.6192

Median 0.5964 0.5262

Mode 0.8586 0.3420

Standard deviation 0.3841 0.3132

Range 2.6516 1.6967

Percentile 5 0.1633 0.2666

25 0.3905 0.3944

75 0.8385 0.7302

95 1.3519 1.2844

Table 5.3: Bipolar voltage statistics concerning the proposed inner and outer regions to

measure the rotational activity points.

Figure 5.14: Bipolar voltage distribution of complete and multiple gyre sites for the inner

and outer measurement circles.
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circle measurement to present a higher voltage range, 2.65 mV, with respect to

the outer voltage 1.70 mV. This result may be due to the higher number of points

involved in the calculation of the average voltage, since a bigger circle diameter

implies a bigger calculation area for the voltage measurement.

Finally we want to highlight that the analysis shows evidence of voltage values

related to rotational activity beyond bipolar voltage range 0.1-0.5 mV, classically

considered for scar definitions. Functional assessment may add incremental value

to invasive treatment of AF.
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6
Conclusions

6.1 Summary

In this chapter, we outline the contributions of this thesis and we contemplate

future research lines.

The contribution of this thesis range from new methodological algorithms and

methods to technical implementations in the clinical practice.

As for the methodological contributions, we have developed new signal pro-

cessing methods to assess the presence of rotational activity (rotors) in Atrial fib-

rillation (AF) patients using multi-electrode catheter electrograms (EGMs). We

have derived a new local activation time (LAT) detection method for identifying

unipolar activations. Our method manages to overcome the far field contribu-

tion problem by canceling the ventricle EGM contribution with an average beat

subtraction method. Sequentially our new filtering approach (which resembles a
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discrete-time low pass differentiator) manages to extract the slope information of

the signal while greatly reducing the noise present in the signal. With these meth-

ods we are able to identify LAT in signals acquired with multi-electrode catheters.

Our methodology becomes an alternative to the classical LAT detection based on

the first derivative of the signal dV
dt .

Additionally, we have developed a new rotational detection algorithm based

on the optical flow dynamics of LAT isochronal maps built from multi-electrode

catheter EGMs. By using spatial interpolation we have managed to translate

the position of the electrodes in a catheter into a regular 2D grid. Thanks to

this representation, our detection algorithm can be easily adapted a wide variety

of multi-electrode catheters. Hence we do not restrict the method to specific

catheter types as other commercial solutions do. Because of choosing to detect

the rotational activations in the time domain, we have managed to reconstruct

the atrial activity as it appears in the tissue in contact with the electrodes. This

is an alternative to phase singularity (PS) detection methods that used the phase

domain to estimate rotational activity sites in the atrium. What is more, phase

maps was proved to not offer a good correlation with the temporal activations,

making it prone to false detections.

As final methodological contribution we have developed new methods to es-

timate the directionality of the electrical wavefronts in the heart using multi-

electrode catheters and causal graphs. We have developed new indices based on

the causal strength between EGM signals using Granger’s causality related mea-

surements. Thanks to these indices we have managed to assess the directionality of

the EGM wavefronts. We have compared our approach to other existing methods

in the literature with promising results.

Altogether we have tested our methodology using in silico and real signals

from AF patients. These signals have allowed us to improve our algorithms and

to better understand the problem of AF when applied to real clinical scenarios.

Regarding the technical contributions of this thesis, we have managed to im-

plement the new methods into a signal processing system. The system have been
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proven useful to assess rotor presence in real-time in AF patients. Using the system

and thanks to the spatial distribution study of the rotor sites, we have also man-

aged to characterize the rotational activation sites in terms of voltage using the

maps generated with electroanatomical mapping (EAM) systems. We have also

checked the ability to deploy the catheter regarding the signal acquisition prior

to the rotor detection. Thanks to all this work, we have developed a new clinical

study based on the ablation of rotor sites detected with out system. Results on

patient recurrence will confirm the real success of our contributions.

6.2 Future Work

The work introduced in this thesis opens potential research lines, both method-

ological (e.g. new signal processing methods) and application based. We briefly

present some of the ideas for future research.

Multicatheter analysis. Our methods rely on the analysis of signals regis-

tered by a single catheter, so an interesting idea consists in the addition of other

catheter signals to improve the outcome of existing methods and also to challenge

new ones.

Rotor tracking. The problem of tracking wandering rotors is still an open

problem, a potential improve in this line would benefit from Bayesian filtering

techniques, e.g. particle filters, applied to this problem. Recent work on this idea

have been done in [32, 33, 100], with promising preliminary results.

Development of new indexes to address ablation sites. Physiological

limitations affects the correct deployment and access of the catheter to atrial areas.

In this sense new ablation indices based on values like impendance level, voltage,

or even frequency should be studied to be able to characterize limited accessible

regions of the heart chambers.

Merge our system with current EAM systems. To overcome the elec-

trode layout requirement and to increase the number of EGM channels that can

be processed at the same time, one of the possibilities that we have in mind is to

implement our methods in an existing EAM software. This way we would have
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access to signals and positions in real-time, and update the interpolation layout

accordingly.

Patient tailored in silico maps. The work derived from this thesis has

opened a new research line focusing on creating patient specific 3D atrial models.

With these models we aim to study the AF in simulation scenarios using the EGM

signals and electroanatomical maps information [99, 101].
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A
Real-time Rotational Activity Detection

System Specifications and

Implementation

A.1 Appendix 1 section

The acquisition and signal processing solution is connected to the 16-channel ana-

log output of the LABSYSTEM
TM

Pro EP Recording system (Boston Scientific,

Natick, MA, USA)amplifier; it incorporates an analog to digital converter (ADC)

manufactured by National Instruments (NI) composed of:

• Shielded cable NI SHC68-68-EPM, designed to work with data acquisition

(DAQ) devices, featuring individually shielded analog twisted pairs for re-

duced crosstalk with high-speed boards.
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• Shielded input/output (I/O) connector block SCB-68A, providing rugged,

very low-noise signal termination in combination with the shielded cable.

The connector block contains mechanical enclosure with a magnetic remov-

able lid, resettable fuse, and screw terminals for the input channels.

• DAQ device NI PCIe-6323 X Series of 32 analog inputs, sample rate 250kS/s,

16 bits resolution, and voltage range ±10V . DAQ devices with PCI Express

interface are optimised for high throughput and low latency. Product in-

cludes multithreaded NI-DAQmx driver software, allowing concurrent exe-

cution of several processes. The device is compatible with C/C++, Matlab,

and Microsoft Visual Studio.

The ADC works at a sampling frequency of 1 KHz, the connector block con-

nects the 16 analog channels from the electrophysiology (EP) amplifier to the

acquisition board with a shielded cable, delivering the signals to the DAQ device,

installed in the personal computer located in the adjacent room of the EP labo-

ratory. The computer runs calculations with one Intel R© Xeon R© CPU 8-core 3.40

GHz processor, and 16GB RAM, on Windows 7 Professional 64 bits operating

system. A graphical processing unit (GPU), Nvidia Tesla K20c with 2496 CUDA

cores, is used for the intensive computing calculations.

The settings of the output analog channels are assigned in the LabSystem

PRO
TM

software, selecting as inputs for the system 15 channels coming from the

PentaRay R© (Biosense Webster, Diamond Bar, California, USA)catheter, and an

electrocardiogram (ECG) lead as external channel. Voltage range is set to ±2mV

for intracavitary electrogram (EGM) channels, and ±5mv for the external lead.

Signals are filtered using a 50 Hz Notch filter, band pass filtered 0.05− 50Hz for

the unipolar channels, and 0.05− 100Hz for the ECG.

A.2 Real-Time Implementation

The rotational activation detection system (patent pending) is currently imple-

mented in real-time using an ADC manufactured by National Instruments and
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a PC.The dynamic range of the amplifier is ±2mV for intracavitary EGMs, and

±5mV for ECGs, with a voltage gain of 60 dB at the ADC input. Wilson central

terminal acts as the indifferent electrode in unipolar configuration. Signals are fil-

tered using a 50Hz Notch filter, band pass filtered 0.05-50 Hz for unipolar EGMs,

and 0.05-100 Hz for ECG leads. The ADC connected to the amplifier works at a

sampling frequency of 1 KHz.

The computer has one 8-core Intel R© Xeon R© CPU 3.40 GHz processor, 16GB

RAM, on 64 bits Windows 7 Professional. A GPU, Nvidia Tesla K20c with 2496

CUDA cores, parallelizes the computation minimizing the time for delivering ro-

tational activity detection.

The ventricle cancellation method requires to buffer signals long enough to

capture several ventricle beats, we buffer the last B seconds of the signals to

estimate each channel ventricular pattern, e.g., B = 10 seconds. Computations

take less than 7 seconds for B = 10 seconds, and a screen inside the operating

room presents the results immediately.

137



APPENDIX A. REAL-TIME ROTATIONAL ACTIVITY DETECTION
SYSTEM SPECIFICATIONS AND IMPLEMENTATION

138



B
Cardiac Modelling

B.1 FitzHugh-Nagumo Model

We introduce the modified FitzHugh-Nagumo (FH-N) equations implemented to

generate the synthetic data to test the causality indices and the performance of

the different algorithms in Chapter 4. In our simulations, we construct a 2D grid

composed of J × J nodes (J = 32), where each node corresponds to a dynamical

system following the classic FH-N equations, discretized using Euler’s method with

an integration time step Td = 5 × 10−3 s, plus an additive stochastic noise term,

and a coupling term gathering the interaction with neighbor nodes. Altogether,
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this yields the following system of difference equations:

Ui,j [n+ 1] = Ui,j [n] + σ2
√
TdBi,j [n+ 1] + Td

(
p3(Ui,j [n])

− Vi,j [n] +
1

D

∑
(`,r)∈Ni,j

U`,r[n] +mi,jG[n+ 1]

)
, (B.1a)

Vi,j [n+ 1] = Vi,j [n] + Td (β0Ui,j [n] + β1Vi,j [n] + β2) , (B.1b)

where

• n = 0, 1, 2, ... are the discrete-time instants, corresponding to continuous-

time instants t = nTd;

• {Ui,j [n]}n=0,1,... is the signal sequence (representing the AP of a cell) at the

(i, j)-th node for 1 ≤ i, j ≤ J ;

• p3(u) =
∑3

r=0 αru
r is a polynomial of order 3 with known fixed coefficients

αr for r ∈ {0, 1, 2, 3};

• {Vi,j [n]}n=0,1,... is the recovery sequence at the same node, which depends

on the known parameters βr for r ∈ {0, 1, 2};

• the set Ni,j ⊂ {1, ..., J} × {1, ..., J} contains the neighbors, within the grid,

of the (i, j)-th node;

• the coupling coefficient, D > 0, is known and fixed;

• G[n] is a known, non-negative and typically periodic forcing signal;

• the {mi,j}1≤i,j≤J ∈ {0, 1} are (known and fixed) binary indicators that de-

termine which nodes are excited by the forcing signal F [n];

• and the {Bi,j [n]}n=0,1,... are i.i.d. Gaussian random variables with zero mean

and unit variance.

The parameters used for the simulations were set empirically in order to reproduce

waveform propagation patterns observed in real signals (see [32] for further details):

α0 = α2 = 0, α1 = −18
5 , α3 = 1, 1

D = 4.5 × 10−3, β0 = 2.1, β1 = −0.6, β2 = 0.6,

and σ2 = 1
2 . Regarding F [n], it consists of a periodic sequence of pulses.
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ing of a scroll wave filament by cardiac fibers. Phys. Rev. E, 63(6):061901,

may 2001.

[19] M Biermann, M Shenasa, M Borggrefe, G Hindricks, W Haverkamp, and

G Breithardt. The interpretation of cardiac electrograms. In M Shenasa,

M Borggrefe, and G Breithardt, editors, Card. Mapp., chapter The interp,

143



pages 11–34. Wiley-Blackwell Publishing, New Jersey, USA, 2nd editio edi-

tion, 2003.

[20] Manuel Blanco-Velasco, Binwei Weng, and Kenneth E. Barner. ECG sig-

nal denoising and baseline wander correction based on the empirical mode

decomposition. Comput. Biol. Med., 38(1):1–13, 2008.

[21] Mark Anthony Bray, Shien Fong Lin, Rubin R. Aliev, Bradley J. Roth, and

John P. Wikswo. Experimental and theoretical analysis of phase singularity

dynamics in cardiac tissue. J. Cardiovasc. Electrophysiol., 12(6):716–722,

2001.

[22] Mark Anthony Bray and John P. Wikswo. Considerations in phase plane

analysis for nonstationary reentrant cardiac behavior. Phys. Rev. E - Stat.

Nonlinear, Soft Matter Phys., 65(5):1–8, 2002.

[23] Mark Anthony Bray and John P. Wikswo. Use of topological charge to

determine filament location and dynamics in a numerical model of scroll

wave activity. IEEE Trans. Biomed. Eng., 49(10):1086–1093, 2002.

[24] Steven L. Bressler and Anil K. Seth. Wiener–Granger Causality: A well

established methodology. Neuroimage, 58(2):323–329, sep 2011.

[25] Eric Buch, Michael Share, Roderick Tung, Peyman Benharash, Parikshit

Sharma, Jayanthi Koneru, Ravi Mandapati, Kenneth A Ellenbogen, and

Kalyanam Shivkumar. Long-Term Clinical Outcomes of Focal Impulse and

Rotor Modulation for Treatment of Atrial Fibrillation: A Multicenter Expe-

rience. Hear. Rhythm, 13(3):636–41, 2016.
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Detectada con Catéter de Mapeo Multielectrodo de 1mm. In SEC 2016 - El

Congr. las Enfermedades Cardiovasc., number 6002-38, 2016.

[29] T.-F. Chao, H.-M. Tsao, Y.-J. Lin, C.-F. Tsai, W.-S. Lin, S.-L. Chang,

L.-W. Lo, Y.-F. Hu, T.-C. Tuan, K. Suenari, C.-H. Li, B. Hartono, H.-Y.

Chang, K. Ambrose, T.-J. Wu, and S.-A. Chen. Clinical Outcome of Catheter

Ablation in Patients With Nonparoxysmal Atrial Fibrillation: Results of 3-

Year Follow-Up. Circ. Arrhythmia Electrophysiol., 5(3):514–520, jun 2012.

[30] S A Chen, M H Hsieh, C T Tai, C F Tsai, V S Prakash, W C Yu, T L Hsu,

Y A Ding, and M S Chang. Initiation of atrial fibrillation by ectopic beats

originating from the pulmonary veins: electrophysiological characteristics,

pharmacological responses, and effects of radiofrequency ablation. Circula-

tion, 100(18):1879–86, nov 1999.

[31] Charles K. Chui. An Introduction to Wavelets. Academic Press Professional,

Inc., San Diego, CA, USA, 1992.

[32] D Crisan, J Miguez, and G Rios. A simple scheme for the parallelization

of particle filters and its application to the tracking of complex stochastic

systems. ArXiv e-prints, 2014.
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[50] Michel Häıssaguerre, Pierre Jäıs, Dipen C. Shah, Atsushi Takahashi, Mélèze
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Patrones Electrofisiológicos Anómalos, 2017.
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Rodŕıguez, and Ángel Arenal. Presence, Complexity and Voltage Character-

ization of Rotational Activity in Persistent Atrial Fibrillation Patients. In

Atr. Signals, Valencia, 2017.

[105] Gonzalo R. Ŕıos-Muñoz, Pablo M Ruiz Hernandez, Evaristo Castellanos,
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Avilés, and Ángel Arenal. Caracterización del sustrato de los sitios de ac-

tivación rotacional en Fibrilación Auricular Persistente: Análisis en función

del ritmo. In RITMO18, Sevilla, 2018.

[115] Carlos Sánchez, Alfonso Bueno-Orovio, Esther Pueyo, and Blanca

Rodŕıguez. Atrial Fibrillation Dynamics and Ionic Block Effects in Six Het-

erogeneous Human 3D Virtual Atria with Distinct Repolarization Dynamics.

Front. Bioeng. Biotechnol., 5:29, may 2017.

156



[116] D. Scherf, F.J. Romano, and R. Terranova. Experimental studies on auricular

flutter and auricular fibrillation. Am. Heart J., 36(2):241–251, aug 1948.
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