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ABSTRACT  

BENCHMARKING SMALL-DATASET STRUCTURE-ACTIVITY-

RELATIONSHIP MODELS FOR PREDICTION OF WNT SIGNALING 

INHIBITION 

 

 

SEPTEMBER 2021 

 

MAHTAB KOKABI 

B.Sc., AMIRKABIR UNIVERSITY  

M.S.E.C.E, UNIVERSITY OF MASSACHUSETTS AMHERST  

 

Directed by: Professor Guangyu Xu 

 

 Quantitative structure-activity relationship (QSAR) models based on machine 

learning algorithms are powerful tools to expedite drug discovery processes and 

therapeutics development. Given the cost in acquiring large-sized training datasets, it is 

useful to examine if QSAR analysis can reasonably predict drug activity with only a small-

sized dataset (size < 100) and benchmark these small-dataset QSAR models in application-

specific studies. To this end, here we present a systematic benchmarking study on small-

dataset QSAR models built for prediction of effective Wnt signaling inhibitors, which are 

essential to therapeutics development in prevalent human diseases (e.g., cancer). 

Specifically, we examined a total of 72 two-dimensional (2D) QSAR models based on 4 



 vi 

best-performing algorithms, 6 commonly used molecular fingerprints, and 3 typical 

fingerprint lengths. We trained these models using a training dataset (56 compounds), 

benchmarked their performance on 4 figures-of-merit (FOMs), and examined their 

prediction accuracy using an external validation dataset (14 compounds). Our data show 

that the model performance is maximized when: 1) molecular fingerprints are selected to 

provide sufficient, unique, and not overly detailed representations of the chemical 

structures of drug compounds; 2) algorithms are selected to reduce the number of false 

predictions due to class imbalance in the dataset; and 3) models are selected to reach 

balanced performance on all 4 FOMs. These results may provide general guidelines in 

developing high-performance small-dataset QSAR models for drug activity prediction. 

 

 

Keywords: Bioactivity prediction, drug discovery, machine learning, molecular 

fingerprint, quantitative structure-activity relationship, Wnt signaling. 
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CHAPTER 1 

INTRODUCTION 
 

1.1. Motivation 

Drug development often involves extensive investment and time effort on experimental 

screening of drug candidates. On average, getting a potential drug candidate from 

laboratory to the pharmacy takes about 14 years, costs more than one billion dollars, and 

has a low success rate [1, 2]. To reduce the resource demand in such drug screening 

processes, predictive models based on advanced computational methods have been 

developed to help screen possible drug compounds with high cost-effectiveness [3-7]. To 

date, computational methods based on three-dimensional quantitative structure-activity 

relationship (3D QSAR) analysis, high-throughput imaging (HTI), and pharmacophore 

modeling [7-12],  have succeeded in predicting the effectiveness of drug compounds 

towards prevalent human diseases (e.g., cancer [10]).  

1.1.1. Three-dimensional quantitative structure-activity relationship  

 

Three-dimensional quantitative structure-activity relationship (3D QSAR) analysis 

is a methodology with major applications in computer-assisted molecular design (CAMD) 

[13]. This technique has served as a valuable predictive tool in the design of 

pharmaceuticals and agrochemicals [14]. In general, 3D QSAR techniques require an 

appropriate spatial superimposition and three-dimensional structures of the molecules with 

known activities [11]. Various procedures have been pursued for this crucial step, many of 

them being entirely manual or at least requiring user intervention [11]. In addition to the 
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subjective nature of a user-supervised alignment, the enormous time effort makes such an 

approach inappropriate for large screening scenarios [11]. 

1.1.2. High-throughput imaging  

High-throughput imaging (HTI), also known as high-content screening (HCS), 

captures the morphological features of the cell and its organelles by microscopy, which has 

yielded variety of biological discoveries [9, 15, 16]. In this method, a set of features 

including shape, spatial metrics, intensity, and patterning of fluorescently labeled markers, 

are used to describe chemical compounds. These features can be considered as an image-

based compound fingerprint [9]. Predicting the activities of compounds using this 

computational method often requires high resolutions images that are not available for all 

drug compounds. The applications of this method are limited due to high computational 

cost and advanced hardware requirement for processing the high-resolution images [9, 16]. 

1.1.3. Pharmacophore modeling 

Pharmacophore modeling has become one of the major tools in drug discovery 

field. Specifically, a pharmacophore model can be defined based on two approaches: 

ligand-based and structured-based pharmacophore modeling. Ligand-based methods 

extract the chemical features from 3D structures of a set of known ligands. The main 

challenge faced in this method is the modeling of ligand flexibility, which is used to 

represent the internal degrees of freedom of the ligands [10]. On the other hand, structured-

based method works directly with the 3D structure of a macromolecular target, which 

requires efficient molecular alignment algorithms and highly accurate model optimization 

[10]. Similar to 3D QSAR technique, pharmacophore modeling needs efficient molecular 
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and ligand alignment, which is considered as the main difficulty in pharmacophore 

modeling [10]. 

 To sum up, these high-performance methods often require user intervention steps 

on molecular/ligand alignment [7], [10, 11] or high-resolution images that are not available 

for all drug compounds [9]. For these reasons, two-dimensional (2D) QSAR analysis has 

emerged as a viable alternative method to build predictive models from the widely 

available chemical structures of drug candidates, which can perform well with no user 

intervention steps. 

1.2. Two-dimensional (2D) QSAR  

2D QSAR methods have been applied to the development of relationship between 

properties of chemical substances and their biological activities to obtain a reliable 

statistical model for activity prediction of new chemical entities [3]. This analysis 

correlates the structural details of drug molecules to their effectiveness in biological assays 

that correspond to specific diseases and builds models that can predict the bioactivity or 

physiochemical properties of unknown drug compounds [3-5], [8]. This method can reduce 

the costly failures of drug candidates by identifying promising lead compounds and 

reducing the number of costly experiments [8]. 

In 2D QSAR studies, the features of each drug molecule are often coded by a 2D 

molecular fingerprint, resulting in a numerical vector to describe the presence or absence 

of substructures in the molecule such as chemical bonds, functional groups, and 

connectivity pathways [5, 17]. The vectors from drug molecules with known effectiveness 

to one targeted biological assay (active vs. inactive) will be used to build predictive QSAR 
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models based on machine learning algorithms such as support vector machines (SVM), 

decision trees, k-nearest neighbors (KNN), and artificial neural network (ANN) [8, 18]. 

The resulting QSAR models have succeeded in predicting effective drugs of psychological 

disorders [19], protein-ligand binding affinities [20], and mTOR kinase inhibitors [21]. 

Nonetheless, current 2D QSAR analysis often relies on training machine learning 

algorithms with a large-sized drug activity dataset (size > 1000) [8, 22], which requires 

significant time and effort on both benchwork and statistical analysis. Given the cost in 

acquiring these large-sized datasets, it will be useful to examine if 2D QSAR analysis can 

result in reasonable prediction of drug activity with only a small-sized dataset (size < 100), 

and moreover benchmark these small-dataset QSAR models in application-specific studies. 

Such small-dataset QSAR analysis will be especially beneficial at early stages of drug 

development, when the activity data from potential drug candidates remain limited [23, 

24]. 

1.3. Wnt Signaling 

Wnt signaling pathways are essential in cell biology and the development of 

therapeutics for highly prevalent diseases such as cancer, Schizophrenia, and kidney 

damage [25-29]. Some of these diseases (e.g., lung cancer) are associated with altered 

function/levels of proteins in specific Wnt/β-catenin pathways (one type of Wnt signaling 

pathway), which lead to elevated gene expression that influences cell proliferation and 

survival [25]. For this reason, inhibition of Wnt/β-catenin signaling by small molecule 

modulators (e.g., Niclosamide) is being considered and developed as a candidate cancer 

treatment [25],[30-33]. For instance, screening assays based on live cell imaging have been 
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used to identify Wnt/β-catenin inhibitors [34]. These inhibitors induce the internalization 

of Frizzled receptor proteins (i.e. moving from cell membrane to cell cytoplasm) in human 

U2OS cells; such internalized receptors cannot be activated by extracellular Wnt proteins 

(secreted from other cells), effectively inhibiting the strength of Wnt signaling [25]. 

1.4. Research objective  

Given the clinical significance of Wnt signaling in a variety of diseases and the progress 

made from screening assays, here we examine if small-dataset QSAR models could 

facilitate and expedite the process of identifying small molecule inhibitors. If successful, 

such predictive models and experimental QSAR studies can serve as complementary 

techniques in screening drug candidates for Wnt/β-catenin signaling inhibition and 

ultimately add to therapeutics development. To quantify the performance in our analysis, 

we benchmark 72 QSAR models based on: 1) 4 machine learning algorithms including 

quadratic support vector machine (QSVM), fine tree, random undersampling (RUS) 

boosted tree, and bagged tree; 2) 6 molecular fingerprints including fingerprint 2, 3, 4 (FP2, 

FP3, FP4), molecular access system fingerprint (MACCS), and extended-connectivity 

fingerprint 4 and 6 (ECFP4 and ECFP6) with three fingerprint lengths for each; and 3) a 

training dataset of 56 compounds and an external validation dataset of 14 compounds, both 

of which were experimentally tested in U2OS cells. We evaluate these models using 5- and 

10-fold cross-validation and compare 4 figures of- merit (FOMs) in QSAR analysis 

including accuracy, area under curve (AUC), sensitivity, and specificity. 
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CHAPTER 2 

BACKGROUND AND LITERATURE SURVEY 

2.1. Related work 

Studying bioactive molecular compounds is necessary for the process of drug 

development. Biological activity of these compounds needs to be predicted to determine 

the drug-target ability. As development and production of drugs require substantial amount 

of time, it is important to predict bioactive molecules with models having high predictive 

performance [22]. Computational methods based on machine learning approaches have 

shown great prospect in predicting the molecular activities and became a pivot tool for 

many projects in bioinformatics, and health informatics.  

Many studies have been done within the literature to assess the performance of 

computational methods in prediction of molecular of activity. Simm et al. [9] demonstrated 

a computational method to predict the activities of compounds in hundreds of biological 

assays from a single image-based screen of half a million compounds. First, they extracted 

features from image-based cellular assay. The resulting set of features, which include not 

only shape and spatial metrics but also the intensity and patterning of fluorescently labeled 

markers. These features can be used to describe chemical compounds and can be 

considered as an image-based compound fingerprint. Second, they implemented Deep 

Neural Network (DNN), concretely feedforward artificial neural networks, to train a model 

to predict the bioactivity of new compounds. In the first layer of the network (the input 

layer), the neurons obtain an input vector which is the image-based fingerprint. The 

intermediate layers (hidden layers) comprise the hidden neurons that have weighted 
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connections to the neurons of the previous level layer and can be considered as abstract 

features. The last layer (the output layer) supplies the predictions of the model. They 

achieved up to 90% accuracy [9]. This study suggested that features from high-content 

screens or high- throughput imaging are a rich source of information that can be used to 

predict the molecular activity and replace customized biological assays.  

In contrast, there are several studies have been done in the field of computational 

modeling based on deriving the features from chemical structures of compounds to predict 

their activity in assays. As an example, Myint et al. [8] have reported a novel 2D 

fingerprint-based artificial neural network QSAR (FANN-QSAR) method in order to 

effectively predict biological activities of structurally diverse chemical ligands. In this 

study, they used three types of molecular fingerprints namely fingerprint 2 (FP2), 

molecular access fingerprint (MACCS), and extended connectivity fingerprint 6 (ECFP6) 

(see section 3.2.) to train artificial neural network. In this study, a feed-forward neural 

network method was implemented using MATLAB R2007b Neural Network Toolbox. The 

number of hidden layer neurons was varied between 100 and 1000. They achieved an 

average mean square error of 75% [8]. This study demonstrated that combination of 

molecular fingerprints from chemical structures and ANN can lead to a reliable and robust 

method and can be a useful tool in computer-aided drug discovery research.  

In addition, the resulting QSAR models have succeeded in predicting effective drugs 

of psychological disorders [19], protein-ligand binding affinities [20], and mTOR kinase 

inhibitors [21].  The predictive QSAR models based on machine learning algorithms such 

as support vector machine (SVM), decision tree, k-nearest neighbors (KNN) have shown 

promising ability in predicting biological activities of compounds. For example, Darnag et 
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al. [35] developed quantitative relationships to predict anti-HIV activity based on SVM 

algorithm.  Many different techniques for QSAR modeling have been found useful for the 

establishment of the relationships between molecular structures and anti-HIV activity [36-

38]. Most of these QSAR models have developed neural networks algorithms to predict 

anti-HIV activity. However, these neural systems have some problems inherent to its 

architecture such as over training, overfitting and network optimization [35]. In addition, 

neural networks algorithms require large dataset in order to train the model. Thus, it will 

be useful to employ other machine learning algorithms to evaluate the model. In this study 

[35] Support vector machines were applied to build up the QSAR model for predicting the 

anti-HIV-1 activity of 82 compounds, based on features calculated from molecular 

structure. In this work, they validated the models based on three different algorithms 

namely SVM, ANN, and multi linear regression (MLR) with the accuracy of 96%, 90%, 

and 80% respectively. The results showed that the SVM technique was able to establish a 

satisfactory relationship between the molecular descriptors and the anti-HIV-1 activity 

[35]. It has been shown in this study that SVM give a superior performance comparing to 

ANN, and MLR.  

There are several studies offers the latest insights and approaches at targeting the 

Wnt/β-catenin pathway in various cancer diseases such as colorectal cancer, melanoma, 

leukemia, breast and lung cancers [39]. Biochemical and genetic data support the idea that 

inhibition of Wnt/β-catenin signaling is beneficial in cancer Therapeutics [39]. Binding of 

Wnt proteins to Frizzled receptors results in β-catenin being released into the cytoplasm, 

where its concentration increases and influences many cellular processes, including 

development and differentiation [39].  There are numerous quantitative studies performed 
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on other assays such as three-channel glucocorticoid receptor (GCR), inhibition of HIV 

integrase in a cell based, and inhibition of human thrombin to predict the bioactivity of 

molecules by implementing machine learning algorithms [9, 40, 41]. However, few 

quantitative studies have been performed on Wnt signaling to predict the bioactivities to 

the best of our knowledge. As an example Chen et al. [42] applied machine learning 

algorithms on Wnt/β-catenin, carbohydrate metabolism, and PI3K-Akt signaling pathway-

related genes to classify tumors and normal samples. In this study, four machine learning 

methods namely support-vector machines, random forest, decision tree, and k-nearest 

neighbor algorithms was used to assess the accuracy of the mentioned genes in predicting 

colorectal cancer. Their results showed areas under the curve exceeding 95.00% for cancer 

outcomes [42].  

 

 

 

  



10 

 

CHAPTER 3 

METHODS 
 

3.1. Dataset 
 

ChEMBL is an open large-scale bioactivity database containing 2-D structures, 

calculated properties such as Molecular Weight, and abstracted bioactivities of each 

compound. This database contains more than 1.6 million distinct compound structures with 

14 million activity values experimentally tested from 1.2 million assays. These assays are 

mapped to around 11000 targets, including 9052 proteins [43]. In this study 70 drug 

compounds obtained from ChEMBL database. To the best of our knowledge, all these 

compounds are available in literature with experimentally validated effectiveness for 

internalizing Frizzled receptor proteins, and thus inhibiting Wnt signaling in human U2OS 

cells [44-47].  

 There are two main reasons for selecting this dataset. Firstly, because these 70 

compounds are all experimentally validated with the same biological assay (i.e., the 

internalization of Frizzled receptor proteins in U2OS cells). It is noted that assays targeted 

at the dynamics of other Wnt signaling- inhibition related proteins are also available in the 

ChEMBL database (Table 1) [43, 48-52]. However, these assays have yet to experimentally 

test a sufficient number of active or inactive compounds, therefore making the QSAR 

modeling challenging (e.g., 3 active compounds in [52]). Secondly, we found that the size 

of our dataset is on par with other small-dataset QSAR studies (e.g., 16 in [53], and 48 in 

[54]); we thus believe this dataset has a sufficient number of data to build good-performing 

QSAR models. 
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All of the 70 compounds were experimentally classified as active or inactive in 

which 29 compounds were tested to be active, and 41 compounds to be inactive. Generally, 

Active Compound means a compound that specifically inhibits, stimulates or alters the 

Table 1. Summary of Assays for Wnt Signaling Inhibition 

Assay ChEMBL ID 
Cell 

Type 
Target ChEMBL ID 

Number of 

Compounds 

CHEMBL2354178 [44], CHEMBL3606285 

[45],CHEMBL3994283 [46], CHEMBL4276087 [47] 

Inhibition of Wnt/beta-catenin in human U2OS cells 

assessed as internalization of frizzled-GFP at 12.5 uM 

after 6 hrs by confocal microscopic analysis 

U2OS CHEMBL612545 

CHEMBL2346493 

Frizzled-1 (SINGLE 

PROTEIN) 

29 active 

41 inactive 

CHEMBL1072837 [48] 

Inhibition of human recombinant SFRP1 expressed in 

human U2OS cells assessed as increase in Wnt signaling 

after 16 to 18 hrs by luciferase reporter gene assay 

U2OS CHEMBL5517 

Secreted frizzled-related 

protein 1 

(SINGLE PROTEIN) 

9 inactive 

CHEMBL3788739 [49] 

Inhibition of human TERT-regulated Wnt/beta-catenin 

signaling in human MGC803 cells assessed as decrease 

in cyclin D1 mRNA expression at 40 umol/L measured at 

48 hrs by RT-PCR method 

MGC-

803 

CHEMBL2916 

Telomerase reverse 

transcriptase  

(SINGLE PROTEIN) 

1 active 

CHEMBL3101279 [50] 

Inhibition of CK2-mediated Wnt signaling in human 

MCF7 cells assessed as reduction of beta-catenin level at 

1 uM after 15 mins by Western blot analysis 

MCF7 CHEMBL2095191 

Casein kinase II 

(PROTEIN COMPLEX 

GROUP) 

1 active 

CHEMBL1251260 [51] 

Inhibition of GSK-3-beta-mediated Wnt signaling in 

human ST14A cells assessed as increase in accumulation 

of beta-casein around nucleus after 6 hrs by microscopic 

analysis 

 

ST14A 

 

CHEMBL262 

Glycogen synthase 

kinase-3 beta 

(SINGLE PROTEIN) 

2 active 

CHEMBL1251261 [51] 

Inhibition of GSK-3-beta-mediated Wnt signaling in 

human ReNcell VM cells assessed as increase in 

accumulation of beta-casein at <3 uM after 2 hrs by 

ELISA relative to control 

ReNcell 

VM 

CHEMBL262 

Glycogen synthase 

kinase-3 beta 

(SINGLE PROTEIN) 

2 inactive 

CHEMBL4008143 [52] 

Agonist activity at PPARgamma in human HT-29 cells 

harboring APC mutant assessed as inhibition of 

Wnt/beta-catenin signaling pathway by measuring 

decrease in c-Myc level at 10 uM treated for 24 hrs by 

Western blot method 

HT-29 

 

CHEMBL235 

Peroxisome proliferator-

activated receptor gamma 

(SINGLE PROTEIN) 

3 active 

https://www.ebi.ac.uk/chembl/target_report_card/CHEMBL5517
https://www.ebi.ac.uk/chembl/assay_report_card/CHEMBL3101279
https://www.ebi.ac.uk/chembl/target_report_card/CHEMBL2095191
https://www.ebi.ac.uk/chembl/assay_report_card/CHEMBL1251260
https://www.ebi.ac.uk/chembl/target_report_card/CHEMBL262
https://www.ebi.ac.uk/chembl/assay_report_card/CHEMBL1251261
https://www.ebi.ac.uk/chembl/assay_report_card/CHEMBL1251261
https://www.ebi.ac.uk/chembl/target_report_card/CHEMBL262
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production or activity of a Target. In our dataset, a compound has been classified as active 

[inactive] compounds if it was able [unable] to induce the internalization of Frizzled 

receptor proteins, according to the cell imaging data from before and after applying the 

compound to the cell culture.  

To generate 2D QSAR models, we represented the chemical structures of these 70 

compounds listed in the ChEMBL database in a simplified molecular-input line-entry 

system (SMILES) notation. Each compound was labeled as 0 (inactive) or 1 (active) by its 

effectiveness on Wnt signaling inhibition, which was tested in the assay of internalizing 

Frizzled receptor proteins (Fig. 1). In order to evaluate 2D QSAR methods, dataset was 

split into two nonoverlapping subsets: a training set and a test set. To do this, we shuffled 

the data and selected 80% of these 70 compounds for training process (56 compounds; 31 

inactive, 25 active) to develop 2D QSAR models and perform cross-validation to 

statistically analyze their performance. Then we selected the remaining 20 % of these 70 

compounds (14 compounds; 10 inactive, 4 active) as an external validation dataset to 

examine if these QSAR models can predict the activity of compounds that  were not used 

in the training model [55].  
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Figure 1. Schematic diagrams on benchmarking small-dataset QSAR models. 𝑹𝟏 − 𝑹𝟒represent the structural 

features in the compound.  

3.2. Fingerprint Representation  

Each molecule is represented by a list of features, i.e. “descriptors” in QSAR 

nomenclature. In this study, we used SMILES strings as the textual representation of 

molecules. SMILES is a linear notation for representing molecular structures. For SMILES 

to be processed by machine learning models, they need to be transformed into numeric 

representations. This numeric representation is called fingerprint. Each of these fingerprint 

representations is a binary bit vector with a defined length; each bit or group of bits 

represents the presence or absence of structural features in the compound. In order to 

generate the fingerprint, we used OpenBabel graphical user interface (GUI) to convert the 

SMILES notation of the compounds in the training dataset to 2D molecular fingerprint 

representations (Fig. 1) [56-58]. For instance, the niclosamide compound is represented by 

MACCS fingerprint with a length of 128 in the following steps: 1) finding the SMILES 

notation of niclosamide in the ChEMBL database, ODC(Nc1ccc([NC] (DO) [O-])cc1Cl)c1 

cc(Cl)ccc1O; 2) converting this SMILES notation in the OpenBabel GUI to a hexadecimal 

vector 4a5124612940006 04091001f7aebecf6; and 3) In the last step, we should convert 
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the hexadecimal vector to a binary one, 0100101001010001001001000110 

000100101001010000000000000001100000010000001001000100000000000111110111

1010111010111110110011110110. The resulting binary vector and the effectiveness of 

niclosamide for Wnt signaling inhibition (active) will then be used to train QSAR models 

using MATLAB Classification Learner application (see Section 3.3).  

Molecular descriptors can be divided into four broader categories: constitutional 

(1D), topological (2D), geometrical (3D), and physico-chemical properties-based (4D) 

descriptors. By far, the most commonly used structural representation for comparing 

molecules is the use of two-dimensional (2D) molecular fingerprints [59]. In this work, we 

chose to benchmark QSAR models using 3 linear 2D fingerprints (FP2, FP3, and FP4) and 

3 nonlinear 2D fingerprints (MACCS, ECFP4, and ECFP6). These fingerprints are 

computationally effective and have been broadly used in drug activity prediction based on 

solubility, permeability, and protein-ligand interactions [60, 61].  

3.2.1. Linear 2D Fingerprint 

FP2, FP3, and FP4 are subset of linear Fingerprints in which all linear paths containing 

up to seven bonds are mapped to a structure. Then, a hashing operation is performed on a 

string-based description of each linear fragment to produce an integer bit address [57]. FP2 

(default length: 1024) is a path-based fingerprint which recognizes the rings and linear 

substructures in drug molecules of lengths 1 to 7 (excluding the 1-atom substructures C 

and N) and then maps them onto a bit-string of length 1024 using a hash function [56]. FP3 

(default length: 64) and FP4 (default length: 512) are substructure-based fingerprints to 

mark sub-structural patterns by SMILES arbitrary target specification (SMARTS). In 

addition, FP4 consists of a set of SMART patterns corresponding to functional groups [56].  
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3.2.2. Nonlinear 2D Fingerprint  

MACCS (default length: 256) is substructural-key based fingerprint using 166 

structural keys to characterize SMARTS patterns where each specific bit position 

represents the presence (1) or absence (0) of predefined functional groups, substructure 

motifs, or fragments [59], [56], [62]. ECFPs are a novel class of 2D circular fingerprints 

used for molecular characterization. These circular fingerprints have many useful qualities, 

including: (i) being fast to calculate; (ii) representing a very large number of different 

features; and (iii) not relying on predefined features; thus, they can represent novel 

structural variation [63]. Specifically, ECFP4 and ECFP6 (no default lengths) are circular 

fingerprints stemming from the Morgan algorithm [56], [64] and are explicitly designed to 

capture molecular features related to molecular activity.  

3.3. Algorithms 

Using the fingerprint representations of 56 compounds in the training dataset with 

known activity for Wnt signaling inhibition, we developed predictive QSAR models based 

on four machine learning algorithms: QSVM, fine tree, bagged tree, and RUSboosted tree. 

We selected these algorithms in our benchmarking study since their resulting QSAR 

models showed the highest accuracy and AUC values among 25 available algorithms in 

MATLAB Classification Learner application. 

3.3.1. QSVM 

Support Vector Machine (SVM) was first proposed by Vapnik [65]. It is based on 

finding an optimal hyper-plane which separates the data into two classes with the largest 

margin. Some applications of the SVM are: Histogram-based Image Classification [66], 

Spam Categorization [67], Face Membership Authentication [68], and data analysis and 
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classification [68]. Quadratic Support Vector Machine (QSVM) is a quadratic kernel-free 

non-linear support vector machine [69] which is a binary classifier to define an optimal 

hyperplane that maximally separates two classes of high-dimensional data [65].   

3.3.2. Fine tree 

Fine tree is subset of decision tree algorithms. The goal of these algorithm is to create 

a model that predicts the value of a target variable. The decision tree algorithm uses a tree 

representation to solve the problem in which the leaf node corresponds to a class label and 

attributes are represented on the internal node of the tree. Fine tree algorithm (abbreviated 

as Fine) uses up to 100 decision rules (i.e. decision tree) for precise classification of the 

data [70].  

3.3.3. Bagged tree 

Bagged tree algorithm (abbreviated as Bagged) is subset of decision tree algorithms. 

This algorithm first forms several subsets of data that are randomly sampled from the entire 

training dataset with replacement [71]. Each subset of data will be used to train a decision-

tree based sub-model. This algorithm finally makes a robust classification of an unknown 

data by either voting or averaging the prediction results of this data from all sub-models 

[72].  

3.3.4. RUSboosted tree 

RUSboosted tree algorithm (abbreviated as RUSboosted) iteratively trains a series of 

decision-tree based sub-models, each of which is based on a subset of data formed by 

randomly under-sampling the majority class of the training dataset to alleviate the class 

imbalance [73, 74]. During the iteration, each data used for internal validation will increase 

its weight if it was incorrectly classified during the previous iteration, so that it is likely to 
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be correctly classified in the current iteration. For this reason, the decision tree upon the 

completion of the iteration is a weighted vote from all involved sub-models and will be 

used to classify unknown data. 

3.4. Model Assessment 

To benchmark our models, we first studied the dependence of their FOMs on the cross-

validation folding number k and the fingerprint length, respectively. We then benchmarked 

the FOM values of these models using the preferred k value and fingerprint lengths, 

followed by evaluating their capability to predict the activity of the 14 compounds in the 

external validation dataset. To evaluate the statistical significance in our results, 1) all these 

models were trained for 3 independent times to obtain the mean values and the standard 

deviation of all 4 FOMs; 2) selected models (see details below) were then applied to the 

external validation dataset to obtain the mean values and the standard deviation of correct 

predictions. All QSAR models were trained and validated using the MATLAB 

Classification Learner application, detailed as follows: 

3.4.1. Folding Number K 

During the training of QSAR models, we applied the k-fold cross-validation procedure 

[75]. In k-fold cross validation (k-cv), the data set is divided into k folds, a classifier is 

learned using k-1 folds, and an error value is calculated by testing the classifier in the 

remaining fold. Finally, the k-cv estimation of the error is the average value of the errors 

committed in each fold. Thus, the k-cv error estimator depends on two factors: the training 

set and the partition into folds [76]. Specifically, we compared the 4 FOM values in 72 

QSAR models with both 5- and 10-fold cross validation, which are commonly used in 

training machine learning models and they are less biased [75, 76]. We then chose one 
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preferred k value for the rest of our analysis based on the overall performance of these 72 

models. 

3.4.2. Fingerprint Length  

Molecular fingerprints are often very different in length and complexity, ranging from 

2D/simple representations of relevant structural features to 3D/complicated 

pharmacophore arrangements. Thus, many types of fingerprints have been generated with 

different settings (generation method, length, size of patterns, and number of bits activated 

by each pattern, etc.) and are further deployed as descriptors for predictive modeling to 

estimate biological activities [59]. Therefore, one of the most important part of QSAR 

modeling is to find the best fingerprint setting in terms of length, simplicity, size, and 

uniqueness [57].  

In this study, we evaluated the FOM values in 24 models (based on 6 fingerprints by 4 

algorithms) with 3 different fingerprint lengths, aiming to balance simplicity, resolution, 

and uniqueness of the fingerprint representations [57, 77]. For FP2, FP3, FP4, and 

MACCS, we trained our models using: 1) half the default length, 2) the default length, and 

3) double the default length, and chose one preferred length for each fingerprint that yielded 

higher FOM values than the other two lengths (see details below). For ECFP4, we chose 

lengths of 2048, 4096, and 8192, whereas for ECFP6, we chose lengths of 1024, 2048, and 

4096 in our analysis, because ECFP6 has no default length reported and its performance 

was suggested to likely improve when the length increases [78]. 

3.4.3. Model FOMs 

We next benchmarked the 4 FOM values of FP2, FP3, FP4, and MACCS models with 

their chosen fingerprint lengths and those of ECFP4 and ECFP6 models with all three 
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lengths (a total of 40 models based on 4 algorithms by 10 lengths, evaluated at the chosen 

k value). For each model, we analyzed its confusion matrix results in the MATLAB 

classification learner toolbox to obtain the values of true positives (TP), true negatives 

(TN), false positives (FP), and false negatives (FN). Here TPs [FPs] refer to the number of 

correct [incorrect] predictions of active compounds, whereas TNs [FNs] refer to the 

number of correct [incorrect] predictions of inactive compounds. We then obtained the four 

FOM values as accuracy, sensitivity, specificity, and area under curve (AUC). 

3.4.3.1.  Accuracy 

The accuracy of a machine learning classification algorithm is one way to measure how 

often the algorithm classifies a data point correctly. Accuracy is the number of correctly 

predicted data points out of all the data points. More formally, it is defined as the number 

of true positives and true negatives divided by the number of true positives, true negatives, 

false positives, and false negatives. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

 A true positive or true negative is a data point that the algorithm correctly classified as 

true or false, respectively. A false positive or false negative, on the other hand, is a data 

point that the algorithm incorrectly classified. 

3.4.3.2. Sensitivity 

Sensitivity measures the proportion of positives that are correctly identified. Sensitivity 

is also termed as Recall. This implies that there will be another proportion of actual positive 

cases, which would get predicted incorrectly as negative (and, thus, could also be termed 
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as the false negative). This can also be represented in the form of a false negative rate. The 

sum of sensitivity and false negative rate would be 1. 

S𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃 +  𝐹𝑁)
 

 

3.4.3.3. Specificity  

Specificity is defined as the proportion of actual negatives, which got predicted as the 

negative (or true negative). This implies that there will be another proportion of actual 

negative, which got predicted as positive and could be termed as false positives. This 

proportion could also be called a false positive rate. The sum of specificity and false 

positive rate would always be 1.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁 +  𝐹𝑃)
 

 

3.4.3.4. Area Under Curve (AUC) 

AUC was defined as the integrated area underneath the receiver operating characteristic 

curve (i.e., sensitivity versus 1-specificity). The Area Under the Curve (AUC) is the 

measure of the ability of a classifier to distinguish between classes and is used as a 

summary of the ROC curve. The higher the AUC, the better the performance of the model 

at distinguishing between the positive and negative classes. 
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To evaluate if these models can well predict the activity of unknown compounds, we 

benchmarked their percentage of correct predictions (PCP) out of the 14 compounds in the 

external validation dataset that were not used in model training [79]. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1. Folding Number K 

We first studied the effect of k values (5 and 10) on FOMs in 72 QSAR models 

based on 4 algorithms by 6 fingerprints by 3 fingerprint lengths (see representative cases 

in Fig. 2 and Table 2).  

 

Figure 2. Effect of k values on FOMs in representative models. a) One model with no preferred k value. b) One model 

in which k = 5 is preferred. c) One model in which k = 10 is preferred. In a) – c), each model is noted as fingerprint/ 

algorithm. 

If one model shows less than 5 % difference in all 4 FOMs between two k values, 

or if one model shows that k = 5 and k = 10 yields more than 5 % improvement in different 

FOMs, we will view this model as one that has no preferred k value. If one model shows 
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more than 5 % improvement in 1-4 FOMs at one k value (either 5 or 10), we will select 

this k value as the preferred k value for that model. According to these definitions, our data 

show that: 1) half of the models (33/72, in Fig. 2a) have no preferred k value; and 2) about 

one quarter of the models (20/72 in Fig. 2b, 19/72 in Fig. 2c) have a preferred k value 

(either 5 or 10). This result shows that overall k = 5 and k = 10 yield comparable 

performance among these 72 models. We therefore chose k = 5 for the following analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Fingerprints 

Using k = 5, we next evaluated the effect of fingerprint lengths (3 lengths per 

fingerprint) on FOMs in 24 models based on 4 algorithms by 6 fingerprints (see 

representative cases in Fig. 3 and Table 3). Our data show that 16/24 models have at least 

one FOM where one length yields more than 5% improvement over the other two lengths. 

Table 2. Effect of k values on FOMs in representative models. 

  Accuracy (%) AUC (%) Sensitivity (%) Specificity (%) 

MACCS/QSVM 

(k = 5) 
67.23 ± 4.10 68.67 ± 2.52 76.00 ± 6.93 60.21 ± 6.71 

MACCS/QSVM 

(k = 10) 
66.67 ± 2.69 67.00 ± 4.00 78.67 ± 2.31 56.99 ± 4.93 

FP2/QSVM 

(k = 5) 
69.03 ± 4.10 75.00 ± 1.73 77.33 ± 12.22 62.36 ± 3.72 

FP2/QSVM 

(k = 10) 
66.07 ± 4.70 73.67 ± 3.51 72.00 ± 6.93 61.29 ± 3.22 

ECFP4/Fine 

(k = 5) 
66.07 ± 3.55 68.00 ± 6.56 64.00 ± 4.00 67.74 ± 8.53 

ECFP4/Fine 

(k = 10) 
67.27 ± 2.02 74.00 ± 2.00 62.67 ± 2.31 70.97 ± 3.23 
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If one model shows that different lengths yield more than 5%improvement in different 

FOMs, or if one model shows less than 5 % difference in all 4 FOMs among all 3 lengths, 

we will view this model as one that has no preferred length. If one model shows more than 

5 % improvement in 1 to 3 FOMs at one length, we will select this length as the preferred 

length for that model (note: no model has one preferred length that yields more than 5 % 

improvement in 4 FOMs). According to these definitions, our data show that 50 % of the 

models (12/24, Fig. 3a) had no preferred length and 50 % of the models (12/24, Fig. 3b) 

had preferred length. 

 

 

 

Table 3. Effect of fingerprint lengths on FOMs in representative models (k = 5). 

 Accuracy (%) AUC (%) Sensitivity (%) Specificity (%) 

MACCS/RUSboosted 

(128) 
70.23 ± 3.69 73.00 ± 2.00 78.67 ± 4.62 63.44 ± 4.93 

MACCS/RUSboosted 

(256) 
69.60 ± 0.00 70.33 ± 3.51 74.67± 2.31 65.59 ± 1.86 

MACCS/RUSboosted 

(512) 
64.87 ± 7.23 70.33 ± 7.37 73.33 ± 12.22 58.06 ± 3.22 

FP2/RUSboosted 

(512) 
69.63 ± 3.55 74.33 ± 3.05 62.67 ± 6.11 75.27 ± 1.86 

FP2/RUSboosted 

(1024) 
74.40 ± 2.08 76.33 ± 5.51 69.33 ± 6.11 78.49 ± 6.72 

FP2/RUSboosted 

(2048) 

67.23 ± 9.18 73.67 ± 11.85 54.67 ± 6.11 77.42± 12.90 
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Figure 3. Effect of fingerprint lengths on FOMs in representative models. a) One model with no preferred length: b) 

One model with one preferred length: In a) and b), each model is noted as fingerprint/algorithm. 

In FP2, FP3, FP4, and MACCS models (a total of 16 by 4 algorithms), we found 

that: 1) increasing the length from default values does not capture additional structural 

details of the compounds in their fingerprint representations (i.e., merely adding extra zeros 

to representation vectors). As a result, half of the models (9/16) do not have more than 5 

% improvement in any FOM, whereas 2 of the 7 remaining models do not have their longest 

length as the preferred length; 2) decreasing the length from default values will make 

fingerprints lose their resolution and likely fail to capture structural details that are needed 

to differentiate highly similar compound structures (see Section 3.1) [51, 80, 81]. As a 

result, one quarter of the models (4/16) have more than 5 % degradation in 1 or 2 FOMs, 

whereas 50 % of the models (8/16) do not have their shortest length as the preferred length. 

In ECFP6 models (a total of 4 by 4 algorithms), we found that at the length of 2048 and/or 

4096: 1) 1 model has more than 5 % improvement in 2 FOMs than those at the length of 

1024; 2) 2 models have more than 5 % degradation in 1 or 2 FOMs than those at length 

1024; and 3) one model shows less than 5 % difference in all 4 FOMs compared to those 

at the length of 1024. This result shows that the ECFP6 fingerprint does not always capture 

more structural details in our dataset at lengths longer than 1024 [57, 81]. Based on these 
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analyses, we chose the default lengths in FP2 (1024), FP3 (64), FP4 (512), and MACCS 

(256) models for the rest of our analysis because: 1) only half (9/16) of the models have a 

preferred length, 2) a longer length often adds no new structural information, and 3) a 

shorter length often results in a loss of structural details. For ECFP6, we chose to analyze 

all 3 lengths in the following (1024, 2048, and 4096 labeled as ECFP6A, ECFP6B, and 

ECFP6C, respectively) because there is no default length reported for this fingerprint [64]. 

For ECFP4, we again chose to analyze all 3 lengths (2048, 4096, and 8192 labeled as 

ECFP4A, ECFP4B, and ECFP4C, respectively). 

4.3. Fingerprint Uniqueness 

Due to the structure similarity of the compounds in our dataset, we also examined 

if these fingerprints at their chosen lengths can uniquely represent the compound structures. 

If not, there would be identical representation vectors representing both active and inactive 

compounds, which can result in misclassifications by the corresponding model [82, 83]. 

From this respective, our data show that FP2, ECFP4, and ECFP6 fingerprints each yield 

only 2 identical vectors across 56 compounds in the training dataset, suggesting that they 

can represent most compound structures in a unique vector [56, 64, 81]. In contrast, FP3, 

FP4, and MACCS fingerprints each yield over 20 identical vectors among the training 

dataset, suggesting that they are less unique in representing compound structures [81]. 

4.4. Model FOMs 

Using k = 5 and the fingerprint lengths we chose, we next benchmarked the 4 FOM 

values in 40 models based on 4 algorithms by 10 fingerprints (ECFP4 and ECFP6 each 

with 3 lengths) (see Fig. 4 and Table 4), with the results described as follows: 
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4.4.1.  Accuracy and AUC 

Our accuracy and AUC data (Figs. 4a and 4b) show that: 1) all 40 models have 

more than 50 % accuracy with less than 10 % standard deviation; 2) except FP3/Bagged 

tree and FP4/Bagged tree models, all the other 38 models have more than 51 % AUC with 

less than 10 % standard deviation; 3) FP2/QSVM, MACCS/RUSboosted tree, 

ECFP6B/RUSboosted tree, and ECFP6C/RUSboosted tree (x/y: x: fingerprint, y: 

algorithm) models have more than 70 % accuracy and more than 75 % AUC, suggesting 

the promise of these 4 small-dataset models. Based on accuracy and AUC values, we found 

that FP2/QSVM, MACCS/RUSboosted tree, ECFP6B/RUSboosted tree, and 

ECFP6C/RUSboosted tree models performed the best, whereas FP3/Bagged tree and 

FP4/Bagged tree models performed the worst. The overall fair performance of the 

remaining 34 models (50-70%accuracy and AUC) can result from the small size of the 

training dataset and the challenge in classifying compounds with similar structures [84]. 

 

Figure 4. FOMs values across 40 models with k = 5 and the chosen lengths for each fingerprint. 
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4.4.2. Sensitivity and Specificity 

Our sensitivity and specificity data (Figs. 4c and 4d) show that: 1) except for the 

FP3/Bagged tree, FP4/Bagged tree, ECFP4A/Bagged tree, ECFP4B/Bagged tree, and 

ECFP4C/Bagged tree models, the remaining 35 models have more than 50 % sensitivity; 

the majority of these models (21/35) show less than 10%standard deviation; 2) 15 models 

show > 10% standard deviation; 3) except for the FP4/QSVM model, the remaining 39 

models have more than 40 % specificity; the majority of these models (39/40) show less 

than 10 % standard deviation; 4) 36 models have less than 40 % difference between their 

Table 4. FOM values of best performing models for each fingerprint (k = 5). 

  Accuracy (%) AUC (%) Sensitivity (%) Specificity (%) 

FP2 

(1024) 

RUSboosted 

74.40 ± 2.08 

Bagged 

77.33 ± 0.58 

Bagged 

77.33 ± 6.11 

RUSboosted 

78.49 ± 6.71 

FP3 

(64) 

Fine 

62.03 ± 4.56 

Fine 

65.67 ± 4.93 

RUSboosted 

70.67 ± 14.05 

Bagged 

92.47 ± 7.45 

FP4 

(512) 

Bagged 

55.40 ± 0.00 

QSVM 

60.33 ± 8.14 

QSVM 

73.33 ± 11.55 

Bagged 

100.00 ± 0.00 

MACCS 

(256) 

RUSboosted 

69.60 ± 0.00 

RUSboosted 

70.33 ± 3.51 

QSVM 

76.00 ± 6.93 

RUSboosted 

65.59 ± 1.86 

ECFP4A 

(2048) 

RUSboosted 

66.53 ± 7.60 

RUSboosted 

71.66 ± 6.11 

QSVM 

81.33 ± 6.11 

Bagged 

75.26 ± 9.31 

ECFP4B 

(4096) 

RUSboosted 

66.06 ± 3.05 

RUSboosted 

70.66 ± 3.51 

QSVM 

74.66 ± 2.30 

Bagged 

100.00 ± 0.00 

ECFP4C 

(8192) 

RUSboosted 

67.86 ± 3.05 

RUSboosted 

75.00 ± 2.00 

QSVM 

81.33 ± 10.06 

Bagged 

68.81 ± 6.71 

ECFP6A 

(1024) 

Bagged 

64.87 ± 6.78 

Bagged 

70.67 ± 5.86 

QSVM 

78.67 ± 10.07 

Fine 

55.91 ± 4.93 

ECFP6B 

(2048) 

Bagged 

66.70 ± 2.08 

Bagged 

69.33 ± 5.13 

Bagged 

73.33 ± 2.31 

Fine 

64.52 ± 5.59 

ECFP6C 

(4096) 

RUSboosted 

67.27 ± 2.02 

RUSboosted 

78.67 ± 7.23 

Bagged  

70.67 ± 6.11 

RUSboosted 

72.04 ± 14.55 
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sensitivity and specificity values; of the four exceptions, FP3/Bagged tree, FP4/Bagged, 

and ECFP4B/Bagged tree models showed low sensitivity (< 5 %) due to a large number of 

FNs, and high specificity (> 90 %) due to a small number of FPs. 

The imbalance between sensitivity and specificity in FP3/Bagged tree, FP4/Bagged 

tree, and ECFP4B/Bagged tree models is likely due to a significant bias they develop to 

the majority class (inactive compounds) in our training dataset. This bias can result from 

the class imbalance in our training dataset (31 inactive versus 25 active) [84, 85], which 

can make these models form classification rules primarily on inactive compounds. This in 

turn would lead to 1) misclassifications of active compounds, thus increasing the number 

of FNs [84] and 2) overall a small number of true predictions, thus decreasing the number 

of FPs. Furthermore, such imbalance can be worsened by the way the bagged tree algorithm 

from sub-models based on randomly sampled subsets of the entire training dataset. Such 

sampling process may drop active compounds and result in subsets where inactive 

compounds are even more dominated (i.e., yielding a greater imbalance between inactive 

and active compounds) [71, 84, 86, 87].  

Overall, our sensitivity and specificity data highlight the importance of 

benchmarking all 4 FOMs when evaluating the model performance. Accuracy and AUC 

alone may not fully capture the downside of the model performance, such as the imbalance 

between sensitivity and specificity trained from imbalanced training datasets. 

4.4.3.  Model Validation 

To evaluate if the aforementioned 40 models can predict the activity of unknown 

compounds, we examined their PCP on 14 compounds (10 inactive versus 4 active) in the 

external validation dataset (see Fig. 5 and Table 5) [88]. Our data show that: 1) FP3/Fine 
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tree model performs the best with PCP = 92.86 %, whereas the FP2, FP4, MACCS, ECFP4, 

and ECFP6 models have their PCP up to 76.19 %; 2) PCP values across all 40 models have 

less than 15 % standard deviation.  

These results suggest the promise of our small-dataset models in predicting Wnt 

inhibitors. For each of these models, we compared its PCP from the validation process (Fig. 

5) with its accuracy value from the training process (Fig. 4a) to check if it is an overfitted 

model [79]. Our data show that: 1) PCP is more than 15 % lower than the accuracy in 1 

FP2 model and 2 ECFP6A models; and 2) PCP is less than 15 % lower than the accuracy 

in all ECFP4C, ECFP6B, and ECFP6C models. For models listed in the first category, PCP 

is significantly lower than the accuracy, suggesting that these models likely overfitted 

compound structures (e.g., captured unnecessary structural details) in the training dataset 

[89]. 

 

 

 

 

 

 

 

 

Table 5. Models with the maximum PCP values in each 

fingerprint (k = 5). 

 Fingerprint PCP (%) 

FP2 (1024) Fine; 71.43 ± 0.00 

FP3 (64) Fine; 92.86 ± 0.00 

FP4 (512) Bagged; 71.43 ± 0.00 

MACCS (256) 

Fine; 71.43 ± 0.00 

Bagged; 71.43 ± 7.14 

ECFP4A (2048) Bagged; 73.8 ± 8.24 

ECFP4B (4096) Bagged; 71.42 ± 0.00 

ECFP4C (8192) Bagged; 71.42 ± 0.00 

ECFP6A (1024) Bagged; 69.04 ± 10.91 

ECFP6B (2048) Bagged; 71.43 ± 0.00 

ECFP6C (4096) Bagged; 76.19 ± 8.25 
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Figure 5. PCP values across 40 models with k = 5 and the chosen lengths for each fingerprint 

 

Based on both PCP and 4 FOMs of these 40 models, we observe that ECFP4 and 

ECFP6 fingerprint at the longer lengths offers unique and sufficient representations of 

structural details with no overfitting. In contrast, FP3, FP4, and MACCS fingerprints also 

show no overfitting but fail to offer unique representations. FP2 fingerprint features high 

accuracy and AUC but also shows overfitting. These results suggest that fingerprints 

should be chosen to sufficiently, uniquely, but not overly represent structurally similar 

compounds in developing high performance small-dataset QSAR models. 

4.5. Performance comparison 

We finally remarked that the FOMs in our QSAR models are on par with other 

computational methods used for drug discovery. For instance, Mayr et al. have 

comprehensively studied ca. 500,000 drug compounds across more than 1000 assays from 

ChEMBL dataset. They built predictive models of the drug activity (in the respective assay) 

by machine learning algorithms namely support vector machine, random forest, k-nearest 

neighbor, naive bayes, and deep learning [90]. By averaging the AUC values of each 

model, they reported typical AUC values around 70 %.  

As another example, Hofmarcher et al. have built predictive models from over 

30000 compounds across 209 assays from Cell painting dataset by neural network 

algorithms [91]. In this study, they derived features from High-throughput fluorescence 
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microscopy imaging (HTI). By averaging the FOMs over all assays, they reported typical 

accuracy values around 77 %, AUC values around 70 %, sensitivity values around 50 %, 

and specificity values around 76 %. This results indicating that the cell morphology 

changes contain a large amount of information about compound activities in the field of 

drug discovery. 

In comparison, our models typically obtained accuracy values around 65 %, AUC 

values around 70 %, sensitivity values around 70 %, and specificity values around 60 %. 

Nonetheless, we noted that computational methods on prediction of Wnt signaling 

inhibitors are still at their early stage of development at this moment. We expect that future 

efforts on this essential field of cell biology will allow more direct comparison with our 

QSAR models. 
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CHAPTER 5 

CONCLUSION 

Machine learning is currently one of the most important and rapidly evolving topics 

in computer-aided drug discovery. One of the primary application areas for machine 

learning in drug discovery is helping researchers understand and exploit relationships 

between chemical structures and their biological activities or QSAR. The general protocol 

for constructing QSAR models for drug discovery has been systematized and consists of 

several modular steps involving: 

• First, Molecular Encoding, where the chemical features and properties are derived 

from chemical structures.  

• Second, a feature selection step is performed where unsupervised learning 

techniques are used to identify the most relevant properties and reduce the 

dimensionality of the feature vector.  

• Finally, in the learning phase, a supervised machine learning model is applied to 

discover the relationship between the input feature vectors and the biological 

responses. 

 Building an accurate QSAR model also requires careful consideration and selection of the 

QSAR datasets used for training and model validation This includes separation of training 

and test sets for initial model creation and the test sets for final model performance 

evaluation. The performances of the QSAR models are commonly evaluated by standard 

metrics such as sensitivity, specificity, precision and recall [6]. For unbalanced datasets, 
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area-under-curve (AUC) derived from receiver-operating-characteristics (ROC) curves can 

be used [6]. 

In this study, we present a systematic small-dataset QSAR study for prediction of 

effective Wnt signaling inhibitors that are essential to therapeutics development in 

prevalent human diseases. Specifically, we trained 72 QSAR models based on 4 

algorithms, 6 fingerprints, and 3 fingerprint lengths using a training dataset (56 

compounds), evaluated their performance on 4 FOMs, and examined their PCP using an 

external validation dataset (14 compounds). Our data show that the model performance is 

maximized when:  

• Molecular fingerprints are selected to provide sufficient, unique, and not overly 

detailed representations of the compound structures (i.e. to avoid fingerprint lengths 

that lose fine structural features, identical representation vectors for multiple 

compounds, and overfitting);  

• Algorithms are selected to reduce the number of false predictions due to class 

imbalance in the dataset; and  

• Models are selected to reach balanced performance on all 4 FOMs.  

These results may provide general guidelines in developing high-performance small 

dataset 2D QSAR models for drug activity prediction. Moving forward, it will be useful to 

test if these guidelines would apply to QSAR studies based on other Wnt signaling related 

assays. To achieve this, we will need to expand the experimental data in those assays, which 

are often associated with other targeted proteins (e.g., Wnt-3a, kinases) or host cells (e.g., 

MCF7, ST14A).   
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