9,807 research outputs found

    A scalable reliable instant messenger using the SD Erlang libraries

    Get PDF
    Erlang has world leading reliability capabilities, but while it scales extremely well within a single node, distributed Erlang has some scalability issues. The Scalable Distributed (SD) Erlang libraries have been designed to address the scalability limitations while preserving the reliability model, and shown to deliver significant performance benefits above 40 hosts using some relatively simple benchmarks. This paper compares the reliability and scalability of SD Erlang and distributed Erlang using an Instant Messaging (IM) server benchmark that is a far more typical Erlang application; a relatively large and sophisticated benchmark; has throughput as the key performance metric; and uses non-trivial reliability mechanisms. We provide a careful reliability evaluation using chaos monkey. The key performance results consider scenarios with and without failures on up to 17 server hosts (272 cores). We show that SD Erlang adds no performance overhead when all nodes are grouped in a single s_group. However, either adding redundant router nodes in distributed Erlang applications, or dividing a set of nodes into small s_groups in SD Erlang applications, have small negative impact. Both the distributed Erlang and SD Erlang IM tolerate failures and, up to the failure rates measured, the failures have no impact on throughput. The IM implementations show that SD Erlang preserves the distributed Erlang reliability properties and mechanisms

    Network layer access control for context-aware IPv6 applications

    Get PDF
    As part of the Lancaster GUIDE II project, we have developed a novel wireless access point protocol designed to support the development of next generation mobile context-aware applications in our local environs. Once deployed, this architecture will allow ordinary citizens secure, accountable and convenient access to a set of tailored applications including location, multimedia and context based services, and the public Internet. Our architecture utilises packet marking and network level packet filtering techniques within a modified Mobile IPv6 protocol stack to perform access control over a range of wireless network technologies. In this paper, we describe the rationale for, and components of, our architecture and contrast our approach with other state-of-the- art systems. The paper also contains details of our current implementation work, including preliminary performance measurements

    The evaluation of an active networking approach for supporting the QOS requirements of distributed virtual environments

    Get PDF
    This paper describes work that is part of a more general investigation into how Active Network ideas might benefit large scale Distributed-Virtual-Environments (DVEs). Active Network approaches have been shown to offer improved solutions to the Scalable Reliable Multicast problem, and this is in a sense the lowest level at which Active Networks might benefit DVEs in supporting the peer-to-peer architectures considered most promising for large scale DVEs. To go further than this, the key benefit of Active Networking is the ability to take away from the application the need to understand the network topology and delegate the execution of certain actions, for example intelligent message pruning, to the network itself. The need to exchange geometrical information results in a type of traffic that can place occasional, short-lived, but heavy loads on the network. However, the Level of Detail (LoD) concept provides the potential to reduce this loading in certain circumstances. This paper introduces the performance modelling approach being used to evaluate the effectiveness of active network approaches for supporting DVEs and presents an evaluation of messages filtering mechanisms, which are based on the (LoD) concept. It describes the simulation experiment used to carry out the evaluation, presents its results and discusses plans for future work

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities
    • …
    corecore