14,803 research outputs found

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated

    The significance of SNODENT

    Get PDF
    SNODENT is a dental diagnostic vocabulary incompletely integrated in SNOMED-CT. Nevertheless, SNODENT could become the de facto standard for dental diagnostic coding. SNODENT's manageable size, the fact that it is administratively self-contained, and relates to a well-understood domain provides valuable opportunities to formulate and test, in controlled experiments, a series of hypothesis concerning diagnostic systems. Of particular interest are questions related to establishing appropriate quality assurance methods for its optimal level of detail in content, its ontological structure, its construction and maintenance. This paper builds on previous–software-based methodologies designed to assess the quality of SNOMED-CT. When applied to SNODENT several deficiencies were uncovered. 9.52% of SNODENT terms point to concepts in SNOMED-CT that have some problem. 18.53% of SNODENT terms point to SNOMED-CT concepts do not have, in SNOMED, the term used by SNODENT. Other findings include the absence of a clear specification of the exact relationship between a term and a termcode in SNODENT and the improper assignment of the same termcode to terms with significantly different meanings. An analysis of the way in which SNODENT is structurally integrated into SNOMED resulted in the generation of 1081 new termcodes reflecting entities not present in the SNOMED tables but required by SNOMED's own description logic based classification principles. Our results show that SNODENT requires considerable enhancements in content, quality of coding, quality of ontological structure and the manner in which it is integrated and aligned with SNOMED. We believe that methods for the analysis of the quality of diagnostic coding systems must be developed and employed if such systems are to be used effectively in both clinical practice and clinical research

    Using Ontologies for the Design of Data Warehouses

    Get PDF
    Obtaining an implementation of a data warehouse is a complex task that forces designers to acquire wide knowledge of the domain, thus requiring a high level of expertise and becoming it a prone-to-fail task. Based on our experience, we have detected a set of situations we have faced up with in real-world projects in which we believe that the use of ontologies will improve several aspects of the design of data warehouses. The aim of this article is to describe several shortcomings of current data warehouse design approaches and discuss the benefit of using ontologies to overcome them. This work is a starting point for discussing the convenience of using ontologies in data warehouse design.Comment: 15 pages, 2 figure

    Creating a performance-oriented e-learning environment: A design science approach

    Get PDF
    E-learning is now being used by many organizations as an approach for enhancing the skills of knowledge workers. However, most applications have performed poorly in motivating employee learning, being perceived as less effective due to a lack of alignment of learning with work performance. To help solve this problem, we developed a performance-oriented approach using design science research methods. It uses performance measurement to clarify organizational goals and individual learning needs and links them to e-learning applications. The key concept lies in a Key Performance Indicator model, where organizational mission and vision are translated into a set of targets that drive learning towards a goal of improving work performance. We explored the mechanisms needed to utilize our approach and examined the necessary conceptual framework and implementation details. To demonstrate the effectiveness of the approach, a prototype workplace e-learning system was developed and used to evaluate the effectiveness of our approach. © 2011 Elsevier B.V. All rights reserved.postprin

    Addressing information flow in lean production management and control in construction

    Get PDF
    Traditionally, production control on construction sites has been a challenging area, where the ad-hoc production control methods foster uncertainty - one of the biggest enemies of efficiency and smooth production flow. Lean construction methods such as the Last Planner System have partially tackled this problem by addressing the flow aspect through means such as constraints analysis and commitment planning. However, such systems have relatively long planning cycles to respond to the dynamic production requirements of construction, where almost daily if not hourly control is needed. New solutions have been designed by researchers to improve this aspect such as VisiLean, but again these types of software systems require the proximity and availability of computer devices to workers. Given this observation, there is a need for a communication system between the field and site office that is highly interoperable and provides real-time task status information. A High-level communication framework (using VisiLean) is presented in this paper, which aims to overcome the problems of system integration and improve the flow of information within the production system. The framework provides, among other things, generic and standardized interfaces to simplify the “push” and “pull” of the right (production) information, whenever needed, wherever needed, by whoever needs it. Overall, it is anticipated that the reliability of the production control will be improve

    Smart Sensor Webs For Environmental Monitoring Integrating Ogc Standards

    Get PDF
    Sensor webs are the most recent generation of data acquisition systems. The research presented looks at the concept of sensor webs from three perspectives: node, user, and data. These perspectives are different but are nicely complementary, and all extend an enhanced, usually wireless, sensor network. From the node perspective, sensor nodes collaborate in response to environmental phenomena in intelligent ways; this is referred to as the collaborative aspect. From the user perspective, a sensor web makes its sensor nodes and resources accessible via the WWW (World Wide Web); this is referred to as the accessible aspect. From the data perspective, sensor data is annotated with metadata to produce contextual information; this is referred to as the semantic aspect. A prototype that is a sensor web in all three senses has been developed. The prototype demonstrates theability of managing information in different knowledge domains. From the low-level weather data, information about higher-level weather concepts can be inferred and transferred to other knowledge domains, such as specific human activities. This produces an interesting viewpoint of situation awareness in the scope of traditional weather data

    Managing Requirement Volatility in an Ontology-Driven Clinical LIMS Using Category Theory. International Journal of Telemedicine and Applications

    Get PDF
    Requirement volatility is an issue in software engineering in general, and in Web-based clinical applications in particular, which often originates from an incomplete knowledge of the domain of interest. With advances in the health science, many features and functionalities need to be added to, or removed from, existing software applications in the biomedical domain. At the same time, the increasing complexity of biomedical systems makes them more difficult to understand, and consequently it is more difficult to define their requirements, which contributes considerably to their volatility. In this paper, we present a novel agent-based approach for analyzing and managing volatile and dynamic requirements in an ontology-driven laboratory information management system (LIMS) designed for Web-based case reporting in medical mycology. The proposed framework is empowered with ontologies and formalized using category theory to provide a deep and common understanding of the functional and nonfunctional requirement hierarchies and their interrelations, and to trace the effects of a change on the conceptual framework.Comment: 36 Pages, 16 Figure

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector
    corecore