278,713 research outputs found

    The safety case and the lessons learned for the reliability and maintainability case

    Get PDF
    This paper examine the safety case and the lessons learned for the reliability and maintainability case

    Safer clinical systems : interim report, August 2010

    Get PDF
    Safer Clinical Systems is the Health Foundation’s new five year programme of work to test and demonstrate ways to improve healthcare systems and processes, to develop safer systems that improve patient safety. It builds on learning from the Safer Patients Initiative (SPI) and models of system improvement from both healthcare and other industries. Learning from the SPI highlighted the need to take a clinical systems approach to improving safety. SPI highlighted that many hospitals struggle to implement improvement in clinical areas due to inherent problems with support mechanisms. Clinical processes and systems, rather than individuals, are often the contributors to breakdown in patient safety. The Safer Clinical Systems programme aimed to measure the reliability of clinical processes, identify defects within those processes, and identify the systems that result in those defects. Methods to improve system reliability were then to be tested and re-developed in order to reduce the risk of harm being caused to patients. Such system-level awareness should lead to improvements in other patient care pathways. The relationship between system reliability and actual harm is challenging to identify and measure. Specific, well-defined, small-scale processes have been used in other programmes, and system reliability has been shown to have a direct causal relationship with harm (e.g. care bundle compliance in an intensive care unit can reduce the incidence of ventilator-associated pneumonia). However, it has become evident that harm can be caused by a variety of factors over time; when working in broader, more complex and dynamic systems, change in outcome can be difficult to attribute to specific improvements and difficulties are also associated with relating evidence to resulting harm. The overall aim of Phase 1 of the Safer Clinical Systems programme was to demonstrate proof-of-concept that using a systems-based approach could contribute to improved patient safety. In Phase 1, experienced NHS teams from four locations worked together with expert advisers to co-design the Safer Clinical Systems programme

    On Systematic Design of Protectors for Employing OTS Items

    Get PDF
    Off-the-shelf (OTS) components are increasingly used in application areas with stringent dependability requirements. Component wrapping is a well known structuring technique used in many areas. We propose a general approach to developing protective wrappers that assist in integrating OTS items with a focus on the overall system dependability. The wrappers are viewed as redundant software used to detect errors or suspicious activity and to execute appropriate recovery when possible; wrapper development is considered as a part of system integration activities. Wrappers are to be rigorously specified and executed at run time as a means of protecting OTS items against faults in the rest of the system, and the system against the OTS item's faults. Possible symptoms of erroneous behaviour to be detected by a protective wrapper and possible actions to be undertaken in response are listed and discussed. The information required for wrapper development is provided by traceability analysis. Possible approaches to implementing “protectors” in the standard current component technologies are briefly outline

    Integrating IVHM and Asset Design

    Get PDF
    Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable effective and efficient maintenance and operation of the target vehicle. It accounts for the collection of data, conducting analysis, and supporting the decision-making process for sustainment and operation. The design of IVHM systems endeavours to account for all causes of failure in a disciplined, systems engineering, manner. With industry striving to reduce through-life cost, IVHM is a powerful tool to give forewarning of impending failure and hence control over the outcome. Benefits have been realised from this approach across a number of different sectors but, hindering our ability to realise further benefit from this maturing technology, is the fact that IVHM is still treated as added on to the design of the asset, rather than being a sub-system in its own right, fully integrated with the asset design. The elevation and integration of IVHM in this way will enable architectures to be chosen that accommodate health ready sub-systems from the supply chain and design trade-offs to be made, to name but two major benefits. Barriers to IVHM being integrated with the asset design are examined in this paper. The paper presents progress in overcoming them, and suggests potential solutions for those that remain. It addresses the IVHM system design from a systems engineering perspective and the integration with the asset design will be described within an industrial design process

    What does it take to make integrated care work? A ‘cookbook’ for large-scale deployment of coordinated care and telehealth

    Get PDF
    The Advancing Care Coordination & Telehealth Deployment (ACT) Programme is the first to explore the organisational and structural processes needed to successfully implement care coordination and telehealth (CC&TH) services on a large scale. A number of insights and conclusions were identified by the ACT programme. These will prove useful and valuable in supporting the large-scale deployment of CC&TH. Targeted at populations of chronic patients and elderly people, these insights and conclusions are a useful benchmark for implementing and exchanging best practices across the EU. Examples are: Perceptions between managers, frontline staff and patients do not always match; Organisational structure does influence the views and experiences of patients: a dedicated contact person is considered both important and helpful; Successful patient adherence happens when staff are engaged; There is a willingness by patients to participate in healthcare programmes; Patients overestimate their level of knowledge and adherence behaviour; The responsibility for adherence must be shared between patients and health care providers; Awareness of the adherence concept is an important factor for adherence promotion; The ability to track the use of resources is a useful feature of a stratification strategy, however, current regional case finding tools are difficult to benchmark and evaluate; Data availability and homogeneity are the biggest challenges when evaluating the performance of the programmes

    Software reliability and dependability: a roadmap

    Get PDF
    Shifting the focus from software reliability to user-centred measures of dependability in complete software-based systems. Influencing design practice to facilitate dependability assessment. Propagating awareness of dependability issues and the use of existing, useful methods. Injecting some rigour in the use of process-related evidence for dependability assessment. Better understanding issues of diversity and variation as drivers of dependability. Bev Littlewood is founder-Director of the Centre for Software Reliability, and Professor of Software Engineering at City University, London. Prof Littlewood has worked for many years on problems associated with the modelling and evaluation of the dependability of software-based systems; he has published many papers in international journals and conference proceedings and has edited several books. Much of this work has been carried out in collaborative projects, including the successful EC-funded projects SHIP, PDCS, PDCS2, DeVa. He has been employed as a consultant t

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules

    Multimorbidity: Technical Series on Safer Primary Care

    Get PDF
    No abstract available

    Nutrition-sensitive value chains from a smallholder perspective: A framework for project design

    Get PDF
    "The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) gratefully acknowledges permission from IFAD to re-publish that work as an Alliance Working Paper, with updated acknowledgements, author information and information on additional resources.
    • 

    corecore