124 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Strategic Deployment of Swarm of UAVs for Secure IoT Networks

    Full text link
    Security provisioning for low-complex and constrained devices in the Internet of Things (IoT) is exacerbating the concerns for the design of future wireless networks. To unveil the full potential of the sixth generation (6G), it is becoming even more evident that security measurements should be considered at all layers of the network. This work aims to contribute in this direction by investigating the employment of unmanned aerial vehicles (UAVs) for providing secure transmissions in ground IoT networks. Toward this purpose, it is considered that a set of UAVs acting as aerial base stations provide secure connectivity between the network and multiple ground nodes. Then, the association of IoT nodes, the 3D positioning of the UAVs and the power allocation of the UAVs are obtained by leveraging game theoretic and convex optimization-based tools with the goal of improving the secrecy of the system. It is shown that the proposed framework obtains better and more efficient secrecy performance over an IoT network than state-of-the-art greedy algorithms for positioning and association

    Enhancing secrecy rate in cognitive radio networks via stackelberg game

    Get PDF
    In this paper, a game theory based cooperation scheme is investigated to enhance the physical layer security in both primary and secondary transmissions of a cognitive radio network (CRN). In CRNs, the primary network may decide to lease its own spectrum for a fraction of time to the secondary nodes in exchange of appropriate remuneration. We consider the secondary transmitter node as a trusted relay for primary transmission to forward primary messages in a decode-and-forward (DF) fashion and, at the same time, allows part of its available power to be used to transmit artificial noise (i.e., jamming signal) to enhance primary and secondary secrecy rates. In order to allocate power between message and jamming signals, we formulate and solve the optimization problem for maximizing the secrecy rates under malicious attempts from EDs. We then analyse the cooperation between the primary and secondary nodes from a game-theoretic perspective where we model their interaction as a Stackelberg game with a theoretically proved and computed Stackelberg equilibrium. We show that the spectrum leasing based on trading secondary access for cooperation by means of relay and jammer is a promising framework for enhancing security in CRNs

    Enhancing secrecy rate in cognitive radio networks via stackelberg game

    Get PDF
    In this paper, a game theory based cooperation scheme is investigated to enhance the physical layer security in both primary and secondary transmissions of a cognitive radio network (CRN). In CRNs, the primary network may decide to lease its own spectrum for a fraction of time to the secondary nodes in exchange of appropriate remuneration. We consider the secondary transmitter node as a trusted relay for primary transmission to forward primary messages in a decode-and-forward (DF) fashion and, at the same time, allows part of its available power to be used to transmit artificial noise (i.e., jamming signal) to enhance primary and secondary secrecy rates. In order to allocate power between message and jamming signals, we formulate and solve the optimization problem for maximizing the secrecy rates under malicious attempts from EDs. We then analyse the cooperation between the primary and secondary nodes from a game-theoretic perspective where we model their interaction as a Stackelberg game with a theoretically proved and computed Stackelberg equilibrium. We show that the spectrum leasing based on trading secondary access for cooperation by means of relay and jammer is a promising framework for enhancing security in CRNs

    Performance Analysis of Secondary Users in Heterogeneous Cognitive Radio Network

    Get PDF
    Continuous increase in wireless subscriptions and static allocation of wireless frequency bands to the primary users (PUs) are fueling the radio frequency (RF) shortage problem. Cognitive radio network (CRN) is regarded as a solution to this problem as it utilizes the scarce RF in an opportunisticmanner to increase the spectrumefficiency. InCRN, secondary users (SUs) are allowed to access idle frequency bands opportunistically without causing harmful interference to the PUs. In CRN, the SUs determine the presence of PUs through spectrum sensing and access idle bands by means of dynamic spectrum access. Spectrum sensing techniques available in the literature do not consider mobility. One of the main objectives of this thesis is to include mobility of SUs in spectrum sensing. Furthermore, due to the physical characteristics of CRN where licensed RF bands can be dynamically accessed by various unknown wireless devices, security is a growing concern. This thesis also addresses the physical layer security issues in CRN. Performance of spectrum sensing is evaluated based on probability of misdetection and false alarm, and expected overlapping time, and performance of SUs in the presence of attackers is evaluated based on secrecy rates
    • …
    corecore