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Introduction

The use of electronic health records (EHRs) has grown rapidly in the last decade. The EHRs are no
longer being used only for storing information for clinical purposes but the secondary use of the
data in the healthcare research has increased rapidly as well. The data in EHRs are recorded in a
structured manner as much as possible, however, many EHRs often also contain large amount of
unstructured free-text. The structured and unstructured clinical data presents several challenges
to the researchers since the data are not primarily collected for research purposes. The issues
related to structured data can be missing data, noise, and inconsistency. The unstructured free-
text is even more challenging to use since they often have no fixed format and may vary from
clinician to clinician and from database to database. Text and data mining techniques are
increasingly being used to effectively and efficiently process large EHRs for research purposes.
Most of the methods developed for this purpose deal with English-language EHRs and cannot
simply be applied to non-English EHRs. This thesis concerns the use of data mining and natural
language processing techniques to process unstructured Dutch-language EHRs. We present all
methods and approaches in this thesis in a wider and formal framework of knowledge discovery.
We begin with an introduction to knowledge discovery, and subsequently we will continue by
describing a knowledge discovery pipeline. Following that, we will describe general data
preparation and data mining techniques in more detail. Further, we will present electronic health
records and its challenges. Finally, we end with an outline of the work done in this thesis.

Knowledge discovery

Recent years have seen an exponential increase in the generation and collection of all sorts of
data for various purposes. It is only natural that such growth in data generation and collection is
also matched with a growing number of methods and techniques for knowledge discovery. The
process of knowledge discovery consists of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data [1]. The exact definitions of valid, novel, useful, and
understandable information depends on the actual knowledge discovery task. The term data
mining is often used interchangeably with knowledge discovery but in fact, data mining is a part
of the knowledge-discovery process. We will first look at general knowledge-discovery models
and then we will shift our focus onto data preparation and data mining.

Over the last decades, several generic process models have been proposed for knowledge
discovery. The most common or popular ones include the nine-step model proposed by Fayyad
et al. [2], the industry validated six-step CRISP-DM (CRoss Industry Standard Process for Data
Mining) [3] developed by a consortium of European companies, the five-step model proposed by
Cabena et al. [4], and the six-step DMKD (Data Mining for Knowledge Discovery) model proposed
by Cios et al. [5]. All these models share steps of first understanding the problem and the data,
building methods for knowledge extraction, and evaluating the extracted knowledge. The DMKD
model (Figure 1) is actually a modified and improved version of the CRISP-DM model and the
model proposed by Cabena et al. One of the main differences is that the DMKD model includes
several new feedback mechanisms as compared to only three feedbacks in the CRISP-DM model.
The feedback mechanisms are represented with dotted lines in Figure 1. A detailed comparison
of several knowledge discovery models is presented in [6].
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Figure 1: Data Mining for Knowledge Discovery (DMKD) process

Problem Understanding

The first step in the process is about understanding the problem from multiple perspectives such
as domain-specific requirements, defining the objectives, goals, and success criteria,
understanding data privacy issues (especially for clinical data), engaging domain experts, and
exploration of existing solutions that could lead to an initial selection of tools and methods to be
used during the data-mining step.

Data Understanding

The next important step in the process is about understanding the data that will be used for the
data-mining process. This involves understanding the format of the data in which it is available,
such as structured tables, databases, or unstructured free-text, and if the data would be sufficient
to answer the questions raised in the first step. Typically, a sample of the data is collected and
checked for completeness and quality.

Data Preparation

This is one of the crucial steps and perhaps the most time-consuming in the process. In this step,
it is decided which and how much of the data will be used for data mining and then the data are
collected for further processing. The sub-tasks depend on the current state of the data and the
questions one is trying to answer through the knowledge-discovery process. Typically, it involves
cleaning, normalizing, sampling, reducing dimensionality, summarizing and aggregating,
extracting features, and transforming the data to a format that is expected by the data-mining
tools.

Data Mining

In this step, different data-mining tools or algorithms are used on the prepared data to extract
information or derive knowledge. The selection of data-mining method(s) is a crucial step and
often multiple methods are selected initially based on previous experience, the type of data
available, and the objectives to achieve. There is a large pool of such methods to choose from
such as neural networks, Bayesian methods, support vector machines (SVM), decision trees, rule
learners, and clustering. Many of these algorithms allow tweaking of algorithm parameters to
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achieve better results. Speckauskiené et al. [7] proposed a very detailed and iterative 11-step
process to select the optimum data-mining method. However, for very large datasets, this 11-
step selection process may prove to be too time-consuming and resource intensive and in some
cases it may just not be feasible at all [8].

Knowledge Evaluation

The next step in the knowledge-discovery process is to understand the results and analyze the
information that is extracted from the data. Usually results and the extracted information are
evaluated together with the domain experts to fully understand the usefulness and the novelty.
The objectives and goals are revisited to decide if further iterations are required to improve the
results.

Knowledge Use

The last step in the process is to plan how the discovered knowledge will be used. This could
involve turning the experimental setup to a product or a service so the process can be repeated
for new yet similar data sets easily. The experimental setup with details of all decisions and
assumptions is also documented in this step.

In the next section, we will focus more on the two most important steps in the knowledge-
discovery process, i.e., data preparation and data mining.

Data Preparation

As mentioned earlier, data preparation is one of the most crucial and most time-consuming steps
in the knowledge discovery process. It is estimated that about 60% to 90% of the time is spent
on this step [5, 9]. The data collected in real-world applications are not always directly suitable
for data-mining tasks. Almost all real-word data sets suffer from inconsistency, redundancy,
incompleteness, contradictions, and noise to some extent. These issues may have strong impact
on the entire outcome of the knowledge-discovery process. Therefore, it is critical that the data
are prepared carefully for subsequent data-mining task. The tasks in this step depend on the
current state of the data, the objectives of the knowledge-discovery process, and the algorithms
and tools to use in the subsequent processes. In a broader sense, the sub-tasks in the data
preparation stage can be categorized into the following groups:

1. Data Cleaning

The data set might be missing some important attributes of interest or missing some attribute
values, e.g., missing blood pressure measures for some patient. There are typically two ways to
deal with the missing data: a) ignoring the data point with missing values completely, or b) fill in
the missing values such as using NULL or using some advanced techniques to infer the most
probable value to fill. It is also important to look for inconsistencies in the data such as the use
of different date formats and use of different disease classification schemes in different years.
Such inconsistencies must be dealt with properly before data are used. Another important data-

13



Chapter 1

cleaning technique deals with smoothing out the noisy data. The smoothing may include
identifying and correcting, disambiguating, removing, or ignoring noise in the data set, e.g.,
correcting spelling mistakes, grouping similar words together, correcting negative values where
only positive values are expected, and identifying outliers.

2. Data Integration

Data integration deals with properly integrating or combining different sources of data into one
data set for further processing. It is possible that the data are recorded differently in different
sources, e.g., in one data set, patient diagnoses are coded using International Classification of
Diseases (ICD) version 9, and ICD version 10 is used in another data set. This needs to be corrected
to avoid data inconsistencies. During integration, redundant data attributes are also identified
and removed.

3. Data Transformation

For distance-based data mining methods such as nearest neighbors, it is important that all
attributes have the same units and scales to allow a fair comparison. Different normalization
techniques can be used to transform different types of data, e.g., min-max normalization can
scale all the numeric values between 0 and 1. Another important transformation technique in
the data preparation phase is called discretization. Some data-mining algorithms are not capable
of handling continuous feature values, therefore, features with continuous values needs to be
converted to nominal or categorical features. For example, systolic blood pressure of 140 and
above can be categorized as ‘high’ and less than 80 can be categorized as ‘low’.

4, Data Extraction

Data extraction techniques deal with processing and extracting important and relevant
information. All data-related inclusion and exclusion criteria are enforced to meet the study
requirements. Several techniques can be used to extract features for the subsequent data-mining
tasks. For data sets with free-text, feature extraction typically involves natural language
processing (NLP) techniques. NLP is a specialized field in artificial intelligence that deals with
applying computational techniques for the analysis and synthesis of natural language and speech
data. The term NLP is often used synonymously with text mining. Several NLP techniques such as
sentence splitting, tokenization, part-of-speech tagging, chunking, named entity recognition, and
relation extraction can be used to extract relevant features from unstructured free-text [10, 11].
In sentence splitting, paragraphs of text are divided into single sentences. The sentences are
further split into words and symbols called tokens. Part-of-speech (POS) tagging is the process of
assigning correct POS tag such as noun and verb to each word in a sentence. Chunking is the
process of using POS tags to identify phrases within a sentence such as noun phrase, verb phrase,
or prepositional phrase. Name entity recognition (NER) is the process of identifying predefined
entity types in the text such as personal names, locations, drugs, diseases, and symptoms.
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5. Data Reduction

Data reduction techniques focus on removing irrelevant features or data elements. Several
techniques such as data aggregation, dimensionality reduction, and clustering can be used to
reduce the data set effectively. In data aggregation, data is reduced to represent a higher level
of information, e.g., months can be aggregated into quarters or city names to state names. In
dimensionality reduction, all irrelevant features and noisy data is removed. This leads to a
reduction in time and space required for machine-learning algorithms. All words with the same
meaning can be combined into one using clustering techniques to reduce features even further.

Data Mining

Data mining is the process of analyzing large datasets to identify and extract hidden patterns or
information. Data-mining methods are usually computationally intensive and yield patterns that
are valid, novel, useful, and human understandable. This is typically achieved by employing
statistical or machine-learning techniques. Machine learning is formally defined by Tom Mitchell
[12] as: ‘A computer program is said to learn from experience E with respect to some class of
tasks T and performance P if its performance at tasks in T, as measured by P, improves with
experience E’. For example, a task T could be to identify patients with a disease of interest from
a large database. The experience E is a known set of patients with the disease and the
performance P is the accuracy of the algorithm to identify patients from unseen data. Some other
common data-mining task examples are identifying patients with various conditions, identifying
candidates in need of therapy, spam detection, fraud detection, loan/credit approval, identifying
customers who are likely to cancel their subscriptions, finding relationships between diseases,
predicting sales forecast, etc.

Data-mining approaches can be broadly categorized into supervised or predictive learning and
unsupervised or descriptive learning methods. In supervised learning methods, the algorithm is
usually provided with some examples where the output or the class labels are already known.
Such examples constitute a training set. The algorithm utilizes the training set to learn or build a
model that can later predict the output of the unseen data, which constitute the test set. For
example, in a spam detection task, the algorithm is given a set of emails (i.e., training set) where
each email is labeled as either a spam email or not. The algorithm then learns a model (also called
a classifier) that can later classify if an incoming email is spam or not. In unsupervised learning
methods, the provided training set does not contain the known desired output. Such methods
try to describe the data by learning underlying structure or patterns such as grouping similar-
looking items.

The next sections describe classification and clustering, two examples of supervised and
unsupervised learning, respectively.

Classification

Classification is the task of predicting group membership as an output for new data instances.
Since it is an example of a supervised learning method, a classification algorithm (also known as
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a classifier) first learns how to predict using the training set where the desired output is already
known. There are two types of classifier prediction output. The first type is where the classifier
assigns a class label to new instances. The set of class labels to choose from is predefined in this
case. If the classifier has to choose between two class labels (e.g., Yes or No), it is called binary
classification. If there are more than two class labels to choose from, it is called multi-class
classification. There is another category where the classifier has to choose from more than two
labels but also multiple labels can be selected for each instance. This is called multi-class multi-
label classification, which is more challenging. In the second type of classifier prediction output,
for each new instance, the classifier returns a probability (of belongingness) for each class label.
For example, what is the probability for a patient to have disease A or B? This is also known as
probabilistic classification.

Generally, the data set is divided into two subsets, a training set and a test set. The algorithms
first use the training set for learning a classifier and then use the test set to estimate the actual
classification performance. Sometimes, the training data are further divided in two sets where
one is used for learning the classifier and the second to estimate the classification error and tune
the parameters. The purpose of this further division of the training set is to avoid the overfitting
problem. Overfitting is when the classifier performs well on the training set but performs poorly
on the test set. It means that the classifier has learned the data but not the actual underlying
function.

Clustering

Clustering is one of the most frequently used unsupervised learning approaches. Since the
desired output is not known for the training examples, this method relies on finding the
similarities and differences between the examples in order to create subsets, called clusters. The
purpose is to create clusters where all members in the same cluster are similar. Grouping similar
customers together for target advertising is a typical example of a clustering application [13, 14].
The ideal clustering is when members of the same cluster have homogeneity and the clusters are
very different from each other. There are three popular approaches to clustering [14, 15]. In the
first approach, new clusters are derived from existing clusters. This is also known as hierarchical
clustering. In this approach, new clusters are derived either by merging similar clusters together
or by splitting existing clusters into smaller ones. In the second clustering approach, first, a pre-
specified number of clusters are created and then cluster membership is improved by moving
cluster members from one cluster to another. In the third clustering approach, instances with
close vicinity are combined into one cluster. This is also known as density-based clustering.

Electronic Health Records

The primary use of electronic health records (EHRs) is to support the care process by the clinicians
and the administrators [16]. These records contain patient-related information such as
demographics (e.g., age, sex, ethnicity), behavior (e.g. use of tobacco and alcohol), vital signs
(e.g., body temperature and blood pressure), patient-reported symptoms (e.g., headache),
diagnosis (e.g., hypertension), procedures (e.g., electrocardiogram), treatments (e.g.,
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medications and their usage information), laboratory data (e.g., test reports), allergies, and
imaging (e.g., CT scans).

The data in EHRs are recorded in a structured manner as much as possible. Often structured
clinical terminologies are used such as ICD-10, Logical Observational Identifiers Names and Codes
(LOINC), and Anatomical Therapeutic Chemical (ATC) codes to record information. Most EHR
systems use a predefined way of storing structured information (e.g., using schemas) in order to
avoid recording errors and variations. This allows easy and quick access to the structured data
for reporting and analytical purposes.

However, storing all information in a structured way may not be practical, as it requires knowing
exactly what to expect and store beforehand. This may lead to an increase in the complexity of
the EHR systems and decrease their usability [17]. All EHR systems allow healthcare providers to
also record information in free-text, which is unstructured and gives clinicians maximum
flexibility to record anything regarding the patient. The information present in the free-text often
contains essential information such as patient-reported symptoms, signs, summaries of
specialists’ letters in narrative form, past medical history, family medical history, behavior and
lifestyle information. This information may be critical for identification of the medical events.
Since there is no standard way of writing clinical narratives, the style of writing, the amount of
information, and the use of language may vary from clinician to clinician. Some clinical
documents such as discharge letters or referrals are used as a formal way of communication
between clinicians. Other documents may be used as references such as nurses’ daily notes. The
clinical notes are usually written under time pressure and they often contain ill-formed and
incomplete sentences. Apart from that, there are also grammatical errors, standard and non-
standard abbreviations, and misspellings. Ruch et al. [18] reported up to 10% spelling errors in
follow-up nursing notes. The information recorded in free-text may also be inconsistent.
Wasserman et al. [19] found 278 different ways of reporting fever in clinical notes of 465 children.
Extracting useful information from unstructured free-text is a challenging task, which usually
requires advanced Natural Language Processing (NLP) techniques [20].

Although the primary use of EHRs is to support the care process, the secondary use of EHRs for
clinical research is increasing. However, this also poses several other challenges apart from the
ones mentioned above regarding the free-text. For example, in the absence of a nationwide
healthcare system, if a patient has been seen by multiple healthcare providers (such as different
specialists) over the years, then all providers may only have partial information about the patient.
This is known as information fragmentation [17]. Linking information from different providers is
not trivial as they might be using different EHR system providers or, even if they are using the
same EHR system provider, the way the information is recorded might be different due to local
policies. Structured codes such as ICD-10 used by the care providers may not be accurate or at
times missing [21].

Mining Electronic Health Records

EHRs enable researchers to utilize rich longitudinal health data at a relatively low cost. Collecting
such large amounts of data otherwise would be expensive and time-consuming. Data mining
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techniques are increasingly being used in observational epidemiological studies that are utilizing
EHRs, for example, in studies that aim to investigate the association between drugs and possible
adverse events [22-24]. An important initial first step in such studies is the identification of the
patients who have the event of interest, commonly known as case selection. The traditional
approach involves issuing a broad query to first identify potential patients and then manually
reviewing patient data to distinguish true positive cases from true negative cases. This process is
also known as manual chart review. Manual review is expensive, time consuming and becoming
prohibitive with the increasing size of EHR databases. Automated methods are being used to
identify patients with various conditions [25—-29], candidates in need of therapy [30], smoking
status [31, 32], patients who are similar to a patient under observation [33], direct and indirect
associations among medical concepts such as diseases and medications [34], events related to
adverse drug-drug associations [35], and to analyze medications and food allergies [36]. One
particular challenge in analyzing free-text EHRs is to distinguish positive diagnoses from things
that have been excluded. For example, in the text ‘the patient was diagnosed with asthma’, the
patient is positively diagnosed with asthma, however, in the text ‘the patient was not diagnosed
with asthma’, the clinician is explicitly ruling out the presence of asthma. Several machine-
learning approaches have been used to identify negated concepts and their scopes from various
types of clinical documents [37-40]. Yadav et al. [17] presented an extensive survey of various
data-mining techniques that are used to model EHR data.

Thesis Outline

Despite the increasing use of data-mining techniques in the healthcare domain, it is still
considered to be in early stages as compared to other domains [17]. Most of the observational
studies in the field use structured information present in the EHRs. Only a few studies have tried
to exploit the information present in the unstructured free-text. In addition, the methods
employed or developed to process and extract information from free-text primarily have focused
on English EHRs. This thesis aims at developing automated methods to exploit unstructured free-
text present in the Integrated Primary Care Information (IPCl) database [41], a longitudinal
collection of EHRs from Dutch general practitioners.

In order to extract meaningful information from EHRs, such as symptoms and diagnoses, it is also
important to identify their contextual properties. Whether a diagnosis is positive or negative, a
medical condition described in the patient record is new or old, or is about the patient or
someone else (e.g., a family member) are important questions that require understanding of the
context in which information is provided. In Chapter 2, we adapt an English language algorithm
to the Dutch language in order to identify contextual properties of clinical concepts. A new Dutch
clinical corpus has been created to evaluate the performance of our system.

In Chapter 3, we look at the methods to normalize free-text in Dutch EHRs. The normalization
process involves grouping similar words together to reduce feature dimensionality for machine-
learning methods and automatically finding and mapping abbreviations and acronyms to their
full-forms in the database.

18



Introduction

Observational studies need to deal with confounding in order to obtain unbiased estimates.
Confounding occurs when a variable (i.e., confounder) that is not under investigation, influences
the outcome of interest. EHRs contain much unstructured data that could be used as proxies for
potential confounding factors. In Chapter 4, we look at the possibility of using unstructured free-
text to construct high-dimensional propensity score models that would allow to properly deal
with confounding.

Case selection is one of most important and time-consuming tasks in observational studies. In
Chapter 5, we use and evaluate machine-learning methods to automatically generate case-
detection algorithms for case selection that uses both free-text and structured information in the
EHRs.

Typically, the proportions of positive and negative cases in the training set are not equal as there
are usually more negative cases than positive cases. Such imbalance affects the learning process
of the supervised methods. Finally, in Chapter 6, we use different approaches to handle
imbalance in the training set in order to improve the performance of case-detection algorithms.

Table 1: Overview of the topics described in this thesis

Chapter Research topic Dataused Knowledge
discovery step

2 ContextD: An algorithm to identify contextual IPCI, DL, RD Data preparation
properties of medical terms in a Dutch clinical
corpus

3 Reducing feature dimensionality by normalizing IPCI Data preparation
text in electronic health records

4 Generating and evaluating a propensity model IPCI Data preparation
using textual features from electronic health
records

5 Automatic generation of case-detection IPCl Data mining

algorithms to identify children with asthma from
large electronic health record databases

6 Improving sensitivity of machine learning methods IPCI Data mining
for automated case identification from free-text
medical records

IPCI, Integrated Primary Care Information; DL, Discharge Letters; RD, Radiology Reports
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ABSTRACT

Background

In order to extract meaningful information from electronic medical records, such as signs and
symptoms, diagnoses, and treatments, it is important to take into account the contextual
properties of the identified information: negation, temporality, and experiencer. Most work on
automatic identification of these contextual properties has been done on English clinical text.
This study presents ContextD, an adaptation of the English ConText algorithm to the Dutch
language, and a Dutch clinical corpus. We created a Dutch clinical corpus containing four types
of anonymized clinical documents: entries from general practitioners, specialists’ letters,
radiology reports, and discharge letters. Using a Dutch list of medical terms extracted from the
Unified Medical Language System, we identified medical terms in the corpus with exact matching.
The identified terms were annotated for negation, temporality, and experiencer properties. To
adapt the ConText algorithm, we translated English trigger terms to Dutch and added several
general and document specific enhancements, such as negation rules for general practitioners’
entries and a regular expression based temporality module.

Results

The ContextD algorithm utilized 41 unique triggers to identify the contextual properties in the
clinical corpus. For the negation property, the algorithm obtained an F-score from 87% to 93%
for the different document types. For the experiencer property, the F-score was 99% to 100%.
For the historical and hypothetical values of the temporality property, F-scores ranged from 26%
to 54% and from 13% to 44%, respectively.

Conclusions

The ContextD showed good performance in identifying negation and experiencer property values
across all Dutch clinical document types. Accurate identification of the temporality property
proved to be difficult and requires further work. The anonymized and annotated Dutch clinical
corpus can serve as a useful resource for further algorithm development.
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BACKGROUND

Recent years have seen an increase in the use of electronic medical records (EMRs) by healthcare
providers [1]. These records contain patient-related information such as signs, (patient-reported)
symptoms, diagnoses, treatments, and tests. The primary use of EMRs is to support the care
process, but the secondary use of EMRs for clinical research is increasing. In most EMRs, the
majority of information is unstructured free text, making information retrieval challenging,
although several automatic systems have been developed that can index, extract, and encode
clinical information from the EMRs [2-8]. One particular challenge in analyzing free-text EMRs is
to distinguish positive diagnoses by the physician from things that have been excluded or ruled
out. Similarly, information about the past medical problems and a family history is often found
in the EMRs and should ideally be identified as such. In order to extract meaningful information
such as medical problems or clinical conditions, it is important that automatic systems do not
only identify them but also take into account the context of the identified information.

Previous approaches on identifying contextual properties of clinical concepts can be classified
into rule or regular-expression based techniques, machine-learning techniques, or a combination
of both. Chapman et al. [9] developed a rule-based system called NegEx that determines whether
a specific medical condition is present or absent within a narrative. The system uses two sets of
trigger phrases: one to identify true negations and a second to identify pseudo-negations, i.e.,
phrases that seem to indicate negation but instead denote double negations such as not ruled
out. The system was evaluated on dis- charge summaries where it achieved a precision of 84.5%
and a recall of 77.8%. Another system, called NegFinder [10], used grammatical parsing and
regular expressions to identify negated patterns occurring in medical narratives, achieving a
specificity of 97.7% and a sensitivity (or recall) of 95.3% on discharge summaries and surgical
notes. Elkin et al. [11] assigned a level of certainty to identified concepts in EMRs based on a rule-
based system to decide whether a concept has been asserted positively, negatively, or
uncertainly. The system achieved 97.2% sensitivity, 98.8% specificity, and 91.2% precision on
medical evaluation notes. Huang et al. [12] used regular expressions with grammatical parsing to
identify ne- gated phrases. On radiology reports, the system achieved a sensitivity of 92.6%, a
specificity of 99.8%, and a precision of 98.6%. The ConText algorithm [13] is based on the NegEx
algorithm and apart from identifying negations; it identifies whether a clinical condition is
present, historical, or hypothetical, and whether the patient or someone else, e.g., a family
member, experiences the clinical condition. The system achieved an average precision of 94%
and an average recall of 92% when evaluated on six different types of medical reports. Kilicoglu
and Bergler [14] showed that speculative language can be recognized successfully using
linguistically oriented approaches. They extended lexical resources with syntactic patterns and
introduced a simple weighting scheme to estimate the speculation level of the sentences. The
system achieved a precision of 85% and a recall of 86%. Recently, Reeves et al. [15] created a
system, Med-TTK, to identify and classify temporal expressions in medical narratives. The system
achieved a precision of 85% and a recall of 86% on clinical notes.
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In machine-learning approaches, Goldin and Chapman [16] experimented with Naive Bayes and
decision trees to determine whether a concept is negated by the word not in hospital progress
notes and emergency room notes. Agarwal and Yu [17] used conditional random fields (CRF) to
detect negation cues and their scopes. The best CRF model achieved a precision of 99% and a
recall of 96% on detecting negation cues, and a precision and recall of 95% on detecting their
scopes in clinical notes. Morante and Daelemans [18] first used a classifier to identify negation
signals and then used four classifiers to find the full scope of the negation signals. Three of the
classifiers predicted whether a token was the first, the last, or neither in the scope sequence. The
fourth classifier was a meta-learner that used the prediction of first three classifiers to determine
the final scope. On BioScope clinical documents [19], the system achieved a precision of 86% and
a recall of 82%, and 71% of negation scopes were correctly identified. Cruz Diaz et al. [20]
improved on Morante and Daelemans [18] by using different classifiers. The system achieved a
precision of 92%, a recall of 90%, and 88% of the negation scopes were correctly identified. To
detect speculation, the system achieved a precision of 85%, a recall of 63%, and 63% of
speculation scopes were correctly identified. Light et al. [21] estimated that 11% of the sentences
in MEDLINE abstracts contain speculative fragments. They used a substring matching method
and Support Vector Machines (SVM) to determine whether concepts in the text are described as
facts or as speculation. For the matching method, they identified 14 strings that suggest
speculation and marked a sentence as speculative if their system found any of these strings in
the sentence (possibly as a substring of a term). The SVM classifier achieved a precision of 84%
and a recall of 37%, whereas substring matching achieved a precision of 55% and a recall of 79%.
Velldal [22] used a disambiguation approach and SVM-based classifiers to label sentences as
certain or uncertain. Their best system achieved a precision of 89% and a recall of 85%.
Goryachev et al. [23] compared two adaptations of regular-expression based algorithms, NegEx
and NegExpander, with two classification methods, Naive Bayes and SVM, trained on dis- charge
reports. It was observed that regular-expression based methods show better accuracy than the
classification methods. Uzuner et al. [24] developed a statistical assertion classifier, StAC, by using
lexical and syntactic context in conjunction with SVM to classify medical problems in EMRs into
four categories: positive, negative, uncertain, and alter-association. StAC was compared to an
extended version of the NegEx algorithm and showed better performance. The 2012 i2b2 NLP
Shared Task [25] focused on finding the temporal relations in clinical narratives. While machine-
learning and rule-based systems showed good performance, the systems using combination
approaches produced the best results.

The type of clinical documents has a noticeable impact on the performance of systems that
identify contextual properties of clinical concepts. Clinical documents differ in many ways, such
as structure, grammaticality, and use of standard and non-standard abbreviations. Overall, there
does not seem to be a clear winner between machine- learning and rule-based systems. The rule-
based and hybrid systems appear to perform slightly better than machine-learning approaches.
In theory, rule-based systems can be adapted rather easily for different clinical text than for
which they were developed. One of the limiting factors of a rule-based approach is the use of a
fixed scope, which may lead to misclassification. The machine-learning based approaches may
not perform as well if they are tested on a different clinical text than they were originally trained
on [23]. Adapting such approaches for new clinical text will therefore require a new training set.
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Most work on identifying contextual properties of the clinical condition has been done on the
English language. Recently, the NegEx algorithm was adapted to detect negations in Swedish [26]
and French [27] clinical text. To our knowledge, no method is yet available or adapted for Dutch
clinical text.

This study has two objectives: to adapt the well-known ConText [13] algorithm (to detect
contextual properties of medical terms) to the Dutch language and to create a Dutch clinical
corpus which is annotated for negation, temporality, and experiencer. ConText, along with its
predecessor NegkEx, is one of the most widely used algorithms in the field. It was chosen for its
simplicity, ease of adaptability, and proven good performance on various types of English clinical
text. The adapted ConText algorithm, dubbed ContextD, and the anonymized Dutch clinical
corpus described here will be made publicly available for research purposes [28].

METHODS

This section provides details of the Erasmus Medical Center (EMC) Dutch clinical corpus
annotated for the three contextual properties negation, temporality, and experiencer. We also
describe the original ConText algorithm and its adaptation to the Dutch language.

EMC Dutch clinical corpus

The anonymized corpus includes four types of clinical documents to capture different language
use in the Dutch clinical setting.

e General Practitioner entries [GP]

This set consists of entries from the IPCl database [29], a longitudinal collection of EMRs from
Dutch general practitioners (GP) covering more than 1.5 million patients throughout the
Netherlands. Each entry in the IPCl database pertains to a patient visit to the GP. These entries
are not always grammatically well-formed text, and often follow the well-known SOAP
structure (Subjective, Objective, Assessment, and Plan) [30]. The resulting database contains
a broad range of information, including indications and following prescriptions for therapy,
referrals, hospitalization, and laboratory results. The structured information, such as
diagnosis codes, is stored in a tabular format and the unstructured information is stored as
free-text. Only the unstructured free-text was included in the corpus.

e Specialist letters [SP]

These are letters written by a medical specialist — for example, a cardiologist — and they are
also procured from the IPCI database. The purpose of these letters is to report back to the
GPs after referral and consult in the hospital, updating them in relation to diagnostic
deliberations and therapeutic strategies. These letters are in the form of scanned copies or
summaries entered by the GP. These letters are also not always grammatically well formed.
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Radiology reports [RD]

This set consists of the reports taken from the radiology department of the Erasmus Medical
Center, The Netherlands. These reports contain descriptions and conclusions derived from
diagnostic imaging as requested by medical specialists (doctors) or general practitioners.
These reports are intended for communication between doctors and radiologists. The text is
mostly generated by using an automatic speech recognizer (ASR) and therefore usually has
proper grammar and structure by prevailing conventions of the Radiology department. The
radiologists have the option to update the text generated by the ASR manually, which
increases the probability of typos.

Discharge letters [DL]

This set consists of patient discharge letters taken from the Erasmus Medical Center. They
serve a purpose comparable to the specialist letters in updating the GPs on everything that
has occurred during the admission period including all outcomes and remaining problems.
These letters are well formed because of their intended external use (by and beyond GPs)
and continuity of care.

To select text from the above-mentioned sets, we first created a list of Dutch medical terms taken

from the Unified Medical Language System (UMLS) [31]. The UMLS contains medical terms in 21

different languages, including Dutch. However, UMLS has limited coverage of terms in the non-
English languages. From over 150 source vocabularies in the UMLS, only four contain Dutch
language terms. Only UMLS terms belonging to one of 35 UMLS semantic types, mainly
representing diseases, symptoms, and drugs, were included in the list. The final term list contains
153,573 Dutch terms, including synonyms and lexical variants that were present in the UMLS. For
each of the four sets, documents containing at least one UMLS term were randomly selected to
be included in the corpus. We used case-insensitive exact string matching to find the UMLS terms
in the documents. Table 1 summarizes the characteristics of the four document types.

Table 1: Statistics of the four document types in the EMC clinical corpus

Type No. of No. of recognized UMLS No. of words per
documents terms document*

GP entries 2000 3626 23 (14-38)

Specialist letters 2000 2748 39 (16-113)

Radiology reports 1500 3684 66 (46-94)

Discharge letters 2000 2830 163 (95-201)

* Median (interquartile range)
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Each of the recognized terms in the corpus was annotated for the three contextual properties:
negation, temporality, and experiencer. The definitions of the properties are adopted from the
ConText algorithm [13].

e Negation

This property has two values, ‘Negated’ or ‘Not negated’. A clinical condition or term is
labeled as ‘Negated’ if there is evidence in the text suggesting that the condition does not
occur or exist, e.g., ‘There was no sign of sinus infection’, otherwise it is ‘Not negated’.

e Temporality

The temporality property places a condition along a time line. There are three possible values
for this property: ‘Recent’, ‘Historical’, and ‘Hypothetical’. A condition is considered ‘Recent’
if it is maximally 2 weeks old. Conditions that developed more than 2 weeks ago are labeled
as ‘Historical’. A condition is labeled as ‘Hypothetical’ if it is not ‘Recent’ or ‘Historical’, e.g.,
‘patient should return if she develops fever’ [13].

e Experiencer

Clinical text may refer to subjects other than the actual patient. The experiencer property
describes whether the patient experienced the condition or someone else. For simplicity, we
have defined only two possible values for this property: ‘Patient” or ‘Other’, where ‘Other’
refers to anyone but the actual patient, e.g., ‘Mother is recently diagnosed with cancer’.

The corpus was annotated by two independent annotators. They were provided with a guideline
explaining the process and each of the contextual properties in detail, with examples. An expert
who was familiar with all four types of clinical text resolved the differences between the
annotators. The annotations were limited to the conditions previously identified using our
custom Dutch UMLS terms. In The Netherlands, retrospective re- search with anonymized patient
data does not fall under the scope of the WMO (Wet medisch-wetenschappelijk onderzoek met
mensen (“Medical research involving human subjects act”)), and does not have to be approved
by a medical ethics committee For the IPCl data, the access was approved by the IPCl governance
board (Raad van Toezicht).

We split each of the four document sets in our corpus into a development set and an evaluation
set (50% each). The development set was used to tune the algorithm and the trigger lists. To
account for possible overfitting of the algorithm on the development set, the performance of the
algorithm was assessed on the evaluation set, which was used only for the final testing.

The ConText algorithm

The ConText algorithm [13], an extension of NegEx [9], is based on regular expressions and lists
of trigger terms to determine the values of three contextual properties of a clinical condition:
negation, temporality, and experiencer. The algorithm searches a sentence for triggers before or
after the pre-indexed clinical condition. The default value of a property (‘Not-negated’ for
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negation, ‘Recent’ for temporality, ‘Patient’ for experiencer) is changed if the condition falls
within the scope of the trigger term. The default scope of a pre-trigger is from the right of trigger
term to the end of the sentence, whereas the default scope of a post-trigger begins left- wards
from the trigger term to the beginning of the sentence. The default scopes are overruled if a
termination trigger is found before the end of the scope. For each property value (other than the
default), the ConText algorithm maintains four lists of triggers: pre-triggers, post-triggers,
termination triggers, and pseudo-triggers. Pre-triggers precede the location of a clinical condition
in the text, e.g., no signs of viral infection. In this example, viral infection is the clinical condition
and no signs of is the pre-trigger. Post-triggers follow a clinical condition, e.g., viral infection is
ruled out. In this example, ruled out is a post-trigger. In both of these examples, the condition
viral infection will be negated because it falls within the scope of the pre- and post-triggers.
Termination triggers limit the scope of a pre- or post-trigger. Finally, there are phrases that look
like triggers but do not act as such, e.g., no change. These are added to a pseudo-trigger list. The
input to the algorithm is a sentence with marked clinical conditions. First, default values are
assigned to the con- textual properties of each clinical condition. The default values are then
updated using the following algorithm:

e Find all trigger terms (pre, post, pseudo, termination) in the sentence
e For each of the trigger terms found (from left to right)
o Ifthe termis a pseudo term, skip to the next term
o Otherwise:
= Find the scope of the trigger term
= Assign appropriate contextual property values to all marked clinical
conditions within the scope.

Several implementations of the ConText algorithm are available online [32].

ContextD: ConText for Dutch

The ConText algorithm uses pre-defined English trigger terms to determine the value of the
contextual properties. We first attempted a fully automated translation of these triggers into
Dutch using Google Translate [33], but the results appeared not to be comprehensive enough. A
native Dutch speaker, who was also familiar with clinical texts, then checked all automatically
translated terms, and added all possible variations of a trigger term.

The ContextD algorithm expects a sentence with marked conditions as its input. We used the
Dutch sentence splitter in the Apache OpenNLP library [34] to split the text into sentences. Using
our custom UMLS Dutch term list and case-insensitive exact string matching, we marked all the
UMLS terms in the sentences.

ContextD works like the original ConText algorithm in using the trigger lists to find the values of
contextual properties. The Java implementation of ConText [32] with the translated triggers was
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used as a starting point. Using the development set, we iteratively refined the Dutch trigger lists
and made a number of other modifications as described below:

GP specific rules

The general practitioners often negate the existence of a clinical condition by putting a minus
sign after the term, e.g., fever-. We added a couple of rules to catch such occurrences (and their
variations) of negation in the GP text.

Combined triggers

The value of a contextual property sometimes cannot be identified by a pre-trigger or a post-
trigger alone, such as nooit (never) and is weg (is gone). A similar weakness is also reported by
Chapman et al. [9] for triggers not and no. For example, in the sentence ‘Hij heeft verder nooit
medicijnen gebruikt die de tinnitus beinvioeden (he has also never used medications that affect
tinnitus)’, the trigger nooit is negating the use of medication but not the condition tinnitus. Some
of the triggers translated from the English cannot be directly applied to the Dutch text because
of the different word ordering in both languages. Such triggers have to be split before they can
be applied. There are situations where a combination of two triggers is essential. Since there is
no notion of de- pendency or connection between different trigger types in the original ConText
algorithm, we introduced a few rules that look for a combination of triggers to be presentin order
to identify the correct value of a contextual property. For example, in the sentence ‘Nooit
urineweginfecties doorgemaakt’, the triggers nooit (pre-trigger) and doorgemaakt (post-trigger)
combined suggest a negation for the term urineweginfecties. The pre-trigger nooit alone did not
increase performance and hence was removed from the trigger list during the development.

Scope of trigger terms

ContextD uses different scopes depending on the trigger term. The default right-scope starts
from the right of the trigger term and ends at the end of the sentence. The default left-scope
starts leftwards from the trigger term and ends at the beginning of the sentence. We
experimented with different scopes for different types of clinical text, which resulted in
modifying the default scope for GP entries to 6 words and for specialist letters to 10 words. The
default scope is overridden if a termination trigger appears before the end of the scope. For GP
entries, which are mostly grammatically unstructured, some punctuation, such as comma and
semicolon, were added as termination triggers to limit the scope of triggers. For specialist letters,
only colon and semicolon were added to the termination triggers.

Temporality module

The original ConText algorithm has very few triggers to identify whether a clinical condition is
historical. We added a temporality module that implements several regular expressions to look
for evidence for historical events on both sides of the clinical term. An adjusted left and right
scope was also implemented in the module to avoid getting false positives.
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Evaluation

We computed precision (true positives/[true positives + false positives]), recall (true
positives/[true positives + false negatives]), and F-measure (the harmonic mean of precision and
recall: 2 * precision * recall/[precision + recall]) for each of the three contextual properties.

For the negation property, terms that were assigned the value ‘Negated’ were taken as the
positive class and terms that were marked ‘Not Negated’ as the negative class. Similarly, for the
experiencer property, terms marked as ‘Patient’ were taken as positives, ‘Others’ as negatives.
For the temporality property, which has three values, each value was considered as the positive
class against the other two combined (e.g. ‘Recent’ vs. ‘Historical’ and ‘Hypothetical’). A true
positive was defined as a term that was correctly assigned to the positive class, a false positive
as a term that was incorrectly assigned to the positive class, and a false negative as a term that
was incorrectly assigned to the negative class.

We used Cohen’s kappa [35] to calculate the agreement between both annotators for each of
the three contextual properties. Because the UMLS terms were already marked in the sentences,
the inter-annotator agreement was calculated for the labels only.

RESULTS

This section provides the annotation results of the EMC Dutch clinical corpus and the
performance of the ContextD algorithm.

Table 2 shows the inter-annotator agreement for each report type in the corpus. According to
the Altman classification [36], kappa is very good for ‘Negated’ and ‘Recent’ values (with the
exception of ‘Recent’ on Radiology reports, which is good), moderate-to-good for ‘Historical’
values, and moderate for hypothetical values. The kappa for the experiencer property is very good
except for in the radiology reports where a moderate agreement is observed. The lowest kappa
score (moderate) of 0.46 is observed for the specialist letters for the value hypothetical. Because
there was no hypothetical term in the discharge letters, no kappa was calculated for this property
value.

Table 2: Inter-annotator agreement on contextual properties in the EMC clinical corpus

Document type Negated Recent Historical Hypothetical Patient
GP entries 0.90 0.86 0.57 0.48 0.92
Specialist letters 0.90 0.93 0.62 0.46 0.98
Radiology reports 0.93 0.61 0.63 0.57 0.53
Discharge letters 0.94 0.95 0.56 n/a 0.98

Table 3 shows, for each report type, the distribution of the values of the three contextual
properties. The distribution of the negated terms does not vary much between different report
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types. Historical conditions occur more frequently in specialists’ letters and discharge reports, 8%
and 6% respectively, in comparison to GP entries (2%) and radiology reports (3%). This can be
explained by the fact that specialist and discharge letters often include descriptions of the
patients’ past medical history. Hypothetical terms are absent in discharge letters and infrequent
(1% to 2%) in the other report types. The value other for the experiencer property is also found
infrequently (from 0.1% to 2%) in all report types.

Table 3: Distribution of the contextual property values in different types of clinical documents

Document type Total Negation Temporality Experiencer

Negated Not-Negated Recent Historical Hypothetical Patient  Other

GP entries 3626 12%  88%  97% 2% 1% 98% 2%
lseﬁiz'rz"“ 2748 15%  85%  90% 8% 2% 99% 1%

A o ) 0 (] . o . ()
f:s::‘;gy 3684 16%  84%  96% 3% 1%  99.9% 0.1%
Ea'tst‘;hrirge 2830 13%  87%  94% 6% 0% 98% 2%

Table 4 shows the number of English triggers used by the original ConText algorithm and the
number of Dutch language triggers used by ContextD. About 60% of the English triggers were
translated one-to-one into Dutch. For the remaining English triggers, several possible Dutch
translations were added resulting in a much larger number of Dutch triggers. For example, for
the English negation trigger ‘never had’, three equivalent Dutch triggers were added: ‘nooit
gehad’, ‘had nooit’, and ‘hadden nooit’. All the original triggers from ConText were translated to
Dutch without particular issues.

Table 4: Number of English and Dutch trigger terms for each contextual property

Contextual property English triggers Dutch triggers
Negation 160 395
Temporality 42 62
Experiencer 44 52
Total » 246 ] 509
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Table 5 shows the performance on the evaluation set of the ConText algorithm using only
automatically and manually translated Dutch triggers (baseline) and of the ContextD algorithm
after all modifications (final).

Table 5: Results on the evaluation set using only the translated terms from English to Dutch
(baseline) and the final ContextD results with modifications (final)

Precision Recall F-score
Property value Total Baseline Final Baseline Final Baseline Final
Negated
GP entries 175 0.96 0.88 0.66 0.90 0.78 0.89
Specialist letters 177 0.93 0.84 0.63 090 0.75 0.87
Radiology reports 287 0.96 091 0.55 0.97 0.70 0.93
Discharge letters 180 0.98 092 0.67 0.93 0.79 0.92
Recent
GP entries 1365 0.97 0.98 0.98 094 0.98 0.96
Specialist letters 919 0.91 095 0.99 0.92 0.95 0.94
Radiology reports 1341 0.97 0.98 0.98 096 0.97 0.97
Discharge letters 1140 0.93 0.97 0.98 091 0.95 0.94
Historical
GP entries 28 0.15 0.17 0.17 0.54 0.16 0.26
Specialist letters 66 0.47 0.41 0.10 0.76  0.17 0.54
Radiology reports 52 0.30 0.37 0.30 0.67 0.30 0.48
Discharge letters 90 0.36 0.39 0.13 0.78 0.19 0.52
Hypothetical
GP entries 17 0 0 0 0 0 0
Specialist letters 29 0 067 O 007 O 0.13
Radiology reports 6 0 067 O 0.33 0 0.44
Discharge letters 0 0 0 0 0 0 0
Patient
GP entries 1379 0.98 0.98 1.00 0.99 0.99 0.99
Specialist letters 999 0.99 0.99 1.00 0.99 0.99 0.99
Radiology reports 1398 0.99 1.00 1.00 1.00 1.00 1.00
Discharge letters 1220 0.98 0.99 1.00 1.00 0.99 0.99

The baseline performance of the algorithm was poor on the historical terms and could not
identify a single hypothetical term. The experiencer property was the easiest to assign, which is
reflected in the high baseline performance. For the negation property, the precision was high for
all report types but the algorithm missed many negated termes, i.e., recall was low. For the final
ContextD, the recall was considerably improved for negation and historical values on all report
types. Although the performance was improved for hypothetical values on specialist letters and
radiology reports, overall it remained poor.
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The ContextD algorithm utilized 23 unique triggers to identify negated terms, 5 unique triggers
to identify historical terms, 3 unique triggers to identify hypothetical terms, and 10 unique
triggers to identify other terms across all report types. Among the 23 unique triggers for the
negation property, the trigger term ‘geen’ (no) was used most frequently. The most used triggers
for the temporality property and the experiencer property were ‘status na’ (status after) and
‘moeder’ (mother), respectively.

Table 6 shows an analysis of 25 randomly selected false negatives for different contextual
property values in the evaluation set. In 40% of the errors, the evidence trigger was missing from
our trigger list. For instance, in the entry ‘Fam.anamn blanco voor trombose...” (No family history
for thrombosis...) the trigger blanco voor was missing, resulting in misclassifying the negated
concept trombose as Not Negated. These errors can be prevented by adding triggers to the
ContextD trigger lists. It is important to note here that some of the trigger terms causing these
errors (e.g., is weg [is gone]) were intentionally not added in the triggers list to avoid too many
false positives. In 19% of the errors, a pre- or post-trigger alone could not correctly identify the
property value of a term. These errors may be prevented by rules that combine pre- and post-
triggers along with the distance to the actual term (see Combined Triggers) or rules restricting
the scope of a particular trigger. For example, in the sentence ‘Ochtendstijfheid: nee Nachtelijk
rugpijn: nee, Wel zonne-allergie...” (Morning stiffness: no nightly back pain: no, sun allergy
present...), the concept Ochtendstijfheid could have been identified by adding: nee as a post-
trigger with a maximum scope of 2 words. In 17% of the errors, the sentences were too complex
to identify and generalize any trigger or pattern. For example, in the sentence ‘flinke ruizen
drukpijn colon erge pijn in flank sinds een aantal dagen dacht zelf aan niersteen advies’
(significant wheezing pressure pain colon severe pain in flank since a few days was thinking of
kidney stone advise), the concept niersteen (kidney stone) is hypothetical. The possible trigger
dacht zelf (thought himself or herself) could not be used because of its negative impact in terms
of false positives. In 8% of the errors, a variation of the trigger (e.g., a different verb form) was
used. The remaining 16% of the errors were due to miscellaneous reasons, such as typos (e.g.,
no space between the trigger and other words), sentence splitting errors, or the trigger being in
another sentence than the condition.

Table 6: Error analysis of false negatives in the evaluation set

Error Negated Historical Hypothetical Patient Total
Missing trigger 15 7 7 11 40
Complex trigger 1 8 2 8 19
Complex sentence 1 - 15 1 17
Trigger variation - 7 - 1 8
Other 9 3 1 4 16
Total 25 25 25 25 100

Table 7 shows an analysis of 25 randomly selected false positives for the different property
values. The hypothetical and patient values had less than 25 false positives, so all those available
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were included in the analysis. In 37% of the errors, the scope of the evidence trigger wrongly
included the condition. For example, in the sentence ‘Conclusie Geen oogheelkundige verklaring
voor de hoofdpijn’ (Conclusion No ophthalmologic explanation for the headache), the pre-trigger
Geen is wrongly negating the concept hoofdpijn although it has a limited scope. Annotation errors
caused 14% of the errors. Half these annotation errors were because the annotators failed to
pick the historical trigger ‘status na’ (status after) resulting in those terms being labeled as either
Recent or Hypothetical. Two ambiguous triggers for the experiencer property (‘pa’, which could
mean ‘dad’ or ‘pathology’, and ‘oma’, which could mean ‘grandmother’ or ‘acute otitis media’)
caused 14% false positives. Some of the regular expressions in our temporality module caused
11% of the errors because they were either not specific enough or were missing some variations
in the text. For example, in the sentence “... geen dyspnoe wel net influenza gehad ferro en vit ¢
als <3 weken niet beter revisie...” (...no dyspnea recently had influenza ferro and vit c if <3 weeks
not better revision...), the temporality module identified 3 weken (3 weeks) close to the concept
influenza and wrongly labeled it as historical. These types of errors could be avoided by looking
for extra evidence such as net (recently) and relational operators such as < in combination with
the time. In 9% of the false positives, the error was due to missing pseudo triggers. For example,
in the sentence ‘met requip niet minder krampen en wel zwabberig,...” (with requip no fewer
cramps and also unstable,...), the pseudo-trigger niet minder was missing in the trigger list,
resulting in wrongly classifying krampen as Negated. The remaining 15% errors were due to
several other reasons.

Table 7: Error analysis of false positives in the evaluation set

Error Negated Historical Hypothetical Patient Total (%)
Trigger does not apply to condition 9 7 8 8 32 (37)
Annotation error 2 8 2 - 12 (14)
Ambiguous trigger - - - 12 12 (14)
Trigger problem - 10 - - 10 (11)
Missing pseudo trigger 8 - - - 8(9)
Other 6 - 3 4 13 (15)
Total 25 25 13 24 87 (100)

Table 8 shows a comparison of the performance of the final ContextD algorithm and the original
ConText algorithm. The original ConText algorithm was evaluated on six different English clinical
document types [13]. For the comparison, we have selected two document types that appear
similar in both studies. An absent precision or recall means that the results could not be
calculated because the sum of true positives and false positives or the sum of true positives and
false negatives was zero [13]. For the negation property, both algorithms have the same F-score
for the radiology reports, but ContextD appears to perform somewhat better on the discharge
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letters. For the historical property, no comparison could be made for the radiology reports since
no F-score was provided for the ConText algorithm. For discharge letters, the ConText algorithm
performs better. The low performance of ContextD is due to the high number of false positives
(low precision) of which many are annotation errors. For the hypothetical property, no
comparison on the same document type could be made since for the radiology reports no results
were provided for the ConText algorithm, and for the discharge letters no hypothetical terms
were present in the Dutch corpus. For the experiencer property, both algorithms performed
equally well.

Table 8: Comparison of the original ConText algorithm for English with the adapted ContextD
algorithm for Dutch. For ConText, the results are taken from [13]

ConText (English) ContextD (Dutch)
Category Document type Precision Recall F-score Precision Recall F-score
Negation Radiology reports 1.00 0.86 0.93 0.91 0.97 0.93
Discharge letters 0.84 0.89 0.86 0.92 0.93 0.92
Historical Radiology reports - - - 0.37 0.67 0.48
Discharge letters 0.68 0.77 0.73 0.39 0.78 0.52
Hypothetical Radiology reports - - - 0.67 0.33 0.44
Discharge letters 1.00 0.92 0.96 - - -
Experiencer  Radiology reports - - - 1.00 1.00 1.00
_Discharge letters ~ 1.00 100 100 099  1.00 0.99
DISCUSSION

In this paper, we describe and evaluate ContextD, an algorithm to identify contextual properties
of medical terms in Dutch clinical text. To develop and test ContextD, we have also created the
EMC Dutch clinical corpus, with annotations for the three contextual properties negation,
temporality, and experiencer.

The EMC Dutch clinical corpus covers four different types of electronically stored clinical text:
entries from the general practitioner, radiology reports, and two sets of medical letters after
outpatient treatment (i.e. specialists’ letters) or hospital admission (i.e. discharge letters). The
combination of these texts can be considered a representative selection of the documented
medical process in the broadest sense, including the patient’s first interactions with the general
practitioner, referrals and advanced (imaging) diagnostics in the hospital, and ultimately
reporting-back to the general practitioner after polyclinic consult or discharge after hospital
admission.
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Although the GP entries have the smallest size among the four document types in our corpus,
they contain more UMLS terms than the discharge letters, which are the largest. This can be
explained by the fact that our Dutch term list was small, containing mainly common clinical terms,
which are more likely to be mentioned in GP records. The statistics shown in Table 1, therefore,
do not give a realistic view on the occurrence and coverage of clinically relevant terms in different
Dutch clinical texts. A more complete Dutch term list would have identified many more terms in
the clinical text.

The corpus was annotated by two independent annotators. Looking at the differences between
the annotators a few observations can be made. Medically schooled annotators are prone to
using information outside the context and make considerations based on prior knowledge
concerning the natural course of a condition. On various occasions, one annotator labeled a term
as historical based on the assumed chronicity of the disease. At times, annotators had different
opinions about keywords such as ‘status na’ (status after), which suggests a longer existing
condition. One annotator considered such cases as a part of medical history and often labeled
the terms as historical whereas the other annotator sometimes labeled the terms as recent and
sometimes as historical because of the uncertain time frame. The annotators often differed on
the assignment of hypothetical values to terms, e.g., for terms that were part of a differential
diagnosis. In the sentence ‘differentiaal diagnostisch werd gedacht aan appendicitis of
diverticulitis’ (for the differential diagnosis appendicitis and diverticulitis were considered), one
annotator labeled appendicitis and diverticulitis as recent, reasoning that if they exist they exist
now, whereas the second annotator labeled both terms as hypothetical. The inter-annotator
agreement for ‘Patient’ is low for the radiology reports (cf. Table 2), which can be explained by
the very low number of non-patients (class ‘Other’, see Table 3). With such highly imbalanced
class distributions, even a small number of annotation disagreements can result in a low kappa
value.

ContextD baseline results showed poor performance for ‘Historical’ and ‘Hypothetical’ values (cf.
Table 5). The recent and patient values, which were the default values for the temporality and
experiencer properties, showed good results. The final ContextD results (cf. Table 5) show the
improvements especially for the negation and historical values. The most difficult category turns
out to be the hypothetical value for the GP entries where the algorithm failed to correctly identify
a single hypothetical value. Only few hypothetical terms were contained in the corpus, even less
in the training set that we used to expand our trigger lists. We did not find many consistent
patterns in the training set to identify hypothetical terms effectively. About a third of the errors
in the evaluation set were due to the missing trigger ‘bij’ (upon), which did not occur in the
training set. The rest of the errors were due to the sentences being too complex to identify and
generalize a trigger or a pattern.

Although we had a much larger list of Dutch triggers compared to the English triggers, only a
small number of trigger phrases accounted for the majority of the detected terms. This finding is
consistent with findings in other languages [9, 26, 37]. Out of 395 possible Dutch triggers for the
negation property, only 23 negation triggers were actually found in the evaluation set. The error
analysis on the evaluation set suggested a number of new triggers to identify negations,
historical, hypothetical, and experiencer property across all report types. Some of these triggers
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were intentionally not included in the trigger lists because they decreased rather than improved
performance on the development set. A similar problem of some triggers negatively affecting the
result was also found in the Swedish study [26].

Although some automatic and linguistically motivated approaches exist to detect the scope
[17,18,38], the default scopes used in ContextD are approximate due to lack of full grammaticality
in the clinical text. Apart from the standard termination triggers, some additional constraints such
as punctuations were added to limit the scope of triggers in GP entries and in specialist letters.
The scope for negation was varied in length but never extended past the sentence boundary.
Thus, negations that stretched over sentence boundaries were missed. The value of contextual
properties may depend on the section of the clinical text, e.g., a symptom described in the
previous history section will become historical regardless of how it is phrased. This information
was not provided to the ContextD algorithm and as a consequence, terms may have been wrongly
classified. As mentioned above, annotators sometimes used prior medical knowledge concerning
the natural course of a condition to label a value of the contextual property, e.g., assigning
historical value to a term for which the chronicity is assumed. Finding the right value for such
terms is difficult for algorithms like ContextD, which rely solely on the information present in the
direct neighborhood of the term. No effort was made in ContextD to separate patient-reported
symptoms (complaints) and suspected diagnoses from the actual diagnoses made by the
physician. The suspected diagnoses are usually hypothetical whereas symptoms and actual
diagnoses are not, a distinction that requires understanding of the text and therefore is difficult
to make for ContextD-like approaches. It is also important to note that the ConText algorithm is
a simple algorithm meant to identify simple expressions using trigger lists, and was never
expected to capture all attributes. We used case-insensitive exact string matching to find the
UMLS terms in the documents. Any variation of a term such as a spelling mistake is likely to be
missed by this approach. The same can also be true for the trigger terms. It is also to note that
the terms with linguistic variability may occur in variable contexts, which may require some
adjustments in the trigger scope or in the regular expressions.

The ContextD algorithm showed good performance in identifying negation and experiencer
contextual properties. The performance for the historical and hypothetical (and even for
negation and experiencer) properties can be further improved by adding new triggers found in
the evaluation set. We observed some errors due to sentence splitting with Apache OpenNLP
[34], which is trained on regular natural language text. Retraining the sentence splitter to work
better with the Dutch clinical text, especially for the GP entries and specialist letters, would
resolve some of the issues related to the missing context. The radiology reports and discharge
letters are grammatically well structured; therefore, deep sentence parsing and using rule-based
or machine-learning techniques to estimate the trigger scopes for these reports can be
employed. To determine historical and hypothetical concepts better, it is important to
incorporate information about the specific parts of clinical text (e.g., pre-history and diagnosis)
in the algorithm. An extended assertion model that supports multiple values of negation is
required to deal with speculation, e.g., the disagreements on diseases in the differential
diagnosis.
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CONCLUSIONS

The ContextD algorithm showed good performance in identifying terms with negations and
identifying who has experienced a particular medical condition across all four report types. The
temporality property appears to be the most difficult one and methods to identify this property
need to be further developed. The anonymized EMC Dutch clinical corpus, which was annotated
for the three contextual properties negation, temporality, and experiencer, is the first publically
available Dutch clinical corpus and can serve as a useful resource for further algorithm
development.
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ABSTRACT

Background

Clinical narratives that are found in the electronic medical records typically do not conform to
any standard format. The use of standard and non-standard abbreviations, typographical errors,
ill-formed and incomplete sentences makes automated methods to extract information
challenging. This leads to large number of features for machine-learning tasks and further
complicates the detection of clinical terms in narratives that may be relevant for
pharmacoepidemiological purposes. This study aimed at methods to normalize text in electronic
medical records as a way to reduce feature dimensionality.

Methods

We used IPCI (Integrated Primary Care Information), a Dutch general practitioners database,
containing nearly 340 million free-text clinical narratives of more than 1.8 million patients. We
used three methods to normalize text. In the first method, we normalized text by using standard
terminologies such as MedDRA, MeSH, and SNOMED-CT. The second method focused on
mapping abbreviations to their long-forms using a modified version of the Schwartz algorithm,
and in the third method, we grouped words together based on their textual similarities and word
lexemes. We used text normalization as a way to reduce feature dimensionality in a bag-of-words
machine learning method and tested on two different clinical data sets.

Results

The IPCI database contained almost 6 million textually unique words, which followed a Zipfian
frequency distribution. The coverage of the three terminology was low in the IPCI data as we
were able to normalize only 272,791 (4.2%) words. We extracted 14,938 potential abbreviations
using automated methods and mapped to their most probable long-forms from 148,281
candidate long-forms. Grouping similar words together reduced total unique number of words
from almost 6 million to about 1.7 million. The normalized text resulted in 38% reduction in the
features in one data set and 35% reduction in another data set. The reduction in features also
showed positive impact on the classification performance.

Conclusions

We showed that the IPCl data has many term variations including spelling mistakes. We managed
to reduce feature dimensionality using a word grouping based normalization approach. For IPCI
like databases containing large number of clinical narratives, such normalization approach can
be very useful as it can reduce the feature dimensionality for machine-learning tasks but also
help other automated methods in better interpretation of the clinical text.
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INTRODUCTION

General practitioners and specialists are increasingly using electronic medical records, rather
than paper for keeping notes and information on the patient. Much information in these records
is in clinical narratives (natural language). One problem in automated analysis of natural language
is that there is no standard way of writing clinical narratives that are found in the electronic
medical records (EMRs). The style of writing, the amount of information, and the use of language
may vary from one healthcare center to another, even from one clinician to another and from
one medical record information system to the other. Some clinical documents are used as a
formal way of communication between clinicians such as discharge summaries or referrals;
others may be used as references such as nurses’ daily notes. In the Netherlands, the general
practitioners (GPs) serve as a first point of contact to the patients. For every patient visit, the GP
writes down the reason for visit, problems as described by the patient, an evaluation, and the
resulting advice or prescription [1]. This information is mainly collected for primary care purposes
and mostly serves as a diary to the GP. Since this information is for internal use only and the GPs
are typically under time-pressure, free-text narratives in the primary care databases often
contain ill-formed and incomplete sentences. EMRs may contain many typographical errors and
standard and non-standard abbreviations. For brevity, we will refer to abbreviations and
acronyms as short forms in the manuscript. Using such natural text is challenging since they
complicate the detection of clinical terms such as drugs and their adverse effects, which may be
relevant for pharmacoepidemiological purposes. For machine learning tasks where individual
words (or combination of) are typically used as input variables or features, such noisy text results
in a large number of features and due to this, feature selection models like bag-of-words suffer
from the ‘curse of dimensionality’.

Much work has been done in correcting typographical errors and normalizing short forms to their
long-forms in general but only a few have focused on free-text in EMRs. Patrick et al. [2] used a
dictionary-based heuristic approach for spelling corrections in clinical notes. They used several
sources to build their dictionary. An edit distance algorithm was used to generate suggestions
and a trigram model was then used to rank the suggestions. Crowell et all. [3] used the open-
source GNU Aspell program to generate suggestions for misspelled words. They used frequencies
of the possible corrections to rank the suggestions instead of using the default ranking by the
tool. Tolentino et al. [4] built a dictionary from the Unified Medical Language System (UMLS) and
WordNet sources for spelling corrections in vaccine safety reports. Kenneth et al. [5] used
Shannon’s noisy channel model to detect and correct misspellings in clinical free-text records.
They also used a named entity recognition system to prevent person names from being
corrected. Rohit J Kate [6] used a novel method to automatically learn patterns of variations of
clinical terms from known variations from the UMLS. In non-English EHRs, Sikloski et al. [7] used
a statistical method to correct single spelling errors in Hungarian clinical records. Grigonype et
al. [8] used a combination of edit distance and phonetic similarity algorithms to generate
suggestions and then used an n-gram model to analyze the suggested corrections for Swedish
EHRs.

47



Chapter 3

A comparative study [9] evaluated MetaMap [10], the Medical Language Extraction and Encoding
System (MedLEE) [11], and cTAKES [12] on handling short forms in discharge summaries
concluded that correct identification of clinical abbreviations is still a challenging task. Task 2 of
the shared CLEF (Conference and Labs of the Evaluation Forum) eHealth challenge [13] focused
on normalizing short forms to aid patient understanding of clinical text. The task organizers
reported that reasonably high accuracy can be achieved on normalizing short forms but resolving
ambiguous short forms is still challenging.

To our knowledge, there is no study that focused on normalizing words (clinical and non-clinical)
in Dutch primary care EHRs. The effect of normalization on machine learning tasks, such as
automated identification of patients with a certain disease or a symptom, has not been
considered before as well. The amount of textual variations caused by typographical errors, and
the use of standard and non-standard abbreviations that are often ambiguous make
normalization a very challenging task. Most of the spelling correction methods are dependent on
dictionaries and building a comprehensive medical dictionary is very difficult [5]. A large number
of misspellings or morphological variations greatly increase the number of features in machine-
learning tasks when words are used as features. To reduce these problems, variations and
misspellings of a word should be normalized to one single representation. In this study, we aimed
at methods to normalize text in Dutch EHRs. The normalization process involved using standard
terminologies, grouping similar words together without using a dictionary, and automatically
finding and mapping short-forms to their full-forms in the database. The normalization was used
as a way to reduce feature dimensionality in a bag-of-words model. Performance was evaluated
on two different clinical data sets.

METHODS

Data used in this study were taken from the Integrated Primary Care Information (IPCl) [14], a
Dutch general practitioners database. The database is a collection of longitudinal electronic
medical records from general practitioners in the Netherlands. The medical records contain
medical notes related to symptoms, physical examinations, assessments and diagnoses, clinical
findings, prescriptions and indications for therapy, information about patient referrals,
hospitalization, and laboratory results. One patient record in IPCI may consist of one or more
entries, where each record pertains to a patient visit or a letter from a specialist. In total, the
database contains nearly 340 million free-text entries of more than 1.8 million patients.

Normalization approaches

We used three approaches to normalize text in the EHRs. In the first approach, we explored the
possibility of normalizing words in the EHRs to standard words from a set of terminologies. The
second approach was aimed at normalizing short-forms to their long-forms in an automated
fashion. In our third approach, we normalized words based on their similarity to each other. The
similarity was measured using an edit distance algorithm and word lexemes.
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Use of terminologies

We selected three commonly used terminologies, MedDRA (Medical Dictionary for Regulatory
Activities), MeSH (Medical Subject Headings), and SNOMED-CT (Systematized Nomenclature of
Medicine - Clinical Terms) for this approach. The Dutch translations of concepts and terms were
extracted from the UMLS. The terminologies were supplemented by automatic translation of
English terms using Google Translate for concepts without a standard Dutch translation in the
UMLS. No context was available for the terms to use during translation; therefore, it is possible
that some of the terms are not translated accurately. For terms where the translator returned
multiple alternatives, we picked the first one.

We used Peregrine, our dictionary-based concept recognition system [15], to compute the
coverage of the terminologies in the IPCI text. In short, Peregrine uses a user-supplied dictionary
or terminology and splits the terms in the terminology into sequences of tokens. When such a
sequence of tokens is found in the text (using exact matching), the term and the concept
associated with that term is recognized.

Mapping short-forms to long-forms

Free-text entries in IPCI contain many short-forms, most of which are non-standard and
ambiguous. They either are created by the GPs on the fly, known only to them, or have specific
meaning in one clinical domain. Identifying short-forms and their long-forms (definitions) is a
challenging task [9,13], especially from ungrammatical free-text. We first identified potential
short-forms in text by automated filtering; from a list of all unique words in the text, we first
selected words consisting of a maximum of four characters (excluding the punctuations). All the
dictionary and stop-words were then removed from the selected words. We used the Dutch stop-
word list available in Snowball [16], a library of stemming algorithms. The remaining words were
considered as potential short-forms. A modified version of the Schwartz algorithm [17] was then
applied on the entire IPCI database entries to identify long-form candidates for each of the
potential short-forms. The Schwartz algorithm is a simple algorithm that was developed to detect
short-form long-form pairs from biomedical text. The algorithm requires both short-form and the
long-form in the same sentence. In GP notes, short-forms and long-forms are hardly found
together in the same sentence. The original Schwartz algorithm was therefore modified to take
in a list of short-forms and then look for long-forms in all text.

To reduce noise, all long-form candidates containing a digit or a special character were removed.
For each short-form long-form pair, we identified a type: whether a short-form was a truncation
of the long-form, an acronym or initialism (abbreviation consisting of initial letters pronounced
separately), portmanteau (blend of two or more words), or something else. We removed all
short-forms of length 2 because of the very high number of resulting noisy long-forms identified
by the algorithm. If there were still multiple potential long-forms for an abbreviation after
filtering, the long-form with the highest frequency in the database was chosen as the final long-
form for the abbreviation.
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Word groupings

We grouped words together based on their textual similarities in order to normalize all word
variations into a single representation. Two different methods were used for the word groupings.

Word groupings based on edit distance

We first created a large similarity matrix of all unique words in IPCI by using the Damerau-
Levenshtein distance algorithm, which counts for four operations: insertion, deletion,
substitution, and transposition. The Damerau-Levenshtein distance algorithm differs from the
widely used Levenshtein distance algorithm in that it allows for transposition. For each pair in the
similarity matrix, the Damerau-Levenshtein distance between the two words and the frequency
of each word in the IPCI database was recorded. To create the word groupings or clusters, we
used an approach similar to the Partitioning Around Medoid (PAM) algorithm [ref], which is one
of the approaches in k-medoid clustering. In PAM, k points are initially selected to be the cluster
medoids. Each of the remaining points are then associated to the cluster with the closest medoid.
In the last step, members of the clusters are swapped if that decreases the total cost of the
clusters. We used a slightly different approach for clustering. We first created a list of all unigrams
in IPCI and sorted them on their frequency. Instead of pre-selecting kK words as medoids, we
processed the sorted list from top to bottom one by one and created clusters around the
medoids. The cluster-creating algorithm is described in pseudocode in Table 1.

Table 1: Pseudocode algorithm for creating clusters

Input: L, frequency-sorted list of words; S, matrix of similarities between words
Output: C, ...

X =empty set
For each word Wi in sorted list L
If word Wi is not in the list X of already consumed words
Cx=empty set
Set word W; as medoid of Cy
Extract all precomputed values R from the similarity matrix for Wi
For each word Rjin R
If distance between W; and R; is less than or equal to the pre-specified criteria
If additional_criteria also matched
Add word R; to cluster Cx
Add word R; to the list X
Select Wi as the head word of the cluster Cx

We generated four sets of clusters based on different criteria, as shows in Table 2. The headword
is used as the normalized word to represent all the words in the cluster.
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Table 2: Member selection criteria for different clustering schemes

Clustering scheme  Criteria
Baseline IF Length of medoid word <=5 characters
THEN Maximum allowed distance 1 character
IF Length of medoid word > 5 AND <= 7 characters
THEN Allowed distance 2 characters
IF Length of medoid word > 7 AND <= 10 characters
THEN Allowed distance 3 characters
IF Length of medoid word >10 characters
THEN Allowed distance 4 characters
Scheme 1 IF Length of medoid word < 5 characters
THEN Allowed distance 0 character
IF Length of medoid word >=5 AND <= 7 characters
THEN Allowed distance 1 character
IF Length of medoid word > 7 AND <= 10 characters
THEN Allowed distance 2 character
IF Length of medoid word >10 characters
THEN Allowed distance 3 character

Scheme 2 All criteria of Scheme 1 AND
Frequency of the member word in the cluster <= 1000

Scheme 3 All criteria of Scheme 2 AND
Frequency of the member word <= half of the frequency of the medoid
word

Word groupings based on lemmas

The second method we used to create word clusters was based on word lemmas. We used Frog
software [18] to find lemmas of all the words in the IPCI database. Frog is a memory-based
morphosyntactic tagger and dependency parser for the Dutch language and it is freely available.
Besides lemmatization, Frog can tokenize, tag, morphologically segment word tokens, identify
named entities, and assign dependency graphs to Dutch text. To generate clusters, we grouped
all words with the same lemma together. For each cluster, the lemma was used as the head word.

Evaluation

We performed two different types of evaluations in this study. The first evaluation focused on
evaluating different clustering schemes in order to select the best one. Second to evaluate the
effect of word normalization as a feature reduction method in a machine-learning task.

Clustering can be evaluated using an internal or an external validation method [19]. An external
validation requires information that is not present in the data, usually a gold standard or a
reference set. An internal validation only relies on the information present in the data. In the
absence of a reference set to compare the quality of the clustering, we used an internal clustering
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validation method. Several internal validation methods are described in [19-21]. We used Davies-
Bouldin Index (DBI) [22] as an evaluation measure. DBl measures the separation between the
clusters and the compactness within the clusters based on the distances. We measured
separation by calculating the distance between the centroids of the clusters and compactness by
measuring the distance of the cluster members to its centroid. Ideally, the separation between
the clusters should be as large as possible and the within cluster scatter as low as possible.

We used two clinical data sets to evaluate the effect of word normalization on classification
performance. The data for each set was taken from the IPCI database. Both data sets were
manually validated for positive and negative cases. The process of extracting and validating
clinical data is explained elsewhere [23]. The first data set ‘colorectal cancer’ (CRC) consisted of
4521 cases, out of which 1946 cases were positive and 2557 cases were negative. The second
data set ‘colorectal polyps’ (POYLP) consisted of 4502 cases, out of which 926 were positive and
3576 were negative. We used C4.5, a well-known decision tree learner in our experiments.

RESULTS

The IPCI database contained almost 6 million unique words. Figure 1 shows the frequencies of all
IPCI word lengths in character. The frequency distribution of the unique words followed Zipf’s
Law, according to which the frequency of a word is inversely proportional to its rank (Figure 2).
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Figure 1: Histogram of lengths of words in the IPCI database
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Figure 2: IPCl word frequency chart on a log-log scale. Horizontal axis represents

word rankings according to frequency; vertical axis represents word frequencies
in the IPCl database

Table 3: Characteristics of the three Dutch-translated terminologies

Terminology Dutch terms extracted from UMLS  Translated Total Terms
MedDRA 71,185 1,442,224 1,513,409
MeSH 39,729 2,291,832 2,331,561
SNOMED-CT 0 2,650,162 2,650,162

Table 3 summarizes the characteristics of the terminologies. We computed the coverage of the

three terminologies with Dutch medical terms on the IPCI data. Table 4 shows the coverage
results on term level for each terminology.
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Table 4: Coverage of the three Dutch terminologies

IPCI Terms Found (Total)

MedDRA MeSH Snomed-CT Total
Terms 116,666 89,441 66,684 272,791

(1,513,409) (2,331,561) (2,650,162) (6,495,132)
Coverage (%) 7.71 3.84 2.52 4.2

The terms were identified using our Peregrine indexing engine. The three terminologies
combined contained 6,495,132 non-unique terms. Out of 5,973,858 unique terms in IPCI, only
272,791 terms were found in any of the three terminologies. The overall coverage of IPCI terms
in the terminologies was only 4.2%, with the highest of 7.71% in MedDRA and the lowest of 2.52%
in Snomed-CT.

We first identified 14,938 potential short-forms in the database by using the method explained
above. Later, the Schwartz algorithm was used to identify long-forms for each of the potential
short-forms. The algorithm was applied to the whole IPCl database containing nearly 340 million
free-text entries. For 14,938 short-forms, the algorithm identified 148,281 potential long-forms.

Table 5: Potential short-forms, their identified long-forms, and filtering results

Short form Short forms  Abbr. F1: Same F2: Long F3: Long F4: Long
Length Long Long Formas Forms Forms Forms
Form Abbreviation Containing Containing Containing
(%) Digit (%) Special Stop-words
Characters (%)
(%)
3 4774 79676 2019 (2.5) 647 (0.8) 10120 2303 (2.9)
(12.7)
4 10164 68605 2874 (4.2) 465 (0.7) 9202 8096 (11.8)
(13.4)
Total 14938 148281 4893 (3.3) 1112 (0.8) 19322 (13) 10399 (7)

Several filters were applied to identify and remove the incorrect long-forms identified by the
algorithm. Table 5 shows the results of the short-form identification, Schwartz algorithm, and
several filters applied on the identified long-forms. Sometimes the long-form identified by the
algorithm was the same as the short-form, e.g., a.d.o. and A.D.O.; such obviously erroneous pairs
were removed from the list. The long-forms containing one of the following characters were also
removed: “\,;:\-><()$% " #'&?+]".

All potential short-forms and their long-forms pairs where the short-forms were not acronyms,
initialisms, or portmanteaus (i.e. blend of words) were also removed. Table 6 shows the final
number of short-forms and their long-forms after filtering.
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In total, short-form filtering resulted in about 80% reduction and long-form filtering resulted in
about 93% reduction.

Table 6: Filtered short-forms and their long-forms

Short-form Length # of Short- Short-form Long Forms Long Forms
forms Reduction (%) Reduction (%)

3 1067 67 4203 95

4 1877 81 5645 92

Total 2944 80 9848 93

A histogram showing the distribution of short-forms and their long-forms before and after
filtering is presented in Figure 3.
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Figure 3: : Histogram showing number of short-forms and their long-forms for
both full and filtered set

The Davies-Bouldin Index (DB Index) was used to evaluate and compare the different clustering
schemes. (A lower DB Index indicates a better clustering scheme.) The baseline method for edit
distance based clustering yielded 721,014 clusters with a DB Index of 1.54. Ignoring words smaller
than 5 characters for similarity measures and increasing the error threshold (Scheme 1)
immediately improved clustering performance but also increased the number of clusters to
1,553,557. Filtering clustering members on their frequencies (Scheme 2 and 3) further improved
the clustering performance. The lowest DB Index score of 0.90 with 1,719,394 clusters was
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observed for scheme 3. The second method, where clusters were generated using word lemmas,
resulted in 5,099,050 clusters and a DB index of 5.18, much larger than the DB indices of the edit
distance based methods.

Table 7: Number of resulting clusters for each clustering method and the corresponding DB
Index score

Clustering method Number of Clusters DB Index

Edit Distance Based Baseline 721014 1.54
Scheme 1 1553557 0.96
Scheme 2 1539575 0.95
Scheme 3 1719394 0.90

Lemma Based 5099050 5.18

To see the effect of word normalization on feature reduction, we used the POLYP and CRC data
sets. A bag-of-words (BoW) feature representation scheme was used on both sets. In total,
346539 features were extracted from the POLYP data set (Table 8). Several pre-processing filters
were applied before extracting the features, such as removing numbers, words containing digits,
and negated words. We used word clusters from scheme 3 of edit distance based clustering and
lemma-based clusters for word normalization.

Table 8: Effect of word normalization on feature reduction using word clusters on two data sets

Data Edit Distance Based Lemma Based Clustering
Set Clustering (Scheme 3)
# Features before  # Features after ~ Reduction # Features after Reduction
normalization normalization normalization
POLYP 346539 214105 38% 329610 5%
CRC 292700 191893 35% 284715 3%

The normalization using edit distanced based clusters resulted in 38% reduction in the features
whereas only 5% reduction was observed when lemma based word normalization was applied.
A similar trend was observed on the second data set of CRC, where edit distance achieved 35%
reduction as compared to only 3% reduction using lemma based clusters. The results from lemma
normalization are not surprising considering the number of clusters it generated, due largely to
the amount of textual variations such as typos, misspellings, and words without spaces in the
text.

We used C4.5 classifiers on both data sets to see the impact of feature reduction on classification
performance of identification of cases of CRC or polyps in the data set. The precision, sensitivity
(recall), specificity, and F-scores were calculated for each of the data sets first without
normalization and then normalization based on edit distance clusters and lemma-based clusters.
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Table 9: Classification performance on both data sets with and without word normalization

Data Set Precision  Sensitivity Specificity F-score

POLYP Without Normalization 0.812 0.857 0.849 0.834
With Edit Distance Based Normalization 0.808 0.879 0.841 0.842
With Lemma Based Normalization 0.827 0.863 0.863 0.845

CRC Without Normalization 0.880 0.829 0.971 0.854
With Edit Distance Based Normalization 0.881 0.830 0.971 0.855
With Lemma Based Normalization 0.883 0.825 0.972 0.853

The results in Table 9 show that feature reduction using word normalization (both methods)
slightly improved the classification performance. On the POLYP data set, the sensitivity was
increased from 0.857 to 0.879. However, the best F-score of 0.845 was achieved using lemma-
based feature reduction. On the CRC data set, edit distance based feature reduction achieved the
highest sensitivity of 0.830 and the highest F-score of 0.855. On both sets edit distance based
feature reduction resulted in improved sensitivity.

DISCUSSION

In this study, we considered reducing feature dimensionality by normalizing text in the electronic
health records and tested the impact of this on identification of certain cases from text. We
showed that word clustering may be used to normalize text in medical record like databases
which contains a lot of textual variations such as grammar, typographical errors, and words
without spaces. We clustered textually similar words using Damerau-Levenshtein distance
algorithm and using word lemmas. We applied feature reduction using both clustering methods
on two data sets and observed improvement in the classification performance.

We identified almost 6 million textually unique words by processing nearly 340 million patient
entries. We used three common terminologies containing Dutch translations from the UMLS to
check their coverage in the IPCl database. We explored the possibility to use only identified
medical terms as features in order to reduce feature dimensionality but we observed a very low
term level coverage (4.2%). One reason could be that although the three terminologies we used
are common but these were not perhaps not very suitable for this database. Many terminologies
in the UMLS do not have Dutch translated terms and it is expensive to use machine translation
on large scale to translate each English term into Dutch. Since the translation is also done without
context, it is also possible that some of the terms are not correctly translated. It is hard to quantify
whether using more terminologies will result in much different coverage scores. Another likely
scenario for low coverage is the type of free text in the IPCl database. The text is often noisy as
explained earlier and the Peregrine concept recognition system used in the experiments only
does exact matching. Although Peregrine also uses stemming (i.e. reducing words to their stem
or root form) in the matching process, it was not able to identify many words with large
variations. Some of the typos such as spelling errors in the middle or at the beginning could have
been captured using fuzzy matching, but it was not available in Peregrine.
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There has been a lot of work done on identifying and normalizing short forms in biomedical text
but not so much from the clinical text and even less from non-English languages. Clinical texts
such as nurses notes and GP entries are written under time pressure and contain many standard
and non-standard short-forms. Normalizing short-forms to their full form (long-form), which
would improve feature extraction, is a challenging task in clinical text [9,13]. Most of the
approaches involved supervised machine learning methods (such as SVM or CRF) where a
manually labeled training set is usually available. In this study, we first used heuristics to identify
potential short forms and then used the Schwartz algorithm to identify potential long-forms for
each potential short-form. This simple method can essentially be used without worrying about
the type of the text and the language. Since this is an unsupervised approach applied to a Dutch
GP database, it cannot be directly compared with previous methods used. Implementing efficient
post-processing filters is crucial since this method is prone to generate many false positives. We
focused on the short-forms of lengths up-to 4 characters (excluding punctuations). This resulted
in a large number of potential short-forms (cf. Table 5) and in a very large number of potential
long-forms. Although various filters removed about 80% of the short-forms and about 93% of the
long-forms (c.f. Tables Table 5 and Table 6), there were still many short-form/long-form pairs left.
Many short-forms resulted in more than one long-forms (cf. Figure 3). Although others have
considered this a word sense disambiguation (WSD) problem and tried to tackle it accordingly
[9,13], we used a naive approach to select the most frequent long-form among the options.

An edit distance and word lemma based methods were explored to cluster textually similar words
together. The challenge with edit distance based methods is to define an optimal similarity
threshold. We used a rather lenient threshold to calculate a baseline. Our results show that using
a strict threshold improves clustering performance but at the cost of the resulting number of
clusters. Based on our analysis of a small random set of clusters, we used word frequency
information as an additional criterion to add words in the same clusters. For example, the edit
distance between the Dutch words ‘specialisme’ (‘specialty’ in English) and ‘specialist’ (same in
English) is two and using Scheme 1 they both ended up in the same cluster, which is semantically
incorrect. We reasoned that the frequency of a certain typo or a misspelled word should not be
very high and if a cluster member has a very high frequency in the database, it may actually be a
correct word. Our results show that adding a criterion that the frequency of a cluster member
must be lower than half of the frequency of the cluster head word, works best, achieving the best
Davies-Bouldin Index of 0.90. Lemma-based clustering resulted in more than 5 million clusters
from roughly 6 million words, indicating that the Frog lemmatizer was not able to assign the
canonical forms to most words. This was not surprising for two reasons: 1) the Frog lemmatizer
is trained on a non-clinical Dutch lexicon so it may not work as good on clinical terms, and 2) the
text in the IPCl database is very noisy, and since lemmatization process usually involves
vocabulary and morphological analysis of the words, it may have a strong impact on the
performance. The edit distance based clustering method (scheme 3) reduced the total number
of unique words by 71% as compared to the lemma based clustering method, which resulted in
a total reduction of only 15%.

Previous studies on normalizing clinical data mainly focused on spelling corrections and
abbreviation identification and expansion [3-10]. Most of those methods are dependent on
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linguistic resources such as dictionaries or domain specific terminologies. None of the previous
studies have looked into the effect of these normalizations on a machine-learning task. We
considered text normalization as a way to reduce feature dimensions in medical record databases
that contain plenty of word variants, and tested the impact of this on identification of diagnoses
in this type of textual data. On both clinical data sets used in this study, POLYP and CRC, a large
feature reduction was observed using the edit distance based feature normalization method as
compared to the lemma based word normalization. The feature reduction had a small positive
impact on the classification performance. On the POLYP data set, the highest F-score was
observed for the classifier where features were normalized using word lemma based clusters. On
both sets edit distance based feature reduction resulted in improved sensitivity, which is usually
important for clinical data sets.

There were several study limitations. Firstly, the Schwartz algorithm identified many potential
long-forms for each potential abbreviation. Although filtering removed many pairs, we still end
up with many pairs. No efforts were made to disambiguate short forms and their long-forms.
Rather, a simple approach was used to select the long-form using the frequency information. This
may have resulted in picking up several incorrect long-forms. Secondly, for practical reasons only
a couple of similarity thresholds were experimented with for edit distance algorithm. Thirdly, the
frequency information used while clustering words may have resulted in incorrectly filtering
some common and frequent grammar variations of words. For example, ‘huisarts’ (general
practitioner) and the plural ‘huisartsen’ (general practitioners) ended up in two different word
clusters. Since it would have required a lot of effort to train the lemmatizer on IPCI data, we
choose to use Frog with its pre-trained models for lemmatization, which are not optimized for
clinical text.

In conclusion, we managed to reduce feature dimensionality using a word clustering based
normalization approach. We showed that word normalization resulted in better classification
performance to identify diagnoses in this medical record dataset, especially in improving
sensitivity. Finding several long-forms for each potential short-form indicates the ambiguity of
short-forms used by GPs. Our results suggest that more efforts are required for better context-
aware disambiguation. For IPCI like databases where the text is often grammar-free and contains
a lot of variation, a feature normalization approach using textually similar word clusters could be
very useful. Grouping similar words to get potentially more useful terms, identifying standard
and non-standard abbreviations, and using standard terminologies are needed to better facilitate
automated interpretation of the clinical text.
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ABSTRACT

Background

Propensity score (PS) methods are commonly used to control for confounding in comparative
effectiveness studies. Electronic health records (EHRs) contain much unstructured data that
could be used as proxies for potential confounding factors. The goal of this study was to assess
whether the unstructured information can also be used to construct PS models that would allow
to properly deal with confounding. We used an example of coxibs (Cox-2 inhibitors) vs. traditional
NSAIDs and the risk of upper gastro-intestinal bleeding as example, since this association is often
confounded due to channeling of coxibs to patients at higher risk of upper gastro-intestinal
bleeding.

Methods

In a cohort study of new users of nonsteroidal anti-inflammatory drugs (NSAIDs) from the Dutch
Integrated Primary Care Information (IPCl) database, we identified all patients who experienced
an upper gastrointestinal bleeding (UGIB). We used a large-scale regularized regression to fit two
PS models using all structured and unstructured information in the EHR. We calculated hazard
ratios (HRs) to estimate the risk of UGIB among selective cyclo-oxygenase-2 (COX-2) inhibitor
users compared to nonselective NSAID (nsNSAID) users.

Results

The crude hazard ratio of UGIB for COX-2 inhibitors compared to nsNSAIDs was 0.50 (95%
confidence interval 0.18-1.36). Matching only on age resulted in an HR of 0.36 (0.11-1.16), and
of 0.35 (0.11-1.11) when further adjusted for sex. Matching on PS only, the first model yielded
an HR of 0.42 (0.13-1.38), which reduced to 0.35 (0.96-1.25) when adjusted for age and sex. The
second model resulted in an HR of 0.42 (0.13-1.39), which dropped to 0.31 (0.09-1.08) after
adjustment for age and sex.

Conclusions

PS models can be created using unstructured information in EHRs. An incremental benefit was
observed by matching on PS over traditional matching and adjustment for covariates.
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INTRODUCTION

Electronic health records (EHRs) are primarily used for routine medical care, but secondary use
of EHR data for observational research is becoming increasingly popular especially in studying of
drug effects postmarketing [1]. In this era, data is used to generate information on drug safety
and effectiveness in a cost-efficient way and by exploiting actual care patterns, which differ
largely from experimental settings [2-5]. In an experimental setting such as in randomized clinical
trials, the choice for a treatment is randomized, which would take care of potential confounding
by indication [6]. In actual care, the treatment decision is usually influenced by measurable
patient characteristics such as medical history, concomitant drug intake but also by personal
prescriber preferences, which cannot be measured easily. This phenomenon of preferential
prescribing is also known as channeling and may lead to confounding by indication [7,8]. A well-
known example of channeling is the preference of doctors to prescribe selective cyclo-
oxygenase-2 inhibitors (COX-2 inhibitors) over nonselective (ns) non-steroidal anti-inflammatory
drugs (NSAIDs) to patients at risk of developing upper gastrointestinal bleeding (UGIB)[9,10], as
the COX-2 inhibitors were developed on purpose to mitigate the Gl effects of NSAIDs. Although
clinical trials showed that COX-2 inhibitors are ‘safer’ than nsNSAIDs in relation to UGIB[11],
observational studies showed no large differences between the rate of UGIB between COX-2
inhibitor and nsNSAIDs, possibly due to residual confounding by indications arising from
channeling[12]. In order to obtain unbiased estimates in observational studies this confounding
must be dealt with adequately. However, it is challenging to capture all relevant channeling
factors in the EHR databases because information is not primarily recorded for research
purposes. Moreover, relevant information may also be recorded in EHRs in an unstructured way
[13,14].

Attempts to construct methods that deal with confounding have resulted in the propensity score
method, the propensity score is an estimated conditional probability of receiving one particular
treatment over another given a set of measured covariates [15], it can be regarded as a
comprehensive way to look at channeling. Propensity score methods can be used to control for
the unbalance between the treatment groups in order to estimate the comparative effectiveness
of treatments [15]. Four different methods of using the propensity to reduce confounding have
been described [16]: (1) matching on propensity score; (2) stratification on the propensity score;
(3) inverse probability of treatment weighting using the propensity score; (4) and covariate
adjustment using the propensity score. Typically, all variables related to either the outcome
and/or exposure, are included in the propensity score model [17,18], sometimes these variables
are not the exact confounding factors but proxies thereof [19]. Yet, identifying appropriate
proxies in large EHRs is challenging. Schneeweiss et al. [20] proposed a high-dimensional
propensity score (hd-PS) algorithm to empirically identify a large number of relevant covariates,
with high prevalence, to control for confounding. In a case study on coxibs and NSAIDs using
claims data in the USA, application of the hd-PS algorithm to control for confounding was found
to produce an effect estimate for the risk of upper Gl complications between coxibs vs. NSAIDs
that was comparable to the one found in randomized trials[21]. The hd-PS model is constructed
by using many covariates of which some could serve as proxies for unobserved factors that
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otherwise may not be considered. Typically, only structured information such as diagnostic or
procedure codes that is available in the claims databases, are included in the model. Rassen et
al. [22] evaluated whether adding two-word phrases, present in patients’ unstructured free-text
data, to the propensity score model could improve validity of pharmacoepidemiology studies.
Adjusting for two-word phrases resulted in an improvement in confounding adjustment.
Electronic health records comprise much unstructured data and we propose that this information
could also be used as proxies for potential confounding factors.

The aim of this study was therefore to assess whether unstructured text in EHRs can be used to
construct a propensity score model that would allow to properly deal with confounding. We
assessed the performance of propensity score models in addressing confounding by indication
using as an example the association between selective COX-2 inhibitors and nonselective NSAIDs
in relation to upper gastrointestinal bleeding.

METHODS

Data source

We used data from the Dutch Integrated Primary Care Information database (IPClI) [23], a
population-based general practice EHR database. This database contains prospectively collected
routine care data representing real-life practice. In the Netherlands, all citizens are registered
with a general practitioner (GP), who acts as a gatekeeper to secondary and tertiary medical care.
IPCI contains information on more than 1.8 million patients from 340 GP practices. For each
individual person, all relevant medical information from primary and secondary care is
documented in the medical record. Apart from patient demographics, the recorded information
in the EHRs contain medical notes (including symptoms, physical examination, assessments and
diagnoses), drug prescriptions, laboratory results, referrals for hospitalization or specialist care,
and hospital discharge summaries. In the IPCl database, drug prescriptions are recoded according
to the Anatomical Therapeutical Chemical (ATC) classification for research purposes [24].
Diagnoses are coded according to the International Classification for Primary Care (ICPC) [25].
Almost 60% of the medical records are clinical narratives, which do not contain coded
information, but contain important information such as patient-reported symptoms and notes
from the GP.

Selection of NSAID cohort

We created a cohort of all new adult (218 years) users of NSAIDs between 1996 and 2013.
Patients had to be enrolled for at least one year in the database in order to be eligible for cohort
entry. Within the NSAID cohort, we created episodes of ‘new’ NSAID use according to the
following criteria: (a) at least six months of data available before NSAID exposure, (b) no
prescription of any nonselective NSAID or selective COX-2 inhibitor in the previous six months (c)
no mentioning of drug names, in the free-text, corresponding with NSAID-related ATC codes in
the previous six months. The duration of a prescription was calculated by dividing the prescribed
quantity by daily dose regimen. An NSAID episode continued when consecutive NSAID
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prescriptions started before or within 30 days of the end of the duration of the previous
prescription. The end of the episode was defined as the end of the last NSAID prescription (see
figure 1). Episodes were classified as an nsNSAID or COX-2 inhibitor episode based on the first
prescription in that episode being an nsNSAID or a COX-2 inhibitor, respectively. If a patient
switched between exposure (from COX-2 inhibitor to nsNSAID or vice versa), the duration of the
NSAID episode was ended at the switch of the exposure. A patient could have multiple NSAID
episodes, but only if the above-mentioned criteria were met.

Episode

o
C

6 months prior to
first exposure

© Patient registration in IPCI

W First exposure to nsNSAID or COX-2 inhibitors— Start of the episode
Start of the prescription
End of the prescription

P Duration of the prescription
Last consecutive prescription plus 30 days - End of the episode

© End of patient registration in IPCI

||| Time between two prescriptions <= 30 days

-~ Time between two prescriptions > 30

™ Patient episode

Figure 1: Episode selection

Selection of Upper Gastrointestinal bleeding patients

Within the cohort of new NSAID users, we identified all potential subjects who experienced an
upper gastrointestinal bleeding (UGIB) via an automated search [26]. UGIB was defined as all
forms of ulcer complications such as bleeding, perforation, or obstruction. The entire medical
record of all potential UGIB patients was extensively reviewed to ensure the diagnosis and the
date of onset. Any other cause of UGIB (such as variceal bleeding or Mallory Weiss bleeding) was
excluded. The date of UGIB was determined as the date of first mentioning of symptoms leading
to the UGIB diagnosis or if this date was unknown, the date of diagnosis.
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Propensity score model

A propensity model was fitted using all information (structured and unstructured) in the EHR. To
reduce the number of potential variables we first converted all text to lowercase after which we
removed special characters, words not starting with a letter or a digit, stop words (such as de,
het — the article the in English), and punctuation. All unique words (also known as unigrams) in
the 6 months prior to cohort entry were extracted and used as textual features (potential
covariates). This approach is commonly known as bag-of-words (BoW) model. We tested two
methods to limit the number of covariates that would be included in the regression. The first
method generated models using covariates of which the frequency in the cohort was above a
certain threshold, e.g., 1000 without any further selection. In the second method, we generated
a model using covariates that were associated with the outcome. The chi-square test was used
to select covariates that were statistically significantly associated with the outcome (p-value less
than 0.05). Another propensity model (method 3) was added for comparison, where only the
established confounders (i.e. age, sex, and the exposure to low-dose aspirin) were included in
the propensity score model. We used patients’ prescription information to calculate exposure to
low-dose aspirin.

The selected features were subsequently used in a large-scale regularized regression using a
LaPlace prior [27] with the hyper-parameter of 0.01 to construct a propensity model for each
method. The advantage of using a regularized regression is that it can handle high-dimensional
data. A flowchart depicting the process of propensity score model generation (for methods 1 and
2) is presented in Figure 2.

Free-text
| feature extraction
(unigrams)

MNew Users

IPCl database ‘
extraction

h 4

Feature filtering »| Regression model »| Propensity model

Y

Figure 2: Flowchart showing the process of generating a propensity score model
from unstructured free-text

We used three-fold cross-validation [28] to evaluate the predictive accuracy of the models. The
data set was randomly divided in three equally sized subsets or folds. In three cross-validation
runs, each time, the model was successively trained on two folds and tested on the third fold.
For each cross-validation run, an area under the receiver operating characteristic curve (AUC)
was calculated. The averaged AUC was used as the overall performance measure.

One-to-many propensity score matching

The propensity score that was generated in each of the two models was used to account for the
preferential prescribing of COX-2 inhibitors to patients at high-risk of developing an UGIB [12]. In
this study, we used the greedy one-to-many matching as described by Rassen et al. [29]:

1. For each COX-2 inhibitor cohort member the difference in PS with each nsNSAID users was
computed
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2. Starting with the lowest difference, each COX-2 inhibitor cohort member was matched with one
nsNSAID cohort member. Once an nsNSAID user was matched, he or she was precluded from
further matching. A caliper of 0.01 was used, meaning no matches were made if the difference
in PS was greater than 0.01.

3. After all COX-2 inhibitor cohort members were matched with one nsNSAID cohort member, the
process was repeated until all nsNSAID users were matched or there was no match possible.

The algorithm ensured that all COX-2 inhibitor cohort members were matched with at least one
nsNSAID cohort member if such a match was available within the caliper.

Statistical Analysis

To estimate the risk of UGIB among COX-2 inhibitor users compared to nsNSAID users we
calculated hazard ratios with their corresponding 95% confidence intervals (Cls) using Cox
proportional hazard regression. We conducted the analysis for four datasets: 1) a crude
comparison (unmatched, no propensity score); 2) matched on age (+ 2 years) and adjusted for
sex and exposure to low-dose aspirin, no propensity score; 3) matched on PS with covariate
frequency above 1000 and then adjusted for age, sex, and exposure to low-dose aspirin; and 4)
matched on PS with covariates having an association with the outcome and then adjustment for
age, sex, and exposure to low-dose aspirin.

RESULTS

NSAID cohort

From the source population of more than 1.8 million patients we identified 518,768 new users
of NSAIDs based on ATC codes. We then processed the unstructured free-text in the entries of
the new users to identify mentioning of drug names corresponding with NSAID-related ATC
codes. In total, 36,188 new users were removed because either an nsNSAID or COX-2 inhibitor
drug was mentioned in the free-text in the six months preceding first NSAID exposure. This
resulted in 482,580 new NSAID users in the study cohort. Out of these, 459,701 (95%) were
nsNSAID users and 22,879 (5%) were COX-2 inhibitor users.

Within the NSAID cohort, we retrieved 11,994 potential UGIB patients. After reviewing the
medical records, we retained 1,048 UGIBs.

The average duration of episodes for initiators of COX-2 inhibitors was 94 days and 66 days for
initiators of nsNSAIDs. Baseline characteristics of initiators of COX-2 inhibitors and nsNSAIDs are
shown in Table 1. Most of the episodes of COX-2 inhibitors and nsNSAIDs were started after the
year 2004.
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Table 1: Baseline characteristics of initiators of selective COX-2 inhibitors or nsNSAIDs

Characteristics %
COX-2 initiators nsNSAID initiators
(n=22,879) (n=459,701)
Age (mean) 57.7 47.9
Male 36.5 43.2
Female 63.5 56.8
Exposure to low-dose aspirin 2.8 1.1
Age (years)
<=30 6.5 17.3
31-40 8.4 16.1
41-50 17.7 22.4
51-60 22.4 19.7
61-70 20.8 13.8
71-80 15.9 7.7
>80 8.3 3.0
Calendar year of treatment initiation
before 2003 0.1 10.8
2003 1.4 2.0
2004 3.1 1.9
2005 1.6 1.9
2006 1.5 1.3
2007 2.6 2.3
2008 7.3 6.7
2009 11.5 12.3
2010 15.6 16.4
2011 22.7 20.6
2012 30.7 22.7
2013 1.9 1.1
UGl risk factors
Use of antiplatelets 6.3 3.2
Use of anticoagulants 3.2 1.3
Use of gastroprotective agents 23.4 11.8
Other comorbidities
Dyspepsia 0.2 0.2
Smoking 0.5 0.5
Heart failure 0.4 0.2
Diabetes mellitus 0.5 0.3
Concomitant use of other medication
SSRIs 4.4 3.3
Spironolactone 0.7 0.3
Calcium channel blockers 7.2 3.7
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Propensity model

In total, we extracted 2,762,326 covariates (i.e., unique words, out of almost 96 million words)
from approximately 2.4 million entries in the 6 months prior to NSAID episodes from the medical
records of 482,580 new NSAID users.

Table 2 shows the performance of the propensity models built using different covariates
selection methods. The first model used all covariates with a frequency of 100 or more in the
cohort, which resulted in 95,078 unique covariates entered into the model. Increasing the
frequency to 1,000 resulted in a reduction of the number of covariates to 27,619. The number of
covariates further reduced when frequency was increased to 5,000. The performance of the
models in terms of their predictive accuracy was comparable. The predictive performance of the
propensity model that was built using 3,650 covariates that had an association with the outcome
according to the chi-square test. This resulted in an AUC of 70.59. The performance of the
propensity model that included only the established confounders resulted in an AUC of 66.27.
However, there were only 111 covariates in the model.

Table 2: Predictive performance of different propensity models

PS Model Number of AUC*
covariates

Covariate filtered on frequency > 100 95,078 72.27

Method 1  Covariate filtered on frequency > 1,000 27,619 72.32

Covariate filtered on frequency > 5,000 11,699 72.17

Method 2  Covariates filtered using Chi-square test 3,650 70.59

(independent of frequency)

Method 3  Only established confounders (age, sex, and 111 66.27
exposure to low-dose aspirin)

* AUC, area under the receiver operating characteristic curve

Risk of upper gastrointestinal bleeding

The crude hazard ratio of UGIB for COX-2 inhibitors compared to nsNSAIDs was 0.50 (95% 0.18-
1.36) (Table 3). When matched on age, the hazard ratio of COX-2 inhibitor use compared to
nsNSAID use was 0.36 (95% Cl: 0.11-1.16). Further adjusting for sex and exposure to low-dose
aspirin resulted in HR of 0.35 and 0.36 respectively. Matching on PS only, using one-to-many
matching with a covariate frequency above 1,000, reduced the hazard ratio to 0.42 (95% Cl: 0.13
— 1.38). Subsequent adjustment for age resulted in a hazard ratio of 0.36 (95% Cl: 0.10 — 1.22).
Matching on PS limiting to covariates that were associated to the outcome also provided a hazard
ratio of 0.42 (95% Cl: 0.13 — 1.39). Adjusting for age reduced the hazard ratio to 0.32 (95%: 0.09
—-1.09).
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Table 3: Hazard ratios with 95% confidence intervals (Cl) comparing COX-2 inhibitors with
nsNSAIDs for different matching strategies and adjustments

Matching Adjustment Hazard ratio 95% ClI
Unmatched None 0.50 0.18-1.36
Age None 0.36 0.11-1.16
Sex 0.35 0.11-1.18
Sex, Aspirin 0.36 0.11-1.18
Propensity Score None 0.42 0.13-1.38
(covariate Age 0.36 0.10-1.22
frequencies >=1000) g, 0.39 0.12-1.30
Age, Sex 0.35 0.16-1.25
Sex, Aspirin 0.39 0.12-1.32
Propensity Score None 0.42 0.13—1.39
(covariates based on
association test) Age 0.32 0.09—-1.09
Sex 0.43 0.13—1.42
Age, Sex 0.31 0.09-1.08
Sex, Aspirin 0.43 0.13—1.42
Age, Sex, Aspirin 0.31 0.09-1.10
DISCUSSION

In this study, we generated a propensity model using unstructured information from EHRs. We
tested different methods to construct this and demonstrated the feasibility to do so as well as its
performance. Since electronic health records are now widely available for secondary use, we
need to develop methods and test performance of these methods for use in epidemiological
evaluations such as drug effects.

Our method to generate a propensity score model is substantially different from the high-
dimensional propensity score (hd-PS) approach proposed by Schneeweiss et al [20]. The hd-PS
algorithm that was developed for claims data uses structured information such as diagnostic
codes, in-patient procedure codes, and drugs dispensed. In each identified data dimension, the
highest ranked codes are selected to enter in the hd-PS model. The use of two-word free-text
phrases in addition to the structured information has also been positively evaluated in the
context of hd-PS models [22]. Our method is different since we used as the basis all unstructured
text to generate propensity models, using a large-scale regularized regression, without pre-
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identified data dimensions. Several methods other than logistic regression such as data-adaptive
and classification trees have been proposed for fitting a propensity model [30]. To reduce the
number of ‘meaningless’ features, we needed various textual data cleaning steps. We
subsequently extracted all unigrams from the cleaned free-text, which served as potential
covariates. Here we applied different approaches, to look at the impact of our choices. In the first
method, the most-frequent covariates in the cohort were selected to enter the propensity score
model. Since the covariates were selected merely based on their frequency in the cohort, this
method is prone to include covariates that may actually be instrumental variables. Instrumental
variables have an association with the exposure but not with the outcome except through their
effect on exposure. If covariates are included that are not true confounders, the variance
increases and sometimes a small amount of bias may be introduced [31-34]. In order to mitigate
the potential to include covariates that are instrumental variables we included covariates with a
significant association with the outcome to the propensity score model in the second method we
applied [31].

We used three-fold cross-validation to evaluate the predictive performance of exposure to
nsNSAID or Coxib for each generated PS model. In the first method where covariates were
selected based on their frequency, increasing the frequency threshold for covariate selection
reduced the number of covariates that entered into the propensity score model but the
performance of the models was still comparable. This suggests that the performance of the
models was mostly based on a few covariates with high occurrence in the text. Reducing the
number of covariates reduced the computation time needed to fit the model. By selecting
covariates with an association with the outcome, we significantly reduced the total number of
covariates without greatly affecting the performance. The propensity models generated using
covariates with only high frequency in the cohort performed better than the one where
association with the outcome was verified. This may be due to the presence of some instrumental
variables, which can result in an increase in predictive performance [30]. We used another
propensity model for the comparison purposes where only the established confounders age, sex,
and exposure to low-dose aspirin were included. The predictive performance of this model was
lower than the other two models, which were generated from the free-text covariates. The
second method, where covariate association with the outcome was verified, showed large
decrease in the hazard ratios after further adjustments. Whereas previous studies have
constructed the hd-PS with structured information, such as ICD and READ codes across different
data dimensions in different sources [19-21,35], large proportions of information may be
unstructured. We showed that this unstructured free-text can be used to construct propensity
models. Initially, the new user cohort was created based on the prescription tables containing
ATC codes. A high number of removals (7%) from the cohort based on the drug mentioned in the
free-text indicate the importance of processing unstructured free-text instead of only relying on
the structured information.

Our study also has several limitations. First, by including covariates based on their frequencies
we might have selected covariates that are not necessarily related to the outcome or the
exposure, which could introduce bias [18,36]. Second, since we only used unigrams, covariates
like ‘congestive heart failure’ cannot be recognized as such. Instead, it will be recognized as
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individual words ‘congestive’, ‘heart’, and ‘failure’, which might lead to over- and
underestimation of some covariates. Like previous studies using hd-PS methods, we also used
the known association between NSAIDs and UGIB as an example. It is unclear whether our
findings regarding the PS generated from unstructured free-text apply to other treatment-
outcome pairs. Since the PS algorithm in general relies on the information present in the cohort,
a similar approach using a different data set might have different results even when using known
example of NSAID-UGIB.

The majority of COX-2 inhibitor episodes started after the year 2004, the period after the
withdrawal of rofecoxib from the market because of cardiovascular risks [37]. This may explain
the strong protective effect of COX-2 inhibitors in the crude analysis, which we would expect, but
is different from previous observational studies that were done more closely to the introduction
of coxibs [19-21,38]. Since most of our patients started after the contra-indications were
introduced, channeling towards high risk patients was less of an issue [39].

In conclusion, our study showed that PS models can be created using unstructured information
in electronic healthcare records. We also showed that the PS model where covariates were
filtered on their association with the outcome provide an improvement in adjustment for
confounding. This is useful for database studies using a large amount of unstructured free-text
as in EHRs. Better methods for extracting meaningful covariates from the free-text may be
required for effective proxy adjustment via propensity scores.
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ABSTRACT

Purpose

Most electronic health record (EHR) databases contain unstructured free-text narratives, which
cannot be easily analyzed. Case detection algorithms are usually created manually and often rely
only on using coded information such as ICD-9 codes. We applied a machine-learning approach
to generate and evaluate an automated case detection algorithm that uses both free-text and
coded information to identify asthma cases.

Methods

The Integrated Primary Care Information (IPCl) database was searched for potential asthma
patients aged 5-18 years using a broad query on asthma-related codes, drugs, and free-text. A
training set of 5032 patients was created by manually annotating the potential patients as
definite, probable, or doubtful asthma cases, or non-asthma cases. The rule-learning program
RIPPER was then used to generate algorithms to distinguish cases from non-cases. An over-
sampling method was used to tune the performance of the automated algorithm to meet our
study requirements. Performance of the automated algorithm was evaluated against the
manually annotated set.

Results

The algorithm yielded a positive predictive value (PPV) of 0.66, sensitivity of 0.98 and specificity
of 0.95 when identifying only definite asthma cases, a PPV of 0.82, sensitivity of 0.96, and
specificity of 0.90 when identifying both definite and probable asthma cases, and a PPV of 0.57,
sensitivity of 0.95, and specificity of 0.67 for the scenario identifying definite, probable, and
doubtful asthma cases.

Conclusions

The automated algorithm shows good performance in detecting asthma cases utilizing both free-
text and coded data. This algorithm will facilitate large-scale studies of asthma in the IPCI
database.
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INTRODUCTION

Asthma is one of the most common chronic diseases of childhood globally. The main goal of
asthma treatment is to achieve and maintain clinical control of the disease. Failing to control
asthma can limit daily-life activities and can be fatal. In children, asthma is usually treated and
maintained with low-dose inhaled corticosteroids (ICS). If asthma is not controlled, treatment is
stepped up by either adding long acting B, agonists (LABA) or a leukotriene receptor antagonist
(LTRA) to low-dose ICS or increasing the dose of ICS until control is achieved [1].

Safety concerns have been raised on the long-term toxicity of ICS, the risk of mortality, and
asthma exacerbations with the use of LABAs in monotherapy and the risk of neuropsychiatric
events and hepatotoxicity in children treated with LTRAs [2—-8]. Randomized controlled trials
(RCTs) on the efficacy and safety of these drugs in children are rare. In addition, the few trials
conducted in children are often not designed to detect safety issues because of the limited
sample size and short duration of follow-up. In general, observational studies are suited for
research on drug safety because they usually have large sample size with long-term follow-up.
Electronic medical records are valuable resources and are increasingly being used in
epidemiological observational studies to detect safety issues [9-15].

One of the challenges of using electronic medical records is to determine whether and when a
medical outcome of interest has occurred. When coded information such as International
Classification of Diseases version 9 (ICD-9) and Logical Observation Identifiers Names and Codes
(LOINC) codes are available, outcomes are typically identified by searching for a combination of
codes in the patient record. However, the recording of these codes can be incomplete and
inaccurate, or the codes themselves might be ambiguous or have the wrong granularity for the
research question at hand. It is therefore recommended that the performance of this search
using codes is evaluated through manual chart review, where researchers often rely on the free-
text narrative in the medical record. There are also databases where the coding is simply too
incomplete. For example, in the Integrated Primary Care Information (IPCl) database [16], almost
60% of the record lines are narratives and do not contain coded information. These narratives
may contain important information such as patient-reported symptoms, signs, or summaries of
specialists’ letters. In these databases, the search for outcomes is even more labor intensive.
Usually, a broad text query is defined including all possible words and codes that might be
relevant, and subsequently all narratives returned by the query are manually reviewed. With the
increase in size of these databases, this practice is becoming prohibitively laborsome and
expensive.

For this reason, we used an alternative approach to identifying asthma cases, which uses the
free-text narrative in an automated fashion. We apply a machine-learning approach to derive an
automated case detection algorithm that uses both text and coded data if available. We not only
show the performance of this algorithm in terms of positive predictive value (PPV), sensitivity,
and specificity, but also demonstrate how sensitivity and specificity can be tuned to best meet
the requirements of our study. We apply this approach to the Dutch IPCI database, but the same
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procedure to construct a case detection algorithm could be used on other databases, in other
languages.

METHODS

Electronic medical record database

Data in this study were taken from the IPCI database [16]. The IPCI database is a longitudinal
observational database of electronic medical records (EMRs) from Dutch general practitioners
(GPs). The electronic records contain coded data and data on patient demographics, symptoms
and diagnoses, clinical findings, referrals, laboratory findings, and hospitalization of more than
1.1 million patients. The IPCl database uses the International Classification of Primary Care (ICPC)
[17] coding system. The cohort for the underlying study included children between age 5 and 18
that were present in the database between the dates January 1, 2000 until January 31, 2012. A
minimum registration period of six months was required to guarantee sufficient medical history
data.

Clinical case definition

To create a labeled training set for machine-learning methods, we used a manually defined
clinical case definition. Patients were categorized into ‘definite asthma’, ‘probable asthma’,
‘doubtful asthma’, or ‘no asthma’ according to the following validation criteria.

For definite asthma patients, at least one entry in their medical record containing an asthma
diagnosis confirmed by a specialist (pediatrician or pulmonologist) was required. For probable
asthma patients, at least one entry should contain evidence of asthma diagnosed by the GP and
there should be at least one more entry in the patient record suggestive of asthma (ICPC code,
free text, lung function measurements, or use of specific bronchodilating drugs/anti-
inflammatory drugs for the indication of asthma) within the next 12 months, or at least two
additional entries in the patient record suggestive of asthma. For doubtful asthma patients, there
should be at least one entry containing an indication of asthma without satisfying the criteria for
a definite or probable asthma case. Patients with drug entries only (i.e., without evidence in ICPC
code or free text) were considered non-asthma cases, as were patients with no indication of
asthma in any entry of their patient record.

Training set for machine learning

We use machine-learning methods to automatically learn case detection algorithms based on a
training set of entries, i.e., a set of positive and negative examples. To generate a training set for
our machine-learning method, we first identified all potential asthma patients using a broad
automated search on ICPC asthma disease codes, asthma drug prescriptions, and free text.
Because of the generic asthma-related keywords used in the broad query, many of the retrieved
patients were likely not to have asthma.
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One medical doctor reviewed the entire medical record of the patients identified by the broad
search strategy in random order for one month. A total of 5032 patients were validated from
63,618 patients returned by the broad query. A senior medical doctor further reviewed the
doubtful patients. Patients were labeled as definite asthma (n=308), probable asthma (n=1133),
doubtful asthma (n=160), or non-asthma (n=3431). A patient’s medical record consists of one or
more entries, where each entry pertains to a patient visit, a letter from a specialist, prescribed
drugs, and so on. The entries in the medical record of a patient were reviewed in chronological
order and a patient was labeled positive whenever an asthma criterion (for definite, probable,
and doubtful) was satisfied. The remaining entries in the medical record were not reviewed, and
only the entries containing the indication of asthma were included in the training set as positive
examples. If none of the entries of the patient record contained positive evidence of asthma, the
patient was considered a negative case and one of the entries was randomly picked as a negative
example in the training set.

To make the text in the entries better fit for machine learning approaches, we removed
uninformative words (so-called stop words). Although some standard Dutch stop word lists are
available [18], they are not entirely suitable for the clinical text because some of the words may
have importance in the clinical context, e.g., ‘op’ (English ‘on’) could be an abbreviation of
‘operation’. We therefore used a small stop word list, only containing ‘en’ (English ‘and’), ‘een’
(‘a’), ‘de’, and ‘het’ (both ‘the’).

All ATC (Anatomical Therapeutic Chemical) codes related to respiratory drugs and starting with
RO3, (drugs for obstructive airway diseases) were replaced by a single keyword ‘r03drug’. To
remove negated and speculative assertions, we used the Dutch assertion filter proposed in [15],
similar to NegEx [19]. Any words appearing between negation or speculation keywords and the
end of sentence (demarked by a punctuation mark) were removed from the entry. All sentences
containing an alternatives keyword were completely removed.

The text in the entries was converted to lower case and split into individual words. These
individual words were treated as features for our machine-learning method (bag-of-words
representation). Schuemie et al. [15] previously showed the advantage of using assertion filtering
and bag-of-words representation on Dutch EMRs. For computational purposes, we reduced the
number of features by chi-square feature selection [20]. A p-value of less than 0.05 was used as
a feature selection criterion. Chi-square feature selection decreased the number of features in
the data set by about a factor of 10 without affecting the performance of the classifiers but
greatly reducing their training time.

Automated generation of case definitions

Considering the hierarchical nature of the asthma labels (definite->probable->doubtful->non-
asthma), we tackled the automated generation of case definitions as a hierarchical multi-class
classification problem [21-23]. We followed an approach in which the hierarchy is structured as
a decision tree and separate classifiers are built for the nodes in the tree (Figure. 1).
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definite asthma?

(Machine-learned rules)

definite asthma cases probable or doubtful asthma?

(Machine-learned rules)

yes no

probakle asthma? non-asthma cases
(Manual rules)

probahble asthma cases doubtul asthma cases

Figure 1: Hierarchical classification scheme for asthma

We trained two machine-learning classifiers, one to separate definite cases from all other cases
and the other to distinguish probable and doubtful asthma from non-asthma cases. The second
classifier considered probable and doubtful cases as one (positive) group because the distinction
between these cases is difficult to learn automatically. This distinction was made in a third
classifier, which implemented two rules based on the manual case definition criteria: (1) if a
patient had two positive asthma entries (according to the second classifier) within a period of 15
months and (2) one of the entries is not a medication/drug entry, the patient was considered a
probable asthma case. A medication entry only contains prescription. The training set for the
first, ‘definite asthma’ classifier consisted of the entries of the definite asthma patients as positive
examples, and entries of the probable, doubtful, and non-asthma cases as negative examples.
For the second, ‘probable, doubtful, and non-asthma’ classifier, we used the entries of the
probable and doubtful cases as positive examples and the entries of the non-asthma cases as
negative examples. The probable or doubtful asthma patients classified as definite asthma by the
first classifier were removed from the training set of the second classifier, and the definite asthma
patients missed by the first classifier were added as positive examples.

84



Automatic generation of case-detection algorithms to identify children with asthma

To shift the balance of sensitivity and specificity, we used a method called “over-sampling”.
Several over-sampling methods are described in [24]. Normally over-sampling is done by simply
reusing the same examples multiple times, but Schuemie et al. [15] showed that using additional
entries of non-cases could lead to an increased performance. Our over-sampling was focused on
increasing the specificity of the classifiers. For a non-asthma patient, all entries were manually
reviewed and no evidence of asthma was found. Although initially one entry was randomly
selected for training the classifiers, the other entries can also be used as additional negative
examples. We created a set of all these additional entries, and randomly sampled from this set
to expand our training set. In total, we used 10 over-sampling percentages in the experiments.
In each over-sampling run, a specified percentage of entries (of the original negative examples in
the training set) from the additional entries set were added to the training set. The experiment
without the over-sampling entries was considered a baseline.

Training and testing

The rule-learning algorithm RIPPER [25] was used on the training set to automatically generate
rules for each of the asthma case definition. Schuemie et al. [15] evaluated several well-known
machine-learning algorithms for the classification of EMRs in a similar experimental setting, and
found RIPPER to be one of the best performing algorithms. RIPPER produces an ordered set of
decision rules. The advantages of such machine-learning algorithms are their ability to produce
output that is understandable by humans, their ease of use, and their applicability to a wide range
of problems [26]. We used an implementation of the RIPPER algorithm called JRip, which is
available in the open-source machine-learning package Weka [27].

We used five-fold cross-validation to evaluate our classifiers. Cross validation was done at the
patient level (subject-level cross-validation [28]) i.e., the data set was randomly divided in five
equally sized subsets of patients (folds). In five cross-validation runs, each time the entries
pertaining to four folds were used as a training set and the entries of the remaining subset were
used for testing. We used all entries of the patients in the test fold because in real-life situations
we do not know the labels of the entries pertaining to the patients returned by the broad query.
Cross-validation was used to obtain unbiased performance estimates of the classifiers, but all
data was used to generate the final sets of rules.

We used PPV, sensitivity, and specificity as measures to evaluate the performance of the
classifiers. PPV is defined as the fraction of positively identified cases that are true positive:
number of true positives / (number of true positives + number of false positives). Sensitivity is
defined as the true-positive rate: number of true positives / (number of true positives + number
of false negatives), whereas specificity is the true-negative rate: number of true negatives /
(number of true negatives + number of false positives).

RESULTS

We present results of the asthma classification using three different scenarios. Each can be used
to meet the requirement of a particular study. In the first scenario (Figure 2), only definite asthma
cases were considered relevant for the study. The probable and doubtful asthma cases were
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ignored. In the second scenario (Figure 3), the definite and probable asthma cases were
considered relevant for the study. The definite and probable asthma cases were combined as
positive asthma cases and doubtful cases were disregarded. In the third scenario (Figure 4), the
definite, probable, and doubtful asthma cases were combined as positive asthma cases.

The sensitivity, specificity, and PPV of the classifiers using over-sampling and cross-validation
methods for the three scenarios are presented in Figures 2-4.
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Figure 2: Performance of the classifiers using cross-validation when only definite
asthma cases were considered as positive asthma ignoring probable and
doubtful cases
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Figure 3: Performance of the classifiers using cross-validation when definite and
probable asthma cases were combined as positive asthma ignoring doubtful
cases
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Figure 4: Performance of the classifiers using cross-validation when definite,
probable, and doubtful asthma cases were combined as positive asthma

The first experiment with 0% over-sampling was considered as the baseline in our experiments.
The classifiers showed consistent behavior during the over-sampling experiments. The specificity
and PPV gradually increased and sensitivity decreased as we increased the number of negative
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examples in the training set. For this particular study, we selected the model using 300% over-
sampling as the final classification model because of its high sensitivity and specificity. A
confusion matrix of the selected classification model is presented in Table 1.

Table 1: Confusion matrix of the case detection algorithm generated with 300% over-sampling
using cross-validation

Case detection algorithm

Definite Probable Doubtful Non-asthma Total

asthma asthma asthma patients
T Definite asthma 228 47 29 4 308
g Probable asthma 166 682 245 40 1133
% Doubtful asthma 16 15 9 33 160
g Non-asthma 120 130 887 2294 3431
Total classified 530 874 1257 2371 5032

From 1601 asthma cases (definite, probable, and doubtful), only 77 (5%) were misclassified as
non-asthma cases. From 3431 non-asthma cases, 1137 (33%) were misclassified as asthma cases.
The automatic case definition for definite asthma is shown in Table 2 and for probable and
doubtful asthma in Table 3. Where necessary, the English translation of the terms is included
between parentheses.

Table 2: Automatically generated case detection rules for definite asthma

"20" and "astma" > true

"cmi" and "astma" and not "00" and not "van" (“from”) and not "s" = true

"ecmi" and "flixotide" and not "ventolin" and not "medicatie" (“medicine”) and "20" = true
"cmi" and "kindergeneeskunde" (“pediatrician”) and "ventolin" and not "te" (“to”) = true
"cmi" and "astma" and "15" = true

"cmi" and "20" and "pulmicort" = true

"cmi" and "longziekten" (“pulmonologist”) = true

DEFAULT - false

O N A WDNR
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Table 3: Automatic case definition for probable and doubtful asthma

1. "r03drug" and "r96" and not "01" - true

2. "r03drug" and not "hoesten" (“coughing”) and not "pulm" and "flixotide" - true

3. "r03drug" and not "hoesten" and not "pulm" and not "piepende" (“wheezing”) and not
"hoest" (“cough”) = true

4. "astma"and "r96" > true

5. "r03drug" and not "pulm" and "inh" = true

6. "ventolin" and not "pulm" and "r96" = true

7. "ventolin" and "astma" and not "vag" > true

8. "r03drug" and not "piepen" (“wheeze”) and not "hoest" and "diskus" = true

9. DEFAULT - false

Table 4: Performance of case detection algorithms that were generated using different
combinations of information present in the electronic medical records

Scenario 1 Scenario 2 Scenario 3
Information Sens Spec PPV Sens Spec PPV Sens Spec PPV
Codes 0.53 087 0.21 0.56 0.85 0.57 0.62 0.76 0.55
Codes+Medications 0.86 0.67 0.18 0.67 0.67 0.42 0.69 0.60 0.45
Free text 0.88 096 064 0.62 094 0.78 0.68 0.81 0.63
Free text+Codes 085 095 062 061 094 0.77 0.65 0.84 0.66
Free text+Medications 0.84 097 0.68 0.62 094 0.79 0.68 0.81 0.63

Free text+Codes+Medications 0,98 0.95 0.66 0.96 0.90 0.82 0.95 0.67 0.57

The term ‘cmi’ indicates an incoming communication (i.e., a letter) from a specialist or outpatient
GP. There are codes to identify specialties in IPCl and the numbers ‘20’ and ‘15’ are used for
pediatrics and pulmonology, respectively. Because specialists do not code events in their
communications with GPs, none of the rules contains an ICPC or ATC code. The drugs ‘flixotide’,
‘ventolin’, and ‘pulmicort’ are used for obstructive airway diseases. The terms ‘r96’, ‘00’ and ‘01’
are part of the asthma ICPC codes ‘R96.00" and ‘R96.01’. Our preprocessing algorithm separated
the codes as ‘R96’, ‘00’, and ‘01’ and because of the bag-of-words representation, these were
treated as individual features. The term ‘s’ is part of the ‘SOEP’ registration used by the GPs in
the Netherlands. The ‘S’ in ‘SOEP’ stands for ‘subjective’, and refers to patient history and
symptoms. Since the SOEP and ICPC codes can be entered by the GPs only, entries containing
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these terms indicate that these are GP entries. The keyword ‘rO3drug’ marks the presence of an
ATC code starting with R03, indicating a respiratory drug. The terms ‘pulm’, ‘inh’, and ‘vag’ are
short for ‘pulmonary’, ‘inhaler’, and ‘vesiculair ademgeruis’ (‘vesicular breath sound)’,
respectively. The term ‘diskus’ indicates a type of dry powder inhaler. For the words ‘van’ (English
‘from’ or ‘of’) and ‘te’ (English ‘too’) we have no reasonable explanation why RIPPER found them
useful. Almost all rules for probable and doubtful asthma classification contain a mixture of codes
and free text.

To assess the impact of different types of information (codes, medications, free text) on
classification performance, we compared the performance of our selected model (using 300%
over-sampling), generated using all information in the medical records, with models that were
generated using subsets of information (also using 300% over-sampling). The results in Table 4
show that the models that only used codes or codes and medications have much lower
performance than the models that use free text. None of the models comes close to our selected
model with regard to sensitivity, while specificity and PPV of the reference model is comparable
to those of the other models using free text for scenarios 1 and 2.

DISCUSSION

We created and evaluated an automated case detection algorithm to identify children with
asthma within the IPClI database. The case detection algorithm was generated using a rule-
learning algorithm which incorporated both information contained in the unstructured free-text
and coded data in electronic medical records. We evaluated the automated algorithm in the
context of three scenarios, and each scenario had different performance characteristics suitable
for a different asthma study goal.

By using over-sampling techniques, we could vary the performance of the resulting detection
algorithm. By adding more negative examples of asthma cases, PPV and specificity increased, at
the cost of decreased sensitivity (cf. Figures 2-4). Varying the amount of over-sampling allows
researchers to generate a case detection algorithm suitable for a specific study. For example,
when investigating incidence and prevalence, where the goal is to find the number of cases in a
population in a given time period, a case detection algorithm with high sensitivity would be
preferred. For our particular asthma study, we selected the algorithm with 300% over-sampling
mainly because of both its high specificity and sensitivity. The selected case detection algorithm
had a PPV of 0.66, sensitivity of 0.98 and specificity of 0.95 for the scenario when only definite
cases were considered relevant for the study (cf. Figure 2), PPV of 0.82, sensitivity of 0.96, and
specificity of 0.90 for the scenario when definite and probable asthma cases combined were
considered relevant (cf. Figure 3), and PPV of 0.57, sensitivity of 0.95, and specificity of 0.67 for
the scenario when definite, probable, and doubtful asthma cases were combined and considered
relevant for the study (cf. Figure 4). Our experiments with subsets of information available in the
medical record (codes, medications, free text) indicate that, overall, best classification
performances are obtained with an algorithm that uses all information in the medical record.

Interestingly, none of the 7 rules in the case detection algorithm generated for definite asthma
contains an ICPC code for asthma, i.e., R96, or any R03drug (cf. Table 2). The presence of the
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terms ‘flixotide’, ‘ventolin’, and ‘pulmicort’, which are all RO3drugs, suggests that the specialists’
letters do not (or not very often) contain ATC drug codes. The RIPPER algorithm was able to pick
up both the terms used to indicate the specialty of pediatrics or a pediatrician in the IPCI
database, i.e., ‘kindergeneeskunde’ and the IPCl database code ‘20’. Similarly, the algorithm also
picked up both the terms used for the specialty of pulmonary diseases or a pulmonologist, i.e.,
‘longziekten’ and the IPClI database code ‘15’. For probable and doubtful asthma cases, the
algorithm picked up both the ICPC asthma code R96 and R03drug (cf. Table 3). The algorithm was
also able to pick up specific drug names such as ‘flixotide’, ‘ventolin’, and ‘pulmicort’ and
abbreviations such as ‘inh’ for ‘inhaler’ and ‘vag’ for ‘vesiculair ademgeruis’ (vesicular breath
sound) used within the IPCI database. A comparison with the broad query shows that the
automated case definitions contain more specific keywords (and combinations) used within the
database. This suggests that rules with database specific keywords are complicated to construct
manually for use in the broad query.

There were some study limitations. The RIPPER algorithm used a training set of positive and
negative examples of asthma cases from the IPClI database. The generated case detection
algorithm is therefore specific to the IPCI database and it may not be applicable to other
databases to detect asthma cases. A new training set is required to generate an automated case
detection algorithm for a new EHR database. The automated case detection algorithm is
applicable within the results of the broad query. The automated case detection algorithm will
also miss any asthma case initially missed by the broad query. However, such asthma cases can
potentially be identified by applying the automated case detection algorithm onto the complete
EHR database, although we do not know how well this would work.

Usually the only way to extract or identify cases from the electronic health record databases is
using codes such as ICPC or ICD-9 because the free-text narratives cannot be easily analyzed.
Recently, Flynn et al. [29] used free-text clinical reports to develop an algorithm using manual
rules to identify ischaemic stroke and intracerebral haemorrhage. The approach we used in this
study to generate a case detection algorithm to identify asthma patients has a number of
advantages. Our approach not only used the structured information, as is usually done, but also
took advantage of the free-text narratives present in the EHR database. Another advantage
relates to patient confidentiality, which is a matter of concern when dealing with free-text in
electronic health records. In our approach, once a model has been generated, cases can
automatically be identified without need to anonymize data. We also demonstrated how
sensitivity and specificity of the algorithms can be tuned to best meet the requirements of our
study. An automatic case detection algorithm with high specificity can reduce the workload of
manual annotation, by removing non-relevant records. Another advantage of automated case
detection algorithm is that they can allow for more uniform and consistent annotations as
compared to several manual annotators. Although the case detection algorithm for asthma
discussed here is specific to the IPCl database, the approach used to generate the algorithm can
be used in different databases.

In databases such as IPCI, manual review of all results of the broad query is currently mandatory
in order to identify asthma cases. Using the automated algorithm described here, it is now
feasible to automatically identify definite, probable, and doubtful asthma patients with

91



Chapter 5

acceptable performance, using both free-text narratives and coded information when available,
allowing large scale epidemiology studies.
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Chapter 6

ABSTRACT

Background

Distinguishing cases from non-cases in free-text electronic medical records is an important initial
step in observational epidemiological studies, but manual record validation is time-consuming
and cumbersome. We compared different approaches to develop an automatic case
identification system with high sensitivity to assist manual annotators.

Methods

We used four different machine-learning algorithms to build case identification systems for two
data sets, one comprising hepatobiliary disease patients, the other acute renal failure patients.
To improve the sensitivity of the systems, we varied the imbalance ratio between positive cases
and negative cases using under- and over-sampling techniques, and applied cost-sensitive
learning with various misclassification costs.

Results

For the hepatobiliary data set, we obtained a high sensitivity of 0.95 (on a par with manual
annotators, as compared to 0.91 for a baseline classifier) with specificity 0.56. For the acute renal
failure data set, sensitivity increased from 0.69 to 0.89, with specificity 0.59. Performance
differences between the various machine-learning algorithms were not large. Classifiers
performed best when trained on data sets with imbalance ratio below 10.

Conclusions

We were able to achieve high sensitivity with moderate specificity for automatic case
identification on two data sets of electronic medical records. Such a high-sensitive case
identification system can be used as a pre-filter to significantly reduce the burden of manual
record validation.
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Background

Electronic medical records (EMRs) are nowadays not only used for supporting the care process,
but are often reused in observational epidemiological studies, e.g., to investigate the association
between drugs and possible adverse events [1-3]. An important initial step in these studies is case
identification, i.e., the identification of patients who have the event of interest. Case
identification is particularly challenging when using EMRs because data in the EMRs are not
collected for this purpose [4]. Ideally, case identification is done on data that have been coded
explicitly and correctly with a structured terminology such as the International Classification of
Diseases version 9 (ICD-9). However, coding is often not available. For example, in the Integrated
Primary Care Information (IPCl) database [5] used in this study, almost 60% of the record lines
comprise only narratives and no coded information. The non-coded part contains essential
information, such as patient-reported symptoms, signs, or summaries of specialists’ letters in
narrative form. This information may be critical for identification of the events. The use of non-
coded data (along with the coded data) in medical records has been shown to significantly
improve the identification of cases [6]. However, the most commonly used method for case
identification is using coded data only [7-11]. The current workflow of epidemiological case
identification typically consists of two steps: 1) issuing a broad query based on the case definition
to select all potential cases from the database, and 2) manually reviewing the patient data
returned by the query to distinguish true positive cases from true negative cases. Manual review
of the patient data is an expensive and time-consuming task, which is becoming prohibitive with
the increasing size of EMR databases. Based on our recorded data, on average about 30 patients
are reviewed per hour by a trained annotator. For a data set of 20,000 patients, which is an
average-sized data set in our studies, almost 650 hours (~90 days) will be required. To make case
identification more efficient, manual procedures should be replaced by automated procedures
as much as possible. Machine learning techniques can be employed to automatically learn case
definitions from an example set of free-text EMRs. It is crucial that an automatic case
identification system does not miss many positive cases, i.e., it should have a high sensitivity. This
is particularly important in incidence rate studies where the goal is to find the number of new
cases in a population in a given time period. Any false-positive cases returned by the system
would have to be filtered out manually, and thus the classifier should also have a good specificity,
effectively reducing the workload considerably as compared to a completely manual approach.

There is a substantial amount of literature on identifying and extracting information from EMRs
[12]. Machine-learning methods have been used for different classifications tasks based on
electronic medical records such as identification of patients with various conditions [6,13-17],
automatic coding [7,18,19], identifying candidates in need of therapy [20], identifying clinical
entries of interest [21], and identifying smoking status [22,23]. Schuemie et al. [24] compared
several machine-learning methods for identifying patients with liver disorder from free-text
medical records. These methods are usually not optimized for sensitivity but for accuracy. The
topic of automatic case identification with high sensitivity has not yet been addressed.
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Typically, the proportion of positive and negative cases in a data set is not equal (usually there
are many more negative cases than positive cases). This imbalance affects the learning process
[25]. We use two approaches to deal with the imbalance problem: sampling methods and cost-
sensitive learning. Sampling methods change the number of positive or negative cases in the data
set to balance their proportions improving classifiers accuracy. This is achieved by removing the
majority class examples, known as under-sampling, or by adding to the minority class examples,
known as over-sampling. Both under and over-sampling methods have their drawbacks as well.
Under-sampling can remove some important examples from the dataset whereas over-sampling
can lead to overfitting [26]. Over- and under-sampling methods, with several variations, have
been successfully used to deal with imbalanced data sets [27-32]. It has also been shown that a
simple random sampling method can perform equally well as some of the more sophisticated
methods [33]. We propose a modified random sampling strategy to boost sensitivity. Cost-
sensitive learning tackles the imbalance problem by changing the misclassification costs [34-37].
Cost-sensitive learning is shown to perform better than sampling methods in some application
domains [38-40].

In this article, we focus on improving the sensitivity of machine-learning methods for case
identification in epidemiological studies. We do this by dealing with the balance of positive and
negative cases in the data set, which in our case consists of all potential patients returned by the
broad query. A highly sensitive classifier with acceptable specificity can be used as a pre-filter in
the second step of the epidemiology case identification workflow to distinguish positive cases
and negative cases. The experiments are done on two epidemiological data sets using four
machine-learning algorithms.

Methods

Data sets

Data used in this study were taken from the IPCl database [5]. The IPCl database is a longitudinal
collection of EMRs from Dutch general practitioners containing medical notes (symptoms,
physical examination, assessments, and diagnoses), prescriptions and indications for therapy,
referrals, hospitalizations, and laboratory results of more than 1 million patients throughout the
Netherlands. A patient record consists of one or more entries, where each entry pertains to a
patient visit or a letter from a specialist.

We used two data sets, one with hepatobiliary disease patients and one with acute renal failure
patients. These data sets are very different from each other and are taken from real-life drug-
safety studies in which it is important to investigate the incidence and prevalence of the
outcomes in the general population. This type of studies serves as a good example for building
highly sensitive automatic case identification algorithm because they require that all the cases in
the population are identified. To construct the data sets, first a broad query was issued to the
IPCI database. The aim of the query was to retrieve all potential cases according to the case
definition. The query included any words, misspellings, or part of the words relevant to the case
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definition. The sensitivity of the broad query is very high but its specificity is usually low, and
therefore many of the cases retrieved by the query are likely to be negative cases.

To train the machine-learning algorithms, a random sample of the entries returned by the broad
query was selected. The size of the random sample may depend on the complexity of the case
definition and the disease occurrence. Our experience suggests that the size of the random
sample should be a minimum of 1,000 entries to get good performance. All patients pertaining
to the randomly selected entries were manually labeled as either positive or negative cases.
Because the broad query might have returned an entry with circumstantial evidence but have
missed the entry with the actual evidence (e.g., because of textual variation in keywords), the
entire medical record (all entries) of the patients in the random sample was considered to decide
on a label, not only the entry returned by the broad query. A patient was labeled as a positive
case if evidence for the event was found in any of the patient’s entries. The patient was labeled
as a negative case if there was no proof of the event in any of the patient’s entries.

Each random sample was manually labeled by one medical doctor. These labels are used as a
gold standard. To verify the quality of the labels and to calculate inter-observer agreement,
another medical doctor then labeled a small random set (n=100) from each random sample. We
used Cohen’s Kappa to calculate the agreement between both annotators [41].

Hepatobiliary disease was defined as either gallstones (with or without surgery), cholecystitis,
hepatotoxicity, or general hepatological cases such as hepatitis or liver cirrhosis. The broad query
retrieved 53,385 entries, of which 1,000 were randomly selected for manual labeling. These 1,000
entries pertained to 973 unique patients, of whom 656 were labeled as positive cases of
hepatobiliary disease and 317 were labeled as negative cases.

Acute renal failure was defined as a diagnosis of (sub)acute kidney failure/injury/insufficiency by
a specialist and hospitalization, or renal replacement therapy followed by acute onset of sepsis,
operation, shock, reanimation, tumorlysissyndrome, or rhabdomyolysis. The broad query for
acute renal failure patients retrieved 9,986 entries, pertaining to 3,988 patients who were all
manually labeled. Only 237 patients were labeled as positive cases of acute renal failure and
3,751 patients were labeled as negative cases. Of these latter, many had chronic renal failure.

The labeled set included one entry per patient. For positive cases, we selected the entry with the
evidence or, if multiple such entries were available, one was randomly chosen. For negative
cases, we randomly selected an entry. The selected entries will be called ‘seen entries’ from here
onwards.

Preprocessing

Since a medical record may contain differential diagnosis information, it is important to
distinguish between positive statements made by the physician, and negations and perhaps
speculations. In order to remove negated and speculative assertions we use an assertion filter,
similar to others [42]. We identify three sets of keywords:

e Speculation keywords: Words indicating a speculation by the physician (e.g. ‘'might’,
‘probable’, or ’suspected’)
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e Negation keywords: Words indicating a negation (e.g. 'no’, ‘not’, or "without’)
e Alternatives keywords: Words indicating potential alternatives (e.g. 'versus’, or ‘or’)

Note that the medical records and these keywords are in Dutch. Any words appearing between
negation or speculation keywords and the end of a sentence (demarked by a punctuation mark)
were removed from the record. Similarly, all sentences containing an alternatives keyword were
completely removed. The remaining text was converted to lower case and split into individual
words.

After the removal of negation, speculation, and alternative assertions, all remaining individual
words in an entry were treated as features (bag-of-words representation). The advantage of
using the assertion filter and bag-of-words feature representation on Dutch EMRs is presented
in [24]. Since the total number of features was still very high even after preprocessing, which
makes machine learning computationally expensive and may also hamper the predictive accuracy
of the classifier, we performed chi-square feature selection [43]. For each feature, we compared
the feature distribution of the cases and non-cases by a chi-square test. If the test was significant,
the feature was selected for further processing. A p-value of less than 0.05 was used as feature
selection threshold. Feature selection was done as a preprocessing step in each of the cross-
validation training folds of the data sets.

Set expansion

Adding more cases (i.e. patients) in the data set is expensive because they have to be first
manually validated and labeled. We used ‘set expansion’ as an alternative approach to expand
the training and test set. Each labeled set consisted of positive and negative cases, one (seen)
entry per case. The fact that each case typically has multiple entries, allowed us to expand the
labeled sets. For a negative case, the annotator has extensively reviewed all of the entries in the
patient record and found no convincing positive evidence. Although only one random entry (seen
entry) was selected for a negative case, we can however use all other entries as additional
negative examples for the machine learning because none of them contained any convincing
positive evidence. We call these additional negative examples the ‘implicit entries’. For a positive
case, the annotator selected an entry containing convincing positive evidence (seen entry). For
all other entries of a positive case, it is uncertain whether these entries also contain convincing
positive evidence. These entries therefore cannot be used as positive examples for the machine
learning. We call these uncertain entries of positive cases the ‘unseen entries’.

Training and testing

To train and test our classifiers, we used 5-fold cross-validation. Cross validation was done at the
patient level (subject-level cross-validation [44]), i.e., the data set was randomly divided in five
equally sized subsets of cases. In five cross-validation runs, each time the entries pertaining to
four subsets of cases were used as a training set and the entries of the remaining subset were
used for testing. For training, we used two sets of entries: a set without set expansion (i.e., with
only the seen entries) and a set with set expansion (i.e., with seen and implicit entries). For testing
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the classifiers, however, we used all entries of the patients in the test fold. The numbers of seen,
implicit, and unseen entries per data set are summarized in Table 1.

Table 1: Total number of subjects and corresponding entries in the hepatobiliary disease and
acute renal failure data sets

Hepatobiliary disease Acute renal failure

Positive cases 656 237
Seen entries 656 237
Unseen entries 61,179 58,022
Negative cases 317 3,751
Seen entries 317 3,751
Implicit entries 27,276 319,204

All entries of the patients in the test fold were used to simulate a real-life situation where we do
not know the labels of the entries pertaining to the patients returned by the broad query. We
chose not to limit ourselves to the entries returned by the broad query as they may not always
contain the entry with evidence (see above), but always included all entries available for each
case in the test fold.

We used sensitivity and specificity measures to evaluate the performance of the classifiers.
Sensitivity is defined as the true-positive recognition rate: number of true positives / (number of
true positives + number of false negatives), whereas specificity is defined as the true-negative
recognition rate: number of true negatives / (number of true negatives + number of false
positives).

Improving classifiers sensitivity

The imbalance of positive and negative examples in the training set effects the classifiers
performance [23]. We used sampling and cost-sensitive learning approaches to improve the
sensitivity of our classifiers by dealing with this imbalance.

Sampling

Given an initially imbalanced data set, our proposed random sampling strategy focuses on
increasing the proportion of positive case entries in the data set. Because the standard classifiers
are biased towards the majority class [45-47], this improvement will potentially help the learning
algorithms to generate models that better predict the positive cases, and thus improve
sensitivity. In under-sampling, we only removed entries of negative cases regardless of their
being in the majority or minority. For the data set with set expansion, under-sampling was done
only on the implicit entries (cf. Table 1), varying from 10% under-sampling to 100% (all implicit
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entries removed). Thus, each negative case was left with at least one entry (the seen entry). For
the data set without set expansion, under-sampling was done on the seen entries, effectively
removing negative cases from the data set.

In our random over-sampling approach, we duplicated the entries of positive cases, regardless of
their being in the majority or minority. The number of entry duplications was varied between 1
and 10.

Cost-sensitive learning

Cost-sensitive learning methods can be categorized into two categories, direct methods and
meta-learning or wrapper methods [34]. In direct cost-sensitive learning, the learning algorithm
takes misclassification costs into account. These types of learning algorithms are called cost-
sensitive algorithms. In meta-learning, any learning algorithm, including cost-insensitive
algorithms, is made cost-sensitive without actually modifying the algorithm.

We chose to use MetaCost [48], a meta-learning approach, in its Weka implementation [49].
Given a learning algorithm and a cost matrix, MetaCost generates multiple bootstrap samples of
the training data, each of which is used to train a classifier. The classifiers are then combined
through a majority-voting scheme to determine the probability of each example belonging to
each class. The original training examples in the data set are then relabeled based on a
conditional risk function and the cost matrix [48]. The relabeled training data are then used to
create a final classifier.

The cost of misclassification is often not known and there are no standard guidelines available
for setting up the cost matrix. Some researchers have used the ratio of positives to negatives as
the misclassification cost (20) but this has been questioned by others (21). The values in the cost
matrix are also dependent on the base classifier used. Some classifiers require a small
misclassification cost while others require a large misclassification cost to achieve the same
result. In our experiments, we varied the misclassification costs from 1 to 1000 in 9 steps.

Classifiers

We selected the four top-performing algorithms from a previous study [24], in which many well-
known machine-learning algorithms were evaluated for the classification of EMRs in a similar
experimental setting.

e (4.5 [50], a well-known decision-tree learner. Weka’s implementation of C4.5 (called J48) is
used in the experiments.

e Support Vector Machines (SVM) [46], a commonly used algorithm that can handle large
data sets. Weka's implementation of libsvm [51] is used in the experiments. Because we
had a large number of binary features, we used a linear kernel [52] and the soft margin
parameter c was set to 4.
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e RIPPER [53], a decision-rule learner. RIPPER induces an ordered set of rules by combining
covering with a reduced error pruning strategy. Weka’s implementation of RIPPER (called
JRip) is used in the experiments.

e MyC, alocally developed decision-tree learner. MyC builds a tree by iteratively splitting the
data based on the chi-square test, similar to the ID3 algorithm [54]. MyC is simple and very
fast.

We did an error analysis to understand why some of the positive cases were not identified by the
classifiers. Errors were divided in the following four categories: evidence keywords not picked up
by the algorithm, evidence keyword picked up by the algorithm but removed from the patient
entry by the negation/speculation filter, different spelling variations of the evidence keywords in
the learned model and in the evidence entry, and patient wrongly labeled as a positive case by
the annotator.

Results

There was a good to excellent agreement between the two annotators (kappa scores of 0.74
(95% Cl1 0.59-0.89) and 0.90 (95% CI 0.83-0.97) for the hepatobiliary and acute renal failure data
sets, respectively). The chi-square feature selection decreased the number of features in both
data sets by about a factor of 10, without affecting the performance of the classifiers but greatly
reducing their training time. For example, RIPPER using MetaCost took about five days to build
one classifier for the acute renal failure set, which after feature selection took less than one day.

Table 2 shows the sensitivity and specificity results of all four classifiers trained on the
hepatobiliary and the acute renal failure data sets, with and without set expansion.

Table 2: Sensitivity and specificity results of various classifiers trained on the hepatobiliary and
the acute renal failure data sets, with and without set expansion

Set Imbalance SVM Cc4.5 MyC RIPPER
Data set expansion ratio Sens Spec Sens Spec Sens Spec Sens Spec
Hepatobiliary No 0.5 099 0.03 099 0.03 0.99 0.07 0.99 0.04

Yes 42 089 0.77 090 0.79 092 069 091 0.71
Acute renal failure No 16 0.62 092 0.69 0.88 069 090 0.71 0.89

Yes 1363 0.39 0.98 - - 0.45 0.99 0.41 0.98

C4.5 could not generate a classifier for our largest data set, acute renal failure with set expansion,
because the memory requirement of this algorithm proved prohibitive.

The decision-tree and decision-rule learners performed slightly better than the SVM. The
imbalance ratios (number of negative examples divided by number of positive examples) varies
greatly for the baseline classifiers. The specificity of the classifiers trained on the hepatobiliary
data without set expansion was very low. For our sampling and cost-sensitive experiments, we
therefore focused on changing the imbalance ratio in the data with set expansion. The acute
renal failure data with set expansion was very imbalanced, which resulted in classifiers with
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relatively low sensitivity. We therefore focused on changing the imbalance ratio in the data
without set expansion.

Tables 3, 4, 5 and 6 show the results for changing the proportions of positive and negative cases
in both data sets by under-sampling and over-sampling, respectively.
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Table 3: Sensitivity and specificity of various classifiers trained on the hepatobiliary data set for
difference percentages of under-sampling

Under-sampling SVM MyC RIPPER Cc4.5 Imbalance
(%) Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. ratio
0 0.89 077 092 068 091 071 090 0.79 42
10 089 076 093 065 091 075 090 0.80 38
20 089 075 093 063 091 073 091 0.79 34
30 089 076 094 061 093 072 090 0.78 30
40 089 073 093 060 092 069 091 0.77 25
50 090 070 093 058 092 071 091 0.76 21
60 090 071 094 056 092 072 092 0.73 17
70 091 067 095 055 091 072 092 0.70 13
80 092 064 094 049 092 073 092 0.68 9
90 094 052 091 060 093 067 093 0.59 5
100 099 0.12 099 0.07 099 0.03 099 0.14 0.5

Table 4: Sensitivity and specificity of various classifiers trained on the acute renal failure data set
for difference percentages of under-sampling

Under-sampling SVM MyC RIPPER ca.5 Imbalance
(%) Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. ratio
0 062 092 069 090 071 089 0.69 0.88 16
10 0.64 090 0.74 089 0.75 089 0.69 0.87 14
20 0.64 089 0.75 083 0.75 088 0.74 0.86 13
30 066 083 0.76 082 0.76 088 0.75 0.85 11
40 070 085 0.75 087 0.74 088 0.75 0.85 9
50 0.74 081 0.76 080 0.77 076 0.76 0.82 8
60 0.82 072 0.77 081 0.84 068 0.83 0.82 6
70 0.83 067 083 070 0383 061 0386 0.77 5
80 0.86 056 0.89 049 090 044 090 045 3
90 092 041 090 043 0.89 043 0.92 0.39 2
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Table 5: Sensitivity and specificity of various classifiers trained on the hepatobiliary data set for
difference percentages of over-sampling

Over-sampling SVM MyC RIPPER C4.5 Imbalance
(%) Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. ratio
0 089 077 092 068 091 071 090 0.79 42
100 090 0.72 096 052 094 064 093 073 21
200 090 0.70 096 047 096 056 094 0.67 14
300 091 070 097 044 096 054 095 0.65 11
400 091 071 098 045 097 050 095 0.63 8
500 092 069 098 043 097 048 095 0.62 7
600 092 068 097 035 096 047 095 0.61 6
700 092 067 098 034 097 047 095 0.60 5
800 092 065 097 034 097 047 095 061 5
900 093 0.65 097 034 097 045 095 0.59 4
1000 093 064 097 035 096 044 095 0.59 4

Table 6: Sensitivity and specificity of various classifiers trained on the acute renal failure data set
for difference percentages of over-sampling

Over-sampling SVM MyC RIPPER Cc4.5 Imbalance
(%) Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. ratio
0 062 092 069 090 075 089 069 0.88 16
100 066 086 078 080 081 0.76 0.74 0.75 8
200 071 081 08 071 084 065 0.77 0.67 5
300 074 077 089 059 088 0.65 0380 0.65 4
400 076 073 089 051 086 064 0381 0.61 3
500 0.77 069 089 048 084 0.64 0.82 0.60 3
600 078 066 091 048 089 059 0.82 0.60 2
700 082 060 092 043 089 054 0382 0.60 2
800 0.82 057 094 037 08 060 0.82 0.61 2
900 083 055 093 036 089 053 0383 0.61 2
1000 084 054 095 036 088 054 083 0.61 1
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All algorithms showed consistent behavior during the under-sampling experiments. The
sensitivity increased and specificity decreased as we decrease the number of negative case
entries from the data set.

Almost a similar pattern is observed during the over-sampling experiments where sensitivity
gradually increased and specificity decreased as we increase the number of positive case entries
in the data set. MyC showed slightly more improvement in the sensitivity as compared to other
algorithms but then also lower specificity.

The results for cost-sensitive learning with MetaCost using varying misclassification costs are
shown in Tables 7 and 8.
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Table 7: Sensitivity and specificity of various classifiers trained on the hepatobiliary data set for
difference cost values of cost-sensitive learning

SVM MyC RIPPER Cc4.5

Cost Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

1 0.86 0.78 0.90 0.68 0.93 0.67 0.89 0.71
10 0.87 0.78 0.95 0.54 0.93 0.68 0.92 0.69
25 0.87 0.79 0.96 0.47 0.93 0.67 0.92 0.69
50 0.87 0.79 0.96 0.47 0.93 0.67 0.91 0.66
100 0.87 0.79 0.96 0.47 0.93 0.67 0.92 0.66
200 0.87 0.79 0.96 0.47 0.93 0.67 0.92 0.66
400 0.87 0.79 1.00 0.09 0.97 0.24 0.99 0.12
800 0.87 0.79 1.00 0.00 1.00 0.00 1.00 0.00
1000 0.87 0.79 1.00 0.00 1.00 0.00 1.00 0.00

Table 8: Sensitivity and specificity of various classifiers trained on the acute renal failure data set
for difference cost values of cost-sensitive learning

SVM MyC RIPPER Cc4.5
Cost Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.
1 0.59 0.92 0.74 0.85 0.78 0.80 0.67 0.73
10 0.59 0.92 0.81 0.63 0.78 0.80 0.73 0.69
25 0.59 0.92 0.81 0.63 0.78 0.80 0.76 0.64
50 0.59 0.92 0.89 0.35 0.78 0.80 0.78 0.60
100 0.59 0.92 1.00 0.00 0.78 0.80 0.97 0.11
200 0.59 0.92 1.00 0.00 1.00 0.00 1.00 0.00
400 0.59 0.92 1.00 0.00 1.00 0.00 1.00 0.00
800 0.59 0.92 1.00 0.00 1.00 0.00 1.00 0.00
1000 0.59 0.92 1.00 0.00 1.00 0.00 1.00 0.00

Classifiers do not seem to be very sensitive to the misclassification cost so performance variations
were observed at relatively high cost values.

As an example of the sensitivity that can be achieved with the sampling methods and cost-
sensitive learning while maintaining a reasonable specificity, Table 9 shows the performance of

108



Improving sensitivity of machine learning methods for automated case identification

the classifiers with the highest sensitivity and a specificity of at least 0.5. Our results (cf. Tables
3,4, 5,6, 7 and 8) show that classifiers with high specificity than 0.5 are feasible but at the
expense of a lower sensitivity.

Table 9: Performance of the classifiers with the highest sensitivity and a specificity of at least 0.5
on the hepatobiliary disease and acute renal failure data sets

Data set Algorithm Baseline Under- Over- Cost-
sampling sampling sensitive

Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

Hepatobiliary SVM 0.89 077 094 052 093 065 087 0.79
disease MyC 092 068 095 056 094 054 095 0.54
ca.5 090 079 093 059 094 056 092 0.66
RIPPER 090 071 093 072 094 051 093 0.67
Acute renal SVM 062 092 086 056 084 054 059 0.92
failure MyC 069 090 083 070 0.89 051 0.81 063
4.5 069 0.88 086 0.77 083 061 078 0.60

RIPPER 071 089 084 068 0.89 059 0.78 0.80

Table 10: Error analysis of the false negatives by the MyC classifier trained on the hepatobiliary
disease data set with 70% under-sampling

Type of error N (%)
Evidence not in the model 13 (38)
Evidence removed by negation/speculation filter 12 (35)
Spelling variations 5(15)
Labeling error » 4(12)

The performance of sampling methods and cost-sensitive learning is compared to the baseline
models of both data sets.

To get an estimate of the sensitivity and specificity of manual case identification, we compared
the labels of the second annotator with the gold standard labels of annotator 1. For the
hepatobiliary set, sensitivity was 0.94 and specificity was 0.83, for the acute renal failure set
sensitivity was 0.96 and specificity was 0.94. Our experiments (cf. Tables 3, 4, 5, 6, 7 and 8)
showed that similar sensitivity performance (or even better sensitivity for the hepatobiliary set,
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depending on how much specificity can be compromised in a study) could be achieved using
automatic classification.

We did an error analysis of the positive cases missed by the MyC algorithm using 70% under-
sampling method (sensitivity 0.95) on the hepatobiliary disease data set. About 38% of the
missed positive cases were due to the evidence keywords in the entry (e.g., leverfibrose,
hepatomegalie, cholestase) not being picked up by the learning algorithm. For about a third of
the missed cases, the negation/speculation filter had erroneously removed the evidence in the
entry. For example, in the following entry: “Ron [O] ECHO BB: cholelithiasis, schrompelnier li? X-
BOZ: matig coprostase”, the evidence “cholelithiasis” was removed by the speculation filter
because the sentence ended with a question mark. Spelling variations caused about 15% of the
errors (e.g., “levercirrhose” instead of “levercirrose” (“liver cirrhosis”), and 12% of the missed
cases turned out to be labeling errors. For example, in the following labeled entry: “Waarschijnlijk
steatosis hepatitis bij status na cholecystectomie” the GP has mentioned only a probability of the
disease (“waarschijnlijk”, meaning “probable”), but the patient was labeled as a positive case.

Discussion

In this paper, we demonstrated that dealing with the proportions of positive and negative cases
entries in the data sets could increase the sensitivity of machine learning methods for automated
case identification. We used sampling and cost-sensitive methods on two very different data sets
and with four different machine-learning algorithms.

The under-sampling and over-sampling methods performed consistently well and resulted in
higher sensitivity on both data sets. Although there was no clear winner between under-sampling
and over-sampling methods, under-sampling performed slightly better. For the hepatobiliary set,
the best sensitivity-specificity score (by selecting the highest value of sensitivity at a specificity
larger than 0.5) using over-sampling was 0.94 sensitivity and 0.56 specificity with C4.5, the best
score using under-sampling was 0.95 sensitivity and 0.56 specificity with MyC, and the best score
using cost sensitive learning was 0.95 sensitivity and 0.54 specificity using MyC (cf. Table 9). For
the acute renal failure set, the best sensitivity-specificity score using over-sampling was 0.89
sensitivity and 0.59 specificity using RIPPER, the best score using under-sampling was 0.86
sensitivity and 0.77 specificity using C4.5, and the best score using cost-sensitive learning was
0.81 sensitivity and 0.63 specificity using MyC. Overall, C4.5 and MyC appeared to perform best.

The sampling experiments demonstrated the effect of imbalance in the data sets. The question
of finding an optimal or best class distribution ratio has been studied by several researchers in
the past [25,55,56]. Our experiments showed that the classifiers performed better (high
sensitivity with not too low specificity) when the imbalance ratio (negative cases to positive
cases) was below 10 (cf. Tables 3, 4, 5 and 6). This performance improvement between the ratios
was observed in both the data sets despite the fact that they were very different from each other.

Previous studies indicate that cost-sensitive learning usually performs as well as sampling
methods if not better [39]. In our experiments, cost-sensitive learning performed about equally
well as sampling, but it was difficult to find an optimal cost matrix. Different classifiers treat costs
differently and finding an optimal cost value depends on the data set and the classifier used.
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Another disadvantage of cost-sensitive learning with MetaCost is the large processing time
because of its bootstrapping method. For C4.5, which requires high memory and processing
capacity, MetaCost did not generate classifiers for our largest data set because processing time
became prohibitive.

The positive effect of set expansion for training on the hepatobiliary disease data set can be seen
in Table 2. The results show that set expansion of epidemiological data sets with relatively few
negative cases can boost specificity with a modest decrease in sensitivity. For example, specificity
for C4.5 increased from 0.03 to 0.79 with sensitivity decreasing from 0.99 to 0.90. On this data
set, the set expansion compensated for the relatively few negative examples in the data set
without set expansion. The set expansion method added new entries (implicit negative case
entries, cf. Table 1) with potentially useful features unlike over-sampling, where existing negative
entries in the data set would be duplicated, which could lead to the problem of over-fitting. In
the acute renal failure data set, negative examples were already in majority in the training model
without set expansion. Set expansion further increased the imbalance, which resulted in
decreased sensitivity of below 0.5 for all classifiers.

Overall, the decision tree and rule learning algorithms appear to perform slightly better than the
statistical algorithms. One important advantage of tree- and rule-learning algorithms is their
ability to generate models that are easily interpretable by humans. Such models can be compared
with the case definitions created by human experts.

There were some study limitations. The automatic case identification system was applied on the
results of the broad query to distinguish positive cases and negative cases. If cases were missed
by the broad query, they will also be missed by the automatic system. In other words, the
sensitivity of the automatic case identification system is bound by the sensitivity of the broad
query. It would be interesting to apply the automatic system on the actual EMR database and
compare it with the broad query. The rate of misspellings has shown to be larger in EMRs than in
other type of documents [57] but no attempts were made to handle the misspellings in the case
identification system. The end of a sentence was demarked by a punctuation mark, which was
not optimal as later confirmed, by the error analysis. Our algorithm to find negated and
speculative assertions has been developed for the Dutch language and currently is not as
sophisticated and comprehensive as some of the algorithms available for English, e.g., NegEx [42]
or ConText [58], and ScopeFinder [59]. To deal with such issues, we need to improve our
preprocessing methods. The negation algorithm can be made more informative so it can also
detect double negations.

Our strategy by dealing with the imbalance ratio in a data set with and without the set expansion
will result in a highly sensitive classifier. An acceptable sensitivity-specificity score will depend on
the actual requirement and type of the observational study. We would like to point out that our
approach is not specific to the IPCI database or the Dutch EMRs used in this study.

Conclusions

We were able to achieve high sensitivity (on a par with the manual annotator) on both data sets
using our proposed sampling and cost-sensitive methods. During a case-identification process in
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an epidemiological study, all records returned by the broad query need to be manually validated.
An automatic case-identification system with high sensitivity and reasonable specificity can be
used as a pre-filter to significantly reduce the workload by reducing the amount of records that
needs to be manually validated. The specificity can then be increased during the manual
validation process on the reduced set. Using manual validation on the reduced set instead of the
set retrieved by the broad query could save weeks of manual work in each epidemiological study.
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Discussion and Conclusions

Electronic health records (EHRs) contain detailed patient information such as demographics,
behavior, vital signs, patient-reported symptoms, diagnosis, procedures and treatments,
allergies, laboratory data, outpatient and inpatient encounters, and imaging for large patient
populations. Although data mining and natural language processing techniques are increasingly
being developed and used for automated processing of large amounts of EHRs to answer simple
to complex clinical and epidemiological questions, the data-mining tasks remain challenging
because of the inherent complexity of the language and diversity of information in the EHRs [1].
Most of the methods and resources developed in the past have focused on English-language
EHRs. The work presented in this thesis uses data taken from the Integrated Primary Care
Information (IPCI) [2] database, which is a longitudinal collection of EHRs from Dutch general
practitioners. The methods and resources developed in this thesis focused particularly on taking
advantage of the large unstructured free-text present in the IPCl database. We present our work
in the wider framework of knowledge-discovery process, which outlines a standard way of
approaching data-mining tasks.

In this chapter, we present an overview and discussion of the findings as described in Chapters
2-6. In the first two sections, we discuss our results in view of the general knowledge-discovery
steps of data preparation and data mining. We then discuss the development and use of the
Dutch clinical corpus. Finally, we discuss limitations and future work.

Data Preparation

One particular challenge in analyzing free-text EHRs is to distinguish a diagnosis by the physician
from the conditions that have been excluded or ruled out. The EHRs often contain family history
and past medical problems. Such information should ideally be identified as such. To achieve this,
it is important that automated systems do not only identify clinical concepts such as diagnoses
but also take into account the context of the identified information. Most work on identifying
contextual properties of the clinical concepts has been done on English clinical documents.
Recently, the NegEx algorithm [3] has been adapted to detect negations in Swedish [4], French
[5], and Spanish [6, 7] clinical text. To our knowledge, no method was yet available for Dutch
clinical text. In Chapter 2, we adapted an English language algorithm, ConText [8], which is an
extension to NegEx, to the Dutch language in order to identify contextual properties. Such
algorithms can be used to identify negated medical concepts and use them as negated features
in machine-learning models instead of simply removing them from the training set. We first
translated 246 original English language trigger terms into Dutch using Google Translate [9] and
then augmented the trigger list manually with additional terms to cover all possible Dutch
language specific variations. Compared to the original ConText algorithm, we achieved the same
F-score of 0.93 for the negation property when tested on the radiology reports. On discharge
letters however, our algorithm, called ContextD, performed better with an F-score of 0.92 as
compared to 0.86. The increase in performance can be attributed to our extended list of negation
triggers. Although we added an additional module to identify historical properties, our results
were lower with an F-score of 0.52 compared to 0.73 for the English version. Our additional
temporality module showed a recall of 0.78 as compared to 0.77 for the English version, but it
also produced many false positives, which resulted in an overall decrease in the F-score.
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Hypothetical property could not be compared since the English version used discharge letters for
the evaluation and our discharge letters did not contain any hypothetical concept.

Our results showed that extending the original translated trigger list significantly increases the
recall for all properties. Therefore, it could be concluded that while the translated list of English
trigger terms provides a good starting point it is important that this is extensively reviewed by a
native speaker to cover variations and additional language dependent cases. On the other hand,
although our list of Dutch triggers was much longer than the English trigger lists, only a small
number of trigger phrases accounted for the majority of the detected terms. This finding is
consistent with the findings in other languages [4, 10]. Out of 395 possible Dutch triggers for the
negation property, only 23 negation triggers were found in the evaluation set. Most of these 23
negation triggers had an equivalent English trigger term. However, the translation of these terms
into Dutch was perhaps not optimal. This could be explained by the fact that we only provided
single trigger terms without any context for automated translation and wherever the translator
returned more than one alternative, we picked the first one. A context-oriented translation of
the English triggers would probably have resulted in better terms. Amongst the three properties,
the temporality property appears to be the most difficult one and methods to identify this need
to be further developed.

There is no standard way of writing clinical narratives in the EHRs. Often these unstructured
clinical narratives are written under time pressure and they contain grammatical errors, standard
and non-standard abbreviations, misspellings, ill-formed and incomplete sentences. All
automated machine-learning based methods such as case-detection algorithms or rule- and
trigger-based algorithms such as ContextD suffer because of such variations. A large number of
misspellings or grammar variations greatly increase the number of features in machine-learning
tasks when words are used as features, and may reduce the discriminative value of features. In
Chapter 3, we considered text normalization as a way to reduce feature dimensions in IPCl-like
databases where typographical errors such as spelling mistakes are common. We used three
approaches for normalization. In the first approach, we explored the possibilities of using
standard terminologies such as SNOMED-CT (Systemized Nomenclature of Medicine — Clinical
Terms) and MeSH (Medical Subject Headings) to normalize clinical words in the EHRs. We used
Peregrine [11], a concept recognition system, to identify and normalize clinical words to their
standard forms in the terminologies. Only a very small percentage of words could be mapped. A
likely scenario for low coverage is that the text in IPCl is often noisy and the Peregrine system
does not do fuzzy matching, so all words with even a slight variation from the words in the
terminology would have been missed. An automatic indexer with fuzzy matching capability would
have improved the coverage (although likely at the expense of precision). Another possible
reason for low coverage might be that the terminologies we used may just be missing many
terms. It can be concluded that for databases like IPCI, where unstructured free-text is often
noisy, a terminology-based normalization approach may not be sufficient.

In our second normalization approach, we attempted to automatically identify short-forms
(abbreviations or acronyms) and normalize them to their long-form (full form). This topic has
been studied before but not so much in the context of clinical text and even less on non-English
languages. Normalizing short-form to their long-form is a challenging task in clinical text [12, 13].
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Previous approaches mostly involved supervised machine-learning methods such as SVM or CRF
where a manually labeled training set is usually available. There is no training set available for
this task on the Dutch EHRs and it is expensive and time-consuming to develop a new set. We
used heuristics to first identify potential short-forms from the EHRs and then used the Schwartz
algorithm [14] to identify their potential long-forms. This simple method can essentially be used
without worrying about the type of the text and the language. The automated extraction resulted
in many potential long-forms for each short-form. Although others have considered this a word
sense disambiguation (WSD) problem and tried to tackle it accordingly [12, 13], we used a naive
approach to select the most frequent long-form among the options. Even after implementing
several pre- and post-processing filters to remove false positives, we still ended up with plenty
of incorrect short-form long-form pairs. It would be interesting to see if more sophisticated WSD
techniques could reduce the false positives and produce better short-form long-form mapping.

In our third approach, we used clustering methods to normalize all word-variations to one.
Previous studies on normalizing clinical text mainly focused on spelling corrections [15-18]. Most
of these methods are dependent on linguistic resources or domain-specific terminologies, which
are hard to come by for non-English languages such as Dutch. Of the two methods we used, the
normalization using edit-distance-based clusters resulted in 38% reduction in features whereas
only 5% reduction was observed when lemma-based word normalization was applied. A reason
for the low reduction using lemma-based clustering could be that the lemmatizer was trained on
a non-clinical Dutch lexicon and may not work as good on clinical terms. Another plausible reason
might be that the text in IPCI is noisy and since the lemmatization process usually involves a
vocabulary and morphological analysis of the words, it may have a strong impact on the
performance. Our results show that the feature reduction had a (slightly) positive impact on the
classification performance and resulted in improved sensitivity, which is usually important for
clinical data sets. It could, therefore, be concluded that for EHR databases with noisy
unstructured text, an edit-distance-based clustering approach could prove to be beneficial as it
cannot only reduce the feature dimensionality but can also increase sensitivity of the
classification tasks.

Mining Electronic Health Records

Case selection is one of the most important steps in observational studies. The algorithms for
case selection are commonly known as case-detection algorithms. Case-detection algorithms are
usually created manually by using structured information such as ICD-9 codes or laboratory
values since large amounts of free-text present in most EHRs cannot be easily analyzed [19]. In
databases that contain unstructured text, the manually crafted algorithms consist of all possible
words and codes that might be relevant. A typical process of case selection involves applying
manual algorithms and then manually verifying the potential patients by reviewing their medical
records [20]. In Chapter 5, we explored machine-learning methods to generate and evaluate
case-detection algorithms to identify children with asthma within the IPCI database. Considering
the hierarchical nature of the asthma labels in the study (definite -> probable -> doubtful -> non-
asthma), we tackled this as a hierarchical multi-class classification problem [21-23]. We trained
two machine-learning classifiers, one to separate definite cases from all other cases and the other
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to distinguish probable and doubtful asthma from non-asthma cases. We used a third rule-based
classifier to distinguish between probable and doubtful asthma cases.

Although we used both structured information and unstructured free-text to train the classifier,
none of the seven rules generated by the algorithm for definite asthma cases contained any
diagnosis code. This is particularly interesting since all definite asthma cases required an explicit
confirmation by the specialists. The algorithm successfully found such confirmations, which are
usually found in the free-text entries of the IPCl database. This highlights the importance of using
unstructured free-text in the case selection process and the ability of the automated algorithm
to identify such vital information. This is in line with recent findings showing that the use of
unstructured text can significantly improve case detection [19]. Typically, researchers are
required to write manual case-detection algorithms. These researchers are also required to have
good understanding of the database, such as how the information was collected and how it is
stored, where to find required information, what coding schemes are used to record diagnosis,
symptoms, and drugs, what information can be found in the structured, and what can be
expected from the unstructured text. For unstructured text, it is also important to know whether
the free-text is free from typographical errors and if non-standard abbreviations and acronyms
are used. Poor knowledge of the database often results in sub-optimal manual case-detection
algorithms leading to either missing many cases or including many false positives. Errors in the
case selection process lead to misclassification and potential biased findings [24, 25]. The
machine-learning methods that we used to generate automated case-detection algorithms,
showed that they are capable of capturing specific keywords (and combinations) used within a
database. For example, the algorithm to classify asthma in the IPCI database contained ‘flixotide’,
‘ventolin’, and ‘pulmicort” which are drugs for obstructive airway diseases, database-specific
code 20’ for the department of pediatrics, non-standard abbreviations such as ‘inh’ for ‘inhaler’
and ‘vag’ for ‘vesiculair ademgeruis’ (vesicular breath sounds). We showed that the performance
of the automated case-detection algorithm is on a par with manual annotators [26]. Another
advantage of automated case-detection algorithms is that they can allow for more uniform and
consistent annotations as compared with several manual annotators.

The handcrafted case-detection algorithms usually have very high sensitivity since they tend to
include all possible keywords (code and/or text), but it comes at the expense of a manual review
step to wield out the false-positives, which is very time-consuming and labor-intensive. Although
there is no general agreement on how much error is acceptable in an automated case selection
process [19], an ideal algorithm would have high sensitivity and a high positive predictive value
(PPV). In incidence rate studies in particular, where the goal is to find the number of new cases
in the population during a given time period, the automated case-detection algorithm should
have high sensitivity, i.e., it should not miss many positive cases. However, machine-learning
methods are usually optimized for accuracy but not for sensitivity. The quality of the machine-
learning methods greatly depends on the training set. Often, there are more negative cases than
positive cases in the training set and this imbalance affects the machine-learning process [27]. In
Chapter 6, we explored different methods to deal with the training set imbalance in order to
achieve high sensitivity. One way of improving algorithm performance is to have a large training
set with a high number of positive cases, which is expensive. Increase in sensitivity usually comes
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at the cost of a decrease in specificity due to the inclusion of many false positives. We
experimented with two methods in order to increase sensitivity of the case-detection algorithms.
In the first method, we varied the imbalance ratio between positive and negative cases in the
training set using under-sampling and over-sampling techniques. In the second method, we
applied cost-sensitive learning techniques with various misclassification costs. We observed
about equal performance for both methods, which is in line with previous findings [28]. However,
the main challenge with cost-sensitive learning was to find an optimal cost matrix since different
classifiers treat cost differently, and it depends on the data set and the classifier used. We used
random under- and over-sampling methods to find the best class distribution ratio in the data set
in order to achieve high sensitivity without severely jeopardizing specificity. Among these, there
was no clear winner as they both performed consistently well. The under-sampling methods are
in general preferred since over-sampling methods are prone to overfitting [29]. The question of
finding an optimal class distribution ratio has been studied by several researchers in the past [27,
29-31]. A distribution close to the naturally occurring class distribution is reported to achieve
good accuracy but a more balanced class distribution tends to maximize Area Under the Curve
(AUC). Our experiments showed that the classifiers achieved high sensitivity with not too low
specificity when the imbalance ratio (negative cases to positive cases) was below 10. This effect
was observed using four different machine-learning algorithms on two very different clinical data
sets. Both cost-sensitive learning and sampling methods were able to achieve high sensitivity
similar to the manual annotators. Since all potential cases are manually validated during case
selection process, such automated case-detection algorithms with high sensitivity can be used as
a pre-filter to significantly reduce the workload and save weeks of manual work in an
epidemiological study.

The data contained in EHRs are collected for clinical purposes and primarily used for routine
medical care. The extensive amount of healthcare information present in EHRs has also allowed
researchers to conduct health outcome research, especially to study post-marketing drug effects
[32—-34]. However, researchers need to be wary of the issues related to using the EHRs for these
studies, such as confounding. Confounding occurs when a third variable that is not under
investigation, is associated with both the exposure and the outcome of interest. Observational
studies need to deal with confounding by design (restriction), matching, or adjustment. Statistical
techniques such as a propensity score [35] can be used to address the confounding through
matching or adjustment. In Chapter 4, we explored the possibility of using unstructured free-text
in the IPCl database to construct propensity score models that would allow to deal with
confounding. EHRs comprise much unstructured data that could be used as proxies for potential
confounding factors. These factors are difficult to capture from EHRs because the information is
not primarily recorded for research purposes. Previous studies on confounding control that use
propensity score models focused on including only structured information, such as diagnostic or
procedure codes available in claims databases [36—38]. A high-dimensional propensity score (hd-
PS) algorithm was proposed to empirically identify large number of relevant covariates with high
prevalence [39]. The use of two-word free-text phrases in addition to the structured information
has also been positively evaluated in the context of hd-PS models [40].
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Our method to construct propensity score models is different since we used all unstructured text
without pre-identifying data dimensions as compared to the hd-PS. We considered all unigrams
as potential covariates that could enter the propensity score model. We generated two different
propensity score models; the first used covariates with the highest frequencies in the cohort and
the second used covariates with an association with the outcome. Our results suggest that a high
frequency threshold could be used to select covariates since it appears that the generated
models are mostly based on a few covariates with high occurrence in the text. However, such a
frequency-based covariate selection approach is prone to include covariates that may actually be
instrumental variables. If covariates are included that are not true confounders, the variance
increases and sometimes a small amount of bias may be introduced [41-43]. To mitigate this, in
the second method we included covariates with a significant association with the outcome to the
propensity score model. Our results showed that this method provided an improvement in
adjustment for confounding. Using only the unigrams was one of the limitations of our study.
Some important covariates like ‘congestive heart failure’ could not be recognized as such; instead
they were recognized as individual words ‘congestive’, ‘heart’, and “failure’. This could lead to
over- and under-estimation of some covariates. Therefore, we suggest that more efforts should
be spend on developing better methods to extract meaningful covariates from the free-text for
effective proxy adjustment via propensity scores.

Dutch Clinical Corpus Development

The availability of annotated corpora is essential to train and test automated language-
processing systems. The performance of such systems usually depends on the quality and
quantity of the annotations.

There was no clinical corpus available in the Dutch language suitable to train and evaluate
systems to identify contextual properties. Therefore, we developed a clinical corpus consisting of
7500 textual entries in the Dutch language. Four types of clinical documents are included in the
corpus to capture different language use in the Dutch clinical setting. The combination of these
texts can be considered a representative selection of the documented medical process in the
broadest sense, including the patient’s first interactions with the general practitioner, referrals
and advanced (imaging) diagnostics in the hospital, and ultimately reporting back to the general
practitioner after polyclinic consult or discharge after hospital admission. Developing a high
quality corpus depends on two things: a) clear annotation guidelines and b) trained subject
matter experts to carry out the annotation work. Our annotation guidelines consisted of clear
definitions of each of the contextual properties with examples. Several one-on-one sessions were
conducted with the two medically trained annotators to make sure they understood the
definitions and the annotation tool [44] that was used for the task. Finding all medical conditions
or symptoms first and then identifying three of their contextual properties is a tedious and labor-
intensive job. To speed up the corpus development, we limited the annotations to the conditions
already identified in the text using our custom Dutch UMLS terms. Therefore, the annotator’s
task was reduced to only identify their contextual properties. A more extensive term list would
have identified many more terms in the clinical text.
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We observed that the medically schooled annotators were prone to using information outside
the context and make considerations based on prior knowledge concerning the natural course of
a disease. For example, on various occasions one annotator labeled a term as ‘historical’ based
on the assumed chronicity of the disease without presence of explicit evidence in the context.
Automated methods to recognize properties of clinical terms only from its context can never
identify this and may result in biased estimations. Overall, the inter-annotated agreement,
measured using Cohen’s Kappa [45], was good to very good except for one of the values
(‘hypothetical’) of the temporality property, which was moderate. The annotators often
disagreed on the assignment of hypothetical values to terms that were part of a differential
diagnosis. An expert, who was familiar with all four types of clinical text, resolved the
disagreements between the two annotators. The anonymized Dutch clinical corpus we developed
is the first publically available clinical corpus in the Dutch language. It can serve as a useful
resource for further algorithm development.

Limitations and future work

In this thesis, we focused on two main steps of the knowledge-discovery process: data
preparation and data mining. In data preparation, the efforts were spent primarily on data
cleaning and data reduction tasks. Although we successfully adapted an English language
algorithm to detect contextual properties of clinical terms in Dutch, there were still some
challenges. The ContextD algorithm only considers a sentence as a context. This leads to errors if
sentence boundaries are not correctly identified. We used the Apache OpenNLP [46] library to
split text into sentences, which is trained on regular natural language text and sometimes failed
to correctly identify a proper sentence. We see an opportunity to increase the algorithm
performance by using a sentence splitter trained on Dutch EHRs. The ContextD algorithm should
also be extended to use additional useful information present outside of the sentence-level
context. For example, all clinical concepts identified in the ‘patient history’ section should be
labeled as historical but this information is not available to the algorithm. The ContextD algorithm
is based on pre-identified trigger words. The algorithm uses exact string matching to check the
presence of a trigger in a sentence. We noticed a few errors due to typos in trigger words. These
errors could be reduced by employing a more sophisticated fuzzy matching technique for finding
trigger terms in the text.

In one of our studies, we tried to identify potential short-forms (abbreviations and acronyms)
and map them to their long-forms within the IPCI database. This proves to be challenging since
the database contained many standard and non-standard abbreviations. The Schwartz algorithm
[14] often identified many possible long-forms for one short-form. To disambiguate, we simply
used frequency information and map the most frequent long-form to the short-form.
Normalizing short-forms to long-forms is a challenging task and future work in this domain may
focus on investing in building more robust deep learning approaches [47]. We also showed that
in IPCl-like databases containing plenty of noisy free-text, an edit-distance based clustering
technique could be used to reduce the feature dimensionality. A similar approach using
lemmatization did not work well mainly because the Dutch lemmatizer [48] we used was not
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trained on medical text. Further use of the Dutch lemmatizer should focus on retraining the in-
build models first to achieve better results.

Machine-learning approaches can be used to generate case-detection algorithms automatically
by using unstructured and structured information. Feature extraction is essential to apply
traditional machine-learning techniques but it requires data and domain knowledge. New
machine-learning approaches such as deep learning can be used to learn features from the data
set algorithmically in an unsupervised way [49]. Although the use cases in this thesis were
focusing on Dutch EHRs, the approaches are more general and can be used with other databases.
However, this would require new training sets to build data-specific algorithms. We also showed
how the sensitivity of machine-learning methods could be improved by dealing with the
imbalance in the training set. We found simple random under-sampling and over-sampling
approaches to be beneficial. However, both these approaches were used mutually exclusive to
each other. Since both approaches have their own limitations, we suggest that further
investigations should be looking into applying a combination of both under-sampling and over-
sampling methods at the same time.

Although the data preparation techniques presented in this thesis can greatly benefit the
subsequent data-mining step, there are still many opportunities to improve. Quantitative
information in the EHRs such as laboratory results, body temperature, and blood pressure
measurements could be identified as well. This would first require an identification of the
quantitative attribute and second its value from the context. The coded information present in
the structured part of the EHRs may also be present in a textual form in the unstructured free-
text. Therefore, it is important that such information is used only once to avoid any potential
bias. Identifying information overlap between structured and unstructured free-text is a
challenging task that requires further efforts. Similarly, more efforts should be made to structure
the unstructured free-text in an automated fashion as much as possible. Typically, only the
definitive diagnosis information is coded in the EHRs and not the related symptoms. Use of
named entity recognition techniques to identify symptoms, leading to a definite diagnosis, can
greatly benefit in understanding the natural history of disease [1].

Every EHR database is structurally different from another and that limits the possibilities of
combining multiple EHRs database to increase sample size for observational studies. Moreover,
due to the differences, methods developed for one EHR database cannot be used straightaway
with other databases. The Observational Medical Outcomes Partnership (OMOP) Common Data
Model (CDM) [50] provides a viable framework to convert an EHR database to a common
structure to not only combine multiple EHRs but also take advantage of new methods and tools
developed by the Observational Health Data Sciences and Informatics (OHDSI) program [51].
However, extracting and converting information from unstructured free-text to the OMOP-CDM
is largely unexplored and merits further work.

126



Discussion and Conclusions

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Yadav P, Steinbach M, Kumar V, Simon G: Mining Electronic Health Records: A Survey. ACM
Comput Surv 2016, 1:1-41.

Integrated Primary Care Information (IPCI) http://www.ipci.nl [http://www.ipci.nl]

Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG: A simple algorithm for
identifying negated findings and diseases in discharge summaries. J Biomed Inform 2001,
34:301-310.

Skeppstedt M: Negation detection in Swedish clinical text: An adaption of NegEx to Swedish. J
Biomed Semantics 2011, 2(Suppl 3):S3.

Deléger L, Grouin C: Detecting negation of medical problems in French clinical notes. In Proc 2nd
ACM SIGHIT Symp Int Heal informatics - IHI ’12. New York, New York, USA: ACM Press; 2012:697—
702.

Vivaldi VCVSJ, Rodriguez H: Syntactic methods for negation detection in radiology reports in
Spanish. In ACL; 2016:156.

Costumero R, Lopez F, Gonzalo-Martin C, Millan M, Menasalvas E: An approach to detect
negation on medical documents in Spanish. In Lect Notes Comput Sci (including Subser Lect Notes
Artif Intell Lect Notes Bioinformatics). Volume 8609 LNAI; 2014:366-375.

Harkema H, Dowling JN, Thornblade T, Chapman WW: ConText: an algorithm for determining
negation, experiencer, and temporal status from clinical reports. J Biomed Inform 2009, 42:839—
851.

Google Translate [http://translate.google.com]

Chapman W, Chu D, Dowling J: ConText: An algorithm for identifying contextual features from
clinical text. In Proc Work BioNLP 2007 Biol Transl Clin Lang Process. Prague, Czech Republic:
Association for Computational Linguistics; 2007(June):81—-88.

Schuemie MJ, Jelier R, Kors JA: Peregrine: Lightweight gene name normalization by dictionary
lookup. In Proc Second BioCreative Chall Eval Work; 2007:131-133.

Mowery DL, South BR, Christensen L, Leng J, Peltonen L-M, Salanter&d S, Suominen H, Martinez D,
Velupillai S, Elhadad N, Savova G, Pradhan S, Chapman WW: Normalizing acronyms and
abbreviations to aid patient understanding of clinical texts: ShARe/CLEF eHealth Challenge 2013,
Task 2. J Biomed Semantics 2016, 7:43.

Wu 'Y, Denny JC, Rosenbloom ST, Miller RA, Giuse DA, Xu H: A comparative study of current
Clinical Natural Language Processing systems on handling abbreviations in discharge summaries.
AMIA . Annu Symp proceedings AMIA Symp 2012, 2012:997-1003.

Schwartz AS, Hearst MA: A simple algorithm for identifying abbreviation definitions in
biomedical text. Pac Symp Biocomput 2003:451-462.

Patrick J, Sabbagh M, Jain S, Zheng H: Spelling correction in clinical notes with emphasis on first
suggestion accuracy. In 2nd Work Build Eval Resour Biomed Text Min; 2010(March):2-8.

Crowell J, Zeng Q, Ngo L, Lacroix E-M: A Frequency-based Technique to Improve the Spelling
Suggestion Rank in Medical Queries. J Am Med Informatics Assoc 2004, 11:179-185.

Tolentino HD, Matters MD, Walop W, Law B, Tong W, Liu F, Fontelo P, Kohl K, Payne DC: A UMLS-
based spell checker for natural language processing in vaccine safety. BMC Med Inform Decis
Mak 2007, 7:3.

Lai KH, Topaz M, Goss FR, Zhou L: Automated misspelling detection and correction in clinical

127



Chapter 7

19.

20.

21.

22.

23.

24,

25.

26.

27.
28.

29.

30.

31.

32.

33.

34,

35.

128

free-text records. J Biomed Inform 2015, 55:188-195.

Ford E, Carroll JA, Smith HE, Scott D, Cassell JA: Extracting information from the text of electronic
medical records to improve case detection: a systematic review. J Am Med Informatics Assoc
2016:0cv180.

Afzal Z, Engelkes M, Verhamme KMC, Janssens HM, Sturkenboom MCJM, Kors JA, Schuemie MJ:
Automatic generation of case-detection algorithms to identify children with asthma from large
electronic health record databases. Pharmacoepidemiol Drug Saf 2013, 22.

Kiritchenko S, Matwin S, Nock R, Famili AF: Learning and evaluation in the presence of class
hierarchies: Application to text categorization. Adv Artif Intell 2006, 4013:395-406. [Lecture
Notes in Computer Science])

Metz J, Freitas AA, Monard MC, Cherman EA: A study on the selection of local training sets for
hierarchical classification tasks. In Brazilian Natl Meet Artif Intell. Natal, RN, Brasil: Sociedade
Brasileira da Computa - SBC; 2011:572-583.

Costa EP, Lorena AC, Carvalho ACPLF, Freitas AA, Holden N: Comparing Several Approaches for
Hierarchical Classification of Proteins with Decision Trees. In Adv Bioinforma Comput Biol.
Volume 4643. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007:126-137.

Nicholson A, Tate AR, Koeling R, Cassell JA: What does validation of cases in electronic record
databases mean? The potential contribution of free text. Pharmacoepidemiol Drug Saf 2011,
20:321-4.

Manuel DG, Rosella LC, Stukel TA: Importance of accurately identifying disease in studies using
electronic health records. Br Med J 2010, 341:440-443.

Afzal Z, Schuemie MJ, van Blijderveen JC, Sen EF, Sturkenboom MCJM, Kors J a: Improving
sensitivity of machine learning methods for automated case identification from free-text
electronic medical records. BMC Med Inform Decis Mak 2013, 13:30.

Garcia EA: Learning from Imbalanced Data. /EEE Trans Know! Data Eng 2009, 21:1263-1284.
McCarthy K, Zabar B, Weiss G: Does Cost-Sensitive Learning Beat Sampling for Classifying Rare
Classes? In Proc 1st Int Work Util data Min - UBDM ‘05. New York, New York, USA: ACM Press;
2005:69-77.

Weiss GM, Provost F: Learning When Training Data are Costly : The Effect of Class Distribution on
Tree Induction. J Artif Intell Res 2003, 19:315-354.

Chawla N V: Data Mining for Imbalanced Datasets: An Overview. In Data Min Know! Discov
Handb. Edited by Maimon O, Rokach L. Boston, MA: Springer US; 2010:875-886.

Van Hulse J, Khoshgoftaar TM, Napolitano A: Experimental perspectives on learning from
imbalanced data. In Proc 24th Int Conf Mach Learn - ICML ‘07. New York, New York, USA: ACM
Press; 2007:935-942.

Myers L, Stevens J: Using EHR to Conduct Outcome and Health Services Research. In Second Anal
Electron Heal Rec. Cham: Springer International Publishing; 2016:61-70.

MIT Critical Data: Secondary Analysis of Electronic Health Records. Cham: Springer International
Publishing; 2016.

Linder JA, Haas JS, lyer A, Labuzetta MA, Ibara M, Celeste M, Getty G, Bates DW: Secondary use of
electronic health record data: spontaneous triggered adverse drug event reporting.
Pharmacoepidemiol Drug Saf 2010, 19:1211-1215.

Brookhart MA, Stiirmer T, Glynn RJ, Rassen J, Schneeweiss S: Confounding control in healthcare
database research: challenges and potential approaches. Med Care 2010, 48:5114-5120.



Discussion and Conclusions

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.
47.

48.

49.

50.

51.

Rubin DB: Estimating causal effects from large data sets using propensity scores. Ann Intern Med
1997, 127:757-763.

Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ, Avorn J, Stirmer T: Variable selection for
propensity score models. Am J Epidemiol 2006, 163:1149-1156.

Rassen JA, Glynn RJ, Brookhart MA, Schneeweiss S: Covariate selection in high-dimensional
propensity score analyses of treatment effects in small samples. Am J Epidemiol 2011, 173:1404—
1413.

Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA: High-dimensional
propensity score adjustment in studies of treatment effects using health care claims data.
Epidemiology 2009, 20:512-522.

Rassen JA, Wahl PM, Angelino E, Seltzer MI, Rosenman MD: Automated Use of Electronic Health
Record Text Data To Improve Validity in Pharmacoepidemiology Studies. In Pharmacoepidemiol
Drug Saf. Volume 22. NJ USA: WILEY-BLACKWELL; 2013:376.

Myers J a., Rassen J a., Gagne JJ, Huybrechts KF, Schneeweiss S, Rothman KJ, Joffe MM, Glynn RJ:
Effects of adjusting for instrumental variables on bias and precision of effect estimates. Am J
Epidemiol 2011, 174:1213-1222.

Rassen JA, Schneeweiss S: Using high-dimensional propensity scores to automate confounding
control in a distributed medical product safety surveillance system. Pharmacoepidemiol Drug Saf
2012, 21:41-49.

Franklin JM, Eddings W, Glynn RJ, Schneeweiss S: Regularized Regression Versus the High-
Dimensional Propensity Score for Confounding Adjustment in Secondary Database Analyses. Am
J Epidemiol 2015, 182:651-659.

brat rapid annotation tool [http://brat.nlplab.org/]

Application I-RR, Kappa |, Yellow-Bellied F, Red-Bellied F, Cooters R: Cohen 4€™ s Kappa.
Communication 1960:1-3.

Apache OpenNLP library [http://opennlp.apache.org/]

Wu'Y, Xu J, Zhang Y, Xu H: Clinical abbreviation disambiguation using neural word embeddings.
In Proc 2015 Work Biomed Nat Lang Process; 2015:171-176.

van den Bosch A, Busser B, Canisius S, Daelemans W: An efficient memory-based
morphosyntactic tagger and parser for Dutch. In Sel Pap 17th Comput Linguist Netherlands Meet.
Edited by Eynde F V, Dirix P, Schuurman |, Vandeghinste V. Leuven, Belgium; 2007:99-114.
Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E: Deep learning
applications and challenges in big data analytics. J Big Data 2015, 2:1.

Overhage JM, Ryan PB, Reich CG, Hartzema AG, Stang PE: Validation of a common data model for
active safety surveillance research. J Am Med Inform Assoc 2012, 19:54-60.

Observational Health Data Sciences and Informatics (OHDSI) [http://www.ohdsi.org/analytic-
tools/]

129






Summary
Samenvatting
Acknowledgements
List of Publications

About the Author







Summary

This thesis describes the use of several data-mining and data-preparation techniques for
automated processing of Dutch electronic health records. All data sets used in this thesis were
taken from the Integrated Primary Care Information (IPCl) database, which is a longitudinal
collection of EHRs from Dutch general practitioners. We started with implementing and
evaluating an algorithm to identify contextual properties of clinical concepts. Next, we looked at
ways to normalize abbreviations and textual variations to reduce feature dimensionality. We
continued with assessing whether the unstructured information in EHRs can also be used to
construct propensity score models to deal with confounding. Later we generated and evaluated
case-detection algorithms for case selection, which is an important task in observational studies.
Finally, we continued with exploring the options to improve performance of generated case-
detection algorithms with focus on the sensitivity. Next, we present a summary of the main
findings discussed in this thesis.

In Chapter 2, we presented ContextD, an adaptation of the English ConText algorithm to the
Dutch language. The algorithm is able to identify three contextual properties: negation,
temporality, and experiencer of the clinical concepts. To adapt the algorithm, we translated all
English trigger terms to Dutch and added several general and Dutch EHR-specific enhancements
such as negation rules for general practitioners’ entries and a regular expression based
temporality module. We also developed a Dutch clinical corpus to evaluate ContextD. The
performance of the ContextD was better than the original ConText algorithm in identifying
negation property but lower for identifying historical properties in discharge letters. The corpus
was annotated for three contextual properties and consisted of four different types of Dutch
EHRs. The Dutch clinical corpus has been made public and can be used to train other systems for
similar tasks.

In Chapter 3, we normalized words in EHRs in order to reduce feature dimensionality. We
employed two approaches for normalization. In the first approach, we group textually similar
words together using clustering methods, and in the second approach, we identified
abbreviations and acronyms and mapped them to their long-forms that are present in the EHRs.
We managed to greatly reduce feature dimensionality using a word clustering based
normalization approach. We also showed that word normalization resulted in better
classification performance, especially in improving sensitivity.

Studies using EHRs often have to deal with confounding, which occurs when a variable that is not
under investigation influences the outcome. To deal with confounding, in Chapter 4, we used a
large-scale regularized regression to fit two propensity score (PS) models using all structured and
unstructured information in the EHR. We generated two different PS models: the first was
generated using covariates with the highest frequencies in the cohort and the second was
generated using covariates with an association with the outcome. We showed that these PS
models provided an improvement in adjustment for confounding. This is useful for database
studies that have a large amount of unstructured free-text as in EHRs.
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Case detection algorithms are usually created manually and they often use only the structured
or coded information in the EHRs, such as ICD-9 codes. In Chapter 5, we used machine-learning
methods to generate and evaluate an automated case-detection algorithm that uses both coded
information and free-text. The generated algorithm yielded high sensitivity and specificity on
identifying asthma cases. Automating case selection by means of auto-generated case-detection
algorithms will facilitate large-scale studies from databases.

Machine-learning methods are typically optimized for accuracy but not for sensitivity. In Chapter
6, we explored two methods to handle the imbalance in the training set with focus on improving
the sensitivity of the resulting classifiers. On two evaluation sets, we were able to achieve high
sensitivity on par with the manual annotators. By tweaking the training set balance of positive
and negative examples, we managed to improve sensitivity on the first set by 4% and on the
second set by 20%. Highly sensitive case-detection algorithms can be used as a pre-filter to
significantly reduce the burden of manual record validation during the case selection process.
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SAMENVATTING VAN DE BELANGRIJKSTE BEVINDINGEN

Dit proefschrift beschrijft het gebruik van verschillende data-mining- en bewerkingstechnieken
voor de automatische verwerking van Nederlandse patiéntendossiers. Gegevens gebruikt voor
dit proefschrift kwamen uit de Integrated Primary Care Information (IPCl) database en het
ziekenhuisinformatiesysteem van het Erasmus MC. IPCl is een longitudinale verzameling van
elektronische patiéntendossiers (EPDs) van Nederlandse huisartsen. Het onderzoek startte met
het bouwen en evalueren van een algoritme om contextuele eigenschappen van klinische
concepten te identificeren. Vervolgens onderzochten we manieren om afkortingen en
tekstvariaties te normaliseren, met als doel het aantal featuredimensies terug te brengen. We
beoordeelden of de ongestructureerde informatie in EPDs ook gebruikt zou kunnen worden om
zgn. propensity score modellen te construeren, die onverwachte afwijkingen (‘confounding’)
zouden kunnen behandelen. Later bouwden en evalueerden we algoritmes om casussen te
herkennen en selecteren, een belangrijke taak in observationele studies. Tenslotte exploreerden
we de opties om de prestaties van casus-selectie-algoritmes te verbeteren, met de focus op
gevoeligheid. Hieronder volgt een korte samenvatting van de belangrijkste bevindingen in dit
proefschrift.

In hoofdstuk 2 presenteerden we ContextD, een aanpassing van het Engelse ConText algoritme
aan de Nederlandse taal. Het algoritme is in staat om drie contekstuele eigenschappen te
identificeren: negatie, temporaliteit en onderwerp van de klinische concepten. Om het algoritme
aan te passen vertaalden we alle Engelse ‘trigger’-termen naar het Nederlands, en voegden
verschillende algemene en EPD-specifieke verbeteringen toe, zoals negatie-regels voor notities
van huisartsen, en een module om tijdsbepalingen te herkennen, gebaseerd op reguliere
expressies. We ontwikkelden ook een Nederlands klinisch corpus om ContextD te evalueren. De
prestaties van ContextD waren beter dan die van het originele ConText algoritme met betrekking
tot de herkenning van negatie, maar minder goed in het identificeren van temporaliteit-gegevens
in ontslagbrieven. Het corpus is geannoteerd met drie contekstuele eigenschappen, en bestaat
uit vier verschillende types Nederlandse EPDs. Het Nederlands klinisch corpus is gepubliceerd, en
kan worden benut om andere systemen voor gelijksoortige doelen te trainen.

In hoofdstuk 3 normaliseerden we woorden in EPDs met de bedoeling het aantal feature-
dimensies terug te brengen. We kozen twee benaderingen van normalisatie. In de eerste
benadering groepeerden we tekstueel gelijkende woorden met clustering-methodieken, en in de
tweede benadering identificeerden we afkortingen en acroniemen om ze te koppelen aan voluit-
geschreven woorden in EPDs. Op die manier konden we het aantal dimensies aanzienlijk
terugbrengen. Tegelijkertijd toonden we aan dat woordnormalisatie resulteert in betere
prestaties van de classificatie, vooral in het verbeteren van sensitiviteit.

Observationele studies hebben vaak te maken met confounding, omdat artsen handelen met de
prognose van de patiént in gedachten. Deze prognose kan leiden tot het fenomeen dat een
geneesmiddel wordt voorgeschreven vanwege een prognose en dat die prognose is gerelateerd
aan de uitkomst. Om dit probleem te adresseren, hebben we in hoofdstuk 4 twee propensity
score (PS) modellen gemaakt, waarbij we zowel gestructureerde als ongestructureerde
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informatie in het EPD benutten. We genereerden twee verschillende PS modellen: de eerste op
basis van covariabelen met de hoogste frequenties in het cohort, en de tweede op basis van
covariabelen geassocieerd met de uitkomsten. We toonden aan dat deze PS modellen een
verbetering geven in het corrigeren van confounding. Dit is nuttig voor database-studies met een
grote hoeveelheid ongestructureerde informatie, zoals in EPDs.

Algoritmes om ziekte te identificeren in EPDs worden vaak handmatig gemaakt, wat de
reproduceerbaarheid en schaalbaarheid negatief beinvioedt. In hoofdstuk 5 gebruikten we
machine-learning methodes om een geautomatiseerd casus-herkenningsalgoritme te
ontwikkelen en evalueren. Dit algoritme gebruikte zowel gecodeerde informatie als vrije tekst.
Het algoritme presteerde met hoge sensitiviteit en specificiteit op het identificeren van astma-
casussen. Automatisering van casus-selectie door machine-gegenereerde algoritmes zal
grootschalige database-studies faciliteren.

Machine-learning methods worden gewoonlijk geoptimaliseerd voor accuratesse, maar niet voor
sensitiviteit. In hoofdstuk 6 exploreerden we twee manieren om de disbalans in de training set
aan te pakken, met als doel de sensitiviteit van de resulterende classificatiealgoritmes te
verbeteren. Op twee evaluatie-sets bleek het mogelijk om een sensitiviteit te bereiken die
vergelijkbaar is met handmatige annotatie. Door de balans van positieve en negatieve
voorbeelden aan te passen, slaagden we erin om sensitiviteit op de eerste set met 4%, en op de
tweede set met 20% te verhogen. Casus-herkenningsalgoritmes met hoge sensitiviteit kunnen
gebruikt worden bij wijze van voorselectie om de werklast van handmatige dossiervalidaties
aanzienlijk te verminderen.
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