14 research outputs found

    Improving sensitivity of machine learning methods for automated case identification from free-text electronic medical records

    Get PDF
    Background: Distinguishing cases from non-cases in free-text electronic medical records is an important initial step in observational epidemiological studies, but manual record validation is time-consuming and cumbersome. We compared different approaches to develop an automatic case identification system with high sensitivity to assist manual annotators. Methods. We used four different machine-learning algorithms to build case identification systems for two data sets, one comprising hepatobiliary disease patients, the other acute renal failure patients. To improve the sensitivity of the systems, we varied the imbalance ratio between positive cases and negative cases using under- and over-sampling techniques, and applied cost-sensitive learning with various misclassification costs. Results: For the hepatobiliary data set, we obtained a high sensitivity of 0.95 (on a par with manual annotators, as compared to 0.91 for a baseline classifier) with specificity 0.56. For the acute renal failure data set, sensitivity increased from 0.69 to 0.89, with specificity 0.59. Performance differences between the various machine-learning algorithms were not large. Classifiers performed best when trained on data sets with imbalance ratio below 10. Conclusions: We were able to achieve high sensitivity with moderate specificity for automatic case identification on two data sets of electronic medical records. Such a high-sensitive case identification system can be used as a pre-filter to significantly reduce the burden of manual record validation

    How to validate a diagnosis recorded in electronic health records

    Get PDF
    Systematic measurement errors in electronic health record databases can lead to large inferential errors. Validation techniques can help determine the degree of these errors and therefore aid in the interpretation of findings. http://ow.ly/iHQ630np4xU

    Symptom Signatures and Diagnostic Timeliness in Cancer Patients: A Review of Current Evidence

    Get PDF
    Early diagnosis is an important aspect of contemporary cancer prevention and control strategies, as the majority of patients are diagnosed following symptomatic presentation. The nature of presenting symptoms can critically influence the length of the diagnostic intervals from symptom onset to presentation (the patient interval), and from first presentation to specialist referral (the primary care interval). Understanding which symptoms are associated with longer diagnostic intervals to help the targeting of early diagnosis initiatives is an area of emerging research. In this Review, we consider the methodological challenges in studying the presenting symptoms and intervals to diagnosis of cancer patients, and summarize current evidence on presenting symptoms associated with a range of common and rarer cancer sites. We propose a taxonomy of cancer sites considering their symptom signature and the predictive value of common presenting symptoms. Finally, we consider evidence on associations between symptomatic presentations and intervals to diagnosis before discussing implications for the design, implementation, and evaluation of public health or health system interventions to achieve the earlier detection of cancer

    Text Mining to Support Knowledge Discovery from Electronic Health Records

    Get PDF
    The use of electronic health records (EHRs) has grown rapidly in the last decade. The EHRs are no longer being used only for storing information for clinical purposes but the secondary use of the data in the healthcare research has increased rapidly as well. The data in EHRs are recorded in a structured manner as much as possible, however, many EHRs often also contain large amount of unstructured free‐text. The structured and unstructured clinical data presents several challenges to the researchers since the data are not primarily collected for research purposes. The issues related to structured data can be missing data, noise, and inconsistency. The unstructured free-text is even more challenging to use since they often have no fixed format and may vary from clinician to clinician and from database to database. Text and data mining techniques are increasingly being used to effectively and efficiently process large EHRs for research purposes. Most of the me

    Improving sensitivity of machine learning methods for automated case identification from free-text electronic medical records

    Get PDF
    Background: Distinguishing cases from non-cases in free-text electronic medical records is an important initial step in observational epidemiological studies, but manual record validation is time-consuming and cumbersome. We compared different approaches to develop an automatic case identification system with high sensitivity to assist manual annotators. Methods: We used four different machine-learning algorithms to build case identification systems for two data sets, one comprising hepatobiliary disease patients, the other acute renal failure patients. To improve the sensitivity of the systems, we varied the imbalance ratio between positive cases and negative cases using under-and over-sampling techniques, and applied cost-sensitive learning with various misclassification costs. Results: For the hepatobiliary data set, we obtained a high sensitivity of 0.95 (on a par with manual annotators, as compared to 0.91 for a baseline classifier) with specificity 0.56. For the acute renal failure data set, sensitivity increased from 0.69 to 0.89, with specificity 0.59. Performance differences between the various machine-learning algorithms were not large. Classifiers performed best when trained on data sets with imbalance ratio below 10. Conclusions: We were able to achieve high sensitivity with moderate specificity for automatic case identification on two data sets of electronic medical records. Such a high-sensitive case identification system can be used as a pre-filter to significantly reduce the burden of manual record validation

    Practical approaches to mining of clinical datasets : from frameworks to novel feature selection

    Get PDF
    Research has investigated clinical data that have embedded within them numerous complexities and uncertainties in the form of missing values, class imbalances and high dimensionality. The research in this thesis was motivated by these challenges to minimise these problems whilst, at the same time, maximising classification performance of data and also selecting the significant subset of variables. As such, this led to the proposal of a data mining framework and feature selection method. The proposed framework has a simple algorithmic framework and makes use of a modified form of existing frameworks to address a variety of different data issues, called the Handling Clinical Data Framework (HCDF). The assessment of data mining techniques reveals that missing values imputation and resampling data for class balancing can improve the performance of classification. Next, the proposed feature selection method was introduced; it involves projecting onto principal component method (FS-PPC) and draws on ideas from both feature extraction and feature selection to select a significant subset of features from the data. This method selects features that have high correlation with the principal component by applying symmetrical uncertainty (SU). However, irrelevant and redundant features are removed by using mutual information (MI). However, this method provides confidence in the selected subset of features that will yield realistic results with less time and effort. FS-PPC is able to retain classification performance and meaningful features while consisting of non-redundant features. The proposed methods have been practically applied to analysis of real clinical data and their effectiveness has been assessed. The results show that the proposed methods are enable to minimise the clinical data problems whilst, at the same time, maximising classification performance of data
    corecore