545 research outputs found

    On the Reverse Engineering of the Citadel Botnet

    Get PDF
    Citadel is an advanced information-stealing malware which targets financial information. This malware poses a real threat against the confidentiality and integrity of personal and business data. A joint operation was recently conducted by the FBI and the Microsoft Digital Crimes Unit in order to take down Citadel command-and-control servers. The operation caused some disruption in the botnet but has not stopped it completely. Due to the complex structure and advanced anti-reverse engineering techniques, the Citadel malware analysis process is both challenging and time-consuming. This allows cyber criminals to carry on with their attacks while the analysis is still in progress. In this paper, we present the results of the Citadel reverse engineering and provide additional insight into the functionality, inner workings, and open source components of the malware. In order to accelerate the reverse engineering process, we propose a clone-based analysis methodology. Citadel is an offspring of a previously analyzed malware called Zeus; thus, using the former as a reference, we can measure and quantify the similarities and differences of the new variant. Two types of code analysis techniques are provided in the methodology, namely assembly to source code matching and binary clone detection. The methodology can help reduce the number of functions requiring manual analysis. The analysis results prove that the approach is promising in Citadel malware analysis. Furthermore, the same approach is applicable to similar malware analysis scenarios.Comment: 10 pages, 17 figures. This is an updated / edited version of a paper appeared in FPS 201

    CryptoKnight:generating and modelling compiled cryptographic primitives

    Get PDF
    Cryptovirological augmentations present an immediate, incomparable threat. Over the last decade, the substantial proliferation of crypto-ransomware has had widespread consequences for consumers and organisations alike. Established preventive measures perform well, however, the problem has not ceased. Reverse engineering potentially malicious software is a cumbersome task due to platform eccentricities and obfuscated transmutation mechanisms, hence requiring smarter, more efficient detection strategies. The following manuscript presents a novel approach for the classification of cryptographic primitives in compiled binary executables using deep learning. The model blueprint, a Dynamic Convolutional Neural Network (DCNN), is fittingly configured to learn from variable-length control flow diagnostics output from a dynamic trace. To rival the size and variability of equivalent datasets, and to adequately train our model without risking adverse exposure, a methodology for the procedural generation of synthetic cryptographic binaries is defined, using core primitives from OpenSSL with multivariate obfuscation, to draw a vastly scalable distribution. The library, CryptoKnight, rendered an algorithmic pool of AES, RC4, Blowfish, MD5 and RSA to synthesise combinable variants which automatically fed into its core model. Converging at 96% accuracy, CryptoKnight was successfully able to classify the sample pool with minimal loss and correctly identified the algorithm in a real-world crypto-ransomware applicatio

    FPGA based remote code integrity verification of programs in distributed embedded systems

    Get PDF
    The explosive growth of networked embedded systems has made ubiquitous and pervasive computing a reality. However, there are still a number of new challenges to its widespread adoption that include scalability, availability, and, especially, security of software. Among the different challenges in software security, the problem of remote-code integrity verification is still waiting for efficient solutions. This paper proposes the use of reconfigurable computing to build a consistent architecture for generation of attestations (proofs) of code integrity for an executing program as well as to deliver them to the designated verification entity. Remote dynamic update of reconfigurable devices is also exploited to increase the complexity of mounting attacks in a real-word environment. The proposed solution perfectly fits embedded devices that are nowadays commonly equipped with reconfigurable hardware components that are exploited to solve different computational problems

    DR.SGX: Hardening SGX Enclaves against Cache Attacks with Data Location Randomization

    Full text link
    Recent research has demonstrated that Intel's SGX is vulnerable to various software-based side-channel attacks. In particular, attacks that monitor CPU caches shared between the victim enclave and untrusted software enable accurate leakage of secret enclave data. Known defenses assume developer assistance, require hardware changes, impose high overhead, or prevent only some of the known attacks. In this paper we propose data location randomization as a novel defensive approach to address the threat of side-channel attacks. Our main goal is to break the link between the cache observations by the privileged adversary and the actual data accesses by the victim. We design and implement a compiler-based tool called DR.SGX that instruments enclave code such that data locations are permuted at the granularity of cache lines. We realize the permutation with the CPU's cryptographic hardware-acceleration units providing secure randomization. To prevent correlation of repeated memory accesses we continuously re-randomize all enclave data during execution. Our solution effectively protects many (but not all) enclaves from cache attacks and provides a complementary enclave hardening technique that is especially useful against unpredictable information leakage

    A Security-aware and LUT-based CAD Flow for the Physical Synthesis of eASICs

    Full text link
    Numerous threats are associated with the globalized integrated circuit (IC) supply chain, such as piracy, reverse engineering, overproduction, and malicious logic insertion. Many obfuscation approaches have been proposed to mitigate these threats by preventing an adversary from fully understanding the IC (or parts of it). The use of reconfigurable elements inside an IC is a known obfuscation technique, either as a coarse grain reconfigurable block (i.e., eFPGA) or as a fine grain element (i.e., FPGA-like look-up tables). This paper presents a security-aware CAD flow that is LUT-based yet still compatible with the standard cell based physical synthesis flow. More precisely, our CAD flow explores the FPGA-ASIC design space and produces heavily obfuscated designs where only small portions of the logic resemble an ASIC. Therefore, we term this specialized solution an "embedded ASIC" (eASIC). Nevertheless, even for heavily LUT-dominated designs, our proposed decomposition and pin swapping algorithms allow for performance gains that enable performance levels that only ASICs would otherwise achieve. On the security side, we have developed novel template-based attacks and also applied existing attacks, both oracle-free and oracle-based. Our security analysis revealed that the obfuscation rate for an SHA-256 study case should be at least 45% for withstanding traditional attacks and at least 80% for withstanding template-based attacks. When the 80\% obfuscated SHA-256 design is physically implemented, it achieves a remarkable frequency of 368MHz in a 65nm commercial technology, whereas its FPGA implementation (in a superior technology) achieves only 77MHz
    corecore