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Abstract

Machine learning is a powerful tool that allows us to make better and faster
decisions in a data-driven fashion based on training data. Neural networks are espe-
cially popular in the context of supervised learning due to their ability to approximate
auxiliary functions. However, building these models is typically computationally
intensive, which can take significant time to complete on a conventional CPU-based
computer. Such a long turnaround time makes business and research infeasible using
these models. This research seeks to accelerate this training process through parallel
and distributed computing using High-Performance Computing (HPC) resources.

To understand machine learning on HPC platforms, theoretical performance
analysis from this thesis summarises four key factors for data-parallel machine
learning: convergence, batch size, computational and communication efficiency. It
is discovered that a maximum computational speed-up exists through parallel and
distributed computing for a fixed experimental setup.

This primary focus of this thesis is convolutional neural network applications
on the Apache Spark platform. The work presented in this thesis directly addresses the
computational and communication inefficiencies associated with the Spark platform
with improvements to the Resilient Distributed Dataset (RDD) and the introduction
of an elastic non-blocking all-reduce. In addition to implementation optimisations, the
computational performance has been further improved by overlapping computation
and communication, and the use of large batch sizes through fine-grained control.
The impacts of these improvements are more prominent with the rise of massively
parallel processors and high-speed networks.

With all the techniques combined, it is predicted that training the ResNet50
model on the ImageNet dataset for 100 epochs at an effective batch size of 16K will
take under 20 minutes on an NVIDIA Tesla P100 cluster, in contrast to 26 months
on a single Intel Xeon E5-2660 v3 2.6 GHz processor.

Due to the similarities to scientific computing, the resulting computing model
of this thesis serves as an exemplar of the integration of high-performance computing
and elastic computing with dynamic workloads, which lays the foundation for future
research in emerging computational steering applications, such as interactive physics
simulations and data assimilation in weather forecast and research.
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Chapter 1

Introduction

Machine learning is playing an increasingly important role in all aspects of today’s

society, for example, making strategies in business, fraud detection in banking services,

robotics in manufacturing and explanatory explorations, research and discovery in

all branches of science, self-driving cars and AI-assistants in our homes and mobile

devices. It helps to make quicker and better data-driven decisions and replaces

repetitive and redundant tasks with a virtual workforce.

Figure 1.1: A taxonomy for machine learning algorithms

Machine learning is the process of learning an unknown function f(X)→ Y

that transforms input X to output Y. There are different categories of machine learn-

ing algorithms: supervised/unsupervised/reinforced, parametric/non-parametric,

1



probabilistic/non-probabilistic and rule-based, etc., as shown in Figure 1.1. These

categorisations are not mutually exclusive. Parametric models are the main focus

of this research, which assumes a certain form of the unknown function f(X), for

example, Y = aX + b in linear regression, where a and b are the parameters. A

parametric model places constraints on the problem, which limits its complexity and

could result in a poor fit if the assumption of the structure of the unknown function

f(X) is wrong; however, it simplifies the problem and makes it easier to learn and

interpret.

Different algorithms define different objectives and the most common objective

is to minimise the sum of squared errors, which is as known as the ‘least squares’

method. For a linear least squares problem, there is a closed form analytic solution

that involves matrix inversion which has a best–case complexity of O(n2.373) for a

matrix of size n×n with the optimised Coppersmith—Winograd algorithm [80]. But

the matrix may not be invertible, in which case the analytic solution does not exist.

For a non-linear least squares problem, there is no analytic solution in general. As a

result, numerical methods are favoured for solving large least squares problems.

Gradient descent and its variants (i.e. batch gradient descent, mini-batch

gradient descent and stochastic gradient descent) are the standard methods for

solving the least squares problem numerically and it is implemented in the common

machine learning libraries (e.g., Caffe [35], Pytorch, Tensorflow [1]). The alternatives

are Newton’s method and its derivatives, the Iteratively re-weighted least squares

method and the limited-memory BFGS method. In this research, we study the

Stochastic Gradient Descent (SGD) method extensively as it offers a faster computa-

tion compared with a second order optimiser such as the L-BFGS method. It is also

more suitable for working with large datasets compared with the classical gradient

descent method, the difference between the two is that SGD only takes one sample

at each iteration instead of the entire dataset, but in practice, a small mini-batch of

samples is used due to computational efficiency limitations.

1.1 Motivation

Neural network algorithms are a type of parametric model, which is generally regarded

as the ‘universal function approximator’. The perceptron algorithm is the simplest

form of a neural network, which takes a weighted sum of the inputs and feeds it

to an activation function Φ with a threshold Θ, and produces an output of form

Φ(Θ,
∑n

i=0wixi) where wi is the weight for input xi. The multilayer perceptron, as

the name suggests, consists of multiple layers of perceptrons, which can be regarded

as multiple stages of processing of information, and it is the most common type of

2



deep learning architecture.

Convolutional neural networks are the state-of-the-art method for object

detection tasks in computer vision. These neural network models generally have

millions of parameters, and the more classes of objects to be trained, the more

training data is required. It often takes days, months, even years, to train such a

model on a single computer even with accelerated co-processors. Table 1.1 lists the

most prominent neural network models in recent years in chronological order, which

includes the computational costs, number of parameters and the training time on an

Intel Xeon E5-2660, NVIDIA Tesla K80 and an NVIDIA Tesla P100 processor (note:

the training time for NVDIA GPUs are estimated from the Tensorflow Benchmark

[76]). It is shown that these models take years to train on a high-performance CPU,

or days to months on even the most advanced graphical co-processors.

A turnaround time of months or years is not feasible for business or research

development. The iterative development model provides a way of mitigating risks by

putting the development process under a constant ‘requirement-design-implement-

evaluation’ loop, a long turnaround time renders it impossible. The waterfall

development model is the alternative, but this takes a much higher risk as there is no

guarantee of how well the model will perform on the given problem. For projects that

are highly dependent on the machine learning model, it can also cause stagnation

of the entire operation. Therefore, a long turnaround time leads to a high risk of

project failure and the acceleration of the training process is greatly needed.

Table 1.1: A compilation of neural network models in terms of computational cost
(multiply-add operations), number of parameters and training time.

AlexNet [41] VGG16 [26] InceptionV3 [75] ResNet50 [69]

year 2012 2014 2015 2015

multiply-adds (million) 724 15500 5000 3900

parameters (million) 61 138 25 25.5

Time (months,

ImageNet, 100 epochs,

Intel Xeon E5-2660 2.6 GHz)

5 103 33.6 26.4

Time (days,

(ImageNet, 100 epochs,

NVIDIA K80)

3 47 53 31

Time (days,

(ImageNet, 100 epochs,

NVIDIA P100)

0.7 14 4.6 3.6
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1.2 Parallel & Distributed Machine Learning

To accelerate gradient–based training, the standard method is to deploy the same

program on a plurality of computers simultaneously with different input and aggregate

the results, by data parallelism or model parallelism (an introduction to data and

model parallelism can be found in Section 2.1.2). This can be achieved with simple

batch scripting with networking libraries, or utilising existing distributed computing

frameworks such as Message Passing Interface (MPI), or data processing frameworks

such as Hadoop Map-Reduce and Apache Spark. Cluster machines are a type

of resource, commonly encountered in the field of High-Performance Computing

(HPC), that are often comprised of powerful computers connected via high-speed

interconnects. Leveraging these resources provides a valuable opportunity to improve

the training times of distributed machine learning techniques.

Figure 1.2: A taxonomy of the performance of distributed stochasitc gradient descent

The performance of stochastic gradient descent (SGD) on a standalone ma-

chine is mainly concerned with the convergence, which aims at reducing the number

of training samples to reach as high as accuracy as possible. A lot of research con-

tributes to the convergence of stochastic gradient descent with the use of momentum

and adaptive learning rate. For example, AdaGrad [15], Adam [38], Nesterov [60],

and RMSProp [78].

For distributed SGD, communication and synchronisation penalties have to be

taken into account. Strong scaling of distributed training is a difficult problem, as the
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cost of synchronisation and communication overtakes the computational cost as the

number of processors increases. Performance evaluations on distributed training are

usually empirical, which are not transferable from one machine to another; therefore

users cannot make an informed decision on the optimal settings. We provide a

mathematical tool/performance model in Chapter 3 for estimating the time, cost and

speed-up that allows users to predict likely performance on their cluster machines.

We summarise four performance factors in distributed stochastic gradient descent: (i)

convergence rate; (ii) batch size; (iii) computational efficiency; (iv) communication

efficiency; the relationship to the taxonomy is shown in Figure 1.2.

The communication cost can be reduced, either by using more efficient

communication algorithms (e.g. butterfly and ring all-reduce), hardware acceleration

(e.g. zero memory-copy via remote direct memory access) or asynchronous methods

(e.g. the Hogwild algorithm [65] and the Downpour algorithm [12]).

Due to the continuous growth of processor speed, the use of bigger batch

sizes becomes inevitable as predicted by our performance model (see Equation 3.7).

However, an increase in the batch size leads to a slow-down of convergence as they

are inversely correlated; therefore, it is hard for them to be increased simultaneously.

A number of techniques have been employed for large batch size training to mitigate

the effect of growing batch size on the convergence rate, which includes: (i) linear

learning rate scaling; (ii) learning rate warm-up; (iii) layer-wise adaptive rate scaling

(LARS); (iv) incremental or adaptive batch size.

The learning rate in SGD controls the step size of each update, which starts

from a base value and decreases gradually as the current position approaches the

saddle point (i.e. the minimum position) to avoid divergence. As observed empirically,

a large batch size has regulatory effects and increasing the batch size is equivalent

to decreasing the learning rate [73], as such, a larger batch size can be employed

as the training progresses. Successes have been demonstrated in scaling up the

batch size to 64K-100K in [3] [21] [13] [73] and [81]. The problem with existing

methods for dynamic batch-sizing is the changing problem size, in contrast to

static partitioning on distributed platforms. Static partitioning poses a limit for

the problem size due to scaling effects that result in coarse batch size control (for

example: doubling the batch size every 10, 20 epochs). By adopting elastic computing,

restriction on the problem size can be lifted which allows for the dynamic batch-sizing

method in a fine-grained manner.
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1.3 Elastic & Cloud Computing

A dynamic batch size in stochastic gradient descent results in a changing problem size

that is similar to the changing workload encountered in data analytic applications,

which poses a new challenge in distributed machine learning. The biggest difference

between data analytics and scientific computing is the difference in workload, therefore

resulting in necessarily different computing platforms. Data analytics generally

has a data-dependent dynamic workload/problem size, while scientific computing

typically has a constant problem size. A typical case for dynamic workload can

be demonstrated by the simple ‘Map-Reduce’ data-flow, where data elements pass

through a Map function and the intermediate results are subsequently combined by

a Reduce function. The Map stage typically requires more processing resources than

the Reduce stage.

Scientific computing platforms (i.e. simple batch scripting, Message Passing

Interface (MPI)) do not support applications of a dynamic nature, and there are

three main challenges: (i) dynamic allocation; (ii) dynamic coordination; (iii) task

migration. Scientific applications are statically partitioned and elastic allocation

is not supported by the cluster scheduler, because the large proportion of such

applications have a constant problem size throughout the life-span of the application.

In contrast to scientific computing platforms, elastic computing platforms

are designed for adapting to the change in workload or problem size during the

execution of the application. The most common software platforms for elastic

computing are data-flow frameworks and parameter servers; they have a master-slave

architecture that allows for dynamic coordination, but they have severe drawbacks

in performance and overhead. For frameworks using parameter servers, such as

Tensorflow, cluster resources are not only statically allocated but also must be

manually defined, which is not practical for large-scale deployments.

Cluster computers have long been scarce resources available only to large

organisations. Thanks to the advert of cloud computing, cluster computing resources

are now widely available as a service, and are highly popular in machine learning.

Cloud computing allows customers to hire computing resources whenever needed.

Providers such as Amazon EC2 and Microsoft Azure can deliver high-performance

computing resources on demand, which allows small business and home developers

to use super-computing resources at an affordable price. This gives more incentives

and driving force behind the need for an elastic computing platform for machine

learning which currently does not exist.

The performance of distributed applications can be explained by two notions

of scalability in HPC: strong and weak scaling. Strong scaling refers to how the

solution time changes with the number of processors for a fixed total problem size,
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as defined by Amdahl’s law [4]. Weak scaling refers to how the solution time

changes with the number of processors for a fixed problem size per processor (i.e. the

total problem size changes), as defined by Gustafson’s law [24]. An introduction to

Amdahl’s law, Gustafson’s law and scalability of high-performance computing, in

general, can be found in Section 2.3. For traditional scientific computing, the total

problem size is fixed and therefore Amdahl’s law/strong scaling applies. For data

dependent applications, such as batch processing of static data, stream processing of

continuous data or emerging new applications with unknown total problem size, the

workload changes and so does the amount of computing resources, and as such weak

scaling applies.

Neural network applications are more akin to scientific computing as they

mainly consist of matrix–matrix multiplications as explained in Section 2.1.2. The

batch size defines the total problem size for SGD training, which is typically constant

throughout the process. For a constant batch size, scientific platforms are a better

candidate for neural network applications. However, with the rise of using dynamic

batch-sizing (i.e. incremental or adaptive) for large batch-size training, the total

problem size changes dynamically, for which data-flow platforms for elastic computing

are a better candidate. The implementation and experimentation in this research are

performed on the Apache Spark framework - an elastic data-flow framework, which

is further introduced in Section 2.3.4.

1.4 Thesis Contributions

In this research, we choose Apache Spark as the base platform due to the dynamic

nature of the architecture: (i) It allows ‘closure’ functions (i.e. functions without

side-effects) to be executed anywhere in the cluster (ii) It can work with elastic

cluster schedulers such as YARN and Mesos, and it has its own standalone scheduler

that can work independently; (iii) It is based on master-slave architecture, which

allows elastic and dynamic resource allocation and coordination. However, there

are well-known performance bottlenecks for Spark: (i) No persistent memory; (ii)

Synchronous and exhaustive memory management; (iii) Inefficient data-flow pattern

for communications. We will explain how we overcame these issues in Chapters 4

and 5 for communication and memory management respectively. We also choose

Convolution Neural Network (CNN) as an exemplar for general machine learning,

because training a CNN is both computational and communication intensive, as

such, the methods used in training CNNs are expected to be transferable to training

other parametric models.

The research presented in this thesis makes the following contributions, which
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correspond to the performance factors in distributed stochastic gradient descent, and

are mapped in Figure 1.3:

Figure 1.3: A map of the research contributions to performance factors demonstrated
in the research presented in this thesis.

1. A computational performance model for data-parallel distributed stochastic

gradient descent, which allows predictions for running time and cost of distrib-

uted training and can be used as a mathematical tool to evaluate optimisation

methods analytically. We provide a road-map for systematic improvements

in accordance to the performance factors as shown in Figures 1.2 and 1.3 for

existing methods and also for the contributions of this research respectively. We

provide an analysis for the performance of distributed SGD in terms of strong

and weak scalability in HPC, which demonstrates a maximum computational

speed-up for a fixed experimental setup.

2. A new general architecture and interface for all-reduce in elastic task-based

frameworks, demonstrated via implementation on the Apache Spark framework,

the design and results of which are directly transferable to other task-based

frameworks. We propose a parallelisation scheme that enables automatic

parallelisation of vector computation and serialisation, which reduces overheads

in object-serialisation and computation by 80-90%. We demonstrate: (i) A

novel application of the butterfly all-reduce algorithm for the Apache Spark
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framework that is efficient for very large vector reduction, exhibiting a 9×
speed-up compared to the reduce-broadcast method for vector lengths of 108 on

a high-performance cluster; (ii) An up to 18× further speed-up for the butterfly

all-reduce algorithm by zero-copy via remote direct memory access; (iii) The

effectiveness of the butterfly all-reduce algorithm on real-world neural network

applications, where we observe significant speed-ups of model updates using

the butterfly all-reduce algorithm compared with the original reduce-broadcast

method on small (CIFAR and MNIST) and large (ImageNet) datasets.

3. The design and implementation of the new MapRDD, which exploits the record-

wise relation between the parent and child datasets during map transformations,

and permits random-access to individual records in the child dataset through

computing the chain of dependent records. We present the implementation of

a new MemoryStore for the new MapRDD, which organises the dataset at the

record level, and manages data sampling and data transfers asynchronously.

We use the ImageNet dataset to demonstrate that the initial data loading

can be eliminated by comparing the sampling performance with the original

MapPartitionsRDD and the new MapRDD; the CPU processing cycles and

memory usage can be reduced by more than 90%, allowing other applications

to be run simultaneously. We train AlexNet [41] with the ImageNet dataset

on an NVIDIA Tesla K80 GPU. We demonstrate that the data sampling and

data transfer can be totally overlapped with training on the GPU with the

new asynchronous MemoryStore. We demonstrate a 4× speedup for up to 20%

of the ImageNet dataset, in GPU training with the new MapRDD and the new

MemoryStore, compared with the original MapPartitionsRDD. We also show a

constant training step time with the new MapRDD, regardless of the size of

the partition, for up to 1.3 million records in the ImageNet dataset.

4. The design of a distributed key-value store for management of the machine

learning model, which allows for memory persistence and flexibility. The

correctness of computation is ensured by incremental versioning and checksum,

and the fault tolerance is ensured by checkpoints. We show that the resulting

hybrid computing model (all-reduce + key-value store) is functionally equivalent

to the parameter server architecture but more computationally efficient.

5. A new asynchronous SGD algorithm with non-blocking all-reduce, for redu-

cing the communication cost by overlapping computation and communication.

Through experiments on AlexNet-ImageNet, we demonstrate comparable con-

vergence rate with the new algorithm compared to the standard synchronous

method, using the Student-t statistic analysis. We show that a further 2×
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speedup is obtainable with respect to the synchronous method using the same

problem configuration, as predicted by the performance model developed in

this thesis.

6. A new dynamic fine-grained batch size control method for large batch size

SGD training. We propose a generalised polynomial control formula and we

devise six control experiments for each of the hyper-parameters. Through

experiments on AlexNet-ImageNet, the new dynamic batch-sizing method

consistently demonstrates a faster convergence and higher validation accuracy

than the static method with equivalent batch size. The results of the control

experiments show that the validation accuracy is sensitive to the initial batch

size, which leads a trade-off between the accuracy and computational speed.

1.5 Thesis Overview

The remainder of the thesis is structured as follows:

Chapter 2 provides general background on: (i) Neural networks algorithms and

their computational and space complexities in Section 2.1; (ii) Parameter fitting

for parametric models and the stochastic gradient descent algorithm in Section 2.2;

(iii) High-performance computing and the implementation of distributed machine

learning in Section 2.3.

Chapter 3 presents the theoretical analysis on the computational performance and

scalability of data-parallel SGD. Equations are derived for running time, running cost

and speed-up for both synchronous and asynchronous SGD, as well as the equations

for maximum speed-up. This corresponds to contribution 1.

Chapter 4 introduces and compares different ‘all-reduce’ algorithms (e.g. butterfly,

ring and reduce-broadcast) for parameter aggregation in distributed SGD and how it

is implemented in Spark and other distributed platforms, and describes an adaption

of ‘all-reduce’ for elastic task-based systems. The new elastic all-reduce method

shows significant speed-up via algorithmic changes and optimisation through parallel

processing and remote direct memory access, compared with the original ‘reduce-

broadcast’ method in Spark. This corresponds to contribution 2.

Chapter 5 provides in-depth view for RDD - immutable memory abstract for

Apache Spark and discussions of its drawbacks in the context of machine learning,

and proposes two alternative designs and implementations: (i) MapRDD for efficient

sub-sampling immutable data; (ii) A distributed key-value store to overcome the

memory persistence and flexibility issues of RDD. This corresponds to contributions

3 and 4.

Chapter 6 presents two algorithmic improvements for SGD: (i) An asynchronous
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SGD using non-blocking all-reduce in Section 6.1; (ii) A fine-grained batch size control

method for large batch size training in Section 6.2. This chapter includes convergence

and running time analysis for both methods, which demonstrates: (i) Comparable

validation accuracy and double speed-up using asynchronous SGD compared with

the standard method; (ii) Higher validation accuracy and comparable speed-up using

dynamic batch-sizing compared with the standard method. This corresponds to

contributions 5 & 6.

Chapter 7 concludes the thesis, and discusses the limitations of this research. We

provide an analysis of the future trends of machine learning and high-performance

computing developments and outline future research on an elastic high-performance

computing platform for computational steering applications.
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Chapter 2

Background

This chapter provides a general introduction to neural network algorithms, the

backbone to machine learning - stochastic gradient descent, and their implementation

on a parallel and distributed computing systems.

2.1 Background - Deep Learning

Machine learning is the process of learning an unknown function f(X) → Y that

transforms input X to output Y. Machine learning algorithms can be categorised

into supervised (classification), unsupervised (clustering) and reinforced learning.

Supervised learning takes an input and tries to predict the correct label; the quality

of classification depends on the quality of the training data. High quality labelled

data is hard to come by and costly to produce, as it may require experts to manually

label the data. In the absence of labelled data, unsupervised learning tries to group

data with similar attributes together to form a concept, which can be later defined by

a human expert. Reinforced learning is a distinct machine learning paradigm from

supervised or unsupervised learning that allows an agent to learn from trial-and-error,

but it requires an interactive environment where rewards and penalties can be given

to the agent.

Supervised learning allows for parameters to be adjusted in order to meet

the target values, and it is the most common task in computer vision, speech

recognition, etc. Classical supervised learning algorithms include decision trees,

rule-based classifiers, statistical and probabilistic classifiers (e.g., linear classifier,

Näıve–bayes, Bayesian belief networks, Gaussian processes, etc.) and the popular

neural network algorithms.

Neural networks are a parametric supervised method that is the most popular

machine learning model, for its ability to approximate any function f(X) → Y .

Its variants such as Convolutional Neural Networks (CNNs) and Recurrent Neural
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Networks (RNNs) have gained huge success in computer vision and natural language

processing tasks.

Unlike traditional classifiers that require hand-extracted features, CNNs are

an ‘end-to-end’ approach, which take the input and produce the output in a single

algorithm. It is comprised of a feature extraction phase and a classification phase:

the former consists of multiple stages of convolution layers, and the latter consists

of fully connected multilayer perceptrons. This is often called a deep learning

architecture due to this multi-stage structural learning nature.

The rest of this chapter provides an introduction to the perceptron algorithm

and convolutional neural network algorithm, including how it is implemented in

linear algebra, and the computational and space complexity analysis.

2.1.1 Perceptron & Backpropagation

The perceptron algorithm is the simplest neural network algorithm, which takes the

weighted sum of the inputs (
∑n

i=0(xiwi)) as an argument for an activation function

ϕ with a threshold Θ, as illustrated in Figure 2.1. A multilayer perceptron consists

of multiple layers of neurons: an input layer, an output layer, and at least one hidden

layer.

The back-propagation algorithm is a class of automatic differentiation al-

gorithms that provides the derivatives ( δE
δwi,j

) of the prediction error (E) with respect

to individual parameters (wi,j), where wi,j indicates the weight for input i in layer

j, using the chain rule in an iterative and recursive fashion. This transforms the

learning process to an optimisation problem that can be solved by numerical methods

such as gradient descent, as explained in Section 2.2.

Figure 2.1: An illustration of a neuron in the perceptron algorithm
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2.1.2 Convolutional Neural Network

A Convolutional Neural Network (CNN) is an artificial neural network architecture

with multiple convolutional layers built upon a traditional multilayer perceptron. In

signal processing, an individual signal itself is not meaningful; therefore classification

on these signals result in poor performance. For example, classifying individual

pixels/dots of an image. The motivation of a convolutional layer is to extract features

by applying filters, as known as kernels, to the input signals and then perform

classification on the extracted feature maps.

A CNN consists of the following types of layers:

1. Input layer: a layer containing the input signals.

2. Convolutional layer: applies kernels/filters to extract features from the input

feature maps and learns the weights to these filters.

3. Pooling layer: down-samples the dimensions of the previous layer and also

reduces the chance of over-fitting; an overlap pooling layer may produce an

output with the same dimensions.

4. Fully-connected layer: scores the input feature maps by weighted sum, which

requires ‘all-to-all’ connections from the neurons in the previous layer.

5. Output layer: a fully-connected layer with the same number of neurons as the

output class.

Computational & Space Complexity

In a CNN, the convolutional layers and the fully-connected layers are the most

important layer types, because they take up the majority of the computation and

storage. Here we provide an analysis for the computational and space complexity for

the convolutional layers and the fully-connected layers.

The convolution layer performs a dot product of the 3D filter matrix of size

f × f × d to all the elements in the 3D input matrix of size m ×m × d, where f

is the dimension of the filter matrix, m is the dimension of the input matrix and

d is the depth for the input matrix, with a stride of s. The resulting 2D matrix

has a size of (m−fs + 1)× (m−fs + 1) if no zero-padding is used. A simple example

for a 2D convolution (depth is 1) for a 3×3 matrix and a 2×2 kernel with zero

padding is illustrated in Figure 2.2. For n selected filters, the output layer has a

size of (m−fs + 1)× (m−fs + 1)× n. Each of the output values is calculated by dot

product with a complexity of f × f × d, the computational complexity is therefore

(m−fs + 1)× (m−fs + 1)× n× f × f × d.

14



Applying a filter across the input matrix can be inefficient as implemented

in modern computers, because the memory is scattered and not contiguous. In

practice, the memory is rearranged (flattened) so that the filter matrix and the

corresponding patch in the input matrix are arranged as a 1-dimensional vector in

a matrix, such that the convolution becomes a matrix multiplication A × B = C,

where A is the input matrix with a size of (m−fs + 1)2 × (f × f × d) and B is the

weight matrix containing all the learnable parameters with a size of (f × f × d)× n.

The method increases computational efficiency, but at the same time, increases the

space complexity for the input matrix A from m×m× d to (m−fs + 1)2× (f × f × d).

This is illustrated in Figure 2.3 with the same example used in Figure 2.2.

For a fully-connected layer with an input size of m and an output size of n,

which can also be represented by a matrix multiplication A × B = C, where A is

the input matrix with a size of 1×m, B is the weight matrix with a size of m× n,

and C is the output matrix with a size of n× 1. The computational complexity is

therefore m× n.

Figure 2.2: An illustration of a simple 2D convolution operation for a 3×3 matrix
and a 2×2 kernel with zero padding and a stride of 1.

Figure 2.3: An illustration of a flatten convolution operation for a 3×3 matrix and a
2×2 kernel with zero padding and a stride of 1.

Data Parallel vs. Model Parallel

As seen above, the most computational and storage intensive layers are the convolu-

tional and fully-connected layers, which can be represented as matrix multiplications
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(a) Data parallelism (b) Model paralellism

Figure 2.4: Data and model parallelism for neural networks.

of A × B = C, where the dimensions of A, B and C are m × k, k × n and m × n
respectively. To speed-up matrix multiplication through parallelism, there are gener-

ally two ways of doing this: splitting matrix A or B, which is the difference between

data parallel and model parallel respectively.

For data parallelism, assuming the input matrix A is split by rows into p

parts, each worker holds a partition of A and output matrix C of size m
p × k and

m
p ×n respectively. A gradient matrix of size k×n is produced by the local partition

of A and C, which needs to be aggregated, and the communication cost is k × n.

This is illustrated in Figure 2.4a with the same example used in Figure 2.3.

For model parallelism, assuming the weight matrix B is split by row into p

parts (size is now k
p × n), each worker produces a partition of the output matrix C

of size m× n, which needs to be aggregated. In the backward pass, a partition of

the error matrix of size m× k
p is produced and also needs to be assembled. A total

of m× n+m× k × (1− 1
p) elements needs to be exchanged. This is illustrated in

Figure 2.4b with the same example used in Figure 2.3.

For convolutional layers, the first dimension of matrix A is much greater

than the second dimension, i.e. m >> k, therefore data parallelism is favoured. For

a fully-connected layer, matrix A is a vector, i.e. m = 1 and n + k − k
p < k × n,

therefore model parallelism is favoured.

Mixed data-model parallelism has been suggested in [39], where data paral-

lelism is employed for convolutional layers and model parallelism is employed for

fully-connected layers. The switch from data parallelism to model parallelism incurs
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an extra cost of communication in synchronising the outputs of the last convolutional

layer. The mixed parallelism was based on the observation that convolutional layers

take up the majority of the computation and fully-connected layers take up the

majority of the storage. However, this is not true for most recent models such as

GoogLeNet [74], Inception V3 [75] and ResNet50 [69], in which the fully-connected

layers only take up 14%, 8% and 4% of the total number of parameters respectively.

Therefore, mixed parallelism does not provide much benefit for newer models.

2.1.3 Applications and Datasets

The general application of Convolutional Neural Networks (CNN) is a pattern

matching and signal processing, and it has been heavily employed in computer vision,

speech processing and natural language processing applications. For example, object

recognition, object detection, object tracking, speech recognition, text classification,

etc.

This research mainly studies CNNs in the context of object recognition. The

task of object recognition is to label images of known objects. There are three

datasets widely adopted for benchmarking: MNIST [45], CIFAR [42] and ImageNet

[31]. The MNIST dataset consists of handwritten digits from 0 to 9. CIFAR contains

60,000 tiny 32×32 colour images in 10 classes. ImageNet contains 1.2 million colour

images in 1,000 classes in various sizes and resolutions. Both MNIST and CIFAR

are small and easy tasks, mainly used for sanity checks. ImageNet is the de-facto

dataset for evaluating new models.

There are other new additions to the open datasets available for computer

vision, speech recognition, as well as other machine learning tasks. For example,

Google Open Images, a dataset containing 9 million images in 6,000 classes (with

image-level labels and multiple objects in a single image); LibriSpeech, a dataset

consisting of clean text and audio from audio books; YouTube-8M, a large dataset of

labelled videos for video understanding research. A comprehensive list of these open

datasets can be found in [61].
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2.2 Background – Model Fitting Algorithms

2.2.1 Parameter Fitting and the Least Squares Problem

The need for parameter fitting and subsequent regression and optimisation arose from

parametric models. Parametric models assume a certain form or distribution for the

underlying input (X), output (Y ) or the unknown transform function (f : X → Y ),

which are associated with a set of parameters, and the process of fitting the parameters

to training data is called ‘parameter fitting’. The objective of the algorithm defines

the approach to parameter fitting. Common methods include: (i) Least squares,

by minimising the sum of squared errors between the predicted value and the

observed value; (ii) Maximum Likelihood Estimate (MLE), by maximising value of

the likelihood function; (iii) Maximum A-posteriori Probability (MAP) estimate, by

maximising the posterior probability.

Given a model function f(x, α)→ y, the residual error is defined as y−f(x, α),

and the least squares method finds the optimal parameters that minimise the sum of

squared residuals:

R =
n∑
i=0

(yi − f(xi, α))2 (2.1)

If y = αx + β and the residual error ε = y − αx − β can be modelled by

the normal distribution such that ε ∼ N (0, σ2), then the least squares method is

identical to the Maximum Likelihood Estimate (MLE).

As mentioned in Chapter 1, for a linear least squares problem, there is a closed

form solution that involves matrix inversion which has a complexity of O(n2.373) for

a matrix of size n× n with the optimised Coppersmith—Winograd algorithm [80].

But, the matrix may not be invertible, in which case the analytic solution does not

exist. For a non-linear least squares problem, there is no analytic solution in general.

As a result, numerical methods are favoured for solving large least squares problems.

Gradient descent and its variants (i.e. batch gradient descent, mini-batch

gradient descent and stochastic gradient descent) are the standard methods for solving

the least squares problem numerically and are implemented in the common machine

learning libraries (e.g., Caffe [35], Pytorch, Tensorflow [1]). The alternatives are

Newton’s method and its derivatives Iteratively reweighted least squares method and

the limited-memory BFGS method. In this research, we study the Stochastic Gradient

Descent (SGD) method extensively as it offers a faster computation compared with

a second order optimiser such as the L-BFGS method [6]. It is also more suitable for

working with large datasets compared with the classical gradient descent method:

the difference between the two is that SGD only takes one sample at each iteration

instead of the entire dataset, but in practice, a small mini-batch of samples is used
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Algorithm 1 Standard Mini-batch SGD

1: w ← parameters of the objectivefunction
2: η ← learning rate
3: procedure SGD(w, η)
4: repeat
5: Randomly select examples.
6: Compute gradient V(t) = βV(t−1) + (1− β)5Q(w)
7: Update parameters w with learning rate η, w = w − ηV(t) .
8: until minimum is reached

due to computational efficiency limitations. A more extensive comparison between

first and second order optimisation methods can be found in Section 2.2.8.

2.2.2 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an optimisation method that has been proven

effective in many machine learning applications. SGD is in favour for large data-

sets, over the original Gradient Descent method, because it uses small samples to

approximate the gradient of the loss function (i.e. the derivative of the loss function

with respect to the parameters), rather than the entire sample population in the

original gradient descent method. The SGD optimises objective functions that are

in the form of summations (as shown in Equation 2.2, where Q is the objective

function with parameter w, and Qi is the value of the objective function evaluated

at the ith observation). Hence, it can be used to solve the least squares problem

defined by Equation 2.1. Algorithm 1 shows the standard batch SGD algorithm. In

each iteration, the gradient of the objective function is computed based on a batch

of randomly selected examples from the dataset, after which the parameter w is

updated with the equation shown in Line 7 of Algorithm 1.

Q(w) =
1

n

n∑
i=1

Qi(w) (2.2)

There are several variations of the standard SGD algorithm based on two

concepts: momentum and adaptive learning rate. The SGD + momentum method

incorporates the past gradients into the update equations, as seen in Line 6 of

Algorithm 1. The Adaptive Gradient (Adagrad) algorithm [15] is a method that

decreases the learning rate monotonically based on the accumulated sum of past

gradients to reduce fluctuation. RMSprop [78] is a further variant to the Adagrad

method that incorporates a decay on the accumulated sum of past gradients to

address issues with the learning rate dropping too low. Adam [38] is the state-of-art

variant to the SGD algorithm that combines both the momentum methods and the
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adaptive learning rate methods.

2.2.3 SGD - Hyper-parameters

The learning rate, momentum and batch size are called hyper-parameters whose

values are set before the training process and should be differentiated from ‘paramet-

ers/weights’ of the underlying machine learning model. The learning rate determines

how far a step is in the direction of the gradient; a small learning rate makes a smooth

but slow learning process, while a large learning rate makes the learning process

unstable and could potentially lead to a numerical breakdown. The momentum

decides how much of the previous gradient is used in the calculation to keep the

direction of descent steady in the same direction. The batch size is the number of

samples processed in each iteration ranging from 1 to the size of the training set (it

would be identical to the traditional gradient descent when the training batch is the

entire training set). A small batch size enables faster learning and less generalisation

error but is less stable, since the gradient is evaluated more frequently. A large

batch size has the opposite effect of a small batch size (i.e. slower learning and more

generalisation), but allows for high degrees of data parallelism to take advantage

of computing power (data and model parallelism are introduced in Section 2.1.2

and high-performance computing is introduced in Section 2.3). Optimising the

hyper-parameters for fastest descent is difficult as they vary from case to case and

the best values are often found experimentally.

The learning rate is the most important hyper-parameter as the convergence

rate is sensitive to the changes in learning rate. A systematic method for finding the

optimum learning rate was proposed in [70]. The idea is to start with a very small

value for the learning rate and gradually increase it, recording the training loss at

every iteration until it diverges. This way, the optimum value for the learning rate is

found where the loss is minimum.

The momentum often takes a constant value (e.g. a common value is 0.9).

A similar range test for momentum [71] has been further exploited following the

success for learning rate in [70]. However, the training loss keeps decreasing as the

momentum increases: therefore, an optimum momentum cannot be found using the

same method.

The batch size often takes a constant small value (e.g. 32, 64, etc.) for fast

convergence and regularisation effects (less over-fitting). Increasing the batch size is

only useful for improving computational efficiency when data-parallelism is applied.

However, the increase in batch size causes a slow-down in convergence. Large batch

size training is further discussed in Section 2.2.7.
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2.2.4 Parameter Initialisation

Besides the hyper-parameters discussed above, the initial values for the weights/-

parameters of a parametric model are crucial to SGD training. Ideally, the values for

the parameters should be set as close to the final solution as possible; however, this

is hard without prior knowledge of the representation of the underlying data. For

a simple linear model such as y = ax+ b, a and b can be approximated by taking

the average of observations. For a multi-stage model with millions of parameters

such as the multi-layer perceptron and the convolutional neural network, there is

no easy way to approximate the values. In the case of neural networks, inadequate

initialisation can easily lead to vanishing or exploding gradients. The problem of

vanishing or exploding gradients is associated with the activation function as illus-

trated in Figure 2.1, which has a non-uniform gradient. For example, the sigmoid

function has a maximum gradient at x = 0 and a gradient of 0 at positive and

negative infinity. Depending on the values of the weights and activation function,

the gradients can become progressively bigger or smaller in the backward gradient

calculations, resulting in large or small updates to the weights. This, in turn, causes

the learning process to be unstable or saturated. Therefore, a good initialisation is

more important than the rate of convergence.

A näıve way to initialise the weights in a neural network is by random

initialisation with values drawn from a uniform distribution or a Gaussian distribution.

As the problem of vanishing or exploding gradients is highly associated with the

activation function, heuristics should be taken into account in the initialisation.

The Xavier [19] and He et al [25] methods are examples of such a method that

incorporates the number of neurons of the layer in the random number generation

so that the weights are either too big or too small for the tanh and ReLU functions

respectively. This does not completely solve the vanishing gradient or the exploding

gradient problem but improves the convergence rate to a significant extent.

2.2.5 Validation, Regularisation & Generalisation

In learning a machine learning model, the dataset is partitioned into 3 subsets: the

training set, the validation set and the testing set. The training set contains a large

proportion of the original dataset, which is used as examples to train the model. A

validation set is a smaller subset that is used to approximate the performance of the

learned model on unobserved data during the training process. The testing set is

used on a learned model to evaluate its performance on real-world applications.

There are two metrics for validation: loss and accuracy. Loss is the value

computed by the loss function that describes the difference between the predicted
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value and the expected value and accuracy is only concerned with the percentage of

correct labelling. The smaller the loss and the higher the accuracy the better.

Over-fitting is the situation where the model performs well on the training

set but not on the validation set. The signs for over-fitting are one of the following:

1. Training loss decreases, validation loss increases, accuracy decreases.

2. Training loss decreases, validation loss increases, accuracy increases.

The first scenario is commonly encountered, but the second one is counter-intuitive:

the accuracy increasing with the validation loss indicates that some of the classes

are over-fitted and subsequently the accuracy increases.

The generalisation error is a measure of over-fitting that is used to describe

how well the learned model can predict previously unseen data. It is defined as

the difference between the expected and empirical error. The more over-fitting

occurs, the larger the generalisation error. Regularisation is a technique used to

reduce over-fitting and improve generalisation of a model, which works by adding

a regularisation term to the loss function. The most common regularisers are the

L1-norm and L2-norm regulariser, which are the sum of absolute magnitude and

the square root of the sum of squared magnitude of the coefficients respectively. In

practice, it has been widely observed that using a small batch size in SGD also

reduces generalisation errors and over-fitting, while the use of a barge batch size has

the opposite effect.

2.2.6 Asynchronous Stochastic Gradient Descent

Due to the cost of synchronisation at the end of the training step for data-parallel

training (a discussion of data-parallelism and model parallelism can be found in

Section 2.1.2), the synchronous SGD does not scale with large clusters; therefore

research has been attempting to speed up SGD by removing the synchronisation.

Hogwild [65] is a lock-free SGD method for shared memory architectures. The idea

is that several processes update the parameters asynchronously without locking, so

that the processes can be a few steps out-of-sync, but can still converge in spite of

losses in accuracy. This is later referred to as the Stale-Synchronous-Parallel (SSP)

model. The Downpour SGD described in the Distbelief [12] deep learning library is

a similar method to the Hogwild algorithm but implemented on parameter servers,

where the parameters are stored in remote servers. Tensorflow [1] is the successor to

the Distbelief library and it uses a parameter server like architecture. DeepSpark [37]

is a realisation of the parameter server approach on the Apache Spark framework,

where the driver process acts as the parameter server, but is inferior to the parameter
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server implementation since the parameters can only be stored in a single node and

this puts more stress on the network bandwidth.

Butterfly mixing [85] is a communication algorithm (based on the butterfly all-

reduce) used by the BIDdata [62] project, which attempts to accelerate incremental

optimisation algorithms (such as stochastic gradient descent) by performing gradient

computations at intermediate communication stages. This is an asynchronous optim-

isation method, in essence, due to the use of unsynchronised weights in the gradient

computation, not unlike the Hogwild [65] algorithm and the Stale-Synchronous-

Parallel (SSP) model described above. This creates a long lag in synchronisation

and leads to greater inaccuracy and this lag must satisfy k ∼ O(n1/4) according to

the Hogwild algorithm [65], where k is the number of steps out-of-sync and n is the

number of samples in the training set. For example, k = log2 p and k = 2(p − 1)

for butterfly all-reduce and chunked ring all-reduce respectively, and k must be less

than 32 for 1 million samples. As a consequence, butterfly-mixing forbids bandwidth-

optimised algorithms such as the chunked ring all-reduce or the use of a large number

of workers.

SparkNet [58] proposes a näıve parallelisation scheme for synchronous data-

flow frameworks such as Apache Spark, which simply reduces the frequency of

synchronisation; it is equivalent to using a larger batch size and by doing so sacrifices

the rate of convergence in return.

2.2.7 Large Batch-size SGD Training

As mentioned in Chapter 1, the performance of stochastic gradient descent mainly

depends on the convergence rate. For distributed stochastic descent, it may also

depend on the batch size and communication efficiency. An analysis of distributed

SGD is provided in Chapter 3. The use of a larger batch size effectively increases the

total problem size and subsequently the computational efficiency for data-parallel

training as explained in Section 2.1.2.

Generally, as the batch size increases, the convergence rate decreases; as such,

the convergence rate and the batch size cannot be increased at the same time. This

is due to the generalisation effects explained in Section 2.2.5. A typical relation

between the convergence rate and the batch size is demonstrated in Figure 2.5; it

may differ from problem to problem, but the convergence rate is always smaller for

larger batch sizes. In a distributed computing environment, a larger batch size is

needed to compensate for the overhead in synchronisation and communication, which

in turn slows down the convergence. As a result, the benefits of distributed machine

learning diminishes.

A number of adaptive learning rate techniques have been deployed to mitigate
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Figure 2.5: Typical validation error vs. epoch: an example using AlexNet on a 5%
subset of the ImageNet dataset.

the slow-down of convergence for large batch size training. Linear Learning Rate

Scaling [39] states that the learning rate should be increased by a factor of k if the

batch size is increased by a factor of k. This method works for up to a batch size

of 2,048 for AlexNet. It was observed that large learning rates cause the learning

to be unstable [27]. Another technique called Learning Rate Warm-up is proposed

to complement the linear scaling method by gradually increasing the learning rate

to the target value from a small initial setting [21]. The Layer-wise Adaptive Rate

Scaling (LARS) method [82] is an attempt to address this problem for neural network

models in particular. It works by adjusting the learning rate based on the ratio

between the norm of the weights and the gradients of each layer.

As seen in the techniques above, a large batch size requires a large learning

rate, but a large learning rate causes SGD to be unstable. Part of the problem is

that a slight change in the parameter values in the deep neural network amplifies as

it propagates to the rest of the network, which is referred to as Internal Covariate

Shift. Batch normalisation [32] is a technique that allows for the use of higher

learning rates by normalising the mean and variance for each layer inputs using

mini-batch statistics, which effectively stops the propagation of covariate shifts at

the end of each layer.

Recent research has demonstrated successes in large batch size training with a

combination of techniques (e.g. adaptive learning rate, adaptive batch size, adaptive

momentum, batch normalisation) [13] [73] [57] [21] [3] [81], which reduces the loss

in accuracy while increasing the batch size. The effect of increasing batch size has

been further explained by Bayes Theorem [72], and it has been demonstrated that
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an optimum batch size exists for fixed hyper-parameters, which is proportional to

the learning rate and the size of the training data.

2.2.8 Newton’s Method In Optimisation

As mentioned earlier in Section 2.2.1, Newton’s method is a second order optimisation

method as an alternative to the gradient descent method. The difference between first

order and second order methods is whether a first order or second order derivative of

the objective function (i.e. the function to be optimised) is used. Newton’s method

uses second order Taylor expansion to find a stationary point of a function f at

xn+∆x. By setting the values of the derivatives to zero, it is found that ∆x = − f ′(xn)
f”(xn)

or xn+1 = xn − f ′(xn)
f”(xn)

. A generalised form of the equation for higher dimensions is

shown in Equation (2.3), where Hessf(x) is the Hessian matrix containing second

order derivatives of the function f , and 5f(xn) is the vector containing first order

derivatives of the function.

xn+1 = xn − [Hessf(x)]−1 5 f(xn) (2.3)

The Hessian matrix provides more accurate information about the curvature of

the objective function, which allows for a more direct route to the root of the function,

therefore, fewer steps are required compared with gradient descent. However, it

is costly to compute (involving matrix inversion) and store the Hessian matrix.

Limited-memory BFGS [6] is a quasi-Newton method that approximates the Hessian

matrix using limited computer memory. The other disadvantage of L-BFGS is that

the entire training set must be enumerated at each iteration (like the gradient descent

method), which is time and memory consuming for large datasets.

Due to the limitations mentioned above, second-order methods are not widely

adopted in practice, and the stochastic gradient descent method is preferred for

simplicity and computational efficiency.
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2.3 Background - High-performance Computing

High-performance computing refers to the use of aggregated computing resources

to solve large-scale problems, which usually arise from scientific simulations or big

data analytics. In the case of deep learning with convolutional neural networks,

high-performance computing is a resource for accelerating the training process in a

data-parallel or model-parallel fashion as described in Section 2.1.2.

Parallel computing is employed in high-performance computing and is a type

of computation that breaks down a computational task into many sub-tasks, where

the sub-tasks are executed simultaneously and the results combined upon completion.

Modern computers with multiple processors and multiple processor cores can benefit

from parallelism by executing sub-tasks on these processing resources in parallel.

Distributed computing is parallel computing on multiple networked computers

rather than a single computer. Each has its own private memory space and network

communication is required to exchange information and combine results. Distributed

computing is used for solving a problem that could use more processing power or

memory capacity than a single computer; however, it comes at the expense of slower

network communication than shared memory on a single computer.

There are two ways to increase the computing capacity of a parallel and

distributed computing system. Vertical scaling (scaling up) refers to the ad-

dition of more computing resources (e.g. processors, memory and storage) to a

single computer. Horizontal scaling (scaling out) refers to the addition of more

computing nodes to a distributed system.

Speedup is a performance measure widely adopted in parallel computing,

which is the relative speed of two systems to solve the same problem. For the same

workload, the speedup is defined as the ratio of the serial and parallel execution

time of the task as shown in Equation (2.4). The theoretical speedup for parallel

computing is formulated by Amdahl’s law [4] and Gustafson’s law [24].

Amdahl’s law predicts the speedup with the number of processors for a fixed

total problem size, as shown by Equation (2.5), where t is the original proportion of

execution time for the parallel part of the code and s is the speedup for the parallel

part of the code; therefore, the maximum speedup is limited by 1
1−t . Amdahl’s law

is usually referred to as the strong scaling of a parallel and distributed system.

Gustafson’s law complements Amdahl’s law by predicting the speedup with

the number of processors for a fixed execution time of the whole task (or a fixed

problem size per processor), as shown by Equation 2.6, s and t have the same

meaning as before in Equation (2.5). Gustafson’s law does not pose an upper bound

on the maximum speedup as it allows programmers to change the total problem size

in order to fully exploit the computing power; a larger problem size can be solved in
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the same amount of time if faster computing resources are available. Gustafson’s

law is usually referred to as the weak scaling of a parallel and distributed system.

Speedup, S =
Tserial
Tparallel

(2.4)

Speedup, S =
1

(1− t) + t
s

(2.5)

Speedup, S = 1− t+ st (2.6)

In addition to speedup, a useful measure in parallel computing is efficiency

- E - which measures the ratio of execution time on a uni-processor system and

the total execution time of all processors in a parallel system. Efficiency can be

expressed as Equation (2.7), where Tserial is the serial execution time and Toverhead

is the total execution time outside of Tserial in a parallel system which includes

scheduling, communication and synchronisation costs. The isoefficiency function

defines the growth rate of problem size with the number of processors to maintain

the same efficiency (E) [22]. Isoefficiency analysis provides another measure of

scalability of a parallel application: A linear isoefficiency function indicates high

scalability; in contrast, a quadratic or an exponential isoefficiency function indicates

poor scalability.

Efficiency , E =
Tserial

Tserial + Toverhead
(2.7)

The rest of this section compares the existing distributed systems for machine

learning which leads to the discussion of the design for an elastic system and the

introduction to the Apache Spark framework, and heterogeneous architectures using

accelerator technologies.

2.3.1 Characteristics of a Machine Learning Application

Machine learning/deep learning is comprised of training and validation. The purpose

of training is to build a machine learning model, which is the most time-consuming

step, after which the model can be evaluated in validation or deployed in production.

The accuracy of the machine learning model is calculated by the difference between

the predicted value and the actual value. Machine learning applications improve their

predictions through statistical analysis that fits parameters to the given observations.

The input can be in static or streaming form and is usually beyond the memory

capacity of a single computer. Since datasets can be too big to reside in main memory,

especially for audio, images and videos, a batch of random samples is used in each
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Figure 2.6: A distributed machine learning system.

training iteration. A complete enumeration of the dataset is called an epoch, and

usually, more than 1 epoch is needed to train the deep learning model to the desired

accuracy. In the context of object recognition with convolution neural networks,

the basic operations of a neural network algorithm rely on linear algebra (e.g. dot

products and matrix multiplications), which are compute intensive. The machine

learning model itself is relatively small compared with the input dataset and can

reside in main memory. However, unlike the input data, the machine learning model

is volatile and must persist over iterations. This leaves us with a technique that is

both compute intensive and data intensive.

2.3.2 System Implementation for Distributed Machine Learning

In a distributed setting, a machine learning system is comprised of a scheduler, a

database/file system and a plurality of worker nodes, which are connected through

a network. Each worker keeps a partition of the immutable training input and a

mutable copy of the machine learning model (Figure 2.6).

There are two main platforms for distributed computing: the message passing

interface and data-flow frameworks. In Section 2.3.1, we discussed the characteristics

of a deep learning application, and now we can discuss how deep learning applications

can fit into existing distributed frameworks.
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MPI and Scientific Applications

A typical scientific application takes several input parameters and generates a large

computer model for physics or similar simulations. The computations often involve

linear algebra (e.g., matrix–matrix operations) and require fast mutable memory.

To this end, the MPI framework fits the requirements for scientific applications,

since every MPI process has its own local memory (as illustrated in Figure 2.7a) and

communication is reduced to a minimum via message-passing. However, programmers

are responsible for memory management and there is no native support for data

beyond the memory capacity.

Data-flow and Big Data

A typical big data analytic application takes a large dataset as input and feeds it

into a data processing pipeline, after which the data is reduced into a smaller output.

To this end, the data-flow paradigm suits big data analytic applications. Since

it is time costly to move large amounts of data across the network, the compute

function is instead sent to the worker nodes. The pair of a compute function and a

small chunk of the input data forms a task, which transforms the input data into

intermediate data and saves it on the disk; this solves the problem of not having

enough main memory to hold the data. The intermediate data is passed onto the next

stage for further processing until it is reduced into the final output, and each stage

of the data processing pipeline is executed in lock-step. The workers do not have

persistent memory across different tasks or stages. This is illustrated in Figure 2.7b.

(a) MPI Processes (b) Analytic Tasks

Figure 2.7: A comparison between MPI processes and analytic tasks.
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Parameter Servers

Parameter servers [47] provide a different approach to memory persistence and the

fault-tolerance problem, and are employed in the TensorFlow [1] and MXNet [8]

frameworks. Parameter servers work by keeping mutable variables in a remote server,

away from error-prone workers. It is not an ideal solution since the variables are not

local to the workers, and this adds extra latency and traffic to the network. It is

therefore not the best approach going forward for larger scale and more advanced

high performance compute clusters.

Static vs. Elastic computing

The greatest difference between data analytics and scientific computing comes from

the change of workload and therefore resulting in different computing architectures

(e.g. MPI, Data-flow, and Parameter servers). Data analytics generally has a data-

dependent dynamic workload/problem size, while scientific computing generally has

a constant problem size.

A typical case for dynamic workload can be demonstrated by the simple

‘Map-Reduce’ data-flow, where data elements pass through a Map function and the

intermediate results are subsequently combined by a Reduce function. The Map

stage typically requires more processing resources than the Reduce stage.

Neural network applications are more akin to scientific computing as it mainly

consists of matrix–matrix multiplications as explained in Section 2.1.2. The batch

size defines the total problem size for SGD training, which is typically constant

throughout the process. For a constant batch size, scientific platforms should be a

better candidate for neural network applications. However, with the rise of using

dynamic batch-sizing (i.e. incremental or adaptive) for large batch-size training, the

total problem size changes dynamically, for which data-flow platforms for elastic

computing is a better candidate. The implementation and experimentation of

this research are performed on the Apache Spark framework – an elastic data-flow

framework, which is further introduced in Section 2.3.4.

The cluster scheduler is the decisive factor for a static or dynamic problem

size. Common cluster schedulers include Slurm and Moab for high-performance

computing clusters, and YARN and Mesos for data analytic clusters.

Resource allocation in Slurm and Moab is static, and works by submitting a

batch script with the job description that describes the amount of resource requested

in terms of memory, processor cores and time, and each node executes the same

script when the resources are allocated. An example of a job script is shown in

Listing 2.1, in which the number of nodes, the number of tasks per node, the memory
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per processor and the time are defined statically.

Listing 2.1: An example of a batch script for SLURM

#SBATCH −−nodes=8
#SBATCH −−ntasks−per−node=16
#SBATCH −−mem−per−cpu=3882
#SBATCH −−time =08:00:00
srun . / program

Resource allocation in YARN and Mesos is dynamic, the design of YARN

and Mesos consists of agents for negotiating resources and they provide a framework

for agents, such as the ‘ApplicationMaster’ in YARN, whose working mechanism is

described below. Unlike the batch script shown in Listing 2.1, ApplicationMaster

is able to negotiate and interact with the ResourceManager; this is what enables

dynamic resource allocation. The Spark framework has built-in support for dynamic

resource allocation for YARN and Mesos, as well as in standalone mode. Addi-

tional workers can be requested via the SparkContext class, and any worker will

automatically be freed when it is idle for a certain amount of time.

For the actual handling of the job, the ApplicationMaster has to re-

quest the ResourceManager via AllocateRequest for the required number

of containers using ResourceRequest with the necessary resource specific-

ations such as node location, computational (memory/disk/cpu) resource

requirements. The ResourceManager responds with an AllocateResponse

that informs the ApplicationMaster of the set of newly allocated contain-

ers, completed containers as well as current state of available resources.

(Apache Hadoop Main 2.6.4 API)

The Message Passing Interface (MPI) and data-flow engines, the two major distributed

computing models, are associated with Slurm/Moab and YARN/Mesos respectively.

Apache Spark is an example of such a data-flow engine.

For MPI programs, dynamic worker addition and deletion during execution

is not possible for the following reasons: (i) MPI programs run in a Single Program

Multiple Data (SPMD) fashion and communicators must be created collectively (i.e.

each worker must call the same function); therefore communicators cannot be created

during computation; (ii) the memory space is private to the process (i.e. each process

possess a distinct copy of a variable); (iii) stopping one worker causes the entire job

to fail; (iv) technically, it is difficult to connect workers from different job requests.

One simple solution to these problems above is to stop-start the application every
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time the worker pool changes, which is practically impossible if this happens every

few iterations.

Data-flow engines usually have a master-slave architecture that allows slaves

to be added and removed during the execution of the application. Each worker

executes a ‘closure’ function that takes an input and produces an output without

side-effects. The ‘closure’ function carries the state of variables which guarantees

synchronisation. This model enables the program to be executed anywhere in the

cluster, and it was designed for applications that grow or shrink over time.

Overall, the design of elastic schedulers is more scalable and flexible than

static batch schedulers and subsequently the associated computing platforms. Elastic

computing models have the capability to replace static batch computing models and

it is the way forward towards larger scale distributed computing platforms.

2.3.3 Survey of Data Analytics Frameworks

Modern data analytics frameworks arose from the MapReduce [11] paradigm for

batch processing large amounts of data, which is a simple fixed data processing

pipeline consisting of a Map and a Reduce stage, leading to a different approach

of ‘moving compute to data’. After MapReduce, research has focused on improving

the flexibility of the pipeline, and as a result, Directed-Acyclic-Graph (DAG) and

Timely-Graph have been adopted in Dryad [33] and Naiad [59] respectively. Apache

Spark is the mainstream data-flow framework, which is considered MapReduce2.0.

The core of the Spark framework is the DAG engine for scheduling and the Resilient

Distributed Dataset (RDD) [84] for in-memory analytics.

Data-flow for batch processing does not satisfy various analytical application

use cases, such as stream processing and graph analytics. As a result, there have

been new frameworks: (i) Storm [79], Flink [7], IBM Infosphere and Microsoft

StreamInsight for stream processing; (ii) Pregel [53], GraphLab [51] and PowerGraph

[20] for graph analytics. However, the fundamental mechanisms are similar: An

application consists of smaller short-term tasks which carry out a function which

may or may not produce side-effects on the state of the data.

2.3.4 Apache Spark & Resilient Distributed Dataset

Apache Spark [84] is a mainstream distributed data-flow framework, which is chosen

as the subject of study in this work, as it is capable of in-memory processing, and

therefore more suitable for machine learning purposes. It includes two core compon-

ents: (i) a Directed-Acyclic-Graph (DAG) engine and (ii) a Resilient Distributed

Dataset (RDD). The RDD is an in-memory distributed data abstraction that allows
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fast in-memory computation, which is useful for data to be reused repeatedly. A

Spark program is expressed as RDD transformations in a DAG graph; the DAG

engine will then generate a physical execution plan, and schedule tasks onto available

processors.

The design of RDD and the DAG data-flow engine is inefficient for deep

learning and machine learning in general, for a number of reasons in regard to the

memory management and data-flow model.

In regard to the Resilient Distributed Dataset (RDD), firstly, it is immutable,

meaning changes to the contents are done through transformations that generate

yet another RDD and require more memory. Secondly, there is no random access

to the records of an RDD, because the state of the dataset is undetermined, so the

entire RDD must be computed. As a consequence, RDDs are not suitable to hold

machine learning models as they are volatile during training. Access to only a few

records in a dataset is inefficient as it causes the entire dataset and the dependent

datasets to be computed. We have made substantial improvements with regards to

the problems mentioned above in Section 5.2.

In regard to the data-flow model, there is a barrier between stages in a

data-flow pipeline, as such overlapping two dependent stages in the same pipeline is

not possible (but it is possible to overlap two stages that are not dependent).

Fundamentally, workers in a data-flow framework carry out ‘tasks’, which is a

type of short-term process that executes a ‘closure’. As opposed to a normal process

that runs throughout the life-span of the program, a data-flow program consists of

small tasks that can generate no side-effect outside of the ‘closure’ function. In other

words, the workers have no persistent memory. However, it is a common practice to

workaround this problem by attaching data to a long-running process, and doing

so generates side-effects outside of the closure function, which is not what it was

designed to do.

Communication between stages of a data-flow pipeline is through a process

called ‘shuffle’, which is not explicitly directed. The sending task saves the shuffle

data on the disk and informs the driver process; the receiving task then inquires about

the location of the shuffle data from the driver process. Since the task allocation

is not pre-determined, it can be anywhere in the cluster, so it is not possible to

eagerly transmit data (it is technically possible, but an incorrect prediction of the

destination incurs a performance penalty).

Finally, there are limited forms of data-flow communication patterns. For

example, an ‘all-reduce’ operation can only be expressed as a ‘reduce-broadcast’

in a data-flow, which can be inefficient for collective communications. We have

also improved Spark communication for the ‘reduce-broadcast’ pattern by adapting
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the MPI ‘all-reduce’ function for elastic task-based systems, which is described in

Chapter 4.

2.3.5 Improving Communication for Map-Reduce

From MapReduce to Spark, the shuffling performance has been the main subject of

research, which is the data exchange between two stages in a data pipeline. Most

research on this subject is concerned with the disk I/O and file system performance.

[10] has identified random I/O as a major bottleneck in Spark, and solutions were

proposed to reduce the number of open files in order to mitigate the amount of

random I/O overhead. Specifically, a set of partition files are created per CPU core

instead of per mapper task (there can be more than 1 task assigned to each CPU

core). This research also attempted to reduce the amount of shuffle data by columnar

compression, but without significant results.

Disk I/O can also be improved through high-performance parallel file systems

used on High-Performance Computing (HPC) clusters. One example is the Intel

Hadoop Adapter for Lustre [43], which demonstrated that the integrated solution

improves Hadoop shuffle with the removal of the extra data copy stage since the

Lustre file system appears as a single storage image to all nodes and supports parallel

file I/O. Other research experiments with Map-Reduce applications on in-memory

file systems like Tachyon and Triple-H. It has been shown that Tachyon is 5× faster

than HDFS for primitive operations [34].

Other studies seek to improve network performance by taking advantage of

the latest advances in interconnect technologies (e.g., Remote Direct Memory Access

(RDMA) via InfiniBand). [52] is one of the early designs to replace the transport

socket layer with RDMA, and demonstrated the possibility for a low latency and

high throughput transport layer for Spark. With a similar plug-able RDMA shuffle

module, [9] focuses on more efficient pairwise data exchange algorithms for all-to-all

communications. The design also features an in-memory buffer for shuffle data

instead of compulsory disk persistence in Spark, which is one of the factors that

contributes to low latency. However, the implementation was a proof of concept and

completely independent from Spark. [46] also presents a similar architecture but

with a focus on reusing the off-heap buffer to avoid redundant data copy.

2.3.6 Heterogeneous Architectures

There are two ways to increase the computing capacity of a parallel and distributed

computing system as explained at the beginning of the chapter. So far we have

discussed horizontal scaling (adding more computing nodes), the other is vertical
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scaling (adding more processors), and co-processors/accelerators are one such resource.

There are three major types of co-processors: manycore CPU, Graphical Processing

Unit (GPU) and Field Programmable Gate Array (FPGA) cards. These co-processors

are architecturally different, but there is one thing in common: they are pluggable

cards currently connected to the main CPU through the Peripheral Component

Interconnect (PCI).

To understand the differences between these architectures and their impacts

on the computational performance of machine learning, we briefly introduce how

processors work. A generic processor pipeline consists of 4 stages: fetch, decode,

execute and write-back; the pipeline runs based on a clock, the faster the clock

rate, the faster the pipeline is executed. Floating-point arithmetic is performed by

the Floating-Point Unit (FPU) of the processor, a CPU may have multiple FPUs

integrated or added, which enables multiple floating-point operations per cycle.

Vector processing is a way to increase floating-point operations per cycle, which

operates in a Single Instruction Multiple Data (SIMD) fashion; MMX, SSE and AVX

are such SIMD extensions to the x86-64 architecture. Subsequently, the floating-point

arithmetic performance can be measured by FLoating-point Operations Per Second

(FLOPS), which is defined by Equation (2.8).

FLOPS = #cores
cycles

second

FLOP

cycle
(2.8)

Manycore CPU co-processors, such as the Intel Xeon Phi, are a composition

of 60-72 CPU cores, each equipped with vector processors which run at a lower

clock rate (megahertz instead of gigahertz). Graphical processing units (GPUs)

are a type of massively-parallel computing resource, which differ from traditional

CPU architecture by having many more smaller but specialised computing cores

(NVIDIA GPUs typically have 1000+ computing cores). Unlike the general-purpose

CPU cores, GPU cores have a much smaller instruction set, and are therefore more

energy and computationally efficient. Both CPU and GPU co-processor cores are

not able to execute general-purpose software such as the operating system, therefore,

the operating system must run on the main CPU, resulting in a heterogeneous

architecture – the computational tasks are offloaded from the CPU to the co-processor

via PCI as illustrated in Figure 2.8.

The difference between manycore CPU and GPU architectures are the changes

in the number of cores and clock rate in Equation 2.8. Both architectures are

successful in terms of the FLOPS performance: the Intel Xeon Phi, NVIDIA Tesla

K80 and P100 produce tera-FLOPS (1012) double-precision performance.

FPGAs are a completely different architecture that allow for programmable

circuits, unlike fixed circuits in the CPU and GPU. This allows for a specialised
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circuitry that performs more efficient or fused operations (such as fused multiple-add)

without going through multiple processor cycles. However, programming FPGAs

requires knowledge in electronic circuit design, unlike general-purpose programming

languages. FPGAs are also limited by the clock rate, which is often lower than

CPUs.

Machine learning and scientific computing are comprised of linear algebraic

operations as explained in Section 2.1.2, where the elementary multiplications and

additions are independent of each other, resulting in many-way parallelism. This

could largely benefit from the manycore CPU and GPU architectures. With the

rising use of co-processors in machine learning, this research is conducted in the

context of heterogeneous architectures using co-processor cards.

Figure 2.8: A heterogeneous computer system comprised of a CPU and a co-processor
connected by the PCI.
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Chapter 3

Performance Modelling

Analytic modelling for running time and cost is crucial to the understanding of the

scalability and cost-effectiveness of Distributed Stochastic Gradient Descent (SGD).

Existing performance evaluations on distributed SGD are experimental, which are

not transferable from one setup to another. Precise modelling at a microscopic-scale

is difficult, depending on numerous variables (e.g. processor speed, hierarchical data

transfer, network speed, machine learning model complexity, machine learning model

parameter size, etc.). Such work had been performed on a multi-GPU architecture

on a single node [68]. Our objective is to model the running time and running cost in

terms of 4 macro variables: number of epochs, batch size, processing speed (samples

per second) and network speed, which provides a high-level overview for all different

setups.

3.1 Modelling Synchronous SGD

Assuming a Bulk Synchronous Parallel (BSP) computing model, the computation is

broken down into super–steps, where a barrier–style synchronisation is applied at the

end of each super–step. The wall–clock time of each super–step for every process is

identical due to synchronisation. The BSP model is a simplistic parallel computing

model, which is the closest fit to the execution model for Apache Spark where the

jobs are also executed in super–steps, except that the jobs are broken down into

smaller tasks on Spark.

Let Tcompute,total be the total processing time and Tcomm,total be total com-

munication time across all nodes including the idling time. The wall–clock time on a

cluster machine with N nodes can be expressed as Equation 3.1, and the running cost

can be expressed as Equation 3.2, assuming the input/output and synchronisation

overheads are included in Tcompute,total and Tcomm,total.
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Time = (Tcompute,total + Tcomm,total)×
1

N
(3.1)

Cost = (Tcompute,total + Tcomm,total)×
cost

time
(3.2)

The computation cost can be modelled by Equation 3.3, where #samples =

#epochs×dataset size and γ is the processing speed (samples per second), assuming

γ is constant. The communication cost with respect to the number of nodes N

can be approximated with a linear function (i.e. Tcomm,single = #samples
B (α+ βN),

where B is the global batch size, #samples
B is the total number of iterations, N is the

number of workers and α and β are constant coefficients), because the number of

steps of weight aggregation is bounded by the number of workers (i.e. #steps ∝ N
for ring all-reduce and #steps ∝ log2N for butterfly all-reduce, see Section 4.1.1 for

details). Subsequently, the total communication cost of N nodes is N × Tcomm,single
as shown in Equation 3.4.

By substituting Tcompute,total and Tcomm,total in Equations 3.1 and 3.2, and

assuming the cost over time is proportional to the processing speed (i.e. cost
time ∝ γ),

expressions are derived for the running time and cost in Equations 3.5 and 3.6 re-

spectively. Subsequently, the expression for computational speed-up (T (N=1,α=0,β=0)
T (N) )

can be derived in Equation 3.7.

By neglecting the scheduling and synchronisation costs (i.e. Toverhead =

Tcomm,total in Equation (2.7)), the efficiency can be expressed as E =
Tcompute,total

Tcompute,total+Tcomm,total
.

By substituting Equations (3.3) and (3.4), efficiency can be derived as Equation (3.8).

Tcompute,total =
#samples

γ
(3.3)

Tcomm,total =
#samples

B
N(α+ βN) (3.4)

Time ∝ #epochs× B + αγN + βγN2

BγN
(3.5)

Cost ∝ #epochs× B + αγN + βγN2

B
(3.6)

Speedup =
BN

B + αγN + βγN2
(3.7)

E =
B

γN(α+ βN) +B
(3.8)
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3.2 Modelling Asynchronous SGD

For asynchronous stochastic gradient descent where the computation is overlapped

with communication, the computation cost is taken away from the communication

(i.e. Tcomm,blocked = max(Tcomm,total − Tcompute,total, 0)), Equations (3.1) and (3.2)

become Equations (3.9) and (3.10) and subsequently Equations (3.11) - (3.13) (all

symbols have the same meanings as before).

By neglecting the scheduling and synchronisation costs, Toverhead becomes

Tcomm,blocked in Equation (2.7). Therefore, E = 1 for Tcomm,total ≤ Tcompute,total; and

E =
Tcompute,total

Tcompute,total+(Tcomm,total−Tcompute,total)
=

Tcompute,total

Tcomm,total
for Tcomm,total > Tcompute,total.

By substituting Equations (3.3) and (3.4) into E =
Tcompute,total

Tcomm,total
, efficiency can be

derived as Equation (3.14).

Time = max(Tcompute,total, Tcomm,total)×
1

N
(3.9)

Cost = max(Tcompute,total, Tcomm,total)×
cost

time
(3.10)

Time ∝ #epochs×max(
1

γN
,
α+ βN

B
) (3.11)

Cost ∝ #epochs×max(1,
αγN + βγN2

B
) (3.12)

Speedup = min(N,
B

αγ + βγN
) (3.13)

E =
B

γN(α+ βN)
(3.14)

3.3 Assumption Validation

The performance model has been developed based on the assumption that the

processing speed per node (γ, samples per second) is constant regardless of the batch

size, and the communication cost is linear with respect to the number of workers for

a fixed problem size, i.e. Tcomm,total ∝ N .

To validate the assumption regarding the processing speed, we train AlexNet

on the ImageNet dataset for 20 iterations for each batch size setting, on an Intel

Xeon E5-2660 (2.6 GHz) CPU and an NVIDIA K80 GPU. Figure 3.1 shows the

computation time for increasing batch size for CPU and GPU. The processing speed

(γ) is represented by the gradient of the curve, which verifies the assumption that
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the processing speed per node (γ) is constant regardless of the batch size, for up to

a batch size of 400 samples in our experiment. The processing speed γ is found to

be 10 and 260 samples per second for the CPU (Intel Xeon E5-2660 2.6 GHz) and

GPU (NVIDIA Tesla K80) respectively.

To validate the assumption regarding the communication cost, we test the

‘all-reduce’ implementation described in Chapter 4 for both the butterfly and chunked

ring algorithms, over TCP and RDMA communication protocols, different number

of workers (N) and different vector sizes (i.e. 106, 107, 108), for 20 iterations. Figures

3.2a - 3.3b show the average all-reduce time for these experiments. The curve can be

affected by a lot of factors, such as the all-reduce algorithm, the system load, the

system implementation, the network topology, the underlying hardware architecture,

etc. However, a linear function is still the best approximation: we have fitted linear,

logarithmic, power and polynomial equations to the data, and we found a linear

equation results in the least residual squared errors, which supports that a linear

approximation is the best fit for the communication cost with respect to the number

of workers (N), even though the curve is not perfectly linear. For AlexNet with 65

million parameters, we can extrapolate the values for α and β from Equation 3.5 as

follows: α = 2.0 and β = 0.024 for chunked ring all-reduce over RDMA, α = 0.8 and

β = 0.03 for butterfly all-reduce over RDMA.
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Figure 3.1: Computation time for AlexNet-ImageNet over different batch size on a
Intel Xeon E5-2660 2.6 GHz CPU and a NVIDIA K80 GPU.
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Figure 3.2: Allreduce time against number of workers for a vector length of 106, 107

and 108 over TCP.
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Figure 3.3: Allreduce time against number of workers for a vector length of 106, 107

and 108 over RDMA.
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3.4 Strong and Weak Scaling for SGD

In Section 2.3, the concepts of strong and weak scaling were introduced for High-

Performance Computing (HPC), which are measures of scalability for HPC that

describe the change in solution time with the number of processors for a fixed total

problem size and for a fixed problem per processor. The same concepts can be

applied to synchronous and asynchronous SGD training using Equations (3.7) and

(3.13), and the values for computational speed-up are plotted against the number of

workers (N) and global batch size (B) in Figures (3.4a) and (3.4b) for synchronous

and asynchronous respectively.

The axis along variable N represents strong scaling for SGD – the change of

speed-up with the number of workers for a fixed global batch size (i.e. total problem

size). It is shown that the speed-up is a concave function for both synchronous

and asynchronous SGD, which has a peak value and after which is penalised as the

number of workers keeps increasing.

A vertical cut through the axes B and N represents weak scaling for SGD

- the change of speed-up with the number of workers for a constant batch size per

worker (i.e. constant B
N or a fixed problem size per processor). For synchronous SGD,

it is shown that the speedup slows down and converges to a limit. For asynchronous

SGD, the speed-up increases linearly as it reaches the peak value and starts to decline.

For both synchronous and asynchronous SGD, a maximum speed-up exists for a

constant problem size per processor.
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Figure 3.4: Speedup as a function of number of workers (N) and global batch size
(B). Plotted with coefficients α = 0.2, β = 0.03 and γ = 10
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3.5 Maximum Theoretical Speed-up

As shown above, a maximum speed-up exists for a fixed problem size or a fixed

problem size per processor (i.e. strong and weak scaling) and is yet to be determined.

The minimum runtime with respect to number of workers (N) can be found by

finding dT
dN = 0 for Equations (3.5) and (3.11). Once the minimum runtime is found,

the maximum speed-up can be found by Tserial
Tparallel,minimum

.

For synchronous training, by differentiating Equation 3.5 with respect to N

(i.e. dT
dN = 0), we found the number of workers for maximum speed-up as shown

in Equation (3.15). For asynchronous training, the maximum number of workers

can be found by equating the computation time and the communication time (i.e.
1
γN = α+βN

B ), which is shown in Equation (3.16). Subsequently, the maximum speed-

up can be found by substituting Equations (3.15) and (3.16) into Equations (3.5)

and (3.11) respectively, which is given by Equations (3.17) and (3.18). The problem

size per processor (BN ) can also be found by dividing B by Equation (3.15) or (3.16),

which states that B
N ∼ Ω(

√
B), this implies the problem size per processor has to

increase with the batch size to achieve maximum speed-up.

Figure 3.5 is a plot of theoretical maximum speed-up as a function of the

batch size (i.e. problem size) for synchronous and asynchronous SGD. It shows

that the maximum speed-up is approximately proportional to the square root of the

batch size (i.e. Smax ∝
√
B), which implies that the benefits from increasing the

batch size recedes as the batch size gets larger, as dS
dB ∝

1
2
√
B

. It also shows that

the asynchronous SGD is nearly twice as fast as the synchronous SGD for the same

problem size.

Nmax,sync =

√
B

βγ
(3.15)

Nmax,async = − α

2β
+
√

((
α

2β
)2 +

B

βγ
) (3.16)

Smax,sync =
B

αγ + 2
√
Bβγ

(3.17)

Smax,async = min(Nmax,async,
B

αγ + βγNmax,async
) (3.18)
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Figure 3.5: Theoretical maximum speedup as a function of the global batch size (B).
Plotted with batch size γ = 10, and coefficients α = 0.2 and β = 0.03

3.6 Isoefficiency Analysis

As introduced in Section 2.3, isoefficiency is another measure of scalability for HPC,

which measures the rate of change of problem size with respect to the number of

processors to maintain the same efficiency. The efficiency as function of batch size

(B) and number of nodes (N) has been found in Equations (3.8) and (3.14) for

synchronous and asynchronous SGD respectively. By arranging Equations (3.8) and

(3.14), the batch size/problem size can be expressed as Equations (3.19) and (3.20).

As shown by Figures 3.6a and 3.6b, the batch size/problem size (B) is a

quadratic function with respect to the number of nodes (N), and Bsync = 1
1−EBasync.

This indicates poorer scalability for the SGD algorithm compared with the linear case

- B ∝ N . As the efficiency analysis neglected the scheduling and synchronisation

overheads, the actual efficiency is even lower. However, for asynchronous SGD, it is

possible to reach an efficiency of 100%, for a batch size up to γ(α + βN)N when

Tcomm,total ≤ Tcompute,total.

Bsync =
E

1− E
γ(α+ βN)N (3.19)

Basync = Eγ(α+ βN)N (3.20)
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Figure 3.6: Global batch size (B) as a function of efficiency (E) and number of nodes
(N). Plotted coefficients α = 0.2, β = 0.03 and γ = 10.

3.7 Summary

This section explores analytical performance for distributed data-parallel SGD in

terms of the number of epochs, batch size and the computational and communication

speed, where equations for running time and computational speed-up are derived.

The scalability of distributed SGD is analysed using the concepts of strong

and weak scaling from High-Performance Computing (HPC). It is shown that a

maximum speed-up exists for both synchronous and asynchronous SGD, for a fixed

total problem size (i.e. strong scaling) and a fixed problem size per processor (i.e.

weak scaling).

The maximum theoretical speed-up is found to be a function of the batch

size, by differentiating the equations for the running time with respect to the number

of workers. We show that the maximum speed-up is approximately proportional to

the square root of the batch size (i.e. Smax ∝
√
B), which implies that the benefits

from increasing the batch size recedes as the batch size gets larger, as dS
dB ∝

1
2
√
B

.

We also show that the problem size per processor (BN ) is found to be B
N ∼ Ω(

√
B),

this implies that the problem size per processor has to increase with the batch size

to achieve maximum speed-up.

The scalability of SGD is also analysed through isoefficiency - the rate of

change of problem size with respect to the number of nodes to achieve the same

efficiency. It has been demonstrated that isoefficiency is a quadratic function for

SGD (i.e. B ∝ N2), which indicates poorer scalability for the SGD algorithm

compared with the linear case - B ∝ N . However, for asynchronous SGD, it is
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possible to reach an efficiency of 100%, for a batch size up to γ(α + βN)N when

Tcomm,total ≤ Tcompute,total.
Lastly, the running cost for distributed data-parallel SGD is shown to be

constant for the same number of epochs and compute-to-communication ratio, since

Equation 3.2 can be written as Cost ∝ Tcompute,total(1+
Tcomm,total

Tcompute,total
) and Tcompute,total

is constant. Therefore, training on a single computer will have the lowest running

cost, and the running cost is constant as long as the computation–communication

ratio is constant.
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Chapter 4

Communication

High-Performance Computing introduced in Section 2.3 is a sub-category of dis-

tributed and parallel computing. The main difference between distributed and

non-distributed computing is the need for between-node communication between

workers, which is the bottleneck for large-scale machine learning training. Com-

munication efficiency is key to high-performance computing and machine learning

applications.

Neural networks suffer the most from the communication overhead as ex-

plained in Section 2.1.2: (i) The weight matrix or the output matrix must be

synchronised for data–parallel and model–parallel training respectively; (ii) Often

contain millions of parameters. For convolutional neural networks, data-parallelism is

favoured for convolutional layers and model-parallelism is favoured for fully-connected

layers. As the computation and parameter distribution shift to convolutional layers,

data-parallelism has become the main parallelism for convolutional neural networks.

To synchronise the weights of a machine learning model, an operation called ‘all-

reduce’ is introduced, which collects and combines a vector from all processes and

delivers the results back to the processes.

SparkNet [58] is an implementation of convolutional neural networks on the

Apache Spark platform, which has demonstrated that the weight-update of AlexNet

takes around 20 seconds on a 5-node EC2 cluster, while performing a single mini-

batch gradient computation only takes about 2 seconds. The overall runtime in

distributed neural network training is dominated by communication, highlighting

the need for a more efficient all-reduce implementation.

Modern data-analytic frameworks, regardless of batch-processing or stream-

processing, share two basic traits: (i) task-based execution that separates memory and

computation; and (ii) applications defined in terms of data transformations in data-

flow graphs. All-reduce is frequently expressed as a simple reduce-broadcast data-flow
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graph but, as we demonstrate, this is not efficient and is limited by bandwidth at the

root process. More efficient all-reduce algorithms, such as butterfly/distance-doubling

and doubling-and-halving [77], use many-stage many-to-many communications, which

themselves are highly complex for them to be expressed in a data-flow graph. All-

reduce also depends on a number of factors, including the size of the vector, the size

of the cluster, network latency, bandwidth, topology, etc., and a hybrid strategy is

required for optimal performance.

The Message-Passing-Interface (MPI) includes optimised functions for all-

reduce. However, there are fundamental design differences between MPI and task-

based frameworks, which mean that MPI cannot be used directly in batch-processing

and stream-processing. The Message Passing Interface (MPI) operates in a Single

Program, Multiple Data (SPMD) fashion, where each statically allocated process runs

a copy of the same program but operates on its own set of data. Running in parallel,

these processes can communicate data between one another via the communication

interface as and when needed. Task-based frameworks, on the other hand, separate

memory and computation, running tasks anywhere in the cluster either serially or

in parallel. Resource allocation in task-based frameworks is therefore elastic and

dynamic, allowing the overall size of the system to grow or shrink according to

demand. In addition, tasks can relocate from one machine to another in cases of

failure or resource re-allocation.

Due to these differences, there exist two primary reasons why MPI all-reduce

cannot be used directly in task-based data-analytic frameworks:

• MPI assumes all processes run in parallel and synchronisation may cause

deadlocks in a task-based framework. Since MPI cannot interact with the task

scheduler, and tasks run asynchronously, synchronisation operations can cause

the application to hang.

• MPI all-reduce takes a pre-defined data-type and operation as inputs, but the

design of data-analytic frameworks permits users to define the data-type and

operation.

As a consequence, the introduction and implementation of blocking operations such

as all-reduce cannot simply be translated from one high-performance computing

framework to another, and a more efficient all-reduce is needed for the Apache Spark

framework.
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4.1 Background

In aggregating a given input vector from different processes, with a user-defined

associative and commutative reduction function, the all-reduce operation is able to

distribute the combined result to all participating processes. This collection of data

is key to a number of high performance computing and data analytic applications.

A simplified view of all-reduce is to split it into two parts: reduce and broadcast.

The reduce process collects a vector from participating processes and combines these

into a single value. The broadcast process then takes this result and distributes it to

all processes involved.

4.1.1 All-Reduce Algorithms

The performance of an all-reduce algorithm depend on many factors, including:

(i) the size of the vector; (ii) the size of the cluster; (iii) the nearest number of

nodes in a power-of-two; (iv) the network latency and bandwidth and, (v) the

network topology (e.g., ring, mesh, torus, hypercube, dragonfly, etc.). Classical

implementations include the butterfly and the binary-tree algorithms. Ring all-reduce

has been popular in neural network and machine learning applications due to the

large size of the parameters and limited network bandwidth on cloud computers.

This research focuses on the butterfly all-reduce and ring all-reduce algorithms,

as algorithmically, one takes the least number of steps (butterfly) and one takes

the least bandwidth (ring) so that they represent algorithms with optimal latency

and bandwidth respectively. A number of previous studies have already made

extensive comparisons of all-reduce algorithms for the Message-Passing-Interface

(MPI) [63] [64] [77].

Apache Spark implements a simple variant of the reduce-broadcast algorithm

for all-reduce, which is illustrated in Figure 4.1a. The reduction phase (i.e., bottom

half) is a binary-tree reduction process that takes log2 p steps, where p is the number

of processes. The broadcast phase (i.e., top half) is a process of one-to-all transfer of

the initial random data block (default size 4 Mega-Byte), followed by an all-to-all

shuffle for the rest of the data blocks.

Parameter servers [47] also implement a variant of reduce-broadcast by ‘push-

ing’ and ‘pulling’ data to and from the servers. Instead of reducing the traffic volume

through tree reduction in Spark, it employs more servers that store a portion of the

memory, resulting in a scatter-gather pattern as shown in Figure 4.1b, where the

‘push’ and ‘pull’ operations are equivalent to the ‘scatter’ and ‘gather’ operations.

This effectively increases the bandwidth at the server side, but the total amount

of traffic across the network is unchanged which can cause congestion. The ratio
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between the number of servers and workers must accommodate to the size of the

data for better performance, which is difficult to adjust from case to case.

The butterfly algorithm is illustrated in the middle of Figure 4.1c. In the first

step, each process exchanges the vector and performs a reduction with a process

distance of 1 (i.e., with the neighbouring process), and with each subsequent step

the distance doubles. The algorithm takes log2 p steps to complete, where p is the

number of processes.

The ring all-reduce algorithm can be understood simply as forwarding the

vector in a circle as illustrated in Figure 4.1d, and every worker will have the reduced

vector after p− 1 steps. A bandwidth optimised version of the algorithm is similar,

but instead of forwarding the entire vector, only 1
p of the vector is forwarded at

each step. Each worker will possess the reduced partition of the original vector after

p − 1 steps, and this process is called ‘the scatter’ phase. The reduced partitions

are forwarded to the next worker as before, and after another p − 1 steps, each

worker will have the full reduced vector, and this processed is known as the ‘gather’

phase. The bandwidth optimised ring algorithm is also known as the chunked ring

algorithm, which reduces the total data transmission by a factor of 2
p , but doubles

the number of steps (i.e. 2(p− 1)).

(a) Reduce-
Broadcast

(b) Scatter-Gather (c) Butterfly

(d) Ring

Figure 4.1: All-Reduce Algorithms
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4.1.2 Theoretical Performance

We compare the reduce-broadcast, butterfly all-reduce and ring all-reduce algorithms

through theoretical cost estimations using the work of Thakur [77]. Let there be p

processes and a single process per node (i.e. p = N), with each producing a vector

of b bytes after an initial local reduction. g is the computational cost per byte of

locally executing one operation with two operands, and z is the serialisation or de-

serialisation cost per byte through a serialisation algorithm. Network communication

is modelled as linear time by u+bv, where u is the latency/start-up time per message

and v is the transfer time per byte.

Binary-tree reduction takes log2 p steps and, in each step, vectors are fetched

and combined by the reduction task [23, Chapter 4.1]; the cost is therefore:

Ttree reduce = log2 p(u+ bv + 2bz + bg) (4.1)

The communication cost for broadcasting b bytes in block size blocks is:

Tbroadcast =
b

block size
(u+ v · block size+ 2 · z · block size) (4.2)

The total cost of reduce-broadcast is therefore the sum of Ttree,red and Tbroadcast.

For butterfly all-reduce, there are the same number of steps as a binary tree

reduce (log2 p), but all processes fetch and combine in parallel [23, Chapter 4.3]. The

cost of butterfly all-reduce, assuming a process count of a power-of-two, is therefore:

Tbutterfly = log2 p(u+ bv + 2bz + bg) (4.3)

For the original ring all-reduce, it takes p − 1 steps and b bytes are being

exchanged and combined at each step, the cost of which is shown in Equation 4.4.

For the chunked ring algorithm, the number of steps is doubled and the amount of

data at each step is factored by 1
p , the cost of which is shown in Equation 4.5.

Tring = (p− 1)(u+ bv + 2bz + bg) (4.4)

Tring,chunked = (p− 1)(2u+
2bv

p
+

4bz

p
+
bg

p
) (4.5)

In comparison, the butterfly all-reduce is more efficient than the reduce-broadcast

and ring all-reduce; however, it is comparable to the chunked ring all-reduce. By

equating Equations (4.3) and (4.5), Tring,chunked > Tbutterfly when Equation (4.6) is

satisfied. Equation (4.6) is true when all coefficients are non-zero and it leads to

predicates as shown in Table 4.1, which suggests that chunked ring all-reduce is more
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efficient if the cost is bounded by bandwidth (v), computation (g) and serialisation

(z), while butterfly all-reduce is more efficient if it is bounded by latency (u). Since

v, z and g are multiplied by the size of the vector b, the butterfly all-reduce will have

more advantages over small vectors, and vice versa. For multi–threaded processes

with c processor cores, the cost for computation (g) and serialisation (z) will be

further reduced by a factor of 1
c , which reduces the advantages of the chunked ring

all-reduce for large vectors.

u(2p− 2− log2 p) + b(v + 2z)(2− 2

p
− log2 p) + bg(1− 1

p
− log2 p) > 0 (4.6)

Table 4.1: Conditions for which the coefficients in Equations (4.6) are positive

Term Positive Condition

u p > 2

b(v + 2z) 1 < p < 2

bg 0.5 < p < 1

4.1.3 Butterfly All-Reduce in Apache Spark

In the early stages of development, it has been proposed to implement butterfly

all-reduce on Spark. However, the idea was rejected because ‘the butterfly pattern

introduces complex dependency that slows down the computation’ [18], and as a

result the reduce-broadcast approach was adopted as an alternative.

Consequently, users employ the less efficient reduce-broadcast method provided

by Spark, or more efficient custom self-contained Java implementations if available.

However, these are bespoke solutions that assume parallel tasks as MPI processes,

which can potentially hang as previously described.

As seen in Section 4.1.2, butterfly all-reduce has a significant performance

impact from a theoretical standpoint. Therefore, we seek to implement butterfly

all-reduce as a shared variable instead of as data-set transformations, to avoid the

‘complex dependency’ while maintaining good performance.

4.1.4 All-Reduce in Machine Learning

Many machine learning algorithms can be formulated as an optimisation problem

to search for the best model, and Stochastic Gradient Descent (SGD) is a popular

algorithm for solving the optimisation problem over a large dataset. A distributed
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implementation of SGD averages the model weights across the cluster to incorporate

different training examples, which itself is an all-reduce operation.

In many cases, real-world data is very sparse, and much research takes

advantage of this fact to accelerate communications. One solution to accelerate the

model-update process (i.e., all-reduce) has been to drop 99% of near-zero values

and exchange sparse indices of the remaining 1% [2]; this is, in many respects, a

compression method. Such an approach has been shown to demonstrate a 50×
reduction in communication volume, and a 1.3× speed-up in model training in a

neural machine translation system. By dropping the near-zero values, accuracy is

lost and the rate of convergence of SGD is degraded. As such, it is only applicable

where the values are highly skewed and the lost indices have low-significance.

Kylix [86] is another self-contained Java implementation of all-reduce that

attempts to optimise all-reduce for power-law graph data that commonly presents

itself in web graphs and social networks, for example. The idea of Kylix is to use

heterogeneous-degrees at different layers of a butterfly network, and it is shown that

the communication volume in the lower-layer is typically much less than the top

layer. Experimental results show a 5× speed-up of Kylix with respect to the binary

butterfly algorithm in a selection of different test scenarios.

4.1.5 Remote Direct Memory Access

Direct Memory Access (DMA) allows for peripheral devices such as the graphical

processors and network adaptors to gain access to the main memory directly, which is

enabled by the sharing of the electrical bus between the CPU and the DMA-enabled

device. Remote Direct Memory Access (RDMA) is similar to DMA but involves data

transmission through the network. Traditionally, data-flow between the main memory

and device memory goes through the CPU and the operating system, generating

redundant memory copies in the process. With DMA or RDMA, the main memory

can be accessed directly by the device, bypassing the CPU and the operating system.

In the case of network communication, this can be demonstrated by comparing the

traditional TCP/IP and RDMA. Figure 4.2a depicts the normal data flow from the

application space of a local computer to a remote computer, in which the memory is

copied from the application space to the operating system (i.e. TCP/IP and driver),

and from the operating system to the device memory; the reverse process is carried

out on the remote side. With RDMA, the operating system is bypassed, memory

is copied directly between the application and the device as illustrated by Figure

4.2b. In short, the RDMA memory transfer is totally silent generating zero memory

copy and no CPU and operating system interrupts and enabling high data transfer

throughputs.
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(a) TCP/IP (b) Remote Direct Memory Access

Figure 4.2: Comparison between usual network transmission and remote direct
memory access.

To allow for (R)DMA, a special computer resource is required – pinned

memory. Pinned memory differs from normal application memory by the non-

pageable and non-swappable characteristics. To understand this, we must understand

how virtual memory in modern computer architectures works. Virtual memory is a

technology that allows for multiple processes to occupy the same linearly contiguous

memory space, creating an image of a uniform memory layout of physically scattered

memory pieces. To access the data pointed by a virtual memory address, the virtual

memory address must be translated to a physical address that points to the correct

location in the main memory as illustrated in Figure 4.3. Data pointed by virtual

memory can also be in the secondary storage, by swapping memory between the

main memory and the secondary storage as required, expanding the memory space

beyond the physical memory capacity.

For memories to be directly accessible by a peripheral device, they must be

physically addressable and present in the main memory, since the DMA controller

bypasses the memory translation in the CPU; therefore pinned memory must be

used for DMA. However, allocating too much pinned memory degrades system

performance as physical memory will run out for non-pinned memory and causing

them to be swapped to secondary storage, subsequently increasing I/O operations.

This makes pinned memory a scarce resource on a computer. For further details

about DMA, please refer to [36].
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Figure 4.3: Memory translation for virtual memory system.

4.2 Methodology

We present an architecture and interface for butterfly all-reduce in task-based frame-

works, demonstrated through implementation in Apache Spark, the current main-

stream task-based data-flow batch-processing framework. Sections 4.2.1 and 4.2.2

introduce the proposed general architecture and user interface used within this

work, the design and implementation of which are portable to other task-based

batch-processing or stream-processing frameworks. In addition, other opportunities

for optimisation are identified and are detailed further in Sections 4.2.3, 4.2.4 and

4.2.5.

4.2.1 All-Reduce Architecture

In contrast to the static parallel processes of an MPI application, tasks in batch-

processing or stream-processing can be allocated dynamically across the cluster. The

number of machines available can grow or shrink, with tasks able to run in either

serially or in parallel and migrate from one machine to another. For a collective

operation to function in such a system, the number of participating tasks must be

defined prior to the all-reduce action and resume only once the number of committed

tasks is reached.

Figure 4.4 illustrates the architectural structure of this approach. A master process

is in charge of task scheduling and maintaining a list of processes participating

in the all-reduce. A multi-threaded implementation of the all-reduce manager is

presented in Algorithm 2. Each slave process has an independent manager for
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all-reduce results, with the tasks submitting a vector to their manager as they end;

to preserve the data, the managers stay alive within their slave processes. Once all

of the participating tasks have finished the all-reduce process can begin, storing the

combined results in the all-reduce manager for retrieval by tasks in the next stage.

If a task is migrated from one machine to another, whether it is due to task failure

or resource re-allocation, a copy of the all-reduce data will be sent to the new slave

(ask and get).

Figure 4.4: Architecture of task-based all-reduce

The resulting architecture is suitable for any task-based framework (e.g.,

batch-processing or streaming-processing), with or without dynamic allocation.

4.2.2 User Interface

To incorporate the use of all-reduce algorithms other than reduce-broadcast, a simple

interface is provided to operate on a shared variable, rather than applying dataset

transformations in a data-flow. This is due to the potential use of hybrid schemes

with different all-reduce algorithms which, as expressed in Section 4.1.3), are too

complex to be efficiently expressed in a data-flow diagram. The API methods are as

follows:

1. Init(key, numTasks, func): Creates a shared variable for the given key with

the number of tasks and a reduction function. The context of all-reduce is

maintained by the returned handle;

2. Submit(vector): Submits a vector for reduction. The function does not block;

3. Get: Gets the globally reduced vector. Blocks until completion;

In addition to information about the number of tasks, users must also supply a

reduction function and all-reduce data in the form of a vector object. The format

of the inputs to the function is that of a pair of elements in the vector (i.e., in the
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Algorithm 2 Multi-threaded implementation of the all-reduce manager

1: reduced vector ← empty vector
2: local submissions← new queue
3: reduced vector lock ← new lock
4: new vector signal← new semaphore
5: global reduction start signal← new semaphore
6: global reduction finish signal← new semaphore
7: procedure BackgroundThread
8: while wait for signal from master process do
9: global reduction start signal.signal()

10: function Init(key, num tasks, func)
11: Register(key, num tasks, func)
12: Start new thread(LocalReduction)
13: Start new thread(GlobalReduction)
14: return
15: function Submit(new vector)
16: local submissions.add(new vector)
17: new vector signal .signal()
18: return
19: function Get( )
20: global reduction finish signal.wait()
21: return reduced vector
22: function LocalReduction
23: while new vector signal .wait() do
24: reduced vector lock .lock()
25: reduced vector ← Reduce(reduced vector, new vector)
26: reduced vector lock .unlock()
27: Remove(local submissions, new vector)
28: Signal master process

29: return
30: function GlobalReduction
31: global reduction start signal.wait()
32: reduced vector lock.lock()
33: Apply all-reduce algorithm (e.g., butterfly)
34: reduced vector lock .unlock()
35: global reduction finish signal.signal()
36: return

form of Ck ← Ak + Bk, instead of C ← A + B ), where the elements can simply

be sub-vectors in the original vector. The reason for this explicit format is that

the reduction function cannot be applied to the sub-elements in parallel, even if a

collection type is detected by reflection. By providing the data in this manner, the

all-reduce module is able to exploit parallelism to speedup the object serialisation

and computation.
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4.2.3 Parallel Processing

Figure 4.5 depicts the scheme by which the data is processed in a parallelised fashion

to speedup the all-reduce operation. As the vector is submitted to the all-reduce

manager, the elements are partitioned based on the number of cores available on

the node. As the algorithm starts, each partition of the vector goes through the

pipeline (i.e., serialisation–upload–get–deserialisation–reduction) simultaneously and

asynchronously.

Figure 4.5: Internal Mechanism of the all-reduce process. Elem 1: first element/-
partition in the local vector. Elem 1’: first element/partition in the exchanged
vector.

Applying the cost analysis described in Section 4.1.2, the cost of parallel

butterfly all-reduce and chunked ring all-reduce become Equations 4.7 and 4.8 re-

spectively,

Tbutterfly,par = log2 p(u+ bv +
2bz

c
+
bg

c
) (4.7)
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Tring,chunked = (p− 1)(2u+
2bv

p
+

4bz

cp
+
bg

cp
) (4.8)

where c is the number of available processor cores on each node, and other symbols

have the same meaning as in Section 4.1.2. In comparison, object serialisation and

computation are serial in Spark, which poses performance limitations as the vector

size grows for larger-scale model training in machine learning. The reasons why it is

not parallel are threefold:

• Map and reduce have their origin in functional languages, where a function is

applied on elements of arbitrary type, and are not forced to be a vector type.

Spark preserves such syntax for general usage;

• Parallelisation of the map and reduce stages is at the object-level, and not at

the vector-element level. This is achieved by running multiple tasks in parallel

in Spark, which is acceptable if there are enough tasks to occupy the processors.

However, in the case of all-reduce, there are far fewer objects for reduction (i.e.,

one combined vector per node) to allow enough parallel tasks to fully utilise

all processors on each node;

• Users can write a parallel version of the reduction function to take advantage

of the multi-level resources, but the computation itself is rarely the primary

cost factor. As we will see in a demonstration of the neural network training

in Section 4.3.2, object serialisation is the dominant cost factor, but there is

no parallel implementation of the generic serialiser. To speed up object serial-

isations of arbitrary type, users must implement a custom parallel serialisation

method, which involves low-level byte manipulations that are too technical and

error-prone even for the most skilled programmers. We solve this conundrum

by forcing an input of a vector type, which allows the framework to take care

of parallelisation without additional user code.

In other words, our vector-based user-interface and parallel-processing scheme

provides a finer-grained parallelisation to fully exploit all processing resources, in

contrast to the coarse-grained parallelisation in Spark.

4.2.4 In-Memory Optimisation

In contrast to many task-based frameworks that store intermediate results on disk to

release memory pressure and enhance memory tolerance, we keep the update-to-date

vector in-memory, which avoids extra I/O overhead. The reason for this is twofold:

(i) all-reduce vectors are relatively small in size compared to the input dataset, and
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(ii) submitted/exchanged vectors are combined into a single vector, resulting in a

memory usage that does not grow as the number of tasks increases.

4.2.5 RDMA Optimisation

Remote Direct Memory Access (RMDA) is a hardware feature in high-performance

computer networks such as Infiniband, which is previously introduced in Section 4.1.5.

RDMA has the advantage of reducing the number of memory copies by interfacing

directly between the network card and the main memory, which in turn reduces

latency and frees up the processor. We compare the experimental results for TCP-

IPoIB/RDMA and Ring/Butterfly all-reduce in Section 4.3.4.

There are several issues to enabling RDMA in Spark. Spark uses the Netty

TCP library for network communications; replacing Netty requires a significant

change of code. Verbs is the low-level interface designed for RDMA communications.

To enable RDMA, one solution is to use Java Sockets Direct Protocol (deprecated)

or its successor the rsocket/librspreload [67] that automatically translates socket

to rsocket/verbs calls; the other solution is to use the DiSNI/jVerbs library [30]

developed by IBM. Both options provide a socket-like interface for the verbs interface.

However, rsocket is not yet a standard protocol and it is only available on Linux

systems; as such it is not a universal solution. For cloud services (e.g. AWS, Google,

Azure), only Azure provides RDMA on the Windows system and this has been the

decisive factor for the choice of computer system and software library.

Automatic translation from the socket to rsocket interface seems to be the

default option, but socket and rsocket cannot co-exist in the same application

in this way. For analytic applications, data may be stored in network-attached

or off-site storage, which will require a normal socket connection. This means

automatic interface translation is not an option. On the other hand, RDMA and

sockets/messages are two different communication methods. Mapping the socket

interface to RDMA cannot fully utilise the advanced features of RDMA. For example,

in RDMA, the receiver can lazily fetch the remote memory and any sub-portion

of the memory whenever it wants, whereas the receiver can only fetch the entire

message once in sockets.

For the reasons above, the DiSNI is favoured for Apache Spark. The design

of RDMA networking is similar to a non-blocking socket application; the main

difference is that the sender only provides the information of the local memory, and

subsequently, the receiver can read the remote memory into its own memory space.
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4.3 Results

4.3.1 Experimental Setup

To evaluate the all-reduce implementations, a simple benchmark and a real-world

neural network deployment were tested on a high-performance cluster, the specifica-

tion of which is detailed in Table 4.2. Notable features of this hardware include Intel

Xeon CPUs and an Infiniband interconnect.

Table 4.2: Hardware and Software Specification of the Test Cluster

Component Detail

Nodes 1 Driver Node, 32 Executor Nodes

Cores per Node 20

CPU Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz

Memory 64GB

Harddisk Locally Attached (HDD & SSD)

Interconnect Mellanox Technologies MT26428 (IB QDR)

Software Centos/Linux-2.6, Hadoop 2.7, Spark-2.1.1

We evaluate the performance of all-reduce by comparing the resident reduce-broadcast

and our new implementation of the butterfly algorithm. Each executor process runs

two tasks in turn, and each task outputs a vector of randomly generated floating point

numbers. The length of the vector for reduction ranges from 100,000 to 150,000,000

elements (that is, it has an approximate size of 390KB to 572MB). Experiments are

repeated 10 times in 8, 16 and 32 node configurations.

4.3.2 Empirical Performance

Figure 4.6 reports the average all-reduce time against the vector size on 32 executors,

and Figure 4.7 reports the relative speed-up of the parallel-butterfly algorithm with

respect to reduce-broadcast in 8, 16 and 32 node configurations. The average all-

reduce time exhibits a linear relationship with respect to the vector length. The

relative speed-up of the parallel-butterfly algorithm exhibits logarithmic growth and

becomes saturated at a vector length of 107; improvements re-gain momentum at

108, signalling traits of the underlying network and supporting protocols.
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Reduce-Broadcast and Vector Length

It is observed that the gradient of reduce-broadcast starts to grow as the vector

length reaches 108. The same is reflected in Figure 4.7, where the speed-up should

have saturated at 7× for a vector length of 107 − 108, but re-surges rapidly after

108. It is evident that the bandwidth bottleneck is reached for the reduce-broadcast

method at this point.

Butterfly All-Reduce and Cluster Size

Even though the butterfly algorithm minimises the number of steps in the all-reduce,

it is still susceptible to network bandwidth limits and contention. In contrast to

the reduce-broadcast method, we have not seen an increase in steepness in overall

all-reduce time in Figure 4.6 for the butterfly all-reduce. Furthermore, the per-stage

all-reduce time is stable (i.e., within 0.1 second difference) for the largest vector

length of 1.5× 108 with different cluster setups (i.e., 8, 16 and 32 nodes), as shown

in Table 4.3. As such, we might assume a steady growth in per-stage all-reduce time

for the next immediate power-of-2 cluster sizes (i.e., 64, 128 nodes) for vector lengths

within 1.5× 108.

Table 4.3: Per Stage Time for Vector Length of 1.5 × 108 for Parallel Butterfly
All-Reduce

Nodes 8 16 32

Time (seconds) 0.95 0.93 0.99

Breakdown Analysis

Figure 4.8 reports the breakdown of costs in all-reduce, which is summed over 10

runs and averaged across 32 slave nodes. The overheads are split into 5 metrics:

1. Start-Up: Starting up of tasks, including task delivery, serialisation/deserial-

isation, etc.;

2. Compute: Compute cost of the reduction function;

3. Send Overhead: Object serialisation (for all), and disk I/O for Spark Shuffle

(for reduce-broadcast only);

4. Receive Overhead: Object deserialisation;
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Figure 4.8: Breakdown of overheads in all-reduce of a large array size for 10 iterations
on a 32-node cluster

5. Blocking: Block time during network transmission of data (for all), and final

stage object deserialisation at the driver process (for reduce-broadcast only);

By comparing the breakdown components of serial-butterfly all-reduce and reduce-

broadcast, the network block time in serial-butterfly all-reduce is reduced by 84%,

whilst the cost of computation and object serialisation are almost identical. The

parallel-butterfly all-reduce further optimises the compute and object serialisation

by making use of all available CPU cores. Compute time is reduced by 80-90%,

and object serialisation (i.e., send overhead + receive overhead) is also reduced by

80-90%, with respect to the serial version. Overall, algorithmic changes (i.e., butterfly

all-reduce against reduce-broadcast) and parallel-processing contributes to 65% and

35% of the overall speed-up.
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4.3.3 Applications - Neural Network

As described at the beginning of the chapter, Neural networks are a typical example

of where the overall performance suffers due to the network exchange of parameters

at each iterative step. CIFAR, MNIST and ImageNet are three popular datasets

in neural network research for object recognition, which are also used as examples

in SparkNet [58]. We compare the costs of model updates in neural networks with

the original reduce-broadcast method and the new butterfly all-reduce algorithm for

these three datasets. The neural-net models and the results for all-reduce are listed

in Table 4.4.

CIFAR and MNIST are relatively small datasets compared with ImageNet,

and so the neural-net models are therefore simpler. The model weights for CIFAR

and MNIST are only 0.2% and 0.6% of the size of ImageNet. Nevertheless, a 2.3×
speed-up is observed for CIFAR and MNIST, and a more notable 7.4× speed-up is

observed for ImageNet. The all-reduce times and speed-ups match the projections

seen in Figures 4.6 and 4.7.

Table 4.4: All-reduce time in real-world neural network applications across 32 nodes.
Original: Reduce-broadcast. New: Butterfly all-reduce.

Dataset Neural Net Weight size – log length Original (sec.) New (sec.)

CIFAR [42] cuda-convnet [40] 5.2 0.356 0.154

MNIST [45] LeNet [44] 5.6 0.447 0.184

ImageNet [31] AlexNet [41] 7.8 17.9 2.4

4.3.4 Ring vs. Butterfly All-reduce

We have seen how butterfly all-reduce performs in comparison with reduce-broadcast

over TCP, on artificial data and on real-world applications. Here we further explore

the chunked ring all-reduce and butterfly all-reduce over TCP-IPoIB and RDMA

communication protocols. The objective is to establish whether bandwidth or latency

should be the priority when selecting an algorithm for aggregating a large number

of parameters in neural network training. We run chunked ring all-reduce and

butterfly all-reduce 20 times for the length of parameters (single precision floating

point numbers) ranging from 102 − 108.

Figure 4.9a reports the speedup of RDMA over TCP-IPoIB. It shows that

RDMA achieves a speedup as large as 18× on the butterfly all-reduce, and as the

number of parameter increases, the advantage of RDMA decreases. On the other

hand, RDMA has negligible effect for chunked ring all-reduce as the speedup remains

close to unity. This implies that zero memory copy has a greater impact on bandwidth-
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Figure 4.9: Comparison of all-reduce runtime on 32 workers for the butterfly and
chunked ring (abbr. ring) algorithm over RDMA and IPoIB.

bounded algorithms such as the butterfly all-reduce which is more copy-heavy. The

total amount of memory copy is log2(p)× b for butterfly all-reduce and 2b(p−1)
p for

chunked ring all-reduce, where p is the number of processes and b is the size of the

vector. RDMA is also proven more effective on moderately-sized vectors: if the

vector size is too small, the advantage of zero memory copy is less significant; if

the vector size is too large, resource for pinned memory is quickly consumed and

degrades system performance. Pinned memory is a scarce memory resource on a

computer, which is non-pageable and non-swappable unlike the non-pinned memory

and is necessary for RDMA to work as explained in Section 4.1.5.

Figure 4.9b reports the speedup of butterfly all-reduce over chunked ring

all-reduce. It is shown that butterfly all-reduce is favoured over chunked ring all-

reduce for a parameter size between 103 and 105 over RDMA. The performance is

comparable for these two algorithms over TCP-IPoIB, but chunked ring all-reduce is

favoured due to a lower computational cost as analysed in Section 4.1.2.

For real–world applications, we see a clear advantage of the butterfly all-reduce

algorithm over RDMA for models with a small number of parameters. For example,

the butterfly-RDMA would be 7-8 times faster than the chunked ring-RDMA by

extrapolation from Figure 4.9b, for the Cuda-convnet model [40] and LeNet model

[44] for CIFAR [42] and MNIST [45] datasets, with 105−106 parameters. For models

with large number of parameters, such as the AlexNet [41] for the ImageNet [31]

dataset, the butterfly all-reduce does not have a clear advantage over the chunked

ring all-reduce, and the butterfly all-reduce poses higher computational stress on the

processor. Therefore, the chunked ring all-reduce algorithm is expected to perform
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better in practice under system load and for large vectors over TCP. Everything

considered, there is no single winner for every application and the choice of the

algorithm has to be considered case to case.

4.4 Summary

In this chapter, we explore novel, efficient all-reduce algorithms and their implement-

ation in elastic task-based frameworks. We present an architecture and interface for

all-reduce in task-based frameworks and a parallelisation scheme for object serial-

isation and computation. Testing of the new butterfly all-reduce and chunked ring

all-reduce is conducted using the Apache Spark framework.

The effectiveness of the butterfly all-reduce is demonstrated by a logarithmic

growth in speed-up with respect to the vector length compared with an existing

reduce-broadcast method. A 9× speed-up is seen on vector lengths in the order of

108 on a 32-node high-performance cluster.

The new butterfly all-reduce is also tested with respect to the näıve reduce-

broadcast method on model-updates of neural network applications. A 2× and a

7× speed-up are observed for the CIFAR and MNIST datasets, and the ImageNet

dataset, respectively. We predict a stable performance of the butterfly algorithm for

larger cluster sizes.

We also compare the butterfly all-reduce and chunked ring all-reduce over

TCP/IPoIB and RDMA communication protocols. We show a clear advantage of the

butterfly all-reduce algorithm over RDMA for moderately-sized vectors, but RDMA is

only effective on copy-heavy algorithms and vectors with moderate size. We conclude

that there is no single winner for every application and the choice of the algorithm

has to be considered from case to case.

To further reduce the cost of communication, one possible direction is data

compression methods to reduce the storage volume of the parameters. For example,

by dropping near-zero values in [2], or by using mixed/lower precision floating

point numbers in [56]. One other direction is by overlapping computation and

communication, which is further explored in Section 6.1.
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Chapter 5

Memory Management

Besides inter-process communication as discussed in Chapter 4, computational

efficiency is another key element to the performance of machine learning. The

computational pipeline in machine learning consists of two parts: data pre-processing

and data consumption, as shown in Figure 5.1. Data pre-processing is comprised of

the data loading and transformation of the input data, which can later be consumed

by the machine learning algorithm. In this process, static (i.e. input data) and volatile

(i.e. model parameters) data are generated. Efficient handling of the processing

pipeline is closely associated with the overall computational efficiency, which is a key

factor in the performance model.

Figure 5.1: Processing pipeline for machine learning

The data consumption is dominated by linear algebraic calculations for neural

networks, as explained in Section 2.1.2. Linear algebra is the core to high-performance

scientific computing which has been under constant improvement; as such, the data

consumption throughput is relatively efficient.

The data pre-processing, on the other hand, is often underestimated but con-

tributes to computational inefficiency. This is especially prominent for heterogeneous

architectures, where the data consumption is performed by faster accelerator cards
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and the data pre-processing is performed by the slower host processor, resulting in an

increased proportion of processing time in the data pre-processing. The consumption

of physical memory also increases the pressure on the input/output throughput,

which indirectly impacts the overall performance of the system.

The Resilient Distributed Dataset (RDD) is the core distributed memory

concept in Apache Spark that is responsible for the representation and computation

of datasets. Section 5.1 covers a detailed introduction to the Resilient Distributed

Dataset for Apache Spark and why it is inefficient for both immutable and mutable

datasets. The remainder of the chapter introduces a new MapRDD (see Section

5.2) and a new distributed key-value store (see Section 5.3) for better handling of

immutable and mutable data respectively.

5.1 Resilient Distributed Dataset

The Resilient-Distributed-Dataset (RDD) memory abstraction is the key concept

underpinning the Spark framework. In this section, we explore in detail the underlying

structures and working mechanisms of RDD, and its application in machine learning

and heterogeneous environments.

5.1.1 Parallelism

The fundamental unit of an RDD is a partition that describes a subset of the dataset,

rather than the elements in the partition. When a map function is applied to the

dataset, tasks are created for each partition. Therefore, the number of tasks is the

number of partitions, and so is also the level of parallelism. Memory management is

also organized in terms of partitions; as such, a data-block unit belongs to a single

partition.

This detail turns out to be crucial to understanding the performance difference

between map() and mapPartitions() transformations, as it had been recognized that

there are discrepancies between the two [66] [54]. As shown in lines 3 and 11 of Listing

5.1, the user-function is applied to the entire partition as a single task, where iter is

an iterator for the elements in the partition, and the difference is whether the user-

function takes an element or an iterator as input, but they create the same number

of tasks/threads. As demonstrated by Lester Martin [54], map() transformations

can lead to slower performance than mapPartitions() transformations, if some helper

objects are created for every element, but parallelism does not contribute to the

performance difference.
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Listing 5.1: Code snippet from RDD.scala: map() and mapPartitions() Syntax

def map [U: ClassTag ] ( f : T => U) : RDD[U] = withScope {
val cleanF = sc . c l ean ( f )
new MapPartitionsRDD [U, T] ( this , ( context , pid , i t e r ) =>

i t e r . map( cleanF ) )
}
def mapPart it ions [U: ClassTag ] (

f : I t e r a t o r [T] => I t e r a t o r [U] ,
p r e s e r v e s P a r t i t i o n i n g : Boolean = fa l se ) : RDD[U] =

withScope {
val cleanedF = sc . c l ean ( f )
new MapPartitionsRDD (

this ,
( context : TaskContext , index : Int , i t e r : I t e r a t o r [T] )

=> cleanedF ( i t e r ) ,
p r e s e r v e s P a r t i t i o n i n g )

}

5.1.2 Dependencies and Computations

A partition is the basic unit of an RDD, and dependencies describe the relationships

between partitions of the parent and the child RDD. There are two types of depend-

encies: Narrow-Dependency and Shuffle-Dependency. For narrow dependencies, a

child partition depends on a small number of partitions from the parent RDD. For

shuffle dependencies, on the other hand, a child partition depends on a large number

of partitions in the parent RDD.

The computation of an RDD is delegated to the MemoryStore or the DiskStore

through the process of unrolling, in which the MemoryStore or the DiskStore iterates

through the elements in a given partition, which is a chained-action that causes all

the dependent partitions to be computed if not already. As illustrated in Figure 5.2,

the computation of partition 1 in RDD3 causes the materialization of partitions in

the parent RDDs 1 and 2. In a sense, the Spark framework is essentially a distributed

memory system.

The mechanism of the MemoryStore or DiskStore during computations is

shown in Algorithm 3. Depending on whether the memory or the disk is used, the

partition is either unrolled until the maximum memory is reached or written directly

to disk, and this process is synchronous. What is interesting is how it handles the

data that exceeds the memory limit. If disk is used, it must first write the entire

content to the disk, then returns a memory-mapped image of the file. Else, the

memory store must release the references to the previously unrolled elements. If the
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Figure 5.2: Computation of partition 1 in RDD3 that depends on partition 1 in
RDD1 and RDD2

user still keeps a reference to the data (i.e., memory cannot be reclaimed by the

garbage collector), an out-of-memory error is raised.

5.1.3 Persistence and Checkpointing

Persisting an RDD keeps a copy of the RDD in memory or on the disk while

maintaining its lineage/dependencies. Checkpointing an RDD truncates the lineage

graph of the RDD and saves the RDD on a reliable file system (Hadoop File System

or local file system). The two are not rival concepts but rather complementary:

checkpointing was introduced to resolve the lineage issue with RDD even though it

can be entirely re-computed from scratch, it is useful when the lineage is too long or

dependent on too many RDDs, such that re-computation would take a long time.

Checkpointed RDDs are saved on a reliable location that is naturally resilient by

replication. Checkpointed RDDs can also be read after the application terminates

and carried on in the next application, whereas persisted RDDs will be removed.

For iterative algorithms, a new RDD is created at every iteration, resulting

in a long string of dependencies that must be truncated using checkpoints. This is

further discussed in Section 5.3.

5.1.4 Sampling

Having shown how the MemoryStore and DiskStore handle data, we can now under-

stand why sampling data from an RDD is inefficient. By invoking RDD.sample(), a
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Algorithm 3 Simplified illustration for unrolling an RDD partition

1: source← iterator of partition p
2: output← iterator of partition p
3: if Use Memory then
4: while source.hasNext() & Enough Memory do
5: output.add(source.next)
6: Reserve memory if needed

7: if !source.hasNext() then
8: Return completely unrolled output iterator
9: else

10: Return partially unrolled output iterator

11: else
12: Unroll source iterator to file
13: Return file stream of the memory-mapped file

new RDD is created by iterating through the entire parent RDD. Although drawing

a sequence from a probability distribution is expensive, and efforts have been made

to minimize it by using a method called Gap-Sampling [16], a much greater cost

comes from the materialization of the entire parent RDD and the memory pressure

when there is not sufficient physical memory to hold the data as discussed above.

The root of the problem is the granularity of the RDD (i.e., in partitions

instead of records) and the sequential-access (i.e., as opposed to random-access).

Sampling only requires a subset of the dependent partition; therefore it is not efficient

to compute the entire partition.

There is no easy solution to the problem, because there exists no explicit

relation between the records in the parent and the child dataset, nor even between

the parent-child partitions in the case of a Shuffle-Dependency. The state of the

child dataset is entirely undetermined.

5.1.5 RDDs on Accelerators

Machine learning using accelerators, such as Graphical Processors (GPUs), has

become the main trend in recent years. Accelerated clusters have scaled-up and

concentrated processing power, as opposed to a scaled-out cluster with less computa-

tionally intensive nodes. This has several significant implications on the practicalities

of RDDs. As the compute-to-memory ratio is higher, applications run on fewer nodes

with less main memory. With less main memory comes higher memory pressure,

and data is more likely spilled to disk storage. Since the total device memory must

be less than or equal to the main memory, there is even more stress on the device

memory. This results in the starvation of accelerators.

There exist GPU implementations of the RDD abstraction [28] [83], which
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takes care of the data management between the CPU and the GPU, and the mapping

of data to GPU kernels. However, it does not solve the fundamental issues concerning

how the data is loaded, nor does it improve sampling efficiency. Moreover, mapping

data to GPU kernels is very restrictive for programmers, since users cannot utilize

the interface provided by the machine learning libraries. It is more practical to

provide a handle to the GPU data, and leave the choice of programming interface

and library to programmers.

5.2 Immutable Data - MapRDD

The main immutable data in machine learning is the input dataset that is in the

form of text, image, audio or video, etc., which needs to be loaded from the storage

and transformed into the in-memory data structure that is expected by the machine

learning algorithm. This type of immutable data can be represented as a Resilient

Distributed Dataset (RDD) as introduced in Section 5.1. Section 5.1 explored in-

depth how an RDD works, and the issues for the use of RDDs on accelerators and

machine learning applications. We found that the RDD is inefficient for machine

learning due to the coarse granularity and the synchronous sequential-access of the

dataset. With this knowledge, our goal is efficient handling of data that exceeds

physical memory capacities for both homogeneous and heterogeneous architectures,

with an application for stochastic processes. We present the design of the new

MapRDD, which exploits the implicit relations between data records in map()

transformations; we describe the design of MapRDD in the remainder of this section.

5.2.1 New MapRDD vs. MapPartitionsRDD

As explained in Section 5.1.4, the dataset granularity is limited by the non-explicit

relation between the parent and the child datasets. There is, however, an implicit

relation between the records by the map() transformation due to the syntax of the

map() function map : f(A)→ B.

In the current implementation of Spark, both map() and mapPartitions()

transformations produce a MapPartitionsRDD, in which the data granularity is kept

at the partition level, such that it is consistent with other data transformations (such

as sortByKey(), groupByKey(), cogroup(), etc.).

We introduce a new MapRDD that exploits the implicit relations of map :

f(A)→ B. Figure 5.3 shows a layout of the architectural differences of the original

RDD implementation and the new asynchronous MapRDD implementation. From

the top down, they are: (I) User interface, an iterator that draws items from the

dataset; (II) Memory abstraction that describes the dataset; (III) Memory/Disk
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Figure 5.3: Overall Architecture. Left: Original RDD Implementation; Right: New
SampleRDD Implementation

Store that manages data objects in memory and on disk; (IV) Parent dataset, or

the underlying file system at the source level. The new MapRDD is an extension

to the original RDD at all levels except for the file system. It preserves backward

capabilities of the original RDD; as such the new RDD can be the base/parent RDD

of the original RDDs.

5.2.2 Random Access and Sampling

The RDD supports an interface that iterates the elements in a one-by-one manner,

rather than in a randomly-accessible fashion. The primary reason for this is that

the state of the dataset is undetermined. The other reason for an iterator interface

is that the iterated records can be safely discarded and recycled by the garbage

collector; whereas in a randomly-accessible collection (e.g., arrays), memory cannot

be recycled as each of the records is referenced.

With the implicit relation of map transformations, the size of a child MapRDD

is known to be the same as its parent. Therefore, random-access to individual records

is possible by applying the transformation function to the chain of dependent records.

We have seen in Section 5.1.4 how sampling is inefficient by iterating the

entire dataset. With the random-access made possible by record-wise granularity

in the new MapRDD, it is now possible to draw sample records randomly without

materializing the complete dataset.

In addition, we extend the iterator interface to draw batches of records. It

not only permits direct sampling from the current dataset, which not only bypasses

the creation of a child dataset, but also provides opportunities for the sampling
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Listing 5.2: Simplified implementation of parallel sampling

def para l l e l Samp l ing ( p a r t i t i o n S i z e , sampler ) : Array [ Int ] =
{

(0 u n t i l p a r t i t i o n S i z e ) . par . map( i => {
i f ( sampler . sample ( ) ) ( i , 1)
else ( i , 0)

}) . f i l t e r ( e => e . 2 > 0)
}

algorithm and data loading to be carried out asynchronously.

5.2.3 Parallel Sampling for Large Partitions

The sampling process consists of a series of independent tests from a probability

distribution with known parameters. The cost of computing the probabilities is

relatively expensive and therefore Spark has been seeking algorithmic accelerations.

An example of this is Gap-Sampling [16], as mentioned previously.

Sequential sampling is implemented in Spark, since the number of tasks in

Spark is determined by the number of partitions (as explained in Section 5.1.1), and

each task takes a single processor by default. For heterogeneous architectures, the

dataset is partitioned by the number of accelerators; therefore there are far fewer

but larger partitions. Sequential sampling large partitions is not efficient due to the

imbalance in the number of partitions and the number of CPU cores.

With the size of the child dataset known in the new MapRDD, a parallel

sampling algorithm can be implemented as shown in Listing 5.2. The parallel-

Sampling() function takes the partition size and the sampler as arguments, and

produces a parallel collection of indices from 0 to the partition size; for each of the

indices, the sampler is invoked to decide if the index should be sampled (i.e. 1 for

positive, 0 for negative); a final set of sample indices is produced by filtering the

sampler outputs (i.e. greater than 0).

5.2.4 Asynchronous MemoryStore

The MemoryStore and the DiskStore are core components of the Spark framework,

where the computation and the memory management of the RDD take place; as

described in Section 5.1.2. We have also discussed how a synchronous MemoryStore

can be in-efficient for modern computer architectures and for datasets that exceed

physical memory capacities, especially for stochastic applications.

Algorithm 4 illustrates a simplified implementation of an asynchronous
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Algorithm 4 Asynchronous implementation of the MemoryStore

1: AllRecords← Collection[Id,Dependency]
2: Saved←Map[Id, F ilePath]
3: Buffered ←Map[Id,Record]
4: NextBatch ← wait for ReadThread
5: procedure ReadThread
6: loop
7: Wait for signal
8: batch← Sample(AllRecords)
9: toRead← batch ∩ Saved .elements

10: inMemory ← batch ∩ Buffered .elements
11: toCompute← batch− toRead− inMemory
12: Read(toRead)
13: Compute(toCompute)
14: Buffered.add(toCompute, toRead)
15: NextBatch← batch
16: Upload(NextBatch)
17: Signal WriteThread

18: procedure WriteThread
19: loop
20: Wait for signal
21: toWrite ← getRecordsOutsideBufferSize(Buffered)
22: Write(toWrite)
23: Saved .add(toWrite)
24: Buffered .remove(toWrite)

25: function nextBatch
26: ret← NextBatch
27: Signal ReadThread
28: return ret

MemoryStore. The workhorses of the MemoryStore are the ReadThread and the

WriteThread that run asynchronously in the background while the executor computes

the user-function on the next batch. As the user-function invokes the nextBatch()

function, it immediately returns the pre-fetched batch, and signals the ReadThread

to prepare the next batch. The ReadThread first samples a list of records to be

computed, and cross-references any records that may have been buffered in memory

or saved to disk. It then computes the record and its dependent records from the

parent dataset, and reads the saved records from disk. Lastly, the ReadThread signals

the WriteThread before setting the value of the NextBatch. The WriteThread in

turn checks if the buffer has exceeded its limit and writes any unsaved records to

the disk.
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5.2.5 Everything Put Together

(a) RDD (b) MapRDD

Figure 5.4: Data Sampling with Regular RDD (left) and MapRDD (right).

We compare how the original RDD and the new MapRDD work in Figure 5.4.

Originally, the input data must be fully loaded in the main memory, and a small

sample is selected to be consumed by the training process, as shown in Figure 5.4a.

With MapRDD, only the sparsely selected inputs are loaded into a buffer in the main

memory, shown in steps 1-3 of Figure 5.4b. MapRDD adopted a double-buffering

strategy, while the contents in one buffer is being used for training, the other is saved

in storage and recycled for the next batch, as shown in steps 4 and 5 of Figure 5.4b.

5.2.6 Evaluation

We evaluate the new MapRDD on the ImageNet [31] dataset with AlexNet [41] on

Caffe. The dataset consists of 1.3 million resized images (256× 256 pixels), which

is 19GB uncompressed. The experiment setup is explained in Section 5.2.6, and

the results are evaluated in terms of overall runtime, CPU utilisation and GPU

utilisation; these results can be found in Sections 5.2.6, 5.2.6 and 5.2.6 respectively.
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Experimental Setup

The experiments are carried out on a standalone workstation with a NVIDIA Tesla

K80 card (only a single GPU is used), so that there is no model synchronisation

overhead; the specification of which is listed in Table 5.1.

The user code is a modified version of the SparkNet [58] toolkit. The main

loop implemented with the original Spark API is shown in Listing 5.3, and the new

implementation with the new MapRDD is shown in Listing 5.4. The main differences

are the main loop inside the foreachPartition structure in line 4, and the new batch

interface in line 5 of Listing 5.4.

We run the experiments with various data sizes and memory cache settings,

which are listed in Table 5.2; the batch size is set to the default value (i.e. 256) in

the reference to Caffe training model [14]; all experiments are repeated 5 times. In

the original Spark implementation, the size of a partition cannot exceed 4GB, as

the indexing limit is set to the maximum value of an 32-bit integer. Since we are

consolidating the data into a single partition for the GPU, we are only using 20% of

the ImageNet dataset due to the limit of memory capacity. For caching methods,

the ‘Memory & Disk’ mode uses memory as much as possible until it spills to the

disk; the ‘Disk-Only’ mode does not cache in memory, to simulate a short-of-memory

situation; the ‘Async’ mode is the new mode that saves data asynchronously in the

new MapRDD.

Table 5.1: System Configuration

CPU Intel(R) Xeon(R) CPU E5-2687W v3 @ 3.10GHz

Memory DDR4, Capacity:128 GB, Speed: 2400MHz

Primary Disk Samsung SSD 850 PRO 512GB

Secondary Disk TOSHIBA HDWE160 (6TB, 7200RPM)

Accelerator NVIDIA Tesla K80

Listing 5.3: Main Training Loop with current Spark API

val trainRDD = new MapPartitionsRDD ( )
for ( i <− 0 u n t i l i t e r s ) {

val sampleRDD = trainRDD . sample ( )
sampleRDD . f o r e a c h P a r t i t i o n (

t r a i n I t => {
s o l v e r . s tep ( t r a i n I t )

})
}
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Table 5.2: Experimental Settings

Experiment Data Size Cache Method Iterations Batch Size

1 5% Memory & Disk 20 256

2 10% Memory & Disk 20 256

3 15% Memory & Disk 20 256

4 20% Memory & Disk 20 256

5 5% Disk Only 20 256

6 10% Disk Only 20 256

7 15% Disk Only 20 256

8 20% Disk Only 20 256

9 5% Async 20 256

10 10% Async 20 256

11 15% Async 20 256

12 20% Async 20 256

13 50% Async 20 256

14 100% Async 20 256

Listing 5.4: Main Training Loop with new MapRDD

val trainRDD = new MapRDD( )
trainRDD . f o r e a c h P a r t i t i o n (

batchI t => {
for ( i <− 0 u n t i l i t e r s ) {

s o l v e r . s tep ( batchI t . nextBatch )
}

}
})

Overall

Table 5.3 lists the runtime results corresponding to the experimental settings in

Table 5.2. The loading time includes all the time spent from the initialisation of

the application until the first training step; the average step time is the averaged

runtime for each training step. Figures 5.5a and 5.5b are direct comparisons of the

loading time and step time for the synchronous method in ‘Memory & Disk’ mode

and the asynchronous method with the new MapRDD.

For the first set of experiments (i.e., 1-4) that run in ‘Memory & Disk’ mode,

the initialisation takes significant time (i.e., more than 13 minutes for 5% of the

dataset) until the training finally begins, which could have been used to train for

180-280 steps. As shown in Figures 5.5a and 5.5b, both the loading time and the
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Table 5.3: Overall Runtime

Experiment Loading Time (sec.) Average Step Time (sec.)

1 823.4 4.6

2 1530 6.5

3 2309.5 8.5

4 3252.9 11.3

5-8 failed failed

9 4.2 2.7

10 4.2 2.7

11 4.2 2.7

12 4.2 2.7

13 4.2 2.7

14 4.2 2.7

step time increase near linearly as the size of the partition increases; the gradient

starts to grow after 15% of the ImageNet dataset (i.e., 256k records), caused by the

memory pressure; this is discussed in Section 5.2.6.
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Figure 5.5: Average loading and step time across different partition sizes for syn-
chronous (experiments 1-4) and asynchronous (experiments 9-14) methods.

For the third set of experiments (i.e., 9-14) in asynchronous mode, the loading

time is almost negligible compared with the loading time in the ‘Memory & Disk’

mode; a 1.7-4.2× speedup is observed in training steps for up to the partition size

limit of 4GB. Both the loading time and the step time are constant in spite of

the increase in data size (see Figures 5.5a and 5.5b). This demonstrates that the

loading time can be totally avoided by lazy-loading of data records; the asynchronous

sampling and memory transfers by the new MemoryStore (see Algorithm 4) are
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effective, which kept the step time constant, even for a full size dataset such as the

ImageNet on a single machine.

For the experiments run in ‘Disk Only’ mode (i.e., 5-8), they failed with the

output size exceeding the maximum value of the integer type (i.e., 232) while trying

to write the partition to the disk; this is because the images are expanded 4 times

in size as every pixel byte is converted to a 4 byte floating-point number, and a

single file cannot exceed the limit of 4GB (by the limit of 232 bytes). The memory

usage is also reflected in Section 5.2.6. This implies that the dataset must be split

into small partitions, or the application would fail. For large data items, such as

high-resolution images and videos, a partition may contain very few items limited

by the size of 4GB, but in large quantity. Sampling from millions of partitions and

mapping these partitions to devices is not efficient. Since the new MemoryStore (see

Algorithm 4) manages data in a per-record fashion, it no longer poses a size limit on

the partitions, and it is therefore more suitable for managing large items.

CPU Resource Utilisation

Table 5.4 lists the peak memory and CPU usage during loading and training,

corresponding to the experiments listed in Table 5.2.

In terms of CPU memory, peak memory usage is much higher for the syn-

chronous method than the asynchronous counterpart, as expected. As shown in

Figure 5.6a, the committed memory (i.e., size of the JVM heap) during training

steps increases rapidly as the partition size increases for the synchronous method

(i.e., experiments 1-4), whilst the memory usage of the asynchronous method (i.e.,

experiments 9-14) is near constant. For experiment 4, the size of the heap of the

Java Virtual Machine has almost reached the limit of the physical memory capacity,

which cannot grow any further, therefore causing the loading and training to slow

down as seen in Section 5.2.6. In our experiments, the peak memory usage of the

asynchronous method is reduced by 96% during training steps compared with the

synchronous method.

In terms of CPU processing cycles, the usage is stable for both synchronous

and asynchronous methods. During loading, the synchronous method takes up

a significant amount of CPU cycles (as much as 70%), which is freed up by the

asynchronous method (to only 6%). During training steps, the parallel sampling

algorithm (see Section 5.2.3) makes better use of the free CPU cycles (i.e., CPU

utilisation rises from 6% to 11%) while the majority of the computation is delegated

to the GPU.

81



Table 5.4: CPU Resource Utilisation

Experiment

Peak

Memory

(Loading)

(GB)

Peak

Memory

(Training)

(GB)

CPU

(Loading)

(%)

CPU

(Training)

(%)

1 48 58 70 6

2 48 76 70 6

3 51 88 70 6

4 50 89 70 6

5-8 failed failed failed failed

9 2 2.5 6 11

10 2.5 2.5 6 11

11 2.5 2.5 6 11

12 2.5 3.5 6 11

13 2.5 3.5 6 11

14 3.5 3.5 6 11

Table 5.5: GPU Resource Utilisation

Experiment

Average

block time

per step

(sec.)

Average

compute time

per step

(sec.)

GPU(%)

1 2.58 2.07 44.52%

2 4.48 2.07 31.60%

3 6.7 2.07 23.60%

4 9.6 2.07 17.74%

5-8 failed failed failed

9 0 2.07 100.00%

10 0 2.07 100.00%

11 0 2.07 100.00%

12 0 2.07 100.00%

13 0 2.07 100.00%

14 0 2.07 100.00%
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GPU Resource Utilisation

Table 5.5 lists the average block time, the compute time, and the GPU utilisation

during training steps corresponding to the experiments listed in Table 5.2. Figure 5.6b

draws direct comparisons of GPU utilisation during training steps for the synchronous

(i.e., experiments 1-4) and asynchronous (i.e., experiments 9-14) methods.

The average compute time per training step is the same for both synchronous

and asynchronous methods across different sizes of the dataset, as the batch size

is constant. For the synchronous experiments, the block time (mainly consisting

of data sampling and data transfer) contributes to the low GPU utilisation, which

drops exponentially as the partition size increases. For asynchronous experiments,

the block time is negligible and the GPU functions near 100% of the time, because

the data sampling and data transfer on the CPU is entirely overlapped with the

compute time on the GPU.
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Figure 5.6: Average committed memory and GPU compute utilisation during training,
across different partition sizes, for synchronous (experiments 1-4) and asynchronous
(experiments 9-14) methods

5.3 Mutable Data - Distributed Key-Value Store

One of the biggest obstacles for Apache Spark is the lack of persistent memory

support for mutable data because of the functioning programming paradigm. In the

context of machine learning, this is mainly comprised of the weights/parameters of

a machine learning model that updates and synchronises at every iteration as seen

in Figure 5.1. So far we have been using Resilient Distributed Datasets (RDD) for
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immutable data; however, this is not feasible for volatile memory such as the weights

of a machine learning model for the following reasons:

1. A new RDD is created every time the weights change. The changes in the

weights can be represented as a series of RDDs, which will quickly consume all

physical memory and causes data to be dumped onto slow secondary storage.

The RDD can also be checkpointed, in which case the previous history of the

RDD (i.e. the lineage) will be truncated; consequently, the main advantage

of the RDD (i.e. the lineage) will be disregarded and the use of RDDs is in a

disadvantage compared with private memory space used in MPI.

2. For data-parallel training, a replica of the same weights/parameters is required

by every worker which is not well represented by RDD, as RDD is designed to

represent a single image of the whole data. For this reason, an RDD consists

of replicas of the same variable cannot be re-partitioned.

For the two reasons above, we conclude that the RDD is not a suitable representation

for model replicas; therefore a new system is needed for the efficiency and scalability

of the management of memory replicas in a distributed system. There are three

different scenarios to be considered:

1. Bootstrap: initialisation of mutable variables when an executor is added;

2. Consistency: the copy of the variable is exactly the same on every executor at

any given time;

3. Out-of-sync: an executor may be left out due to dynamic allocation of tasks,

as such the data held by this process is out-of-sync;

4. Exit: executor holding the data exits;

Since the Spark framework is based on a master/slave architecture and

only the driver process on the root node survives the life span of the application,

therefore it is the only reliable place for the persistent data to be kept. However,

collecting/broadcasting data from/to all the workers is a costly operation that is

bounded by the network bandwidth, which is identical to how the parameter server

architecture works.

We propose a new proof-of-concept distributed key/value store in which the

master process only acts as the coordinator which keeps a copy of the metadata of

the data stored on each node, whilst the actual data is stored distributively across

the cluster. Upon initialisation (i.e. bootstrap scenario), the executor invokes the

Get(key, state) method in Algorithm 5; if the requested data is not present in the local
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memory, the worker will consult the master process about the location of the data

and try to fetch it remotely (see Lines 15 and 17 of Algorithm 5). During execution,

a global state of each iteration is passed to the executors and this is compared

with the local state of the value by incorporating the state in the calculation of

the hash of the key-value pair as shown in Line 12 of Algorithm 5. If the hash is

present, the local copy of the value will be used; otherwise, an ‘out-of-sync’ scenario

is detected, and a copy of the memory will be fetched from the remote workers as

before during initialisation. When a key-value pair is updated, the Update(key, state,

value) method is invoked, which removes the previous copy of the value from the

master process and inserts the updated copy. To ensure that the value corresponding

to a given key and state is unique, a checksum is performed and passed to the master,

where it will be compared against duplicate copies in the cluster and an error will be

raised if different copies of the same variable exist. As the worker process exits, it

will inform the master process to destroy all the data it owns.

The interactions between the master and the workers are illustrated in Figures

5.7a and 5.7b. To update a key-value pair, each worker goes through the ‘lock-

update-unlock’ procedure and informs the master of the location and checksum of

the variable, which only requires communication between the worker and the master.

To read a key-value pair, the worker will first check if it is present locally: if yes,

no communication is required; if no, the variable is fetched from remote workers as

described above.

(a) Updating a key-value pair (b) Reading a key-value pair

Figure 5.7: Updating (left) and reading (right) a key-value pair.
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Algorithm 5 Distributed memory algorithm - client side

1: store ← ConcurrentHashMap
2: procedure Update(key, state, v)
3: hash← computeHash(key , state)
4: tellMaster(remove(hash))
5: newHash ← computeHash(key , state + 1 )
6: checksum ← computeChecksum(key , state + 1 )
7: tellMaster(add(newHash, checksum))
8: store.put(newHash, v)

9: procedure Get(key, state)
10: hash ← computeHash(key , state)
11: v ← null
12: if store.contains(hash) then
13: v ← store.get(hash)
14: else
15: locations ← askMaster(hash)
16: while v is null or locations is not empty do
17: v ← fetch(random(locations))

18: store.put(hash, v)

19: return v
20: procedure Remove(key, state)
21: hash ← computeHash(key , state)
22: tellMaster(remove(hash))
23: store.remove(hash)

5.3.1 Consistency and Fault Tolerance

The idempotence property ensures the same result is produced for the same input

parameter in functional programming, such as the Scala language used by Spark.

To ensure this, the value for any variable must be unique and unchanging. This

is accomplished by the versioning and checksum in our system. Versioning is

implemented by a unique key-state combination after each update. The checksums

of all the variables are gathered and stored by the master, which will be checked for

each update, to makes sure a unique value corresponds to the same key-state pair,

despite duplicated copies.

In our design, a variable is recoverable as long as a single copy survives

amongst all nodes (master and workers); therefore two strategies are adopted for

fault tolerance: duplication and checkpointing. For data-parallel machine learning, a

copy of the weights/parameters is present on every worker; therefore the variable is

recoverable unless all workers fail when a catastrophic failure occurs. Checkpointing

writes the variable to permanent storage, which persists outside the life-span of the
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(a) Hybrid all-reduce + key-value

(b) Parameter Servers

Figure 5.8: A comparison between the hybrid model (all-reduce & key-value store) and
the parameter server architecture. The hybrid model requires communication between
workers, whereas the parameter server architecture only requires communication
between the servers and the workers.

application. In the situation of a catastrophic failure, the application can be resumed

from the latest checkpoint of the variable.

5.3.2 Comparison with the Parameter Server Architecture

The combination of all-reduce and key-value store in this research is functionally

equivalent to the parameter server architecture used in Tensorflow [1] and MxNet

[8]. Both serve the purpose of persistent storage of the volatile variables (i.e. the

parameters) for elastic computing.

The use of all-reduce and key-value store creates a hybrid computing model

of traditional high-performance computing and elastic computing as shown in Figure

5.8a, in which all-reduce ensures efficient inter-process communication and the key-
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value store using master-slave model enables flexible dynamic horizontal scaling of

the application.

Parameter servers are created with flexibility as a priority, where the variable

is stored across a group of servers which can then be fetched by any workers as

shown in Figure 5.8b. The updates to the variable are aggregated at the servers

(i.e. pushing) and the combined results are broadcasted to the workers (i.e. pulling),

which is similar to the ‘reduce-broadcast’ in Apache Spark that is discussed in

Chapter 4. Unlike the original ‘reduce-broadcast’ method, the use of multiple servers

effectively increases the bandwidth at server nodes and ‘reduce-broadcasts’ become

‘scatter-gather’ operations as shown in Figure 4.1b in Chapter 4; however, the total

volume of traffic is unchanged and the ratio of the number of servers and workers

has a significant impact on the communication performance.

In comparison, the hybrid model of all-reduce and key-value store offers the

same flexibility as the parameter server architecture, while keeping an optimum

performance as the MPI.

5.4 Summary

Data pre-processing as part of the pipeline for machine learning is often underes-

timated but plays an important role in computational efficiency. Managing data

efficiently improves the processor utilisation and overall computational efficiency,

and subsequently shortens the turnaround time.

The Resilient Distributed Dataset (RDD) is the core memory concept in

Apache Spark, and this chapter has explored in depth how the RDD works and how

it is largely obsolete in present-day machine learning applications. We identified

that the source of deficiency originates from the coarse granularity and synchronous

sequential-access of the dataset.

We present the new MapRDD, an extension to the Resilient Distributed

Dataset (RDD) for map dataset transformations, and the new complementary asyn-

chronous MemoryStore. Individual records in the child MapRDD can be accessed

randomly and lazily. The data sampling and data transfers are managed asynchron-

ously.

Through the experiments on the ImageNet dataset over different caching

methods and data size settings, it is demonstrated that: (I) The initial data loading

phase is redundant and can be completely avoided; (II) Sampling on the CPU can

be entirely overlapped with the training on the GPU to achieve near full occupancy;

(III) CPU cycles and memory usage can be reduced by more than 90% to allow

other applications to run simultaneously; (IV) Constant training step time can be
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achieved, regardless of the size of the partition, for up to 1.3 million records in our

experiments.

We also identified that RDD as a static memory abstraction is not suitable for

volatile memory such as the model parameters in machine learning, because making

a persistent copy of the parameters is both time and space consuming and an RDD

comprised of replicas cannot be re-partitioned.

We propose the new proof-of-concept distributed key-value store, as an

alternative means to manage volatile data efficiently and flexibly. We compare the

hybrid model of all-reduce and key-value store with the parameter model architecture

for managing volatile data in elastic computing. We show that the new hybrid model

offers the same flexibility as the parameter server architecture while maintaining

optimal communication performance.
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Chapter 6

Algorithmic Improvements

Having optimised the implementation for distributed machine learning on Apache

Spark (i.e. communication in Chapter 4 and memory management in Chapter 5),

we now turn our attention to algorithmic improvements.

Overlapping the gradient computation and communication – asynchronous

computation – is a way to reduce solution time. Increasing the batch size (i.e. the

problem size) and subsequently the amount of computing resources (i.e. processors,

memory and storage), known as ‘weak scaling’ in High-Performance Computing, is

another way to reduce solution time.

The remainder of this chapter introduces two new methods: (i) An asyn-

chronous SGD method based on non-blocking elastic all-reduce, see Section 6.1; (ii)

A generalised fine-grained batch-size control method for large batch size training,

see Section 6.2.

6.1 Asynchronous SGD

The inefficiency of distributed SGD compared with non-distributed SGD arises from

the need for communication and synchronisation at each iteration for data-parallel

training (the difference between data–parallelism and model–parallelism is explained

in Section 2.1.2). Reducing the cost of communication and synchronisation directly

impacts computational efficiency, and communication efficiency plays a key role in

the performance model explained in Chapter 3.

For neural network algorithms, the computation and synchronisation can

be overlapped due to the layer-by-layer structure, which is implemented in most

neural network libraries. However, in a distributed setting, communicating in small

messages incurs extra latency costs, which would be significant for a latency bounded

computer network. As such, an asynchronous version of the SGD algorithm is needed.

Neural networks often consist of millions of parameters as shown earlier in
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Table 1.1. The aggregation of these parameters is accomplished by the ‘all-reduce’

function in distributed computing platforms, which is explored in Chapter 4. Even

with the communication optimised, machine learning on Spark still suffers from the

overhead in synchronisation, in which the time spent for each training step depends

on the slowest worker.

Major studies [1] [65] favour a Stale Synchronous Parallel (SSP) scheme for

Stochastic Gradient Descent, which offers a trade-off between the training speed

and the rate of convergence, relying on shared memory or a parameter server

architecture. The bufferfly-mixing algorithm [85] proposed the application of partial

weight aggregation and interleaved computation and communication rather than

overlapping them, which leads to an ‘out-of-sync by k steps’, where k is the number of

steps of the chosen ‘all-reduce’ algorithm. This creates a long lag in synchronisation

and leads to greater inaccuracy as explained in Section 2.2.6.

Due to the synchronous data-flow design, asynchronous machine learning is

not possible on Apache Spark, but a näıve parallelisation scheme has been used in

SparkNet [58], to reduce the overhead in synchronisation by a less frequent global

summation after a certain number of batches. With the non-blocking elastic all-

reduce described in Chapter 4, this opens up possibilities for asynchronous machine

learning on Spark.

6.1.1 Asynchronous SGD using non-blocking all-reduce

We modify the original update rule for synchronous stochastic gradient descent

shown in Equation 6.1, and we propose two possible alternatives with non-blocking

all-reduce, as shown in Equations 6.2 and 6.3. The symbols of the equations have

the same meanings as previously defined, where Q(w) is the objective function to be

minimised with parameter w, symbol η is the learning rate, subscript i denotes the

number of samples, and superscript j denotes the number of iterations.

For method 1, gradients are calculated based on the weights from the previous

iteration (denoted by the term 5Qi(w(j−1)) in Equation 6.2), and applied on the

weights of the current iteration. For method 2, the weights and gradients are

current to the current iteration, but the gradients are generated from the local/non-

synchronised version of the weight (denoted by the term Qi(w
(j,local)) in Equation

6.3).

This new method proposed works by making the following assumption: the

difference between the un-synchronised local weight and the synchronised global

weight (i.e. δw = wj − wj,local) is small enough, such that the gradient difference

5Q = 5Qi(wj) −5Qi(wj,local) is negligible. One way to minimise the chance of

divergence is by regular synchronisation every certain number of iterations, but
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not as often so that it will become equivalent to the synchronous SGD. Another

common interpretation for asynchronous SGD is that it carries more momentum

than the synchronous SGD since the weights used for gradient calculation are from

the previous iteration.

w(j+1) = w(j) − η
n∑
i=1

5Qi(w(j))/n (6.1)

w(j+1) = w(j) − η
n∑
i=1

5Qi(w(j−1))/n (6.2)

w(j+1) = w(j) − η
n∑
i=1

5Qi(w(j,local))/n (6.3)

Algorithm 6 Asynchronous SGD with non-blocking all-reduce method 1 (corres-
ponding to Equation 6.2)

1: w ← parameters of the network
2: procedure main(w)
3: j ← count of training steps
4: for i ≤ numIterations do
5: ∆wj ← −η5Q(w(j))
6: AllReduce.Submit(∆w(j), j)
7: ∆w(j−1) ← AllReduce.Get(j-1)
8: w(j+1) = w(j) + ∆w(j−1)

9: j = j + 1

Algorithm 7 Asynchronous SGD with non-blocking all-reduce method 2 (corres-
ponding to Equation 6.3)

1: w ← parameters of the network
2: procedure main(w)
3: j ← count of training steps
4: for i ≤ numIterations do
5: ∆w(j,local) ← −η5Q(w(j,local))
6: w(j) ← AllReduce.Get(j)
7: w(j+1) = w(j) + ∆w(j−1)

8: AllReduce.Submit(w(j+1), j+1)
9: j = j + 1

The implementations of the two methods are presented in Algorithms 6 and

7, for methods 1 and 2 respectively. For method 1, the gradient is first calculated in

Line 5 and submitted for all-reduce in Line 6, after which the combined gradients

from the previous iteration are retrieved in Line 7, and the current weight is updated
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in Line 8. For method 2, a local gradient is generated from the local version of

the weights in Line 5, after which the global version of the weights are retrieved in

Line 6 and updated with the local gradient in Line 7, which is lastly submitted for

all-reduce in Line 8.

6.1.2 Theoretical Speedup

The differences between the synchronous method and the asynchronous method are

illustrated in Figure 6.1. For the synchronous method (Figure 6.1a), the computation

of gradient, the global weight aggregation and the weight update occur in a sequential

fashion. For the asynchronous method (Figure 6.1b), the global weight aggregation

and the weight update are overlapped with the gradient computation, which can

potentially accelerate the training speed. However, the asynchronous method trades

the rate of convergence for training speed, which may or may not result in an overall

improvement. Therefore, an experiment is setup to test the rate of convergence of

this method (see Section 6.1.3).

(a) Synchronous (b) Asynchronous

Figure 6.1: Comparison of the synchronous and asynchronous SGD methods.

Assuming the rate of convergence is comparable and the settings (e.g., learning

rate, batch size, number of workers, etc.) are identical, this method provides a

maximum speedup of 2× (as shown in Equations 6.4 and 6.5), in the ideal case where
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the computation of the gradient is totally overlapped with the global synchronisation

of parameters (i.e. Tcompute = Tcomm in Equation 6.4).

Speedup =
Tcompute + Tcomm

max(Tcompute, Tcomm)
(6.4)

lim
Tcomp→Tcomm

Speedup =
Tcomp + Tcomm

max(Tcomp, Tcomm)
= 2 (6.5)

This, in turn, depends on: (i) The neural network model, the processor speed

and the batch size, which can have an effect on the computation time; (ii) The

cluster size, the parameter size and the network speed, which can have an effect on

the communication time. The modelling of the relations between processing and

communication speed for asynchronous SGD has been analysed earlier in Section 3.2.

6.1.3 Results

Experimental Setup

To evaluate our methods, a real-world neural network deployment was tested on a

high-performance cluster, the specification of which is detailed in Table 6.1. The

data to be classified is the ImageNet (ILSVRC2012) dataset [31], which contains 1.2

million images of 1000 classes, but only 10% (100 classes) of which was used in our

tests. The AlexNet [41] and GoogLeNet [74] models were used for training, and they

have a reported top-1 accuracy of 57.1% and 68.7% on classifying the ILSVRC2012

dataset respectively.

Table 6.1: Hardware and Software Specification of the Test Cluster.

Component Detail

Nodes 1 Driver Node, 32 Executor Nodes

Cores per Node 20

CPU Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz

Memory 64GB

Harddisk Locally Attached (HDD and SSD)

Interconnect Mellanox Technologies MT26428 (IB QDR via IPoIB)

Software Centos/Linux-2.6, Hadoop 2.7, Spark-2.1.1

Experiment 1: Spark vs. MapRDD/All-Reduce

In the first experiment, we compare the original Spark implementation and the

modified MapRDD/All-Reduce implementation (MapRDD and Elastic All-Reduce
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Figure 6.2: Breakdown of costs to reach 20% accuracy on GoogLeNet with 10% of
the ImageNet dataset. Original: Spark and RDD implementation. New: MapRDD
and all-reduce implementation.

are introduced in Chapters 5 and 4 respectively). We train the first 100 classes of

the ILSVRC2012 dataset with a constant batch size of 64 and a varying cluster

size (i.e., 4-node, 16-node and 32-node). The candidates in the experiment are

algorithmically equivalent; all configurations are the same except for the underlying

implementations. We expect changes in the amount of overhead (i.e., startup,

scheduling and communication) and the memory usage.

Figure 6.2 reports the breakdown of costs in training the GoogLeNet model

to a 20% accuracy. There is a significant reduction in the communication costs,

while the other costs (i.e., startup, computation, scheduling and synchronisation)

remain comparable. The improvements in the execution time are mainly contributed

by the employment of all-reduce described in Chapter 4. This is also reflected

in the compute-ratio in Figure 6.3a, which is defined as the proportion of actual

computation cost in the total cost; a rise from 31-47% to 82-91% in the compute

ratio is observed in our tests.

The MapRDD described in Section 5.2 has a negligible effect on the total

execution time, because a small subset of the original dataset was used and the

processing time dominates. We expect a more notable impact with larger input and

the use of accelerator cards. However, the improvements are still reflected in the

amount of memory used in Figure 6.3b. An 80% reduction in the memory usage

is observed in the 4-node setting where the memory pressure is highest in our test,
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Figure 6.3: A comparison between the original (Spark/RDD) and new (MapRDD/all-
reduce) implementations for training the GoogLeNet model on the ImageNet dataset.

and subsequently, a 67% and 54% reduction is observed for 16-node and 32-node

settings respectively. The advantage of the MapRDD would be more prominent if

the full dataset is used, since only 10% of the dataset was used in our tests. Since the

MapRDD only keeps the latest batch of samples in memory, the amount of memory

used for storing the input data is invariant, the fluctuations in the memory usage for

the MapRDD method reflect only the working memory.

Overall, a 2.0x-2.6× speedup is observed in our experiment (listed in Table

6.2), which increases as the cluster size increases. We expect little speed gain to

be further extracted from this cluster since the computation ratio has reached 82-

91% as aforementioned. However, since the speedup is mainly contributed by the

improvements in communication, a greater speedup is expected if the execution

time is communication dominant, which is the case for heterogeneous clusters with

accelerator cards (such as Graphical Processing Units, GPUs). We tested GoogLeNet

with a single GPU chip on an NVIDIA K80 graphics card using the Caffe and cuDNN

library, and the average processing time for a batch size of 64 is 210ms. Assuming

a processing time of 210ms per iteration, a speedup between 9.6x-11.2× is to be

expected for the same tests carried out by substituting for Tcompute and T ′compute in

Equation 6.6 (also listed in Table 6.2).

Speedupsync =
Tstartup + Tcompute + Tcomm + Tsync
T ′startup + T ′compute + T ′comm + T ′sync

(6.6)
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Table 6.2: Speedup of Neural Network Training of the new method
(MapRDD+AllReduce) with respect to the original implementation.

Cluster Size CPU Speedup
GPU Speedup

(Expected)

4 2.0 11.2

16 2.3 9.6

32 2.6 9.7

Experiment 2: Convergence Analysis for Asynchronous SGD

The second experiment is concerned with the asynchronous method using the non-

blocking all-reduce proposed in Section 6.1. As discussed before, this method

provides a maximum further speedup of 2× if the compute-to-communication ratio is

1, providing the rate of convergence does not deteriorate faster than the acceleration

of the training speed. The compute-to-communication ratio can be manipulated by

changing the batch size, the cluster size, the neural network model, etc. but it is

based on the assumption that the convergence rate stays the same.

In this experiment, we investigate the rate of convergence of the new asyn-

chronous methods (i.e., Algorithms 6 and 7) with 32 compute nodes and various

batch sizes. As the processing power of the accelerators grows, so the execution

time will become more communication dominant. The most likely solution to gain

speedup is by increasing the size of the batch for each training iteration, to bring the

compute-to-communication ratio closer to 1. However, it is important to understand

how the rate of convergence will react to the changes in the batch size.

We test both Algorithm 6 and 7. Unfortunately, Algorithm 6 failed after

several iterations as the error became too great. Therefore, only the results of

Algorithm 7 will be shown in the remainder of this section.

The convergence rate for the asynchronous method and the synchronous

method are comparable, as shown in Figures 6.4a and 6.4b.

By comparing the same batch size, the accuracy with respect to the number

of iterations, for the synchronous method and the asynchronous method, overlap

with each other. It is also observed that the accuracy of the asynchronous method

grows more steadily, whilst the accuracy for the synchronous method fluctuates.

By comparing different batch sizes, it is observed that the rate of convergence

for a larger batch size with respect to the number of training steps increases. In the

case of accelerated clusters, this implies that faster convergence can be obtained by

increasing the batch size without additional wall clock time since more computation

can be overlapped with the communication. This can potentially provide more than
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Figure 6.4: Top-1 accuracy against the number of iterations/time for training
GoogLeNet on the ImageNet dataset.

2× speedup (the maximum speedup derived from Equation 6.5 in this Section) to

reach the same accuracy with respect to the synchronous method.

With respect to wall clock time, the asynchronous method provides a 1.0-1.2×
speedup over the synchronous method with the same batch size on a homogeneous

cluster, as shown in Figures 6.4c and 6.4d. This is contributed to by the overlap

between computation and communication. As shown in Table 6.3, the blocked

all-reduce and synchronisation costs for the asynchronous method are reduced to

zero, in return for a slight increase in the compute time. The increase in compute

time is caused by the shared workload of the neural network training and all-reduce,

which is not expected in a heterogeneous cluster with accelerator cards where the

training is performed by the accelerator card and the all-reduce is performed by the

CPU processors.

The amount of actual speedup is also dependent on the compute-to-communication

ratio, as well as the convergence rate, as explained earlier in this section. For a
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Table 6.3: A comparison of breakdown costs per iteration for the synchronous and
asynchronous method (with MapRDD and all-reduce).

Method Batch Size

Compute

per iteration

(sec.)

All-reduce

per iteration

(blocked, sec.)

Sync

per iteration

(blocked, sec.)

Iterations Accuracy (%)
Duration

(sec.)

Sync 64 16.1 2.4 1.6 2200 40 44220

Async 64 16.4 0.0 0.0 2200 40 36080

Sync 128 32.6 2.4 4.2 1700 40 66504

Async 128 34.2 0.0 0.0 1700 40 58140

homogeneous cluster, the execution time is computation dominant; however, for an

accelerated compute cluster, it switches from computation dominant to communica-

tion dominant. For example, the compute-to-communication ratio for a batch size

of 64 with our experiment setup is around 4, but it drops to 0.05 if an NVIDIA

K80 graphics card is used (assuming a single GPU is used and the processing time

is approximately 0.2 seconds). This means a batch size of 20×64 is needed for a

compute-to-communication ratio of 1, which can be achieved by 20 mini-batches in

a single step. It is a question of whether the convergence rate stays the same with a

large sample batch (20×64).

Experiment 3: Statistical Analysis

We further evaluate the convergence of the asynchronous SGD method for different

training sets, larger batch sizes and larger numbers of epochs, using the AlexNet

model - a model with lower computational complexity and shorter training time. We

compare the validation accuracy of the synchronous and the asynchronous method

on 4 mutually exclusive sub-classes of the ImageNet dataset, the values of the

best validation accuracy over 50 epochs of training are shown in Table 6.4. For

‘async-strict’, no synchronisation is performed after the initial warm-up; for ‘async’,

synchronisation is performed every epoch.

To test if there is a significant difference between the three methods (i.e.

sync, async-strict, async), we perform paired student-t tests on the results with a

confidence level of 95%. A null hypothesis states that there is no significant pair-wise

difference between the two sets of data. A p-value of 0.047 and 0.327 is obtained by

comparing sync and async-strict and sync and async respectively. The test result

suggests a significant difference between sync and async-strict, and no significant

difference between sync and async, with a 95% confidence.

The results demonstrate a slight loss of accuracy of the asynchronous method

compared with the synchronous method, with an average difference of 1.26%. A

regular synchronisation at every epoch is enough to make up the differences, which is
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Table 6.4: Best validation accuracy in 50 epochs (%, synchronous vs. asynchronous)

dataset batch size sync async-strict async

1 512 56.6 55.52 55.94

1 2048 47.88 46.96 48.34

1 4096 46.03 44.08 45

2 512 54.16 52.22 53.03

2 2048 46.1 44.55 45.13

2 4096 42.66 42.55 44

3 512 60.58 60.21 59.2

4 512 44.73 40.47 41.59

negligible compared with the synchronous method (e.g. 6,300 synchronisation steps

are required for a batch size of 512 for 50 epochs). The async-SGD method with

regular synchronisation at every epoch is effectively equivalent to the synchronous

method with a 95% confidence. However, this is subject to change for datasets

with different variance and sample size. For example, a classification task with a

small variance is easier than one with large variance; subsequently, less frequent

synchronisation is needed.

6.2 Generalised Fine-grained Batch-size Control

The batch size is one of the key factors in improving computational efficiency, which

is one of the hyper-parameters of the mini-batch stochastic gradient descent method

as introduced in Section 2.2.3. The maximum computational speed-up increases

indefinitely with the batch size as shown in Section 3.5. However, the convergence

rate and batch size have an inverse relation, whereby convergence slows down as

batch size increases due to generalisation effects; as such the advantage of large batch

size training diminishes, as explained in Section 2.2.7.

The purpose of using a dynamic batch size is to minimise the effect of

generalisation and the convergence slow-down for large batch size training (as

illustrated in Figure 1.3). The learning rate controls the step size of each update,

which starts from a base value and decreases gradually as the current position

approaches the saddle point (i.e. the minimum position) to avoid divergence. As

observed empirically, a large batch size has generalisation effects and increasing the

batch size is equivalent to decreasing the learning rate [73]; as such, a larger batch

size can be employed as the training progresses. Successes have been demonstrated

in scaling up the batch size to 64K-100K in [3] [21] [13] [73] and [81]. The problem
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with existing methods for dynamic batch-sizing is the changing problem size, in

contrast to static partitioning on distributed platforms. Static partitioning poses

a limit for the problem size due to scaling effects that result in coarse batch size

control (for example: doubling the batch size every 10, 20 epochs). By adopting

elastic computing, restrictions on the problem size can be lifted which allows for the

dynamic batch-sizing method in a fine-grained manner.

We further explore a new generalised fine-grained dynamic batch-sizing

method based on the existing techniques. There are two questions to be answered

about this new method:

1. How do the rate of convergence and validation accuracy change in response to

a finer-grained control of the batch size?

2. How to adapt to the changing problem size for maximum speed-up?

6.2.1 Fine-grained Batch Size Control

The first task is to understand how the rate of convergence and validation accuracy

change in response to fine-grained control of the batch size as listed above, and this

is to be demonstrated through experiments on real-world classification tasks.

We propose a monotonically increasing batch size based on the commonly

used monotonically decreasing learning rate, which is simple and easy to interpret:

as the step size should decrease as it gets closer to the solution. The alternative

is the heuristic method (random walk) [81] which requires extra computations for

heuristics and a non-deterministic batch size (problem size) which is difficult to

implement in a distributed computing environment. Other options include a cyclic

batch size to avoid a local minimum for a non-convex problem, similar to a cyclic

learning rate [70]; however, such a method is highly experimental.

We choose the polynomial equation as the control function for the batch size,

as it can also approximate other functions such as the logarithmic and exponential

functions. Equation 6.7 is a generalised polynomial formula for calculating the global

batch size, where B0 and Bmax are the initial and the maximum global batch size

respectively, m and M are the current and target epoch respectively, and P is the

power to the polynomial that controls how fast the batch size increases. The effective

batch size for the running time and cost calculations (as in Equations 3.5 - 3.13) can

be found by integration of dynamic batch size B in Equation 6.7 over the number

of epochs m as shown in Equation 6.8, which is also dynamic at different points of

training. The final effective batch size at the end of M epochs is given by Equation

6.9. The difference between the current batch size and current effective batch size
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the term P + 1 in Equation 6.8, which means that the effective batch size grows

P + 1 times slower.

B = B0 + (Bmax −B0)(
m

M
)P (6.7)

Beff =
1

m

∫ m

m=0
B dm = B0 +

Bmax −B0

P + 1
(
m

M
)P (6.8)

Beff,m=M = B0 +
Bmax −B0

P + 1
(6.9)

Different values for initial (B0) and final batch size (Bmax), power (P ), and

the number of epochs (M), could lead to the same effective batch size as given

by Equation 6.8, and it is important to understand how these variables affect the

convergence rate. As such, the majority of this research is to verify the convergence

rate in response to these parameters, and there are five sets of control experiments

to consider:

1. Same Beff , B0, M , different P , Bmax.

2. Same Beff , P , M , different B0, Bmax.

3. Same B0, P , M , different Bmax, Beff .

4. Same Beff , B0, Bmax, P , different M .

5. Same Beff , B0, Bmax, P , M , with constant and decaying learning rate.

The result of the experiments above are presented in Section 6.2.3.

6.2.2 Workload Balancing

The second task is concerned with the challenge of changing problem size in the

computational performance of the application. Our solution is to adopt the use of

elastic computing which allows for dynamic resource allocation and co-ordinations,

as shown in Algorithm 8, where line 9 is the core of the algorithm that determines

the number of workers (N) in accordance with the global batch size set by Equation

6.7.

To adjust for the number of workers, there are two options: optimised for

speed-up or for running costs.

To optimise for speed-up, we can simply use Equations 3.15 and 3.16 for the

maximum speed-up for synchronous and asynchronous SGD respectively, which were

previously derived in performance modelling in Section 3.5.
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Algorithm 8 Dynamic scaling for SGD

1: w ← parameters of the objectivefunction
2: η ← learning rate
3: M ← total epochs
4: D ← size of trainingset
5: procedure SGD(w, η)
6: m← currentepoch
7: repeat
8: B ← dynamic global batch size
9: n ← dynamic global resource

10: b ← B/n
11: Step(w , η, b)
12: m = m+B/D
13: until m ≤M

To optimise for running costs, the computation-to-communication ratio is

introduced, which is the ratio between the latency for computation and communic-

ation (i.e.
Tcompute

Tcomm
); the higher the computation-to-communication ratio the lower

the running cost. The computation-to-communication ratio for synchronous SGD

is calculated by Equation 6.10, which is derived by dividing Equations 3.3 and 3.4,

where γ is the processing speed (samples per second), α and β are the communication

coefficients (smaller the better), B is the global batch size and N is the number of

workers. The number of workers (N) for a particular computation-to-communication

ratio (r) can subsequently be derived from Equation 6.10 as shown in Equation 6.11.

Tcompute
Tcomm

, r =
B

αγN + βγN2
(6.10)

N =
−rαγ +

√
(rαγ)2 + 4Brβγ

2rβγ
=

√
B

rβγ
(6.11)

6.2.3 Results - Convergence Analysis

We analyse the convergence of the dynamic batch-sizing method using control

experiments designed to understand how different variables affect the convergence

rate in Section 6.2.1. In our experiments, we train the AlexNet model on the

ImageNet dataset for 50-100 epochs. The solver settings for different batch sizes

are listed in Table 6.5, where the ‘learning rate warm-up’ indicates the number of

epochs taken for the learning rate to rise from the initial value of 0.01.

We list the control experiments, of which the hyper-parameters (i.e. B0, Bmax,
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P and Beff ) and the best validation accuracy are reported in Table 6.6. The actual

batch size for control experiments 1-4 are reported in Figures 6.5a, 6.6a, 6.7a and

6.8a, and the top-1 error curves of the corresponding experiments in Figures 6.5b,

6.6b, 6.7b and 6.8b.

1. Experiment 1 (index: 1 - 4): Same Beff , B0, M , different P , Bmax.

2. Experiment 2 (index: 4 - 6): Same Beff , P , M , different B0, Bmax.

3. Experiment 3 (index: 6 - 9): Same B0, P , M , different Bmax, Beff .

4. Experiment 4 (index: 9 - 11): Same Beff , B0, Bmax, P , different M .

5. Experiment 5 (index: 12 - 19): Same Beff , B0, Bmax, P , M , with different

learning rate policy: (i) fixed learning rate of 0.01; (ii) polynomial decay with

an initial value of 0.01 and a power of P × 2; (iii) polynomial growth to the

corresponding values in Table 6.5 with an initial value of 0.01 and a power of

P × 2.

Table 6.5: Solver settings

batch size learning rate
LARS

learning rate

learning rate

warm-up

64 0.01 n/a 0 epoch

512 0.02 2 2.5 epochs

2048 0.02 8 2.5 epochs

4096 0.04 10 2.5 epochs

From experiment 1 with same effective batch size Beff and changing scaling power P ,

it is demonstrated that as P , increases, the best validation accuracy increases, which

suggests that the use of a small batch size at the beginning of the training is more

important, as shown by the shapes of the dynamic batch size profile in Figure 6.5a.

For experiment 2 with same effective batch size Beff but changing B0 and

Bmax, it is demonstrated that the smaller the initial batch size, the higher the

best validation accuracy, which matches the findings in control experiment 1. The

differences in accuracy are more apparent when the error curves are examined in

Figure 6.6b.

For experiment 3 with changing effective batch size Beff , a 2.7% loss in top-1

validation error is observed over an increase of batch size from 64 to 4,096, instead of

an 18% loss as previously shown in Figure 2.5. A comparison of the best validation

accuracy over different effective batch size can be found in Table 6.7, and it is shown
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Table 6.6: Experiment settings and best top-1 validation accuracy for dynamic
scaling, with control variables highlighted.

index B0 Bmax P Beff
learning

rate
epochs accuracy

1 64 352 0.5 256 fixed 50 57.8%

2 64 448 1 256 fixed 50 58.2%

3 64 544 1.5 256 fixed 50 59.8%

4 64 640 2 256 fixed 50 60.2%

5 16 736 2 256 fixed 50 60.4%

6 32 704 2 256 fixed 50 60.0%

7 32 1472 2 512 fixed 50 60.6%

8 32 6080 2 2048 fixed 50 59.6%

9 32 12224 2 4096 fixed 50 57.5%

10 32 12224 2 4096 fixed 25 53.2%

11 32 12224 2 4096 fixed 20 50.3%

12 32 704 2 256 poly-decay 50 61.0%

13 32 1472 2 512 poly-decay 50 60.4%

14 32 6080 2 2048 poly-decay 50 59.0%

15 32 12224 2 4096 poly-decay 50 57.1%

16 32 704 2 256 poly-grow 50 60.2%

17 32 1472 2 512 poly-grow 50 59.7%

18 32 6080 2 2048 poly-grow 50 58.0%

19 32 12224 2 4096 poly-grow 50 58.4%

that dynamic scaling always results in a higher validation accuracy with the same

effective batch size.

For experiment 4 with the same effective batch size Beff and changing number

of epochs M , a 4% loss of validation accuracy is observed as the number of training

epochs is shortened by a half, and yet the validation accuracy is still 10% higher than

that of a static batch size (53%(new) - 42%(original)). This implies the opposite is

also true: as the number of epochs increases, the effective batch size can also increase.

For example, if the number of epochs is doubled from 50 to 100 epochs, the overall

effective batch size is multiplied by (12)P , for the same effective dynamic batch size

at the same epoch number.

For control experiment 5 with a changing learning rate, it is demonstrated

that a decaying learning rate improves the best validation accuracy for relatively

small batch sizes (Beff = 256), but it has a negative impact on relatively large batch

sizes (Beff = 512, 2048, 4096); and a growing learning rate has an opposite effect that
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Table 6.7: Best top-1 validation accuracy of static and dynamic batch size for training
AlexNet-ImageNet.

sub-classes epochs batch size static static-lars
dynamic

(P = 2)

0-49 50 64 60.9 - -

0-49 50 256 56.7 - -

0-49 50 512 56.7 55.7 60.6

0-49 50 2048 48.9 55.0 59.6

0-49 50 4096 42.6 50.5 57.5

50-100 50 64 57.8 - -

50-100 50 256 54.1 57.8

50-100 50 512 53.5 53.1 57.7

50-100 50 2048 52.8 52.6 57.5

50-100 50 4096 45.8 49.4 56.6

200-300 100 64 55.9 - -

200-300 100 256 51.0 - -

200-300 100 16K - - 53.9

300-500 100 64 58.2 - -

300-500 100 256 55.2 - -

300-500 100 16K - - 56.2

improves the validation accuracy for large batch size Beff = 4, 096. This demonstrates

the delicacy of adjusting the learning rate and batch size simultaneously, as the

changes in either have similar effects.

Table 6.7 compares the following methods on independent subsets of ImageNet:

(i) standard/static batch size; (ii) Layer-wise Adaptive Rate Scaling (LARS); (iii)

dynamic batch-sizing. The dynamic batch-sizing method consistently outperforms

the other two methods in terms of best validation accuracy. It is also demonstrates

that a bigger effective batch size (up to 16K in our experiments) can be used for a

larger training set and a larger number of epochs as predicted by experiment 4.

Overall, the dynamic batch-sizing method consistently produces faster conver-

gence and higher validation accuracy than a static batch size with/without adaptive

learning rates. The experiments have also shown consistently that the validation

accuracy is sensitive to the initial batch size. The outcome suggests the lower value

for B0 and the higher value for P , the higher the accuracy. However, this penalises

the computational efficiency which is analysed in Section 6.2.4, and this also shifts

the time distribution to the beginning of the training (i.e. more time is spent on

small batch sizes and less time is spent on larger batch sizes). The best choice for
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these settings for different datasets remains the subject of further research.

Similar to the asynchronous stochastic gradient descent method presented

in Section 6.1, the convergence results are subject to change for different training

datasets (i.e. sample size and variance). However, the use of large batch size only

applies to large sample pools and the ImageNet dataset is currently the largest

dataset for object recognition tasks in computer vision. So far, our experiments have

used a maximum subset of 200/1000 classes; further validation is required for the

full dataset.
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Figure 6.5: Experiment 1: Same Beff = 256, B0 = 64, M = 50, different P , Bmax,
for training AlexNet on 50 sub-classes of ImageNet.
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Figure 6.6: Experiment 2: Same Beff = 256, P = 2.0, M = 50, different B0, Bmax,
for training AlexNet on 50 sub-classes of ImageNet.
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Figure 6.7: Experiment 3: Same B0 = 32, P = 2.0, M = 50, different Beff , Bmax,
for training AlexNet on 50 sub-classes of ImageNet.
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Figure 6.8: Experiment 4: Same Beff = 4096, B0 = 32, P = 2.0, different M , for
training AlexNet on 50 sub-classes of ImageNet.

6.2.4 Results - Performance Analysis

We analyse the computational performance of the dynamic batch-sizing method using

the predictive model derived in Chapter 3. For this, measurements for coefficients γ,

α and β are required.

In Section 3.3, the processing speed γ has been measured to be 10 and 260

samples per second, for the CPU (Intel Xeon E5-2660 2.6 GHz) and GPU (NVIDIA

Tesla K80) respectively for AlexNet-ImageNet. The all-reduce time has also been

measured for a vector length of 106, 107 and 108, from which the values for α and β
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can be extrapolated. For AlexNet with 65 million parameters, the values for α and β

in Equation 3.5 are extrapolated as follows: α = 2.0 and β = 0.024 for ring all-reduce

over RDMA, α = 0.8 and β = 0.03 for butterfly all-reduce over RDMA. With the

processing speed γ and the communication coefficients α and β known, the running

time, maximum number of workers and maximum speed-up can be predicted.

Tables 6.8 and 6.9 provide the computation-communication ratio and the

maximum speed-up for CPU and GPU respectively. The computation-communication

ratio is an indication of the running cost, the higher the ratio the lower the cost, as

discussed in Section 3.7. The following observations can be drawn:

1. As the batch size increases, both the computation-to-communication ratio and

the speed-up increase and this subsequently leads to reduced running time and

cost.

2. For dynamic batch-sizing, it is shown that as the scaling power P increases,

the maximum speed-up decreases and the computation-to-communication ratio

increases. A loss of 15% in maximum speed-up is seen for Beff = 4, 096 and

P = 2.0.

The observations above suggest a trade-off between the validation accuracy and the

computational efficiency: the validation accuracy increases as seen in Section 6.2.3

as P increases, while the maximum speed-up and computation-to-communication

ratio decreases. This can be mitigated by asynchronous SGD, where the speed-up is

doubled compared with synchronous SGD and the computation-to-communication

ratio is 100%, as shown in Tables 6.10 and 6.11. Yet, a decrease in maximum

speed-up is still present as P increases for asynchronous SGD.

Table 6.8: Maximum number of workers (Nmax), the computation-to-communication
coefficient (r) and the maximum speedup (Smax) for synchronous training of AlexNet-
ImageNet on the CPU (with γ = 10, α = 0.8, β = 0.028).

Beff r Nmax
S

(static)

r

(p=1.0)

S

(p=1.0)

r

(p=2.0)

S

(p=2.0)

256 51% 30 10.27 49% 9.85 47% 9.35

512 60% 43 16.03 57% 15.23 53% 14.27

2048 75% 86 36.64 72% 34.52 66% 31.87

4096 81% 121 54.09 78% 50.89 72% 46.83
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Table 6.9: Maximum number of workers (Nmax), the computation-to-communication
coefficient (r) and the maximum speedup (Smax) for synchronous training of AlexNet-
ImageNet on the GPU (with γ = 260, α = 0.8, β = 0.028).

Beff r Nmax
S

(static)

r

(p=1.0)

S

(p=1.0)

r

(p=2.0)

S

(p=2.0)

256 100% 1 1.00 68% 1.10 71% 1.18

512 23% 8 1.55 46% 1.61 58% 1.68

2048 37% 17 4.53 40% 4.33 50% 4.16

4096 45% 24 7.40 45% 7.01 52% 6.60

Table 6.10: Maximum number of workers (Nmax), the computation-to-communication
coefficient (r) and the maximum speedup (Smax) for asynchronous training of AlexNet-
ImageNet on the CPU (with γ = 10, α = 0.8, β = 0.028).

Beff r Nmax
S

(static)

r

(p=1.0)

S

(p=1.0)

r

(p=2.0)

S

(p=2.0)

256 100% 19 19.16 100% 18.36 100% 17.42

512 100% 31 30.80 100% 29.21 100% 27.32

2048 100% 72 72.42 100% 68.12 100% 62.78

4096 100% 108 107.50 100% 101.04 100% 92.84

Table 6.11: Maximum number of workers (Nmax), the computation-to-communication
coefficient (r) and the maximum speedup (Smax) for asynchronous training of AlexNet-
ImageNet on the GPU (with γ = 260, α = 0.8, β = 0.028).

Beff r Nmax
S

(static)

r

(p=1.0)

S

(p=1.0)

r

(p=2.0)

S

(p=2.0)

256 100% 1 1.18 100% 1.34 100% 1.45

512 100% 2 2.28 100% 2.32 100% 2.39

2048 100% 8 7.75 100% 7.45 100% 7.15

4096 100% 13 13.40 100% 12.72 100% 11.98
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6.3 Summary

Further to implementation optimisations in Chapters 4 and 5, this chapter explores

algorithmic improvements to accelerate deep learning training, by further reduction

of communication costs using asynchronous methods and by large batch size training

using dynamic fine-grained batch-size control.

A new asynchronous SGD algorithm using non-blocking all-reduce was pro-

posed, which reduces the communication cost by overlapping the communication with

computation, and we show a 2× theoretical speed-up over the synchronous method.

Through experiments of neural network training using AlexNet and GoogLeNet on

the ImageNet dataset, we show statistically that the asynchronous method has the

same effective convergence as the synchronous method with 95% confidence.

A method of large batch-size SGD training using fine-grained batch-size

control was also proposed. Experiments on AlexNet-ImageNet show that the method

consistently produces faster convergence and higher validation accuracy than a static

batch size with/without adaptive learning rates. It is also shown consistently that the

validation accuracy is sensitive to the initial batch size through control experiments.

However, small initial values and slow growth in the batch size leads to a trade-off

between the computational speed and validation accuracy and causes a shift in time

distribution to the initial stage of the training.

These two methods above are implementation-independent and can be easily

adopted by other elastic distributed computing systems. However, the convergence

results are susceptible to the characteristics of the training dataset, especially the

variance and the number of training samples per class (the smaller the variance, the

easier to classify). As mentioned in Section 2.1.3, ImageNet is currently the biggest

and the most popular dataset to use for computer vision. Google Open Image is a

larger dataset with 9 million images, but with multiple image-level labels per image,

it is not suitable for object recognition tasks (where here is a single object per image).
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Chapter 7

Conclusions and Future Work

Machine learning is a powerful tool that allows us to make better and faster decisions

in a data-driven fashion based on training data. Neural networks are especially

popular in supervised learning due to their ability to approximate auxiliary functions.

However, building these models is computationally intensive, and can take years

to complete on a conventional CPU-based computer. Such a long turnaround time

makes business and research impossible using these models. This research seeks to

accelerate this training process through parallel and distributed computing using

High-Performance Computing resources.

To understand the bottlenecks and limitations to distributed machine learning,

analysis has been performed on the characteristics of the Convolutional Neural

Network (CNN) algorithm and the Stochastic Gradient Descent (SGD) method, and

their implementations on a distributed computing platform. A predictive model for

data-parallel CNN+SGD has been devised and the theoretical maximum speed-up is

expressed as a function of the batch size for a fixed computing setup. This gives an

upper limit to which computational acceleration is achievable through parallel and

distributed computing, and the predictive model dictates four key factors to achieve

the maximum acceleration: the convergence rate, the batch size, the computation

efficiency and the communication efficiency. These four performance factors provide

insights into which distributed machine learning tasks can be improved through

algorithmic and implementation optimisations.

The Message Passing Interface (MPI), data-flow frameworks (i.e. Apache

Hadoop and Spark) and the parameter server architecture have all been considered

for distributed machine learning. This research is carried out on Apache Spark for its

support for distributed datasets and its ability to adapt to a changing problem size

for elastic computing. However, computational inefficiency is a well-known problem

for Spark, and analysis has shown that this is contributed to by the synchronous
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computing model of the Resilient Distributed Dataset (RDD) and the inherent

limitation of data-flow for communication. Lastly, Spark has a lack of support for

persistent mutable memory, which causes significant overhead for iterative algorithms

such as SGD for machine learning.

The significance of the computational inefficiency due to the synchronous

computing model has been demonstrated by experiments using the ImageNet dataset,

where the GPU utilisation fell below 50% for 700k+ images per worker and the

memory usage is at maximum capacity. This is overcome by the introduction of

MapRDD in Section 5.2, which enables asynchronous lazy loading of training samples,

resulting in full processor utilisation and a more than 90% reduction in memory

usage.

The communication inefficiency using the ‘reduce-broadcast’ data-flow pattern

for synchronising parameters has been proven analytically in comparison with the

butterfly all-reduce and chunked ring all-reduce. This is overcome by the adoption

of all-reduce algorithms for elastic systems such as Spark, and its effectiveness has

been demonstrated in both small and large neural network models where a 2× and

7× speed-up was observed on LeNet [44] and AlexNet [41] respectively. Further

optimisation using zero-copy with Remote Direct Memory Access (RDMA) has been

proven to be more effective on bandwidth-bounded algorithms such as the butterfly

all-reduce which was more copy-heavy; and on moderately-sized vectors: if the vector

size is too small, the advantage of zero memory copy is less significant; if the vector

size is too large, resource for pinned memory is quickly consumed and degrades

system performance. It is found that chunked ring all-reduce is still favoured for

large vectors over TCP. In short, there is no single winner for every application and

the choice of algorithm has to be considered case by case.

RDD is the core memory concept for Spark and is only designed for static

datasets, as such, any changes would generate redundant memory copies. RDD is

also designed to represent a single image of the dataset and not replicas. These two

issues have been resolved by the introduction of a new distributed key-value store

with check-pointing as described in Section 5.3. This results in a hybrid all-reduce

and key-value store model that is both flexible and high-functioning compared with

the parameter server architecture.

The research so far improves the standard synchronous SGD in terms of

computational and communication efficiency, further improvements are attainable

through altering the algorithm itself. Asynchronous SGD, a method that overlaps

the computation and communication, is one such method. We explore two possible

formulae for asynchronous SGD using non-blocking all-reduce and we demonstrate

statistical equivalence to the standard synchronous SGD using AlexNet-ImageNet.
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Lastly, a method of fine-grained batch size control for large batch size SGD

training is introduced in Section 6.2. The characteristic of this method is the changing

problem size, which has been resolved by performance prediction and the hybrid

computing model (i.e. all-reduce + key-value store) introduced in this research.

Using AlexNet-ImageNet, this method consistently produces faster convergence and

higher validation accuracy than a static batch size with/without adaptive learning

rates.

Taken together, the work presented in this thesis detailed a systematic

approach to tuning the performance of distributed and parallel machine learning.

This consists of: (i) the design and implementation of an elastic machine learning

system with optimised computational and communication efficiency; (ii) asynchronous

SGD with non-blocking all-reduce; (iii) large batch size training with fine-grained

batch size control. We demonstrate a hybrid computing model that is able to adapt

to a changing problem size as well as maintaining high computational efficiency. Such

a system serves as an exemplar for emerging new applications with a non-uniform

and dynamic workload. For example, computational steering and data assimilation.

As dynamic workloads becoming more and more common, this promotes the need

for on-demand computing services such as Amazon, Google, Azure cloud services,

and a high-performance elastic computing system is part of the solution to future

large-scale distributed and parallel computing.

7.1 Limitations

The primary limitation of this thesis is its focus on the Convolutional Neural Networks

(CNN) algorithm. CNN represents a class of machine learning algorithms that is both

computation and communication intensive. As we learned, the computations are

mainly comprised of matrix–matrix multiplications and these models contain millions

of parameters to be communicated. It also represents a larger class of applications

that can be represented as solving for the matrix equation A.X = B, such as the finite

element analysis in scientific simulations or general matrix factorisation. As such,

optimisations for system design and implementation in this thesis are transferable to

other applications, whereas algorithmic improvements to the Stochastic Gradient

Descent (SGD) are only applicable to optimisation problems using SGD.

The secondary limitation is the focus on the Apache Spark platform. As

explained in Section 2.3.3, the Apache Spark represents a wide range of data analytics

platforms based on a master-slave architecture and a data-flow task execution engine.

The majority of this thesis, that is the techniques for memory management (i.e.

MapRDD) and the algorithmic optimisation methods (i.e. asynchronous SGD), are
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also transferable to other distributed computing platforms (e.g. the Message Passing

Interface).

Another limitation of this thesis is that computational efficiency as its main

concern, but not the precision of the gradient descent or the predictive accuracy of

the machine learning model. In the process of improving the computational efficiency,

the synchronous computing model and the data-flow programming paradigm are

broken, and a new hybrid computing model is created. We argue that such a

model incorporates the advantages of both high-performance computing and elastic

computing and sheds light upon new computing architectures for steering applications

(see Section 7.2.2).

Lastly, this research is also limited by the computing resources and data

resources available. All experiments are carried out on an Intel Xeon CPU-based

computing cluster with 32 nodes; as a consequence, the computational performance

on an accelerator-based cluster is only conjectural, and the limited computing power

only allows for experiments on simpler models such as AlexNet. The asynchronous

SGD and dynamic batch-sizing methods are only tested on the ImageNet dataset [31],

and the characteristics of the training data could have an impact on the effectiveness

of these two methods. However, the ImageNet dataset used in this research is

currently the only dataset that is large and complex enough for representing object

recognition problems.

7.2 Future Work

Going forward, there are two major avenues for the continuation of this work: (i)

native acceleration for distributed machine learning; (ii) a hybrid high-performance

and elastic computing model for steering applications. We discuss the trend of hard-

ware and neural network developments and the opportunity for further acceleration

with native codes in Section 7.2.1. We describe the similarities and differences of

steering applications compared with distributed machine learning, and the future

computing architectures and programming paradigms for steering applications in

Section 7.2.2.

7.2.1 Native Elastic Computing

Revisiting the initial problem of long turnaround for neural network algorithms,

it is predicted that training the ResNet50 model on the ImageNet dataset for 100

epochs at an effective batch size of 16K takes under 20 minutes on a NVIDIA Tesla

P100 cluster (as listed in Table 7.2), in contrast to 26 months on a single Intel Xeon

E5-2660 2.6 GHz processor (as listed in Table 1.1).
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For further improvements, the trend of development in machine learning

models and computer hardware must be analysed. Table 7.2 is a compilation of

recent convolutional neural networks and their performance metrics; Table 7.1 lists

the growth of network bandwidth for the InfiniBand interconnect technology over

the years. The following trends are identified:

1. The computational complexity (i.e. multiply-add operations) increases in

general.

2. The communication cost (i.e. the number of parameters) decreases in general.

3. The processing speed has grown explosively, a 222× increase in computing

power is seen (from 10 samples per second on an Intel Xeon E5-2660 2.6 GHz

CPU to 580 and 2227 samples per second on an NVIDIA Tesla K80 and an

NVIDIA Tesla P100 GPU, for AlexNet-ImageNet).

4. The network bandwidth for InfiniBand has increased by 6.25 times from QDR

to HDR over 10 years.

The issue discovered above is the disproportionate growth in computing power with

respect to the growth in network bandwidth, taken into account the changes in

computational complexity and communication costs. This results in a change from

computational dominance to communication dominance, and therefore it is harder

to gain any speed-up from distributed training (i.e. maximum speed-up of 1 in Table

7.2).

Re-visiting the breakdown in costs in all-reduce from Section 4.3.2, there are

five sources for overhead: start-up, compute, object serialisation, object deserialisa-

tion, waiting/blocking. The cost for object serialisation/deserialisation remains the

same for the same processor speed, and it currently takes up to 25% of the total

communication cost for butterfly-parallel all-reduce over TCP-IBoIP. The percentage

for object serialisation/deserialisation keeps increasing as the waiting time decreases

due to the continuous growth in the network speed. This number is expected to

reach 40-50% as InfiniBand NDR arrives after 2020, and it is even more significant

for Remote Direct Memory Access (RDMA). The impact of removing this object

serialisation/deserialisation cost is demonstrated by the measurement of the com-

munication coefficients α and β on the native Message Passing Interface as listed in

Table 7.2, where α is reduced by 4× and β is reduced by 10×.

Object serialisation/deserialisation is a process that transforms an in-memory

data structure into a portable binary form that can be stored and read correctly by

other computers in other architectures, which is necessary for one of the following

scenarios:
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1. Transportation and translation for Java Virtual Machine (JVM) memory

objects.

2. Non-contiguous native/non-native memory structure.

3. Non-uniform data representation for the same data type due to different

processor architectures. For example, different byte order/width/standard for

different processors (e.g. big-endian and small-endian).

For the use of MPI floating-point arrays in a uniform computing cluster, object

serialisation is disregarded as the native memory representation can be read correctly

by other computers in the same cluster. For data analytics systems, a non-uniform

computing cluster is assumed and the Java Virtual Machine is used for the application

to run on different processor architectures. However, the architectural differences

between High-Performance Computing (HPC) and Data Analytic (DA) systems are

diminishing and the two systems are converging towards a single architecture. This

is demonstrated by a survey of commercial systems in Table 7.3; the only difference

is how the storage system is attached, either locally or network connected.

The trend of convergence for cluster computer architectures towards a single

uniform architecture signals less of a need for cross-platform programming languages.

Subsequently, this underpins the possibility of a native elastic computing platform.

To close the gap in the software architecture between HPC and DA platforms

as mentioned in Section 2.3.2, it is clear that a master–slave and task execution

model must be adopted. The biggest obstacle to this is the contrast of the explicit

communication in HPC and the implicit communication in DA. A mixed model

proposed in this thesis (i.e. all-reduce, data-flow and key-value store) sheds light on

a possible path forward towards a unified system.

Table 7.1: Bandwidth evolution of InfiniBand from the year 2011.

Type Year
4× Link Bandwith

(Gb/s)

12× Link Bandwidth

(Gb/s)

QDR 2007 32 96

FDR 2011 56 168

EDR 2014 100 300

HDR 2017 200 600

NDR after 2020 400 1200
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Table 7.2: Comparison of neural network models in terms of computational cost
(multiply-add operations), communication cost (number of parameters), processing
speed (γ: bigger is better), communication speed using InfiniBand QDR (α and β:
smaller is better), maximum synchronous speed-up (S) at batch size (B), distributed
processing speed (γ × S, samples per second) and training time (hours).

AlexNet [41] VGG16 [26] InceptionV3 [75] ResNet50 [69]

year 2012 2014 2015 2015

multiply-adds (million) 724 15500 5000 3900

parameters (million) 61 138 25 25.5

γ (P100, 8gpus) 17822 1081 1131 1734

γ (K80, 8gpus) 4642 260 227 387

α (Java, RDMA) 0.8 1.76 0.32 0.32

β (Java, RDMA) 0.028 0.063 0.011 0.011

α (C, MPI) 0.2 0.44 0.08 0.08

β (C, MPI) 0.0028 0.0063 0.0011 0.0011

S(B=512, Java) 1.0 1.0 1.0 1.0

S(B=2048, Java) 1.0 1.0 3.01 2.16

S(B=4096, Java) 1.0 1.38 5.04 3.68

S(B=16K, Java) 1.0 4.08 12.95 9.79

S(B=512, MPI) 1.0 1.0 3.63 2.54

S(B=2048, MPI) 1.0 2.88 10.70 7.77

S(B=4096, MPI) 1.0 5.06 17.56 12.98

S(B=16K, MPI) 3.05 14.33 43.57 33.28

Time (hrs.)

(ImageNet, 100 epochs,

(P100×8, standalone)

2.0 32.9 31.5 20.5

Time (hrs.)

(ImageNet, 100 epochs,

(P100×8, B=16K,

distributed, sync)

0.65 2.29 0.72 0.62

Time (hrs.)

(ImageNet, 100 epochs,

(P100×8, B=16K,

distributed, async)

0.33 1.15 0.36 0.31

Table 7.3: List of High-Performance Computing and Data Analytic Systems in 2016

Name CPU Accelerator Interconnect Storage Application

Cray XC Intel Xeon E5 Intel Xeon Phi Aries Network Attached HPC

Cray CS Intel Xeon E5
Intel Xeon Phi,

NVIDIA GPU
InfiniBand FDR Network Attached HPC

Cray Urika-GX Intel Xeon E5 None Aries HDD, SSD Data Analytics

IBM Power S822 Power8 None HDD, SSD Data Analytics

IBM Power S822LC Power8 FPGA, NVIDIA GPU HDD,SSD
High Performance

Data Analytics

IBM Power S824L Power8 NVIDIA GPU HDD,SSD High Performance Data Analytics
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7.2.2 Computational Steering

One of the most powerful findings of the research in this thesis is the new computing

architecture for adaptive problem sizes using combined High-Performance Computing

and elastic computing, and its shared characteristics to scientific computing for

solving a large set of linear equations. This opens up new avenues for computational

mechanics and fluid dynamics for new computational steering applications, which

is a class of applications that allows for manual or data interventions that change

the computation process.

Interactive Steering

Computational mechanics and fluid dynamics use finite element or finite volume

methods for approximating solutions to partial differential equations, in order to

calculate forces and stresses in a solid or a fluid. These methods work by partitioning

a solid object or fluid volume of arbitrary shapes into small discrete elements or

volume cells, called a mesh and, subsequently, variation across the element or cell

can be estimated using discrete linear/non-linear approximations. For areas with

high variations, for example, the corners of an object, a fine mesh/small elements

should be used; for areas with small variations, a coarse mesh/large elements should

be used; this results in a non-uniform mesh as shown in Figure 7.1.

Figure 7.1: An example of non-uniform 2D mesh.

The finite element method can be formulated by solving for a large linear

system A.x = b, where A is the symmetric and positive-definite matrix that describes

the stiffness between every node in the mesh, x is a vector of unknown displacement

at every node and b is a vector of known boundary conditions. This is similar to

neural networks introduced in Section 2.1.2 for solving A.X = B, where A is the

matrix of input vectors, X the weights of connections between layers of neurons and
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B is the matrix of output vectors.

The conjugate gradient method displayed in Algorithm 9 is often used to solve

a system of A.x = b where A is symmetric positive-definite. The algorithm is com-

prised of matrix-vector multiplications, dot product and scalar-vector multiplications.

Every iteration generates new vectors xk+1, rk+1, pk+1 that describe the position and

residual error at iteration k + 1, which need to be synchronised. There are two ways

of parallelising the linear algebra calculations: along the first or second dimension of

matrix A, which are analogous to data-parallelism and model-parallelism described

in Section 2.1.2.

Algorithm 9 Conjugate gradient algorithm for solving A.x = b

1: r0 = b−Ax0
2: p0 = r0
3: k = 0
4: repeat

5: αk =
rTk .rk
pTk .A.pk

6: xk+1 = xk + αk.pk
7: rk+1 = rk − αk.A.pk
8: βk =

rTk+1.rk+1

rTk .rk

9: pk+1 = rk+1 + βk.pk
10: k = k + 1
11: until rk+1 is small enough

The areas with high variations are often of highest interest for researchers; the

ability to zoom in/out and interact with the simulation process is called interactive

steering. This manual interaction subsequently changes the problem size of the

simulation and leads to re-sizing of A, x and b. The techniques developed in this

thesis can, therefore, be used for this application: static matrix A and vector b

can be represented by MapRDD and mutable vectors x, r, p can be represented

by logical blocks of key-value pairs. The vector synchronisation can be achieved

by all-reduce for parallelising the columns of matrix A, or implicit communications

of the key-value store for parallelising the rows of matrix A. However, the main

difference compared to the traditional Message Passing Interface implementation is

its ability to adapt to the new problem size and increase/decrease the number of

resources required.

Data Assimilation

Data assimilation is another type of steering application where real-world obser-

vations are combined with predictions to adjust for the outcome. This is particularly

useful for physics simulations that are strongly dependent on the initial condition of
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Figure 7.2: An illustration of data assimilation in the Weather Research and Forecast
(WRF) system [55].

the problem, such as weather forecasting, as small differences in the initial condi-

tion due to measurement granularity and instrumental errors can cause significant

divergence from the observations. The data assimilation technique often involves the

optimisation of a cost function between the simulated prediction and the observation

to improve future predictions. Lastly, these physics simulations generate a large

volume of results that need to be analysed. This produces an atypical non-uniform

workload of machine learning alongside physics simulations.

The Weather Research and Forecasting (WRF) model [55] is a next-generation

mesoscale numerical weather prediction system, which is an exemplar of a data assim-

ilation application. WRF generates atmospheric simulations using real observation

or analysis data or idealised conditions. The WRF system consists of 2 major

components: a physics simulator and a data assimilation system (3DVAR [5] and

4DVAR [29]). Data assimilation in 3DVAR [5] minimises the cost function shown

in Equation 7.1, which describes the sum of background (Jb) and observation (Jo)

errors; xb and yo are the previous forecast and observation respectively; B and

(E + F ) are the background and observation error covariance matrices respectively.

This is identical to the least square problem in parameter fitting for machine learning

outlined in Section 2.2.1.
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J(x) = Jb + Jo =
1

2
(x− xb)B−1(x− xb) +

1

2
(y − yo)(E + F )−1(y − yo) (7.1)

The WRF system is illustrated in Figure 7.2. The execution path starts from

the initialisation, either from the real or the idealised data, which generates the

input feed for the WRF physics models. The physics module generates the next

forecast, which is fed back to the data assimilation system that combines it with the

observed data to generate the input for the next iteration (i.e. alternating numerical

simulation and data analysis). This system serves as an exemplar for the integration

of scientific computing and machine learning.

Unified platform

Computational steering applications present a challenge of non-uniform workload

and a hybrid system of scientific simulation and machine learning, this requires non-

conventional computing architectures as outlined in [17]: (i) scalable architecture;

(ii) integrated programming and software paradigm; (iii) application study. This

thesis presents a partial solution to steering applications, and demonstrates that:

(i) an elastic resource negotiator such as YARN and Mesos is necessary to support

dynamic workload; (ii) a hybrid data-flow, all-reduce and key-value store architecture

for high-performance elastic computing in the context of machine learning. However,

this research does not represent the characteristics of all steering applications and

further research is needed for a new unified programming paradigm and the migration

of existing code and libraries onto new platforms.
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