1,783 research outputs found

    Partner selection in sustainable supply chains: a fuzzy ensemble learning model

    Get PDF
    With the increasing demands on businesses to operate more sustainably, firms must ensure that the performance of their whole supply chain in sustainability is optimized. As partner selection is critical to supply chain management, focal firms now need to select supply chain partners that can offer a high level of competence in sustainability. This paper proposes a novel multi-partner classification model for the partner qualification and classification process, combining ensemble learning technology and fuzzy set theory. The proposed model enables potential partners to be classified into one of four categories (strategic partner, preference partner, leverage partner and routine partner), thereby allowing distinctive partner management strategies to be applied for each category. The model provides for the simultaneous optimization of both efficiency in its use of multi-partner and multi-dimension evaluation data, and effectiveness in dealing with the vagueness and uncertainty of linguistic commentary data. Compared to more conventional methods, the proposed model has the advantage of offering a simple classification and a stable prediction performance. The practical efficacy of the model is illustrated by an application in a listed electronic equipment and instrument manufacturing company based in southeastern China

    mARC: Memory by Association and Reinforcement of Contexts

    Full text link
    This paper introduces the memory by Association and Reinforcement of Contexts (mARC). mARC is a novel data modeling technology rooted in the second quantization formulation of quantum mechanics. It is an all-purpose incremental and unsupervised data storage and retrieval system which can be applied to all types of signal or data, structured or unstructured, textual or not. mARC can be applied to a wide range of information clas-sification and retrieval problems like e-Discovery or contextual navigation. It can also for-mulated in the artificial life framework a.k.a Conway "Game Of Life" Theory. In contrast to Conway approach, the objects evolve in a massively multidimensional space. In order to start evaluating the potential of mARC we have built a mARC-based Internet search en-gine demonstrator with contextual functionality. We compare the behavior of the mARC demonstrator with Google search both in terms of performance and relevance. In the study we find that the mARC search engine demonstrator outperforms Google search by an order of magnitude in response time while providing more relevant results for some classes of queries

    New Fundamental Technologies in Data Mining

    Get PDF
    The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining

    Data-Driven Representation Learning in Multimodal Feature Fusion

    Get PDF
    abstract: Modern machine learning systems leverage data and features from multiple modalities to gain more predictive power. In most scenarios, the modalities are vastly different and the acquired data are heterogeneous in nature. Consequently, building highly effective fusion algorithms is at the core to achieve improved model robustness and inferencing performance. This dissertation focuses on the representation learning approaches as the fusion strategy. Specifically, the objective is to learn the shared latent representation which jointly exploit the structural information encoded in all modalities, such that a straightforward learning model can be adopted to obtain the prediction. We first consider sensor fusion, a typical multimodal fusion problem critical to building a pervasive computing platform. A systematic fusion technique is described to support both multiple sensors and descriptors for activity recognition. Targeted to learn the optimal combination of kernels, Multiple Kernel Learning (MKL) algorithms have been successfully applied to numerous fusion problems in computer vision etc. Utilizing the MKL formulation, next we describe an auto-context algorithm for learning image context via the fusion with low-level descriptors. Furthermore, a principled fusion algorithm using deep learning to optimize kernel machines is developed. By bridging deep architectures with kernel optimization, this approach leverages the benefits of both paradigms and is applied to a wide variety of fusion problems. In many real-world applications, the modalities exhibit highly specific data structures, such as time sequences and graphs, and consequently, special design of the learning architecture is needed. In order to improve the temporal modeling for multivariate sequences, we developed two architectures centered around attention models. A novel clinical time series analysis model is proposed for several critical problems in healthcare. Another model coupled with triplet ranking loss as metric learning framework is described to better solve speaker diarization. Compared to state-of-the-art recurrent networks, these attention-based multivariate analysis tools achieve improved performance while having a lower computational complexity. Finally, in order to perform community detection on multilayer graphs, a fusion algorithm is described to derive node embedding from word embedding techniques and also exploit the complementary relational information contained in each layer of the graph.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    A Comparative Analysis of Machine Learning Models for Banking News Extraction by Multiclass Classification With Imbalanced Datasets of Financial News: Challenges and Solutions

    Get PDF
    Online portals provide an enormous amount of news articles every day. Over the years, numerous studies have concluded that news events have a significant impact on forecasting and interpreting the movement of stock prices. The creation of a framework for storing news-articles and collecting information for specific domains is an important and untested problem for the Indian stock market. When online news portals produce financial news articles about many subjects simultaneously, finding news articles that are important to the specific domain is nontrivial. A critical component of the aforementioned system should, therefore, include one module for extracting and storing news articles, and another module for classifying these text documents into a specific domain(s). In the current study, we have performed extensive experiments to classify the financial news articles into the predefined four classes Banking, Non-Banking, Governmental, and Global. The idea of multi-class classification was to extract the Banking news and its most correlated news articles from the pool of financial news articles scraped from various web news portals. The news articles divided into the mentioned classes were imbalanced. Imbalance data is a big difficulty with most classifier learning algorithms. However, as recent works suggest, class imbalances are not in themselves a problem, and degradation in performance is often correlated with certain variables relevant to data distribution, such as the existence in noisy and ambiguous instances in the adjacent class boundaries. A variety of solutions to addressing data imbalances have been proposed recently, over-sampling, down-sampling, and ensemble approach. We have presented the various challenges that occur with data imbalances in multiclass classification and solutions in dealing with these challenges. The paper has also shown a comparison of the performances of various machine learning models with imbalanced data and data balances using sampling and ensemble techniques. From the result, it’s clear that the performance of Random Forest classifier with data balances using the over-sampling technique SMOTE is best in terms of precision, recall, F-1, and accuracy. From the ensemble classifiers, the Balanced Bagging classifier has shown similar results as of the Random Forest classifier with SMOTE. Random forest classifier's accuracy, however, was 100% and it was 99% with the Balanced Bagging classifier

    Multivariate discretization of continuous valued attributes.

    Get PDF
    The area of Knowledge discovery and data mining is growing rapidly. Feature Discretization is a crucial issue in Knowledge Discovery in Databases (KDD), or Data Mining because most data sets used in real world applications have features with continuously values. Discretization is performed as a preprocessing step of the data mining to make data mining techniques useful for these data sets. This thesis addresses discretization issue by proposing a multivariate discretization (MVD) algorithm. It begins withal number of common discretization algorithms like Equal width discretization, Equal frequency discretization, NaĂŻve; Entropy based discretization, Chi square discretization, and orthogonal hyper planes. After that comparing the results achieved by the multivariate discretization (MVD) algorithm with the accuracy results of other algorithms. This thesis is divided into six chapters, covering a few common discretization algorithms and tests these algorithms on a real world datasets which varying in size and complexity, and shows how data visualization techniques will be effective in determining the degree of complexity of the given data set. We have examined the multivariate discretization (MVD) algorithm with the same data sets. After that we have classified discrete data using artificial neural network single layer perceptron and multilayer perceptron with back propagation algorithm. We have trained the Classifier using the training data set, and tested its accuracy using the testing data set. Our experiments lead to better accuracy results with some data sets and low accuracy results with other data sets, and this is subject ot the degree of data complexity then we have compared the accuracy results of multivariate discretization (MVD) algorithm with the results achieved by other discretization algorithms. We have found that multivariate discretization (MVD) algorithm produces good accuracy results in comparing with the other discretization algorithm

    Machine Learning in Automated Text Categorization

    Full text link
    The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual definition of a classifier by domain experts) are a very good effectiveness, considerable savings in terms of expert manpower, and straightforward portability to different domains. This survey discusses the main approaches to text categorization that fall within the machine learning paradigm. We will discuss in detail issues pertaining to three different problems, namely document representation, classifier construction, and classifier evaluation.Comment: Accepted for publication on ACM Computing Survey

    Fraud detection for online banking for scalable and distributed data

    Get PDF
    Online fraud causes billions of dollars in losses for banks. Therefore, online banking fraud detection is an important field of study. However, there are many challenges in conducting research in fraud detection. One of the constraints is due to unavailability of bank datasets for research or the required characteristics of the attributes of the data are not available. Numeric data usually provides better performance for machine learning algorithms. Most transaction data however have categorical, or nominal features as well. Moreover, some platforms such as Apache Spark only recognizes numeric data. So, there is a need to use techniques e.g. One-hot encoding (OHE) to transform categorical features to numerical features, however OHE has challenges including the sparseness of transformed data and that the distinct values of an attribute are not always known in advance. Efficient feature engineering can improve the algorithm’s performance but usually requires detailed domain knowledge to identify correct features. Techniques like Ripple Down Rules (RDR) are suitable for fraud detection because of their low maintenance and incremental learning features. However, high classification accuracy on mixed datasets, especially for scalable data is challenging. Evaluation of RDR on distributed platforms is also challenging as it is not available on these platforms. The thesis proposes the following solutions to these challenges: • We developed a technique Highly Correlated Rule Based Uniformly Distribution (HCRUD) to generate highly correlated rule-based uniformly-distributed synthetic data. • We developed a technique One-hot Encoded Extended Compact (OHE-EC) to transform categorical features to numeric features by compacting sparse-data even if all distinct values are unknown. • We developed a technique Feature Engineering and Compact Unified Expressions (FECUE) to improve model efficiency through feature engineering where the domain of the data is not known in advance. • A Unified Expression RDR fraud deduction technique (UE-RDR) for Big data has been proposed and evaluated on the Spark platform. Empirical tests were executed on multi-node Hadoop cluster using well-known classifiers on bank data, synthetic bank datasets and publicly available datasets from UCI repository. These evaluations demonstrated substantial improvements in terms of classification accuracy, ruleset compactness and execution speed.Doctor of Philosoph

    Mining Time-aware Actor-level Evolution Similarity for Link Prediction in Dynamic Network

    Get PDF
    Topological evolution over time in a dynamic network triggers both the addition and deletion of actors and the links among them. A dynamic network can be represented as a time series of network snapshots where each snapshot represents the state of the network over an interval of time (for example, a minute, hour or day). The duration of each snapshot denotes the temporal scale/sliding window of the dynamic network and all the links within the duration of the window are aggregated together irrespective of their order in time. The inherent trade-off in selecting the timescale in analysing dynamic networks is that choosing a short temporal window may lead to chaotic changes in network topology and measures (for example, the actors’ centrality measures and the average path length); however, choosing a long window may compromise the study and the investigation of network dynamics. Therefore, to facilitate the analysis and understand different patterns of actor-oriented evolutionary aspects, it is necessary to define an optimal window length (temporal duration) with which to sample a dynamic network. In addition to determining the optical temporal duration, another key task for understanding the dynamics of evolving networks is being able to predict the likelihood of future links among pairs of actors given the existing states of link structure at present time. This phenomenon is known as the link prediction problem in network science. Instead of considering a static state of a network where the associated topology does not change, dynamic link prediction attempts to predict emerging links by considering different types of historical/temporal information, for example the different types of temporal evolutions experienced by the actors in a dynamic network due to the topological evolution over time, known as actor dynamicities. Although there has been some success in developing various methodologies and metrics for the purpose of dynamic link prediction, mining actor-oriented evolutions to address this problem has received little attention from the research community. In addition to this, the existing methodologies were developed without considering the sampling window size of the dynamic network, even though the sampling duration has a large impact on mining the network dynamics of an evolutionary network. Therefore, although the principal focus of this thesis is link prediction in dynamic networks, the optimal sampling window determination was also considered

    IDENTIFYING A CUSTOMER CENTERED APPROACH FOR URBAN PLANNING: DEFINING A FRAMEWORK AND EVALUATING POTENTIAL IN A LIVABILITY CONTEXT

    Get PDF
    In transportation planning, public engagement is an essential requirement forinformed decision-making. This is especially true for assessing abstract concepts such aslivability, where it is challenging to define objective measures and to obtain input that canbe used to gauge performance of communities. This dissertation focuses on advancing adata-driven decision-making approach for the transportation planning domain in thecontext of livability. First, a conceptual model for a customer-centric framework fortransportation planning is designed integrating insight from multiple disciplines (chapter1), then a data-mining approach to extracting features important for defining customersatisfaction in a livability context is described (chapter 2), and finally an appraisal of thepotential of social media review mining for enhancing understanding of livability measuresand increasing engagement in the planning process is undertaken (chapter 3). The resultsof this work also include a sentiment analysis and visualization package for interpreting anautomated user-defined translation of qualitative measures of livability. The packageevaluates users satisfaction of neighborhoods through social media and enhances thetraditional approaches to defining livability planning measures. This approach has thepotential to capitalize on residents interests in social media outlets and to increase publicengagement in the planning process by encouraging users to participate in onlineneighborhood satisfaction reporting. The results inform future work for deploying acomprehensive approach to planning that draws the marketing structure of transportationnetwork products with residential nodes as the center of the structure
    • …
    corecore