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Abstract
Erlang has world leading reliability capabilities, but while it scales
extremely well within a single node, distributed Erlang has some
scalability issues. The Scalable Distributed (SD) Erlang libraries
have been designed to address the scalability limitations while
preserving the reliability model, and shown to deliver significant
performance benefits above 40 hosts using some relatively simple
benchmarks.

This paper compares the reliability and scalability of SD Erlang
and distributed Erlang using an Instant Messaging (IM) server
benchmark that is a far more typical Erlang application; a relatively
large and sophisticated benchmark; has throughput as the key
performance metric; and uses non-trivial reliability mechanisms.
We provide a careful reliability evaluation using chaos monkey.

The key performance results consider scenarios with and without
failures on up to 17 server hosts (272 cores). We show that SD
Erlang adds no performance overhead when all nodes are grouped in
a single s_group. However, either adding redundant router nodes in
distributed Erlang applications, or dividing a set of nodes into small
s_groups in SD Erlang applications, have small negative impact.
Both the distributed Erlang and SD Erlang IM tolerate failures and,
up to the failure rates measured, the failures have no impact on
throughput. The IM implementations show that SD Erlang preserves
the distributed Erlang reliability properties and mechanisms.

Categories and Subject Descriptors C.4 [Computer Systems Or-
ganization]: Performance of Systems—Fault tolerance; D.1.3
[Software]: Programming Techniques—Concurrent Programming;
D.3.2 [Software]: Programming Languages—Erlang

Keywords Erlang, distributed computation, fault tolerance, relia-
bility.

1. Introduction
Erlang provides world leading reliability and scales extremely well
within a single node, e.g. enabling 106 concurrent processes on a
single host with 8GB RAM. The highly parallel architectures en-
gendered by the manycore revolution are, however, revealing some
scalability issues in large distributed Erlang systems. These issues

[Copyright notice will appear here once ’preprint’ option is removed.]

often limit the scalability to between 40 and 80 hosts, depending on
the application and, crucially the reliability mechanisms used [9].

The Scalable Distributed (SD) Erlang libraries have been de-
signed to address the scalability limitations while preserving the
reliability model [4, 9].

To date SD Erlang has been shown to deliver significant per-
formance benefits above 40 hosts using some relatively simple
benchmarks [5]. The Ant Colony Optimisation (ACO) is a par-
allel simulation benchmark, and the core of the Orbit benchmark is
a non-replicated DHT, similar to NoSQL DBMS like Riak [2]. Both
distributed Erlang and SD Erlang versions of ACO and Orbit are
open source1. These benchmarks

• are relatively small, e.g. 100s of lines of code;
• are somewhat atypical of Erlang applications: Orbit as a DHT-

based algebraic computation, and ACO as a simulation;
• have very simple reliability mechanisms: only ACO uses super-

vision and global name registration.

This paper is novel in presenting an evaluation of the SD
Erlang libraries in comparison to distributed Erlang for an Instant
Messaging server that

• is a far more typical Erlang application, i.e. a reliable server.
• is a larger and more sophisticated benchmark: 6K lines of code,

using ETS tables, realistic chat behaviours, etc. [12] (Section 3).
• uses non-trivial reliability mechanisms, including supervision

trees, redundancy, transitive connectivity, and global name
registration (Section 3).

• provides a careful reliability evaluation using chaos monkey [10]
(Section 6.4).

• has throughput as the key performance metric (Section 6). This
is, again, more typical for distributed Erlang applications. In
contrast Orbit uses strong scaling, and ACO weak scaling.

2. Background
Coming from the telecoms sector where systems need to be scalable
to accommodate hundreds of thousands of calls concurrently, in soft
real-time, a key feature of Erlang is its reliability. The key mecha-
nisms – supervision trees, redundancy, transitive connectivity, and
global name registration – led by the “let it crash” philosophy enable
the engineering of highly-available and reliable applications [3].

2.1 Scaling and Reliability in Distributed Erlang
Reliability in Erlang is multi-faceted. Each process has a private
state, preventing a failed or failing process from corrupting the

1 https://github.com/release-project/benchmarks
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Figure 1. Orbit Relative Speedup [5]

state of other processes. Messages enable stateful interaction, and
contain a deep copy of the value to be shared, with no references to
the senders’ internal state. Moreover, Erlang avoids type errors by
enforcing strong typing, albeit dynamically [1].

Connected nodes check liveness with heartbeats, and can be
monitored from outside Erlang, e.g. by an operating system process.
Enabling transitive connectivity connects all normal (not hidden)
nodes in the system. This happens “under the hood” and the infor-
mation about live and lost connections is kept up-to-date. As a result
the system can avoid sending messages to, or expecting messages
from, disconnected nodes and automatically adjust to the changed
number of nodes. Therefore, apart from fault tolerance, transitivity
also provides elasticity, i.e. seamless growth or contraction of the
number of nodes in the system. However, full connectivity means
that the total number of connections in the system is n(n − 1)/2,
and every node supports (n − 1) connections. In addition every
connection requires a separate TCP/IP port, and node monitoring
is achieved by periodically sending heartbeat messages. In small
systems maintaining a fully connected network is not an issue, but
when the number of nodes grows a fully connected network re-
quires significant resources becoming a burden that worsens the
performance.

The high cost of maintaining a fully connected network was
confirmed in experiments with Orbit [5], a generalization of a tran-
sitive closure computation [6]. The Orbit benchmark has no global
operations, and hence its scalability depends only on the number
of connections maintained. Figure 1 reports relative speedups for
Orbit on a cluster with up to 256 hosts (6144 cores). The distributed
Erlang results in Figure 1(a) show that performance deteriorates as
the number of nodes grows beyond 60. This is particularly visible
in the experiments where the number of orbit elements is less than
3M. In addition, the benchmark fails when we attempt to increase
the number of orbit elements beyond 5M.

The most important way to achieve reliability is process super-
vision, which allows processes to monitor each other and react to
any failure, for example by spawning a substitute process to replace
a failed process. Supervised processes can in turn supervise other
processes, leading to a supervision tree. In a multi-node system the
tree may span multiple nodes.

A global namespace maintained on every node maps process
names to pids to provide reliable distributed service registration, and
this is what we mean when we talk about a reliable system: it is one
in which a named process in a distributed system can be restarted

without requiring the client processes also to be restarted (because
the name can still be used for communication).

To see global registration in action, consider spawning a server
process on an explicitly identified node (some_node) and then
globally registering it using some_server name:

RemotePid = spawn(some_node, fun () ->
some_module:some_fun() end),

global:register_name(some_server, RemotePid).

Clients of the server process can send messages to the registered
name, e.g.

global:whereis_name(some_server) ! ok.

If the server fails the supervisor can spawn a replacement server
process with a new pid and register it with the same name
(some_server). Thereafter client messages addressed to the
some_server name will be delivered to the new server process.

The namespace is, however, a global data structure, and updates
must be propagated to every node. Hence as the number of nodes or
the failure rate of registered processes grow, global name registration
has a significant impact on network scalability. Figure 2 shows the
throughput limit reached for a distributed Erlang peer-to-peer system
at 40 nodes and hosts with just 0.01% of global operations [4].
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In summary transitive node connectivity, and global name regis-
tration for reliability, significantly limit the scalability of distributed
Erlang.

2.2 Scalable Distributed Erlang
Scalable Distributed Erlang (SD Erlang) was designed to preserve re-
liability of distributed Erlang while enabling scalability by partition-
ing the node connection graph into s_groups [4], and by introducing
semi-explicit process placement [8].

To reduce the number of connections and the size of the names-
pace, nodes are grouped into s_groups. Similarly to Erlang/OTP
global_groups2, nodes in s_groups have transitive connections with
nodes from the same s_group, non-transitive connections with other
nodes, and each s_group has its own namespace. However, unlike
global_groups the s_groups do not partition the set of nodes, i.e. a
node can belong to an unlimited number of s_groups which makes
it possible to create different connection topologies for different
application needs. For example, nodes can be assembled into hi-
erarchical s_groups, where communication between nodes from
different s_groups occurs only via gateway nodes. To ensure fault-
tolerance s_groups may have two or more gateway nodes; this will
ensure that the s_group nodes remain connected to the rest of the
system even when one of the gateway nodes fails.

The functionality of gateway nodes can be combined with other
types of nodes. For example, in the SD Erlang version of the IM
application, gateway functionality is combined with routing. So, to
be consistent with distributed Erlang version of the IM we call these
nodes router nodes (Section 3.1).

S_group functionality is supported by 15 functions, 8 of
which manipulate s_groups, including dynamic creation of new
s_groups (s_group:new_s_group/1,2) and getting informa-
tion about known s_groups (s_group:s_groups/0), and the
remainder manipulate names registered in the groups, like reg-
istering a name (s_group:register_name/2) and getting in-
formation about all names registered in a particular s_group
(s_group:registered_names/2). For example, the following
function creates an s_group called some_s_group that consists of
three nodes:

s_group:new_s_group(some_s_group,
[some_node, some_node_1, some_node_n]).

To register a name, we provide a pid and also the name of the
s_group in which we want to register that name;

s_group:register_name(some_s_group,
some_server, RemotePid).

The s_group name is also required when sending a message to a
process using its name:

s_group:whereis_name(some_s_group,
some_server) ! ok.

More details regarding s_group functions can be found in [4].
The impact of s_groups on scalability due to the reduced number

of connections alone can be observed in the Orbit benchmark. The
relative speedups in Figure 1(b) show that the SD Erlang version
of Orbit performs better than its distributed Erlang counterpart
(Figure 1(a)) on large number of nodes (beyond 150), and as the
number of nodes grows its performance remains stable even when
the number of orbit elements is either less than 3M (red line in
Figure 1(b)) or at least as big as 60M (this line is not included in the
figure).

Systematic experiments with the Orbit and ACO benchmarks
on up to 256 nodes (6144 cores) consistently show the scalability

2 http://erlang.org/doc/man/global_group.html

limitations of distributed Erlang, and that SD Erlang improves
scalability of both reliable and unreliable applications [4, 5, 9].

2.3 Instant Messaging Servers
With an increase in popularity of mobile phones, social networks,
and on-line games instant messaging applications also gain more
and more popularity [11]. Originating from telecoms Erlang is a
natural language of choice for Instant Messengers (IM). A vivid
proof for that is the widely used WhatsApp application, which in
February 2016 reached 1Bn monthly users3. The statistics available
from March 20144 about WhatsApp is really impressive. At the
time it had 465M monthly users delivering 19Bn messages in and
40Bn messages out per day. This volume was supported by only 550
servers, where each server had approximately 1M connections. That
is an Erlang system running on more than 11K cores. However, like
many other large scale distributed Erlang applications, WhatsApp
does not use default Erlang distribution, but rather an ad hoc
approach – introducing its own libraries which provide features
resembling transitivity and shared namespace, but restricted to a
particular connectivity mechanism.

The reason we decided to use an IM benchmark to analyse
the SD Erlang reliability is because we needed a typical Erlang
application that would be relatively small to allow quick changes
and refactoring while providing insights of the reliability properties
of distributed Erlang and SD Erlang. We do not intend to simulate
or imitate any particular application, rather some generic instant
messaging application that has some level of agreement with real
life IMs in terms of general functionality, number of messages and
users. The benchmark follows client-server pattern, where the server
side supports the IM functionality, and the client side provides the
traffic generation.

From modern IM applications like WeChat, WhatsApp, and
Slack we expect a lot of functionality. For example, a support
of different types of messages including texts, videos, and voice
recordings, tracking and sharing GPS location, integration of third
party applications, and groups of people contributing to the same
chat. In our benchmark we focus on the server side while the client
side has only supportive role. The server side ensures that messages
are passed between the right logged-in clients independently of
their location. It also ensures message delivery despite of failure
of nodes or connections, and information about users. The client
side generates traffic and informs server nodes where the clients
are logged-in. As long as a client knows the name of a target
user, it does not care where it is and how to deliver messages –
this is server’s responsibility. The conversations are limited to two
users who exchange text messages. Both these limitations are not
fundamental and can be modified if needed.

The benchmark is open source, and is available from the follow-
ing public repository: https://github.com/release-project/
benchmarks/tree/master/IM.

3. Design and Implementation
In this section we discuss design and implementation of the IM
benchmark that consists of two parts: client side and server side.
The server side has two versions implemented in distributed Erlang
(RD-IM) and SD Erlang (RSD-IM). The RD-IM uses default
Erlang distribution model, so all server side node are interconnected
(Figure 3(a)), whereas RSD-IM utilizes s_groups that have transitive
connections only between nodes of the same s_group (Figure 3(b)).
The two versions are very similar with only small differences which

3 https://blog.whatsapp.com/616/One-billion
4 http://highscalability.com/blog/2014/3/31/
how-whatsapp-grew-to-nearly-500-million-users-11000-cores-an.
html
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(a) RD-IM

(b) RSD-IM

Figure 3. Node Connections

are due to introducing s_groups in the RSD-IM. Therefore, we
first discuss server side (Section 3.1) and client side (Section 3.2)
implementations which are common for both RD-IM and RSD-IM
versions, and then outline features specific to RSD-IM (Section 3.3).

3.1 Server Side
On the server side we distinguish two types of nodes: routers and
servers.

Router nodes act as an interface between client and server nodes.
Router nodes have three types of processes that have the following
functionality (Figure 4 – links indicate supervision and monitoring
dependencies).

• Router processes forward client requests to different server
nodes deployed in the system. That is when a client logs in,
a router process identifies the server node to which the client is
going to be assigned using hash value of the client’s id, and then
forwards the client request to the corresponding server_monitor
process. Every router process supervises one server_monitor
process.

• Router_supervisor and Router_supervisor’s_monitor processes
are supervisors used to ensure fault tolerance of processes
on the router nodes. Router_supervisor processes monitor
router processes, i.e. if a router process terminates unexpect-
edly, its router_supervisor restarts it. Router_supervisor and
Router_supervisor’s_monitor processes also monitor each other,
so that if one of the processes fails they can re-start each other
and provide essential data for recovery.

There can be multiple router processes, but only one router_
supervisor process and one Router_supervisor’s_monitor process
per router node.

Server nodes are the core element of the IM, that provide message
exchange between clients. This is achieved by the following three
types of processes (Figure 4).

• Server_monitor processes ensure fault tolerance of processes
that reside on the corresponding server nodes. In addition
these processes handle clients’ log-in requests by spawning
client_monitor processes if the corresponding clients are not
logged-in already. It also spawns chat_session processes when
new conversations are started. Every server node has only one
server_monitor process.

• Chat_session processes enable communication between clients
by forwarding messages, and sending confirmations of message
delivery to the senders. The number of chat_session processes
depends on the number of live conversations.

• Client_monitor processes keeps track of client processes
while the clients are logged-in to the system. The number of
client_monitor processes depends on the number of logged-in
clients. To ensure that clients are not logged-in multiple times,
the server nodes on which these processes reside depend on the
hash of the client ids.

Server nodes also contain two distributed databases to store
the information about the logged-in clients (Clients_DB) and the
running chat sessions (Chat_Sessions_DB). The databases are im-
plemented using ETS tables; while fault tolerance is provided by
replicating these databases on neighbouring server nodes.

Number of Connections. The RD-IM (Figure 3(a)) and RSD-
IM (Figure 3(b)) have identical total number of the server side
nodes(NT ):

NT = NR + NS , (1)

where NR is the number of router nodes, and NS is the number of
server nodes. A straightforward way to scale the systems is adding
server nodes. However, routers have a limited capacity; therefore, to
avoid deteriorating the performance, the router nodes should be also
periodically increased.

In the RD-IM all nodes are interconnected (Figure 3(a)). There-
fore, the total number of node connections NC1 is the following:

NC1 =
(NR + NS) · (NR + NS − 1)

2
. (2)

From (1) and (2) it can be observed that a linear scaling of
the number of nodes in distributed Erlang systems leads to an
exponential growth of the number of node connections.

In the RSD-IM nodes are only interconnected in the s_groups
(Figure 3(b)). Assume that there are NR s_groups (one router
node per an s_group) and all s_groups have the same number of

Supervisor
Router Sup.

Figure 4. IM Nodes and Processes, and Their Dependencies
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nodes (NS1):

NS1 =
NS

NR
+ 1. (3)

Then the total number of connections NC2 is the following:

NC2 = NCR + NR ·NCS1, (4)

where NCR is the number of connections in the router s_group:

NCR =
NR · (NR − 1)

2
, (5)

and NCS1 is the number of connections in a server s_group:

NCS1 =
NS1 · (NS1 − 1)

2
=

NS · (NS + NR)

2 ·N2
R

. (6)

Replacing (5) and (6) in (4), the total number of connections in the
RSD-IM is as following:

NC2 =
N2

R · (NR − 1) + NS · (NS + NR)

2 ·NR
. (7)

Therefore, the difference between the number of maintained
connections in RD-IM and RSD-IM is the following:

NC1 −NC2 =
NS · (NR − 1) · (NS + 2NR)

2 ·NR
. (8)

The result in (8) is always non-negative, and the only configuration
that results in the identical number of connections in both RD-IM
and RSD-IM is when the latter has one s_group.

3.2 Client Side
The client side is identical for both RD-IM and RSD-IM. All its
nodes are hidden, and therefore their connections are non-transitive.
On the client side we have two types of nodes: client and traffic
generator.

Client nodes host client processes. These can be of the following
two types.

• A normal client is a command-line process that sends messages
and prints the received messages to the standard output of the
terminal.

• A ’doped’ client is a process that based on the normal client but
uses traffic generation logic to send messages to stress the IM
architecture. The ’doped’ client processes operate as following.
A ’doped’ client receives a message from a traffic generator
process that triggers a conversation with another ’doped’ client
logged in the system (the pid of the target process is also
provided by the traffic generator process). Then it generates a
random string that imitates a line in a conversation and sends the
message to the receiver client after a random period of time that
ranges between 1 and 20 seconds – this simulates the time spent
to type that message. Then it waits a reply to repeat the process.
The number of messages the ’doped’ clients exchange is random,
and is specified at the beginning of the conversation. When the
conversation finished, the ’doped’ client notifies corresponding
chat_session process, which in turn terminates as if two normal
client has finished their chat session.

Client nodes also have router_DB databases which are containers
for the pids of the deployed router processes. From the perspective
of the “real life” application, this is an auxiliary process. However,
it is essential for benchmarking as it provides the client processes
with the pids of the routers enabling clients to connect to the server
side of the application.

Traffic Generator nodes contain traffic generator processes that
trigger conversations, i.e. select clients and the number of messages

in the conversation. Each of the processes control up to ten con-
versations simultaneously. The traffic generator is parametrised to
represent realistic chat behaviours as identified in [12].

3.3 RSD-IM Specific Processes
Additional RSD-IM processes are due to differences in handling
namespace in distributed Erlang and SD Erlang. That is, to provide
fault tolerance of client_DB and chat_DB their processes are regis-
tered globally. If a database fails, global registration enables easily
locate required database to complete the operation, e.g. storing or
accessing data.

In the RD-IM the names are replicated on all nodes, i.e.

global:register_name(process_db_i,PidI).

While in the RSD-IM the processes are replicated only on the nodes
of the corresponding server s_groups, i.e.

s_group:register_name(s_group_n,process_db_i,PidI).

In the current s_group implementation, s_group names are not
accessible outside their group. Therefore, to access replicas in the
RSD-IM relay processes were added. These processes multicast
messages to all router_processes which in turn have an access to
the corresponding server s_group registered names, because router
nodes apart from the router s_group, also belong to corresponding
server s_groups (Figure 3(b)).

s_group:whereis_name(s_group_n, process_db) ! Msg.

When a router_process finds the target process, it forwards the
message. If the router_process does not have informatio about the
process, the message is discarded.

4. Introducing Reliability
Following Erlang’s "let it crash" philosophy we start by outlining
the application’s behaviour when no failures occur (Section 4.1),
and then discuss possible failures and approaches to handle them
(Section 4.2). In both scenarios we consider RD-IM, and the RSD-
IM functionality is very similar, the only difference being that in
reaching the target databases in RSD-IM the processes may need
to send requests via relay processes if the required databases are in
different s_groups.

4.1 No Failures
The IM functionality under normal conditions, i.e. when no failures
occur, is quite simple, and can be summaries in the following
three activities: client logging-in, client logging-out, and a chat
session. Each activity has a sequence of steps to accomplish it.
As an example, let us consider RD-IM chat session presented in
Figure 5.

Here, Client 1 sends a start_chat_session message to a
router process that forwards the request to the server_supervisor.
The server_supervisor spawns a chat_session process which first
queries the Chat_Sessions_DB to ensure that a similar process for
the same clients does not already exist. In a ‘no failure’ scenario
the Chat_Sessions_DB confirms that a similar process does not
exist, and the chat_session process, informs the involved clients
about a successful start of the chat session. After that the clients
exchange messages. To finish a chat session, one of the clients sends
a finish_chat_session message to the chat_session process
which removes its information from the Chat_Sessions_DB, and
notifies the clients. Finally, chat_session process sends an exit
message to the server supervisor, and terminates.

4.2 Handling Exceptions
Fault tolerance in the RD-IM and RSD-IM applications is supported
by handling the following exceptions.
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• A client attempts to log in to the system when it is logged in
already.

• A client attempts to establish a chat session with another client
with whom it already has an opened chat session.

• A chat_session process fails before the session is finished.
• A router_process fails.
• A server_supervisor process fails.
• A Chat_Session_DB or Client_DB fail.

As an example, let us consider a failure of a chat_session process
before the session is finished (Figure 6). In this case the failure
is handled by the corresponding server_supervisor, which after
receiving the {error, Reason} system error message sends a
query to the Chat_Session_DB to remove the record of the failed
session. It then spawns a new chat_session process, updates the
record in the Chat_Session_DB, and notifies the clients of the new
chat_session pid.

5. Evaluation Framework
To evaluate the RD-IM and RSD-IM performance and run the
experiments presented in Section 6, we introduce two additional
modules: rhesus (Section 5.1) and logger (Section 5.2).

5.1 Reliability: Rhesus
To analyse fault tolerance of the IM benchmark we introduce the
rhesus module named after rhesus macaque that follows the chaos
monkey [10] principle. The rhesus module is written in Erlang,
and is specifically designed to test the IM benchmark. In particular,
it has the following features.

• Random and user-defined termination time for processes ranging
from a second to an hour.

• Weighted termination probability of processes.

The original chaos monkey [10] was developed at Netflix, and
is used to terminate virtual machines. There are also alternative
versions written in, and for, Erlang like [7]. The reason we introduce
the rhesus module instead of utilising existing modules is due to
the uniform termination probability used in existing approaches.
That is, existing approaches do not distinguish between different
types of processes, whereas in the IM benchmark the number of
client_monitor and chat_session is several orders of magnitude
larger than the other types of processes. Therefore, it would require
unnecessary long experiments to analyse recovery time caused
by, for example, server_supervisor processes. In addition, to pick

Figure 5. Chat Session Sequence Diagram

Figure 6. RD-IM Chat_session Recovery from a Failure

processes for termination the rhesus module exploits existing IM
data structures kept on all nodes making the implementation and
the analysis fairly straightforward. In the experiments presented in
Section 6.4 rhesus module terminates only IM processes; however,
other types of processes can be also included if needed.

The functionality of the rhesus module is as follows. The rhesus
processes that run on all nodes initiate the termination by calling
the chaos_on/1 function. The function enables to set a number of
parameters, including the time when terminations start (e.g. 5min
after the experiment starts), the types of processes to terminate
(random or specific types only), and the termination rate.

5.2 Measurements: Logger
The logger module provides a measurements-gathering facility
that is used to analyse the IM performance in terms of latency and
throughput. The module provides a set of recorder functions that are
spawned at the client nodes whenever data-collection is required. At
launch time, these processes create a comma separated value (.csv)
file in which latency and throughput data is written in real-time.
After the data collection session has finished, the processes close
the file and if there are no more sessions left they terminate.

Recorders can be customised, allowing to specify such parame-
ters as the name and path of the output files, the number of series to
be recorded, and the length of the data collection sessions. For the
throughput measurements, a latency threshold can be set; this can be
used to determine the quality of the service defined as a percentage
of messages delivered below the threshold.

6. Evaluation
This section describes the results of the IM tests. In particular,
we analyse an impact of various aspects of s_groups on the IM
performance in the absence of failures (Sections 6.1–6.3) and then
an impact of failures (Section 6.4).

Configuration. All the measurements have been conducted on the
GPG Beowulf cluster5 at Glasgow University. In the experiments
we use up to 17 hosts out of 20 (the remaining 3 hosts are used for
general purpose). The cluster specification is as follows.

• 16 cores (2×Intel Xeon E5-2640 2 GHz) per host.
• 64 GB RAM (4 GB RAM per core) per host.
• 300 GB local disk.
• 10 Gb Ethernet interconnect.

The software configuration is as follows:

• Scientific Linux 6 (Carbon) 64-bit.
• SD Erlang/OTP based on Erlang/OTP 17.46.

5 http://www.dcs.gla.ac.uk/research/gpg/cluster.htm
6 https://github.com/release-project/otp/tree/17.
4-rebased
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Each server side node is deployed on a separate host, whereas
client nodes and traffic generator nodes share hosts. Each client
process is engaged in one conversation at a time. The throughput
measures the number of delivered messages per minute. We plot
the maximum throughput that the IM can handle, where further
increase of the number of conversations leads to nodes running out
of memory and the IM failure. We run all experiments for 15min,
repeating every experiment 5 times.

6.1 Impact of the SD Erlang S_groups (No Failures)
In this experiment we analyse an impact of SD Erlang s_groups
when no failure occurs. For that we vary the number of server nodes
(3, 4, 6, 8, 12, 16) while maintaining just a single router node.
Since RSD-IM has only one s_group, this set-up results in identical
architectures for both IM versions where s_group operations in the
RSD-IM are identical to the global operations in the RD-IM.

From the throughput results presented in Figure 7 we can make
a few observations. Firstly, at small scale when no failures occur
the RD-IM and RSD-IM perform identically. It also shows that it
takes the system approximately three minutes to reach a stable state
using the current traffic generator.

To analyse the throughput in the stable state against the number
of nodes we replot the data to exhibit the relation in Figure 8. The
results show that this relation is linear and the server nodes have
an effective capacity of handling approximately 106 messages per
minute. The curve-fit model follows 94, 663.9·Nservers+47, 145.3
dependency.
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Another conclusion that we can make here is that in the absence
of failures RD-IM does not hit its scalability limit at 17 nodes.

6.2 Impact of the Size of S_groups (No Failures)
In this experiment we analyse an impact of the size of s_groups
on the IM performance. For that we again increase the number of
servers (6, 8, 12), but this time we fix the number of routers to two.
In case of RSD-IM this results in two s_groups where depending on
the total number of servers each s_group has either 3, 4, or 6 server
nodes. Again we analyse the performance when no failures occur.

The throughput results in Figures 9 and 10 show that RSD-
IM has a slightly higher throughput (0.6%–2.7%) in comparison
with RD-IM, but both of them are lower than the curve-fit model
identified in Figure 8. From this we conclude that at this scale and
set-up RD-IM and RSD-IM keep perform identically, and for a small
scale of up to 14 nodes when no failures occur an increase of the
number of routers does not improve the throughput.

6.3 Impact of the Number of S_groups (No Failures)
In this experiment we analyse an impact of the number of s_groups
on the RSD-IM performance. For that we keep the number of server
nodes constant (equal to 12) while varying the number of router
nodes, and hence the number of s_groups in the RSD-IM (1, 2, 3,
4).

The throughput results in Figure 11 show that one router (one
s_group) configuration has the highest throughput and both DR-IM
and RSD-IM perform identically. With the two router (two s_group)
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configuration DR-IM and RSD-IM again perform identically; how-
ever, their throughput is 6% lower than the one router (one s_group)
experiment. Further increase of the number of routers up to four
does not seem to have an impact on the RD-IM performance, while
the RSD-IM keeps deteriorating by additional 6% (three routers)
and then 1% (four routers). This confirms SD Erlang results from
other benchmarks [5] in that dividing a set of nodes into too small
s_groups deteriorates the performance, rather than improves it.

6.4 Impact of Failures
In this experiment we investigate the impact of failures and their
rate on the performance of the RD-IM and RSD-IM applications.
In the experiments we use 2 router nodes and 12 server nodes,
making 14 nodes in total. In case of RSD-IM this results in three
s_groups: one router s_group that consists of only two router nodes,
and two server s_groups that consist of one router and six server
nodes each. We first run experiments with no failures, then we
terminate random processes, gradually reducing the rate from 15 and
5 seconds; finally we randomly terminate only globally registered
database processes reducing the rate from 5 seconds to 1 second. The
processes start failing five minutes into the benchmark execution
once the applications are stable, i.e. failures occur only between
minutes 5 and 15.

The throughput results in Figure 12 show that the IM fault
tolerance is robust and the introduced failure rate has no impact on
either of the of the IM versions in the given scale (number of nodes).
This demonstrates that SD Erlang can be used to build reliable
applications in the same manner as distributed Erlang. Moreover,

the use of s_groups does not impose any specific restriction to the
default reliability mechanisms with which Erlang/OTP is shipped.
Recall that the RSD-IM is just a refactored version of the RD-IM,
which introduces the minimum necessary changes required to use
the s_groups functionality. Apart from this, no further changes were
made – especially regarding the supervision trees and fault-tolerance
mechanisms.

7. Discussion
We have presented an evaluation of the SD Erlang libraries in
comparison to distributed Erlang for an Instant Messaging server
that is a larger and more sophisticated benchmark; is a far more
typical Erlang application; has non-trivial reliability mechanisms;
and uses throughput as the key performance metric.

The key performance results consider scenarios with and without
failures on up to 17 nodes (272 cores). We have demonstrated
that SD Erlang adds no performance penalties when all nodes
are grouped in a single s_group (Figure 8). However using either
redundant router nodes in RD-IM or dividing a set of nodes into
small s_groups in RSD-IM have small negative impacts, i.e. when
using four routers RD-IM and RSD-IM throughput decreases by
6% and 13% respectively (Figures 10 and 11). Both RD-IM and
RSD-IM tolerate failures, and up to the failure rates measured,
the failures have no impact on throughput. SD Erlang preserves
the distributed Erlang reliability properties and mechanisms, and
requires no additional mechanisms (Figure 12).

Future Work. On the available cluster with up to 17 server hosts
the RD-IM has not hit its scalability limit. To analyse RD-IM
and RSD-IM performance at scale we plan to conduct additional
experiments using either a larger cluster or a cloud. We may also
need to update traffic generator to enable the volume of traffic
required at the target scale, and to take into account the ever growing
sizes, types, and frequency of messages.
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