1,660 research outputs found

    Performance of short and long range wireless communication technologies in construction

    Get PDF
    The ever increasing complexity of construction projects asks for improved communication and automated data collection supported by continually improving electronic tools. Advances in information technologies enable us to link critical resources on construction sites, such as trucks and cranes, to the project website creating many opportunities to drastically improve productivity, safety and quality. While the use of electronic equipment is nothing new in construction, no model exists to integrate them into one unified framework. This paper presents a wireless site-network concept consisting of information hubs enabled to automatically connect data sinks with sources supported by software agents. Included in this paper is the discussion of a mobile information hub, the eCKiosk, enabled to connect the work crew electronically to the project network while collecting automatically live “as-built” data. It begins with a review of long range wireless as the basis for designing a robust Agile Site Communication Network (ASCNet). Site experiments with short range wireless conduits and embedded RFID tags showed that they are able to provide information far beyond an identification number. While wireless technologies are poised to open totally new avenues to manage construction, more field-tests are needed to establish a solid knowledge base to create a pervasive network for the dynamically changing building site

    Improved Tower Cranes Operation Using Integrated 3D BIM Model and GPS Technology

    Get PDF
    Tower and mobile cranes are the most commonly used equipment on building construction jobsites. They play an essential role in material handling, placement, assembly and erection operations. Statistics reveal that during the last decade, the construction industry has suffered globally from crane related accidents. Hence, detailed study of different aspects of crane-based activity is important in terms of time and safety. There are several studies for enhancing safety conditions of crane operations on jobsites to decrease the number of fatalities and even increase the productivity. Existing approaches and studies have deployed wireless networks and tracking sensors to detect and identify workers, but high initial cost for installation and maintenance of these technologies and inappropriate feedback for disregarding workers privacy hold down their usability. The purpose of this study is to develop a proactive lifting operation management system to prevent potential accidents caused by tower cranes’ components through using GPS in integrated 3D BIM models. In this study, generated workspaces are utilized to demonstrate areas occupied by workers or equipment instead of using individual tags for each entity. As construction workers may leave their work zone for some reasons, 3D video tracking is applied for identifying and tracking if workers leave their pre-defined workspaces. The developed model captures the load position in real time and subsequently compares the load’s bounding box position with defined area in BIM model. In the developed model, tower crane’s load dimensions and starting point of the loading procedure are inserted and subsequently the model updates the load’s position in real time. The updated position in the 3D model is checked proactively with existing spaces to send alerts in case of overlapping. Two case studies are used to demonstrate the concept and to validate the feasibility of the proposed method. In the first case study the added plug-in is used to generate workspaces for material, equipment and labors and in the second one, the real time safety system is validated in two different scenarios. The developed plug-in in Revit environment enhances timely proximity detection for enhanced safety since it detects objects based on pre-defined spaces and retrieves crane’s load location in the model in real time. Identifying resources of interest which being free of tag and developing the real time conflict detection in Revit can be addressed as main findings of this study

    The capture and integration of construction site data

    Get PDF
    The use of mobile computing on the construction site has been a well-researched area since the early 1990’s, however, there still remains a lack of computing on the construction site. Where computers are utilised on the site this tends to be by knowledge workers utilising a laptop or PC in the site office with electronic data collection being the exception rather than the norm. The problems associated with paper-based documentation on the construction site have long been recognised (Baldwin, et al, 1994; McCullough, 1993) yet there still seems to be reluctance to replace this with electronic alternatives. Many reasons exist for this such as; low profit margins, perceived high cost; perceived lack of available hardware and perceived inability of the workforce. However, the benefits that can be gained from the successful implementation of IT on the construction site and the ability to re-use construction site data to improve company performance, whilst difficult to cost, are clearly visible. This thesis represents the development and implementation of a data capture system for the management of the construction of rotary bored piles (SHERPA). Operated by the site workforce, SHERPA comprises a wireless network, site-based server and webbased data capture using tablet computers. This research intends to show that mobile computing technologies can be implemented on the construction site and substantial benefits can be gained for the company from the re-use and integration of the captured site data

    Enhancing Facility Management Using RFID and Web Technology in Construction

    Get PDF

    Digital technologies for enhancing crane safety in construction: a combined quantitative and qualitative analysis

    Get PDF
    A digital-enabled safety management approach is increasingly crucial for crane operations, which are common yet highly hazardous activities sensitive to environmental dynamics on construction sites. However, there exists a knowledge gap regarding the current status and developmental trajectory of this approach. Therefore, this paper aims to provide a comprehensive overview of digital technologies for enhancing crane safety, drawing insights from articles published between 2008 and 2021. Special emphasis is placed on the sensing devices currently in use for gathering “man-machine-environment” data, as well as the communication networks, data processing algorithms, and intuitive visualization platforms employed. Through qualitative and quantitative analysis of the literature, it is evident that while notable advancements have been made in digital-enabled crane safety management, these achievements remain largely confined to the experimentation stage. Consequently, a framework is proposed in this study to facilitate the practical implementation of digital-enabled crane safety management. Furthermore, recommendations for future research directions are presented. This comprehensive review offers valuable guidance for ensuring safe crane operations in the construction industry

    Topics in construction safety and health : struck-by and caught-in hazards : an interdisciplinary annotated bibliography

    Get PDF
    "These referenced articles provide literature on the dangers to construction workers from job hazards in their occupations including the equipment they use and the type of work environment they are working in" - NIOSHTIC-2NIOSHTIC no. 20068258Production of this document was supported by cooperative agreement OH 009762 from the National Institute for Occupational Safety and Health (NIOSH). The contents are solely the responsibility of the authors and do not necessarily represent the official views of NIOSH.Struck-by-and-Caught-in-Hazards-annotated-bibliography.pdfcooperative agreement OH 009762 from the National Institute for Occupational Safety and Healt

    Information technology applications in construction safety assurance

    Get PDF
    Through analysis of articles published from 2006 to July 2014 this paper summarizes the topics of research and the institutions where research was conducted in the field of computer-based construction safety engineering management. One hundred and thirty-six articles published during this time focused on Information Technology (IT) applications in this field were selected for analysis. The underlying research topics and their related IT implementations are discussed, and research trends in allied specialties are identified

    Integration of building information modelling (BIM) and sensor technology: A review of current developments and future outlooks

    Get PDF
    © 2018 Association for Computing Machinery. ACM. Building Information Modelling1 (BIM) is revolutionising the practicalities of current construction field, sensor technology is essential for enabling BIM to extend beyond the domain of software into the physical domain of building construction and operation; however, no prior in-depth review has focused on the integration of BIM and sensor technology. This paper provides a brief review to evaluate and clarify the state-of-art for the integration of BIM and sensor technology. A systematic review approach was adopted. The result reveals that although much research has conducted, there are gaps and scope for further work, namely: (a) More consideration of the cost of sensors needs to be taken; (b) More commercial applications should be developed; (c) Higher accuracy of positioning and tracing is needed; (d) More applications in structural design could be expanded

    Building information modelling (BIM) to enhance occupational safety in construction activities. Research trends emerging from one decade of studies

    Get PDF
    In recent years, the use of new technologies is rapidly transforming the way working activities are managed and carried out. In the construction industry, in particular, the use of Building Information Modelling (BIM) is ever increasing as a means to improve the performances of numerous activities. In such a context, several studies have proposed BIM as a key process to augment occupational safety effectively, considering that the construction industry still remains one of the most hazardous working sectors. The purpose of the present study is to investigate the recent research addressing the use of BIM to improve construction safety. A systematic review was performed considering journal papers that appeared in literature in the last decade. The results showed that the most viable and promising research directions concern knowledge-based solutions, design for safety improvement through BIM solutions, transversal applications of BIM, and dynamic visualization and feedback. The findings of this study also indicated that more practical BIM applications are needed, especially focusing on safety training and education, the use of BIM to augment safety climate and resilience, and the development of quantitative risk analysis to better support safety management. Overall, the study provided a comprehensive research synthesis augmenting knowledge on the role of BIM-based tools in construction safety, which can be considered a reference framework to enhance workers' safety by means of these new technologies
    • …
    corecore