6,487 research outputs found

    Improving architectural 3D reconstruction by constrained modelling

    Get PDF
    Institute of Perception, Action and BehaviourThis doctoral thesis presents new techniques for improving the structural quality of automatically-acquired architectural 3D models. Common architectural properties such as parallelism and orthogonality of walls and linear structures are exploited. The locations of features such as planes and 3D lines are extracted from the model by using a probabilistic technique (RANSAC). The relationships between the planes and lines are inferred automatically using a knowledge-based architectural model. A numerical algorithm is then used to optimise the position and orientations of the features taking constraints into account. Small irregularities in the model are removed by projecting the irregularities onto the features. Planes and lines in the resulting model are therefore aligned properly to each other, and so the appearance of the resulting model is improved. Our approach is demonstrated using noisy data from both synthetic and real scenes

    A flexible geometric model for leaf shape descriptions with high accuracy

    Get PDF
    Accurate assessment of canopy structure is crucial in studying plant-environment interactions. The advancement of functional-structural plant models (FSPM), which incorporate the 3D structure of individual plants, increases the need for a method for accurate mathematical descriptions of leaf shape. A model was developed as an improvement of an existing leaf shape algorithm to describe a large variety of leaf shapes. Modelling accuracy was evaluated using a spatial segmentation method and shape differences were assessed using principal component analysis (PCA) on the optimised parameters. Furthermore, a method is presented to calculate the mean shape of a dataset, intended for obtaining a representative shape for modelling purposes. The presented model is able to accurately capture a large range of single, entire leaf shapes. PCA illustrated the interpretability of the parameter values and allowed evaluation of shape differences. The model parameters allow straightforward digital reconstruction of leaf shapes for modelling purposes such as FSPMs

    Modelling of building interiors with mobile phone sensor data

    Get PDF
    Creating as-built plans of building interiors is a challenging task. In this paper we present a semi-automatic modelling system for creating residential building interior plans and their integration with existing map data to produce building models. Taking a set of imprecise measurements made with an interactive mobile phone room mapping application, the system performs spatial adjustments in accordance with soft and hard constraints imposed on the building plan geometry. The approach uses an optimisation model that exploits a high accuracy building outline, such as can be found in topographic map data, and the building topology to improve the quality of interior measurements and generate a standardised output. We test our system on building plans of five residential homes. Our evaluation shows that the approach enables construction of accurate interior plans from imprecise measurements. The experiments report an average accuracy of 0.24 m, close to the 0.20 m recommended by the CityGML LoD4 specificatio

    A model-based approach to recovering the structure of a plant from images

    Full text link
    We present a method for recovering the structure of a plant directly from a small set of widely-spaced images. Structure recovery is more complex than shape estimation, but the resulting structure estimate is more closely related to phenotype than is a 3D geometric model. The method we propose is applicable to a wide variety of plants, but is demonstrated on wheat. Wheat is made up of thin elements with few identifiable features, making it difficult to analyse using standard feature matching techniques. Our method instead analyses the structure of plants using only their silhouettes. We employ a generate-and-test method, using a database of manually modelled leaves and a model for their composition to synthesise plausible plant structures which are evaluated against the images. The method is capable of efficiently recovering accurate estimates of plant structure in a wide variety of imaging scenarios, with no manual intervention

    Combining single view recognition and multiple view stereo for architectural scenes

    Get PDF
    ©2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.This paper describes a structure from motion and recognition paradigm for generating 3D models from 2D sets of images. In particular we consider the domain of architectural photographs. A model based approach is adopted with the architectural model built from a “Lego kit” of parameterised parts. The approach taken is different from traditional stereo or shape from X approaches in that identification of the parameterised components (such as windows, doors, buttresses etc) from one image is combined with parallax information in order to generate the 3D model. This model based approach has two main benefits: first, it allows the inference of shape and texture where the evidence from the images is weak; and second, it recovers not only geometry and texture but also an interpretation of the model, which can be used for automatic enhancement techniques such as the application of reflective textures to windowsDick, A.R., Torr, P.H.S., Ruffle, S.J., Cipolla, R

    DEVELOPMENT OF AN ALL-PURPOSE FREE PHOTOGRAMMETRIC TOOL

    Get PDF
    Photogrammetry is currently facing some challenges and changes mainly related to automation, ubiquitous processing and variety of applications. Within an ISPRS Scientific Initiative a team of researchers from USAL, UCLM, FBK and UNIBO have developed an open photogrammetric tool, called GRAPHOS (inteGRAted PHOtogrammetric Suite). GRAPHOS allows to obtain dense and metric 3D point clouds from terrestrial and UAV images. It encloses robust photogrammetric and computer vision algorithms with the following aims: (i) increase automation, allowing to get dense 3D point clouds through a friendly and easy-to-use interface; (ii) increase flexibility, working with any type of images, scenarios and cameras; (iii) improve quality, guaranteeing high accuracy and resolution; (iv) preserve photogrammetric reliability and repeatability. Last but not least, GRAPHOS has also an educational component reinforced with some didactical explanations about algorithms and their performance. The developments were carried out at different levels: GUI realization, image pre-processing, photogrammetric processing with weight parameters, dataset creation and system evaluation. The paper will present in detail the developments of GRAPHOS with all its photogrammetric components and the evaluation analyses based on various image datasets. GRAPHOS is distributed for free for research and educational needs
    • 

    corecore