71 research outputs found

    Flame-MR: An event-driven architecture for MapReduce applications

    Get PDF
    [Abstract] Nowadays, many organizations analyze their data with the MapReduce paradigm, most of them using the popular Apache Hadoop framework. As the data size managed by MapReduce applications is steadily increasing, the need for improving the Hadoop performance also grows. Existing modifications of Hadoop (e.g., Mellanox Unstructured Data Accelerator) attempt to improve performance by changing some of its underlying subsystems. However, they are not always capable to cope with all its performance bottlenecks or they hinder its portability. Furthermore, new frameworks like Apache Spark or DataMPI can achieve good performance improvements, but they do not keep compatibility with existing MapReduce applications. This paper proposes Flame-MR, a new event-driven MapReduce architecture that increases Hadoop performance by avoiding memory copies and pipelining data movements, without modifying the source code of the applications. The performance evaluation on two representative systems (an HPC cluster and a public cloud platform) has shown experimental evidence of significant performance increases, reducing the execution time by up to 54% on the Amazon EC2 cloud.Ministerio de Economía y Competititvidad; TIN2013-42148-PMinisterio de Educación; FPU14/0280

    Welcome to Zombieland: Practical and Energy-efficient Memory Disaggregation in a Datacenter

    Get PDF
    In this paper, we propose an effortless way for disaggregating the CPU-memory couple, two of the most important resources in cloud computing. Instead of redesigning each resource board, the disaggregation is done at the power supply domain level. In other words, CPU and memory still share the same board, but their power supply domains are separated. Besides this disaggregation, we make the two following contributions: (1) the prototyping of a new ACPI sleep state (called zombie and noted Sz) which allows to suspend a server (thus save energy) while making its memory remotely accessible; and (2) the prototyping of a rack-level system software which allows the transparent utilization of the entire rack resources (avoiding resource waste). We experimentally evaluate the effectiveness of our solution and show that it can improve the energy efficiency of state-of-the-art consolidation techniques by up to 86%, with minimal additional complexity

    Towards Low-Latency Byzantine Agreement Protocols Using RDMA

    Get PDF
    Byzantine fault tolerance (BFT) protocols can mitigate attacks and errors and are increasingly investigated as consensus protocols in blockchains. However, they are traditionally considered costly in terms of message complexity and latency due to the required multiple rounds of message exchanges. With the availability of Remote Direct Memory Access (RDMA) in data centers, message exchange latency can be reduced compared to TCP, as RDMA enables kernel bypassing and thereby avoids intermediate data copying. Retaining the performance benefits for RDMA during its integration, however, is non-trivial and error-prone. While the use of RDMA has previously been explored for key/value stores, databases and distributed file systems, agreement protocols especially for BFT have so far been neglected. We investigate the usage of RDMA in the Reptor BFT protocol for low-latency agreement and show first steps towards an RDMA-enabled consensus protocol. For this, we present RUBIN, a framework offering similar functionality to the Java NIO selector, which can handle multiple network connections efficiently with a single thread and is employed in several BFT protocol implementations such as BFT-SMART and UpRight

    Optimizing machine learning on Apache Spark in HPC environments

    Get PDF
    Machine learning has established itself as a powerful tool for the construction of decision making models and algorithms through the use of statistical techniques on training data. However, a significant impediment to its progress is the time spent training and improving the accuracy of these models – this is a data and compute intensive process, which can often take days, weeks or even months to complete. A common approach to accelerate this process is to employ the use of multiple machines simultaneously, a trait shared with the field of High Performance Computing (HPC) and its clusters. However, existing distributed frameworks for data analytics and machine learning are designed for commodity servers, which do not realize the full potential of a HPC cluster, and thus denies the effective use of a readily available and potentially useful resource. In this work we adapt the application of Apache Spark, a distributed data-flow framework, to support the use of machine learning in HPC environments for the purposes of machine learning. There are inherent challenges to using Spark in this context; memory management, communication costs and synchronization overheads all pose challenges to its efficiency. To this end we introduce: (i) the application of MapRDD, a fine grained distributed data representation; (ii) a task-based allreduce implementation; and (iii) a new asynchronous Stochastic Gradient Descent (SGD) algorithm using non-blocking all-reduce. We demonstrate up to a 2.6x overall speedup (or a 11.2x theoretical speedup with a Nvidia K80 graphics card), a 82- 91% compute ratio, and a 80% reduction in the memory usage, when training the GoogLeNet model to classify 10% of the ImageNet dataset on a 32-node cluster. We also demonstrate a comparable convergence rate using the new asynchronous SGD with respect to the synchronous method. With increasing use of accelerator cards, larger cluster computers and deeper neural network models, we predict a 2x further speedup (i.e. 22.4x accumulated speedup) is obtainable with the new asynchronous SGD algorithm on heterogeneous clusters

    Cascade: A Platform for Delay-Sensitive Edge Intelligence

    Full text link
    Interactive intelligent computing applications are increasingly prevalent, creating a need for AI/ML platforms optimized to reduce per-event latency while maintaining high throughput and efficient resource management. Yet many intelligent applications run on AI/ML platforms that optimize for high throughput even at the cost of high tail-latency. Cascade is a new AI/ML hosting platform intended to untangle this puzzle. Innovations include a legacy-friendly storage layer that moves data with minimal copying and a "fast path" that collocates data and computation to maximize responsiveness. Our evaluation shows that Cascade reduces latency by orders of magnitude with no loss of throughput.Comment: 14 pages, 12 Figure

    Evaluation and optimization of Big Data Processing on High Performance Computing Systems

    Get PDF
    Programa Oficial de Doutoramento en Investigación en Tecnoloxías da Información. 524V01[Resumo] Hoxe en día, moitas organizacións empregan tecnoloxías Big Data para extraer información de grandes volumes de datos. A medida que o tamaño destes volumes crece, satisfacer as demandas de rendemento das aplicacións de procesamento de datos masivos faise máis difícil. Esta Tese céntrase en avaliar e optimizar estas aplicacións, presentando dúas novas ferramentas chamadas BDEv e Flame-MR. Por unha banda, BDEv analiza o comportamento de frameworks de procesamento Big Data como Hadoop, Spark e Flink, moi populares na actualidade. BDEv xestiona a súa configuración e despregamento, xerando os conxuntos de datos de entrada e executando cargas de traballo previamente elixidas polo usuario. Durante cada execución, BDEv extrae diversas métricas de avaliación que inclúen rendemento, uso de recursos, eficiencia enerxética e comportamento a nivel de microarquitectura. Doutra banda, Flame-MR permite optimizar o rendemento de aplicacións Hadoop MapReduce. En xeral, o seu deseño baséase nunha arquitectura dirixida por eventos capaz de mellorar a eficiencia dos recursos do sistema mediante o solapamento da computación coas comunicacións. Ademais de reducir o número de copias en memoria que presenta Hadoop, emprega algoritmos eficientes para ordenar e mesturar os datos. Flame-MR substitúe o motor de procesamento de datos MapReduce de xeito totalmente transparente, polo que non é necesario modificar o código de aplicacións xa existentes. A mellora de rendemento de Flame-MR foi avaliada de maneira exhaustiva en sistemas clúster e cloud, executando tanto benchmarks estándar coma aplicacións pertencentes a casos de uso reais. Os resultados amosan unha redución de entre un 40% e un 90% do tempo de execución das aplicacións. Esta Tese proporciona aos usuarios e desenvolvedores de Big Data dúas potentes ferramentas para analizar e comprender o comportamento de frameworks de procesamento de datos e reducir o tempo de execución das aplicacións sen necesidade de contar con coñecemento experto para elo.[Resumen] Hoy en día, muchas organizaciones utilizan tecnologías Big Data para extraer información de grandes volúmenes de datos. A medida que el tamaño de estos volúmenes crece, satisfacer las demandas de rendimiento de las aplicaciones de procesamiento de datos masivos se vuelve más difícil. Esta Tesis se centra en evaluar y optimizar estas aplicaciones, presentando dos nuevas herramientas llamadas BDEv y Flame-MR. Por un lado, BDEv analiza el comportamiento de frameworks de procesamiento Big Data como Hadoop, Spark y Flink, muy populares en la actualidad. BDEv gestiona su configuración y despliegue, generando los conjuntos de datos de entrada y ejecutando cargas de trabajo previamente elegidas por el usuario. Durante cada ejecución, BDEv extrae diversas métricas de evaluación que incluyen rendimiento, uso de recursos, eficiencia energética y comportamiento a nivel de microarquitectura. Por otro lado, Flame-MR permite optimizar el rendimiento de aplicaciones Hadoop MapReduce. En general, su diseño se basa en una arquitectura dirigida por eventos capaz de mejorar la eficiencia de los recursos del sistema mediante el solapamiento de la computación con las comunicaciones. Además de reducir el número de copias en memoria que presenta Hadoop, utiliza algoritmos eficientes para ordenar y mezclar los datos. Flame-MR reemplaza el motor de procesamiento de datos MapReduce de manera totalmente transparente, por lo que no se necesita modificar el código de aplicaciones ya existentes. La mejora de rendimiento de Flame-MR ha sido evaluada de manera exhaustiva en sistemas clúster y cloud, ejecutando tanto benchmarks estándar como aplicaciones pertenecientes a casos de uso reales. Los resultados muestran una reducción de entre un 40% y un 90% del tiempo de ejecución de las aplicaciones. Esta Tesis proporciona a los usuarios y desarrolladores de Big Data dos potentes herramientas para analizar y comprender el comportamiento de frameworks de procesamiento de datos y reducir el tiempo de ejecución de las aplicaciones sin necesidad de contar con conocimiento experto para ello.[Abstract] Nowadays, Big Data technologies are used by many organizations to extract valuable information from large-scale datasets. As the size of these datasets increases, meeting the huge performance requirements of data processing applications becomes more challenging. This Thesis focuses on evaluating and optimizing these applications by proposing two new tools, namely BDEv and Flame-MR. On the one hand, BDEv allows to thoroughly assess the behavior of widespread Big Data processing frameworks such as Hadoop, Spark and Flink. It manages the configuration and deployment of the frameworks, generating the input datasets and launching the workloads specified by the user. During each workload, it automatically extracts several evaluation metrics that include performance, resource utilization, energy efficiency and microarchitectural behavior. On the other hand, Flame-MR optimizes the performance of existing Hadoop MapReduce applications. Its overall design is based on an event-driven architecture that improves the efficiency of the system resources by pipelining data movements and computation. Moreover, it avoids redundant memory copies present in Hadoop, while also using efficient sort and merge algorithms for data processing. Flame-MR replaces the underlying MapReduce data processing engine in a transparent way and thus the source code of existing applications does not require to be modified. The performance benefits provided by Flame- MR have been thoroughly evaluated on cluster and cloud systems by using both standard benchmarks and real-world applications, showing reductions in execution time that range from 40% to 90%. This Thesis provides Big Data users with powerful tools to analyze and understand the behavior of data processing frameworks and reduce the execution time of the applications without requiring expert knowledge

    Analysis and evaluation of MapReduce solutions on an HPC cluster

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Computers & Electrical Engineering. The final authenticated version is available online at: https://doi.org/10.1016/j.compeleceng.2015.11.021[Abstract] The ever growing needs of Big Data applications are demanding challenging capabilities which cannot be handled easily by traditional systems, and thus more and more organizations are adopting High Performance Computing (HPC) to improve scalability and efficiency. Moreover, Big Data frameworks like Hadoop need to be adapted to leverage the available resources in HPC environments. This situation has caused the emergence of several HPC-oriented MapReduce frameworks, which benefit from different technologies traditionally oriented to supercomputing, such as high-performance interconnects or the message-passing interface. This work aims to establish a taxonomy of these frameworks together with a thorough evaluation, which has been carried out in terms of performance and energy efficiency metrics. Furthermore, the adaptability to emerging disks technologies, such as solid state drives, has been assessed. The results have shown that new frameworks like DataMPI can outperform Hadoop, although using IP over InfiniBand also provides significant benefits without code modifications.Ministerio de Economía y Competitividad; TIN2013-42148-

    Building Efficient Software to Support Content Delivery Services

    Get PDF
    Many content delivery services use key components such as web servers, databases, and key-value stores to serve content over the Internet. These services, and their component systems, face unique modern challenges. Services now operate at massive scale, serving large files to wide user-bases. Additionally, resource contention is more prevalent than ever due to large file sizes, cloud-hosted and collocated services, and the use of resource-intensive features like content encryption. Existing systems have difficulty adapting to these challenges while still performing efficiently. For instance, streaming video web servers work well with small data, but struggle to service large, concurrent requests from disk. Our goal is to demonstrate how software can be augmented or replaced to help improve the performance and efficiency of select components of content delivery services. We first introduce Libception, a system designed to help improve disk throughput for web servers that process numerous concurrent disk requests for large content. By using serialization and aggressive prefetching, Libception improves the throughput of the Apache and nginx web servers by a factor of 2 on FreeBSD and 2.5 on Linux when serving HTTP streaming video content. Notably, this improvement is achieved without changing the source code of either web server. We additionally show that Libception's benefits translate into performance gains for other workloads, reducing the runtime of a microbenchmark using the diff utility by 50% (again without modifying the application's source code). We next implement Nessie, a distributed, RDMA-based, in-memory key-value store. Nessie decouples data from indexing metadata, and its protocol only consumes CPU on servers that initiate operations. This design makes Nessie resilient against CPU interference, allows it to perform well with large data values, and conserves energy during periods of non-peak load. We find that Nessie doubles throughput versus other approaches when CPU contention is introduced, and has 70% higher throughput when managing large data in write-oriented workloads. It also provides 41% power savings (over idle power consumption) versus other approaches when system load is at 20% of peak throughput. Finally, we develop RocketStreams, a framework which facilitates the dissemination of live streaming video. RocketStreams exposes an easy-to-use API to applications, obviating the need for services to manually implement complicated data management and networking code. RocketStreams' TCP-based dissemination compares favourably to an alternative solution, reducing CPU utilization on delivery nodes by 54% and increasing viewer throughput by 27% versus the Redis data store. Additionally, when RDMA-enabled hardware is available, RocketStreams provides RDMA-based dissemination which further increases overall performance, decreasing CPU utilization by 95% and increasing concurrent viewer throughput by 55% versus Redis

    An elastic, parallel and distributed computing architecture for machine learning

    Get PDF
    Machine learning is a powerful tool that allows us to make better and faster decisions in a data-driven fashion based on training data. Neural networks are especially popular in the context of supervised learning due to their ability to approximate auxiliary functions. However, building these models is typically computationally intensive, which can take significant time to complete on a conventional CPU-based computer. Such a long turnaround time makes business and research infeasible using these models. This research seeks to accelerate this training process through parallel and distributed computing using High-Performance Computing (HPC) resources. To understand machine learning on HPC platforms, theoretical performance analysis from this thesis summarises four key factors for data-parallel machine learning: convergence, batch size, computational and communication efficiency. It is discovered that a maximum computational speed-up exists through parallel and distributed computing for a fixed experimental setup. This primary focus of this thesis is convolutional neural network applications on the Apache Spark platform. The work presented in this thesis directly addresses the computational and communication inefficiencies associated with the Spark platform with improvements to the Resilient Distributed Dataset (RDD) and the introduction of an elastic non-blocking all-reduce. In addition to implementation optimisations, the computational performance has been further improved by overlapping computation and communication, and the use of large batch sizes through fine-grained control. The impacts of these improvements are more prominent with the rise of massively parallel processors and high-speed networks. With all the techniques combined, it is predicted that training the ResNet50 model on the ImageNet dataset for 100 epochs at an effective batch size of 16K will take under 20 minutes on an NVIDIA Tesla P100 cluster, in contrast to 26 months on a single Intel Xeon E5-2660 v3 2.6 GHz processor. Due to the similarities to scientific computing, the resulting computing model of this thesis serves as an exemplar of the integration of high-performance computing and elastic computing with dynamic workloads, which lays the foundation for future research in emerging computational steering applications, such as interactive physics simulations and data assimilation in weather forecast and research

    Efficient Resource Management for Deep Learning Clusters

    Full text link
    Deep Learning (DL) is gaining rapid popularity in various domains, such as computer vision, speech recognition, etc. With the increasing demands, large clusters have been built to develop DL models (i.e., data preparation and model training). DL jobs have some unique features ranging from their hardware requirements to execution patterns. However, the resource management techniques applied in existing DL clusters have not yet been adapted to those new features, which leads to resource inefficiency and hurts the performance of DL jobs. We observed three major challenges brought by DL jobs. First, data preparation jobs, which prepare training datasets from a large volume of raw data, are memory intensive. DL clusters often over-allocate memory resource to those jobs for protecting their performance, which causes memory underutilization in DL clusters. Second, the execution time of a DL training job is often unknown before job completion. Without such information, existing cluster schedulers are unable to minimize the average Job Completion Time (JCT) of those jobs. Third, model aggregations in Distributed Deep Learning (DDL) training are often assigned with a fixed group of CPUs. However, a large portion of those CPUs are wasted because the bursty model aggregations can not saturate them all the time. In this thesis, we propose a suite of techniques to eliminate the mismatches between DL jobs and resource management in DL clusters. First, we bring the idea of memory disaggregation to enhance the memory utilization of DL clusters. The unused memory in data preparation jobs is exposed as remote memory to other machines that are running out of local memory. Second, we design a two-dimensional attained-service-based scheduler to optimize the average JCT of DL training jobs. This scheduler takes the temporal and spatial characteristics of DL training jobs into consideration and can efficiently schedule them without knowing their execution time. Third, we define a shared model aggregation service to reduce the CPU cost of DDL training. Using this service, model aggregations from different DDL training jobs are carefully packed together and use the same group of CPUs in a time-sharing manner. With these techniques, we demonstrate that huge improvements in resource efficiency and job performance can be obtained when the cluster’s resource management matches with the features of DL jobs.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169955/1/jcgu_1.pd
    • …
    corecore