813 research outputs found

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Novel Approaches in Structured Light Illumination

    Get PDF
    Among the various approaches to 3-D imaging, structured light illumination (SLI) is widely spread. SLI employs a pair of digital projector and digital camera such that the correspondences can be found based upon the projecting and capturing of a group of designed light patterns. As an active sensing method, SLI is known for its robustness and high accuracy. In this dissertation, I study the phase shifting method (PSM), which is one of the most employed strategy in SLI. And, three novel approaches in PSM have been proposed in this dissertation. First, by regarding the design of patterns as placing points in an N-dimensional space, I take the phase measuring profilometry (PMP) as an example and propose the edge-pattern strategy which achieves maximum signal to noise ratio (SNR) for the projected patterns. Second, I develop a novel period information embedded pattern strategy for fast, reliable 3-D data acquisition and reconstruction. The proposed period coded phase shifting strategy removes the depth ambiguity associated with traditional phase shifting patterns without reducing phase accuracy or increasing the number of projected patterns. Thus, it can be employed for high accuracy realtime 3-D system. Then, I propose a hybrid approach for high quality 3-D reconstructions with only a small number of illumination patterns by maximizing the use of correspondence information from the phase, texture, and modulation data derived from multi-view, PMP-based, SLI images, without rigorously synchronizing the cameras and projectors and calibrating the device gammas. Experimental results demonstrate the advantages of the proposed novel strategies for 3-D SLI systems

    Characterisation and Testing of Multifunctional Surfaces

    Get PDF

    On Characterization and Optimization of Engineering Surfaces

    Get PDF
    Swedish manufacturing industry in collaboration with academia is exploring innovative ways to manufacture eco-efficient and resource efficient products. Consequently, improving manufacturing efficiency and quality has become the priority for the manufacturing sector to remain competitive in a sustainable way. To achieve this, control and optimization of manufacturing process and product’s performance are necessary. This has led to increase in demand for functional surfaces, which are engineering surfaces tailored to different applications. With new advancements in manufacturing and surface metrology, investigations are steadily progressing towards re-defining quality and meeting dynamic customer demands. In this thesis, surfaces produced by different manufacturing systems are investigated, and methods are proposed to improve specification and optimization.The definition and interpretation of surface roughness vary across the manufacturing industry and academia. It is well known that surface characterization helps to understand the manufacturing process and its influence on surface functional properties such as wear, friction, adhesivity, wettability, fluid retention and aesthetic properties such as gloss. Manufactured surfaces consist of features that are relevant and features that are not of interest. To be able to produce the intended function, it is important to identify and quantify the features of relevance. Use of surface texture parameters helps in quantifying these surface features with respect to type, region, spacing and distribution. Currently, surface parameters Ra or Sa that represent average roughness are widely used in the industry, but they may not provide adequate information on the surface. In this thesis, a general methodology, based on the standard surface parameters and statistical approach, is proposed to improve the specification for surface roughness and identify the combination of significant surface texture parameters that best describe the surface and extract valuable surface information.Surface topography generated by additive, subtractive and formative processes is investigated with the developed research approach. The roughness profile parameters and areal surface parameters defined in ISO, along with power spectral density and scale sensitive fractal analysis, are used for surface characterization and analysis. In this thesis, the application of regression statistics to identify the set of significant surface parameters that improve the specification for surface roughness is shown. These surface parameters are used to discriminate between the surfaces produced by multiple process variables at multiple levels. By analyzing the influence of process variables on the surface topography, the research methodology helps to understand the underlying physical phenomenon and enhance the domain-specific knowledge with respect to surface topography. Subsequently, it helps to interpret processing conditions for process and surface function optimization.The research methods employed in this study are valid and applicable for different manufacturing processes. This thesis can support the guidelines for manufacturing industry focusing on process and functional optimization through surface analysis. With increase in use of machine learning and artificial intelligence in automation, methodologies such as the one proposed in this thesis are vital in exploring and extracting new possibilities in functional surfaces

    Advances in Stereo Vision

    Get PDF
    Stereopsis is a vision process whose geometrical foundation has been known for a long time, ever since the experiments by Wheatstone, in the 19th century. Nevertheless, its inner workings in biological organisms, as well as its emulation by computer systems, have proven elusive, and stereo vision remains a very active and challenging area of research nowadays. In this volume we have attempted to present a limited but relevant sample of the work being carried out in stereo vision, covering significant aspects both from the applied and from the theoretical standpoints

    Laser texturisation of photovoltaic module superstrates for enhanced light trapping performance

    Get PDF
    In order to increase the efficiency of solar cell modules it is necessary to make the optimum use of light incident upon them. Much research has been conducted to improve light absorption through front surface texturing and light trapping schemes. Laser light is commonly used in industry for various applications including marking and texturing. By controlling laser parameters, it is possible to tailor macro and micro structures in most materials. A CO2 laser operating at 10.6μm wavelength was used to produce grooved textures in fused quartz material with a view to its usage as a cover glass on top of the photovoltaic cell surface. With correct texturing it is postulated that increased energy absorption can be promoted due to trapping of light within the photovoltaic cell due to total internal reflection and enhanced optical path lengths. Analysis of the effects of the laser parameters on the texture geometry and surface morphology was performed through a combination of cross-sectioning and scanning electron microscopy. Transmission spectra through the textured glass samples were recorded, and transmission through the glass was improved for most samples after acid etching. It was found that for acute angles of incidence of wavelengths of natural sunlight upon the cells, greater coupling efficiencies were achieved compared to flat surfaces, due to the increased light trapping effect. The main contributions of this work include examination and quantification that indicate the laser textured solar superstrates can increase the light trapping effect within silicon solar cells and that an enhanced light trapping can be achieved when silicon quantum dots deposited directly on a textured superstrate. Another two important contributions are found in the development of characterisation methods and analyses of microstructures relevant to light trapping in current and emerging solar cell technologies. These include the design, fabrication, development, and verification of a newly designed and commissioned depth-from-focus based optical profilometer with which new results in the metrology of translucent surfaces with micro-scale roughness are presented. Software to analyse serial FIB-SEM sections of monolithic porous microstructures was also developed. The results gained from these characterisation methods have allowed, and it is postulated will in the future provide, a more detailed understanding of the light trapping process with various microstructures

    Machine Learning in Tribology

    Get PDF
    Tribology has been and continues to be one of the most relevant fields, being present in almost all aspects of our lives. The understanding of tribology provides us with solutions for future technical challenges. At the root of all advances made so far are multitudes of precise experiments and an increasing number of advanced computer simulations across different scales and multiple physical disciplines. Based upon this sound and data-rich foundation, advanced data handling, analysis and learning methods can be developed and employed to expand existing knowledge. Therefore, modern machine learning (ML) or artificial intelligence (AI) methods provide opportunities to explore the complex processes in tribological systems and to classify or quantify their behavior in an efficient or even real-time way. Thus, their potential also goes beyond purely academic aspects into actual industrial applications. To help pave the way, this article collection aimed to present the latest research on ML or AI approaches for solving tribology-related issues generating true added value beyond just buzzwords. In this sense, this Special Issue can support researchers in identifying initial selections and best practice solutions for ML in tribology

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented
    corecore