16,704 research outputs found

    Investigation on advanced image search techniques

    Get PDF
    Content-based image search for retrieval of images based on the similarity in their visual contents, such as color, texture, and shape, to a query image is an active research area due to its broad applications. Color, for example, provides powerful information for image search and classification. This dissertation investigates advanced image search techniques and presents new color descriptors for image search and classification and robust image enhancement and segmentation methods for iris recognition. First, several new color descriptors have been developed for color image search. Specifically, a new oRGB-SIFT descriptor, which integrates the oRGB color space and the Scale-Invariant Feature Transform (SIFT), is proposed for image search and classification. The oRGB-SIFT descriptor is further integrated with other color SIFT features to produce the novel Color SIFT Fusion (CSF), the Color Grayscale SIFT Fusion (CGSF), and the CGSF+PHOG descriptors for image category search with applications to biometrics. Image classification is implemented using a novel EFM-KNN classifier, which combines the Enhanced Fisher Model (EFM) and the K Nearest Neighbor (KNN) decision rule. Experimental results on four large scale, grand challenge datasets have shown that the proposed oRGB-SIFT descriptor improves recognition performance upon other color SIFT descriptors, and the CSF, the CGSF, and the CGSF+PHOG descriptors perform better than the other color SIFT descriptors. The fusion of both Color SIFT descriptors (CSF) and Color Grayscale SIFT descriptor (CGSF) shows significant improvement in the classification performance, which indicates that various color-SIFT descriptors and grayscale-SIFT descriptor are not redundant for image search. Second, four novel color Local Binary Pattern (LBP) descriptors are presented for scene image and image texture classification. Specifically, the oRGB-LBP descriptor is derived in the oRGB color space. The other three color LBP descriptors, namely, the Color LBP Fusion (CLF), the Color Grayscale LBP Fusion (CGLF), and the CGLF+PHOG descriptors, are obtained by integrating the oRGB-LBP descriptor with some additional image features. Experimental results on three large scale, grand challenge datasets have shown that the proposed descriptors can improve scene image and image texture classification performance. Finally, a new iris recognition method based on a robust iris segmentation approach is presented for improving iris recognition performance. The proposed robust iris segmentation approach applies power-law transformations for more accurate detection of the pupil region, which significantly reduces the candidate limbic boundary search space for increasing detection accuracy and efficiency. As the limbic circle, which has a center within a close range of the pupil center, is selectively detected, the eyelid detection approach leads to improved iris recognition performance. Experiments using the Iris Challenge Evaluation (ICE) database show the effectiveness of the proposed method

    Plant image retrieval using color, shape and texture features

    Get PDF
    We present a content-based image retrieval system for plant image retrieval, intended especially for the house plant identification problem. A plant image consists of a collection of overlapping leaves and possibly flowers, which makes the problem challenging.We studied the suitability of various well-known color, shape and texture features for this problem, as well as introducing some new texture matching techniques and shape features. Feature extraction is applied after segmenting the plant region from the background using the max-flow min-cut technique. Results on a database of 380 plant images belonging to 78 different types of plants show promise of the proposed new techniques and the overall system: in 55% of the queries, the correct plant image is retrieved among the top-15 results. Furthermore, the accuracy goes up to 73% when a 132-image subset of well-segmented plant images are considered

    Content Based Image Retrieval by Convolutional Neural Networks

    Get PDF
    Hamreras S., Benítez-Rochel R., Boucheham B., Molina-Cabello M.A., López-Rubio E. (2019) Content Based Image Retrieval by Convolutional Neural Networks. In: Ferråndez Vicente J., Álvarez-Sånchez J., de la Paz López F., Toledo Moreo J., Adeli H. (eds) From Bioinspired Systems and Biomedical Applications to Machine Learning. IWINAC 2019. Lecture Notes in Computer Science, vol 11487. Springer.In this paper, we present a Convolutional Neural Network (CNN) for feature extraction in Content based Image Retrieval (CBIR). The proposed CNN aims at reducing the semantic gap between low level and high-level features. Thus, improving retrieval results. Our CNN is the result of a transfer learning technique using Alexnet pretrained network. It learns how to extract representative features from a learning database and then uses this knowledge in query feature extraction. Experimentations performed on Wang (Corel 1K) database show a significant improvement in terms of precision over the state of the art classic approaches.Universidad de Målaga. Campus de Excelencia Internacional Andalucía Tech

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval

    Unsupervised Graph-based Rank Aggregation for Improved Retrieval

    Full text link
    This paper presents a robust and comprehensive graph-based rank aggregation approach, used to combine results of isolated ranker models in retrieval tasks. The method follows an unsupervised scheme, which is independent of how the isolated ranks are formulated. Our approach is able to combine arbitrary models, defined in terms of different ranking criteria, such as those based on textual, image or hybrid content representations. We reformulate the ad-hoc retrieval problem as a document retrieval based on fusion graphs, which we propose as a new unified representation model capable of merging multiple ranks and expressing inter-relationships of retrieval results automatically. By doing so, we claim that the retrieval system can benefit from learning the manifold structure of datasets, thus leading to more effective results. Another contribution is that our graph-based aggregation formulation, unlike existing approaches, allows for encapsulating contextual information encoded from multiple ranks, which can be directly used for ranking, without further computations and post-processing steps over the graphs. Based on the graphs, a novel similarity retrieval score is formulated using an efficient computation of minimum common subgraphs. Finally, another benefit over existing approaches is the absence of hyperparameters. A comprehensive experimental evaluation was conducted considering diverse well-known public datasets, composed of textual, image, and multimodal documents. Performed experiments demonstrate that our method reaches top performance, yielding better effectiveness scores than state-of-the-art baseline methods and promoting large gains over the rankers being fused, thus demonstrating the successful capability of the proposal in representing queries based on a unified graph-based model of rank fusions

    Large Scale Visual Recommendations From Street Fashion Images

    Full text link
    We describe a completely automated large scale visual recommendation system for fashion. Our focus is to efficiently harness the availability of large quantities of online fashion images and their rich meta-data. Specifically, we propose four data driven models in the form of Complementary Nearest Neighbor Consensus, Gaussian Mixture Models, Texture Agnostic Retrieval and Markov Chain LDA for solving this problem. We analyze relative merits and pitfalls of these algorithms through extensive experimentation on a large-scale data set and baseline them against existing ideas from color science. We also illustrate key fashion insights learned through these experiments and show how they can be employed to design better recommendation systems. Finally, we also outline a large-scale annotated data set of fashion images (Fashion-136K) that can be exploited for future vision research
    • 

    corecore