
 information

Article

CryptoKnight: Generating and Modelling Compiled
Cryptographic Primitives

Gregory Hill 1 and Xavier Bellekens 2,*
1 School of Informatics, The University of Edinburgh, Edinburgh EH8 9YL, UK; gregorydhill@outlook.com
2 Division of Cyber Security, Abertay University, Dundee DD1 1HG, UK
* Correspondence: x.bellekens@abertay.ac.uk; Tel.: +44-(0)-1382-30-8482

Received: 12 July 2018; Accepted: 6 September 2018; Published: 10 September 2018
����������
�������

Abstract: Cryptovirological augmentations present an immediate, incomparable threat. Over the last
decade, the substantial proliferation of crypto-ransomware has had widespread consequences
for consumers and organisations alike. Established preventive measures perform well, however,
the problem has not ceased. Reverse engineering potentially malicious software is a cumbersome
task due to platform eccentricities and obfuscated transmutation mechanisms, hence requiring
smarter, more efficient detection strategies. The following manuscript presents a novel approach for
the classification of cryptographic primitives in compiled binary executables using deep learning.
The model blueprint, a Dynamic Convolutional Neural Network (DCNN), is fittingly configured to
learn from variable-length control flow diagnostics output from a dynamic trace. To rival the size and
variability of equivalent datasets, and to adequately train our model without risking adverse exposure,
a methodology for the procedural generation of synthetic cryptographic binaries is defined, using
core primitives from OpenSSL with multivariate obfuscation, to draw a vastly scalable distribution.
The library, CryptoKnight, rendered an algorithmic pool of AES, RC4, Blowfish, MD5 and RSA to
synthesise combinable variants which automatically fed into its core model. Converging at 96%
accuracy, CryptoKnight was successfully able to classify the sample pool with minimal loss and
correctly identified the algorithm in a real-world crypto-ransomware application.

Keywords: cryptography; deep learning; reverse engineering

1. Introduction

The idea of cryptovirology was first introduced by Young and Yung [1] to describe the offensive
nature of cryptography for extortion-based security threats. It comprises a set of revolutionary
attacks that combine strong cryptographic techniques with unique viral technology; designed to infect,
encrypt and lock-down available hosts, this category of malware has had disastrous consequences
for many [2,3]. For those who can afford to reclaim their private data, the financial loss is typically
quite substantial, despite the fact that there is no guaranteed recovery. Ultimately, without a backup,
there is little that can be done. Preventative frameworks have been proven to effectively halt unusual
activity [4,5] by closely monitoring the file system’s Input/Output (I/O), but administrators are not
always likely to follow best practices [6] and this overhead is quite substantial for the average user.
In any case, malware authors will continually locate unique exploits to further their advantage.

The cryptovirological landscape has evolved in recent years, and a definite growth has been
noted in the overall number of targeted attacks and variants [7]. A long-term study of 1359
ransomware samples [4] observed between 2006 and 2014 found a distinct number of variants with
cryptographic capabilities. During analysis, these instances were found to use both standard and
customised cryptography with generational enhancements, specifically in terms of key creation
and management. Infamous variants are known to have employed well-established documented

Information 2018, 9, 231; doi:10.3390/info9090231 www.mdpi.com/journal/information

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Abertay Research Portal

https://core.ac.uk/display/228178482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0003-1849-5788
http://www.mdpi.com/2078-2489/9/9/231?type=check_update&version=1
http://dx.doi.org/10.3390/info9090231
http://www.mdpi.com/journal/information

Information 2018, 9, 231 2 of 15

algorithms [8,9], but many use other techniques. In some instances, malware variants have employed
custom ‘cryptography’, lesser-known algorithms (such as the Soviet/Russian symmetric block
cipher GOST [10]), common substitution-ciphers, or exclusively, encoding mechanisms. Tailored
cryptosystems particularly limit the scale of effective analysis [8], and due to the large threat surface [7],
more efficient tools are required.

The field of malware analysis seeks to determine the potential impact of malicious software
by examining it in a controlled environment. Investigators find flaws otherwise unknown to
current identification technologies—sourcing keys and blocking further infection [2]. When reverse
engineering a potentially malicious executable, several issues should be addressed. Possible problems
include the accuracy of analysis, quality of the application’s obfuscation, and the lifetime of
findings. The analysis of a binary can typically be considered from two viewpoints: static or
dynamic. Static analysis is performed in a non-runtime environment, therefore examination is
relatively safe; however potential morphism restricts the accuracy of results [11,12]. Alternatively,
dynamic analysis [13] sequentially assesses a binary throughout its execution, which can provide
significantly more accurate results and contend with obfuscatory measures [14,15], but if not
properly handled, samples could prove somewhat hazardous. This manuscript focuses on the latter
methodology to build a precise ‘image’ of execution.

Cryptographic algorithm identification facilitates malware analysis in several ways, but in
this case, when assessing ransomware strains, it yields a starting point for investigation which is
essential when analytical time is restricted. With the uncertainty surrounding an application’s custom,
undocumented or established cryptosystem, analysts struggle to maintain complete awareness of
the field—which makes this task ideal for automation. To effectively model cryptographic execution,
previous research has relied on several assumptions and observations. These features do not
necessarily always depict cryptographic code, but provide a baseline for analysis. For instance,
cryptographic algorithms naturally involve the use of bitwise integer arithmetic and logical operations.
These activities frequently reside in loops, for example, block ciphers typically loop over an input
buffer to decrypt it block-by-block. Lutz [8] also postulated that any encrypted data is likely to have a
higher information entropy than decrypted data.

Deep learning studies intricate Artificial Neural Networks (ANNs) with multiple hidden
computational layers [16] that effectively model representations of data with multiple layers of
abstraction, in which the high-level representations can amplify aspects of the input that are important
for discrimination. A Convolutional Neural Network (CNN) [17], is a specialised architecture of
ANN that employs a convolution operation in at least one of its layers. A variety of substantiated
CNN architectures have been used to great effect in computer vision [18] and even Natural Language
Processing (NLP), with empirically distinguished superiority in semantic matching [19], compared to
other models.

CryptoKnight (https://github.com/AbertayMachineLearningGroup/CryptoKnight) is developed
in coordination with these ideas. We introduce a learning system that can easily incorporate new samples
through the scalable synthesis of customisable cryptographic algorithms. Its entirely automated core
architecture is aimed to minimise human interaction, thus allowing the composition of an effective
model at run-time. We tested the framework on several externally sourced applications using non-library
linked functionality. Our experimental analysis indicates that CryptoKnight is a flexible solution that can
quickly learn from new cryptographic execution patterns to classify unknown software. This manuscript
presents the following contributions:

• Our unique convolutional neural network architecture fits variable-length diagnostic data to map
an application’s time-invariant cryptographic execution.

• Complimented by procedural synthesis, we address the issue of this task’s disproportionate latent
feature space.

• The realised framework, CryptoKnight, has demonstrably faster results compared to that of
previous methodologies, and is extensively re-usable.

https://github.com/AbertayMachineLearningGroup/CryptoKnight

Information 2018, 9, 231 3 of 15

2. Related Work

The cryptovirological threat model has rapidly evolved over the last decade. A number of notable
individuals and research groups have attempted to address the problem of cryptographic primitive
identification. The following passages will discuss the consequences of their findings.

2.1. Heuristics

Heuristical methods [20] are often used to locate an optimal strategy for capturing the most
appropriate solution and have previously shown great success in cryptographic primitive identification.
A joint project from ETH Zürich (Zürich, Switzerland) and Google, Inc. (Menlo Park, CA, USA) [8]
detailed the automated decryption of encrypted network communication in memory, to identify
the location and time a subject binary interacted with decrypted input. From an execution trace which
dynamically extracted memory access patterns and control flow data, Lutz [8] was able to identify
the necessary factors required to retrieve the relevant data in a new process. His implementation
was successfully able to identify the location of several decrypted webpages in memory fetched
using cURL/OpenSSL, and even successfully extracted the decrypted output from a Kraken malware
binary. The entropy metric was found to negatively affect the recognition of simple substitution
ciphers as they do not typically effect the information entropy, which was also found to affect
the analysis of GnuPG. Gröbert et al. [9], Gröbert [21] also used fine-grained dynamic binary analysis
to generate a high-level control flow graph which was evaluated using three heuristics. The chains
heuristic measured the ordered concatenation of all mnemonics in a basic block, comparing known
signatures; the mnemonic-const heuristic extended the former method by assessing the combination
of instructions and constants; and the verifier heuristic confirmed a relationship between the I/O of
a permutation block. Trialled on cURL, the tool detected both Rivest-Shamir-Adleman (RSA) and
Advanced Encryption Standard (AES) in a traced Secure Sockets Layer (SSL) session. When tested
on a real-world malware sample, GpCode, the operation successfully detected the cryptosystem and
extracted its keys, though the trace took fourteen hours to complete with an extra eight hours for
analysis. The Crypto Intelligence System [22] integrates several these heuristical measures to counter
the problem of situational dependencies, deriving a set of requirements that a detection framework
should satisfy in order to be effective. In addition to correct classification, such tools should be
able to handle packed programs, must not be too invasive, provide a range of input for alternate
approaches and be somewhat extendable. Evaluating the aforementioned detection techniques [8,21],
Matenaar et al. [22] found many different advantages but noted that many heuristics have ‘immanent
weaknesses’ that prevent adequate generalisation.

2.2. Data Flow Analysis

Representational patterns of cryptographic data through dynamic analysis are often quite
distinctive [23,24]. By closely monitoring an application’s I/O it is possible to pinpoint a matching
algorithm and highlight the specific code at run-time. For instance, Li et al. [15] assessed the ‘avalanche
effect’ as a unique discriminatory feature, monitoring small changes in the input which would
dramatically alter the output. Unfortunately, these methods often fail to adapt in the face of heavy
obfuscation, as there are several simplistic techniques to bypass such filters. A tool by the name of
CryptoHunt [14] was recently developed to identify cryptographic implementations in binary code
despite advanced obfuscation. The implementation tracked the dynamic execution of a reference
binary at instruction level, to further identify and transform loop bodies into boolean formulas.
Each rule was designed to successfully abstract the particular primitive, but remain compact to describe
the most emblematic features. Unlike sole I/O verification, this semantic depth more prominently
revealed distinguishable features regardless of obfuscation. However, similar success was shown
by Calvet et al. [25] who actually focused on I/O discrimination. Another unique and fairly effective
approach for the identification of symmetric algorithms in binary code was based on subgraph

Information 2018, 9, 231 4 of 15

isomorphism and static analysis. Lestringant et al. [11] resolved each cryptographic algorithm to a
Data Flow Graph (DFG), normalising the structure without breaking semantics, and then compared it
to signatures of XTEA, Message Digest 5 (MD5) and AES with 100% accuracy. However, the formula
relied on the manual selection of appropriate signatures which distinguished the applicable algorithms.
For their three instances, generation was elementary, but would not realistically scale to the dimensions
sought in this paper. All aforementioned tools ultimately suffer from similar issues, requiring either
pre-existing reference implementations or arduous manual integration.

2.3. Machine Learning

Attempting to address a difficulty with past methodologies, one thesis [26] studied the suitability
of machine learning. While automated and highly efficient, thresholds [9,11,14] often require manual
adjustment to manage the identification of new algorithmic samples. Hosfelt [26] sought to emphasise
the ease of model retraining by analysing the performance of: Support Vector Machines (SVMs),
Kernels, Naive Bayes, Decision Tree and K-means Clustering. The study was met with varying success,
but ultimately suffered from a limited sampling of the latent feature space, preventing adequate scaling
for more complex data—i.e., multi-purpose applications that may use cryptography in addition to other
functions that can unintentionally obfuscate the control flow. With only 317 hand-crafted binary files,
providing an equivalent number of vectors after metric-based feature extraction, the model ultimately
under-fit. Baldwin and Dehghantanha [27] recently specialised a similar approach in the density-based
detection of circumstantial op-codes consistent with the execution of crypto-ransomware. The authors
used static analysis and SVMs to build a unique model comprised of benign and malicious binaries,
showing exceptionally high accuracy in the discrimination of 443 unique opcodes; 100% in binary
classification and 96.5% in family separation. Of particular importance to this research is their ranking
methodology based on the reflection of all opcode occurrences. They show that certain instructions
with similar densities prevent efficient discrimination, but unfortunately this distinction required
significant manual interpretation. EldeRan [28] assessed a regularized logistic regression classifier,
used in conjuncture with a dynamic feature extractor to produce a dataset of 582 ransomware and
942 ‘good’ applications. While the results in this case were positive (Area Under Curve (AUC): 0.995),
the methodology required a large number of malicious samples to have been run to generate a
sufficient distribution.

2.4. Overview

There are several concerns with previous techniques, most of which relate to the difficulty of
manually extracting signatures. Fundamentally, many systems rely on the researcher’s ability to
connect low-level ideas that correspond to high-level representations in an efficient manner. This is
simply not doable in many situations, especially when presented with many alternate representations
in a constricted time period. Malware signatures can radically change and undocumented primitives
will likely go undetected. It is therefore the intent of this manuscript to detail a framework for
the effectual verification of cryptographic signatures in unknown binary code with an emphasis
on generalisation when presented with new conditions to minimize human-error. Intricate neural
networks are well-suited to this task because of their ability to learn by example. Although prior
literature has examined machine learning to an extent, this is the first work that has specifically
addressed the use of deep learning. Earlier data variability issues are addressed by our method of
procedural synthesis, to build an effectively large dataset with significant variability that prevents risk
of adverse exposure. The full system, as in Figure 1, is comprised of three high-level stages:

1. Procedural generation guides the synthesis of unique cryptographic binaries with variable
obfuscation and alternate compilation.

2. Assumptions of cryptographic code aid the discrimination of diagnostics from the dynamic
analysis of synthetic or reference binaries, to build an ‘image’ of execution.

Information 2018, 9, 231 5 of 15

3. A DCNN fits variable-length matrices for ease of training and the immediate classification of
new samples.

Figure 1. Framework Architecture.

3. Methodology

To construct a reasonably sized dataset with enough variation to satisfy the abstraction of
cryptographic primitives, it is not enough to simply hand-write a small number of applications
with little diversity in terms of operational outliers. For example, extracting features from the
execution of a manually implemented single-purpose binary may give an appropriate feature vector,
but re-running the extraction process will not provide any variation for repeating labels, outside
of environmental setup. This methodology leverages procedural generation to include elements
that provide some obfuscation without directly altering the intended control flow. For the three
main algorithmic categories—symmetric, asymmetric and hashing—interpretation should correlate
the related components to dynamically construct a unique executable.

3.1. Artefacts

OpenSSL is an open source cryptographic library that provides an Application Programming
Interface (API) for accessing its algorithmic definitions. Review of its documentation revealed several
similarities in the intended implementation of the each function. These specificities are either: variable,
differ for each primitive; or constant, true for each category. This approach exclusively examined C in
experimentation, but C++ is also suitable.

Via appropriate headers, an application first imports the libraries which provide the expectant
functionality when later compiled. Each primitive naturally requires contrastive functionality, so this
is variable. Within the scope of an application’s main body however, each symmetric algorithm
requires the specification of a key and Initialization Vector (IV), asymmetric algorithms require a
certificate declaration whereas hashing definitions do not expect either. These rules are categorically
constant, therefore, their definitions can be specified by type. Next, a plaintext sequence is loaded into
memory—directly or from a file—and ciphertext memory is allocated, also constant. Each sample will
then employ its unique algorithm through differing declarations, reading in the plaintext, key or IV.

3.2. Obfuscation

Two primary transformation mechanisms were highlighted by Xu et al. [14]. The first technique
discusses the abstraction of relevant data groups to decrease their perceptible mapping. For example,
a multidimensional array may be concatenated into a single column and either expanded or accessed
as necessary. The second technique concerns itself with the splitting of variables [29] to disguise
their representation. Colloquially known as data aggregation and data splitting, these methods partially
obfuscate the data flow without subtracting from an application’s distinct activity. Outside of such
well-defined obfuscation, the inclusion of structured loops, arithmetical or bitwise operations create

Information 2018, 9, 231 6 of 15

discriminatory irregularity in an otherwise translucent process. Analogously, many training images
for computer vision will contain noise that suitably detract from the trivial classification of its subject,
and this process aims to replicate such uncertainty.

3.3. Interpretation

Formatting each respective variable artefact to allow ease of parsing in a similarly structured
markup tree will allow the interpretation of unique cryptographic applications with alternate
obfuscation. Stochastically generated keys, IVs and plaintext will add additional variation into
each image. Algorithm 1 outlines the pseudo-code for this procedure.

Algorithm 1 Cryptographic Synthesis

Input: Cryptographic Constants & Variables
Output: Application Codes

1: select obfuscation—(aggregation, split, normal)
2: write to file:

import statements
abstracted keys
encryption routines

3: inject randomised arithmetic
4: return relative location

When compiling the resultant collection of cryptographic applications, data variability can be
further increased. With alternate compilers or optimisation options, the resultant object code will
dramatically fluctuate. Real-world instances are rarely compiled identically so multivariate output can
provide further assurance for generalisation.

3.4. Feature Extraction

Cryptographic execution is time-invariant, therefore a reference binary may employ its associated
functions at any point within a trace. Unintentional obfuscation of the control flow will negatively
affect discriminatory performance, as discovered by Hosfelt [26], so granularity needs to be high.
This following approach opts to draw appropriate features from a reference binary using dynamic
instrumentation via Intel’s Pin API. Through the disassembly of run-time instruction data, this section’s
outlined measurements principally assess the activity’s importance in relation to the assumptions of
cryptographic code.

3.4.1. Basic Blocks and Loops

A Basic Block (BBL) is a sequential series of instructions executed in a particular order, exclusively
defined when there is one branch in (entry) and one branch out (exit). A BBL ends with one of
the following conditions:

• unconditional or conditional branch—direct/indirect,
• return to caller.

Each instruction is evaluated in a linear trace, if any criteria are met, it is marked as a tail.
The following instruction is delimited as the head of the subsequent sequence, but can similarly be
identified as a tail. The ‘stack’ of execution stores relevant data from each instruction, and two boolean
expressions indicate the predetermined blocks. As each BBL is dynamically revealed, non-executed
instructions will unfortunately not be observed [9], but we can monitor indirect branches.

Many high level languages share a distinctly strict definition of a loop, contrarily, common
interpretations of amorphous code are loose. Extending previous definitions [30,31] we hence delineate
a loop upon the immediate re-iteration of any BBL, as output from Algorithm 2.

Information 2018, 9, 231 7 of 15

Algorithm 2 Instruction Sequencing, BBL Detection

Input: Run-Time Hook
Output: Path of Execution

1: head = false
2: if (last instruction is tail) then
3: head = true
4: end if
5: if (instruction is branch, call or return) then
6: tail = true
7: else
8: tail = false
9: end if

10: if (write) then
11: get entropy (memory write)
12: end if
13: return stack

3.4.2. Instructions

Conventional architectures use a common instruction format, interpretable as: opcode operand
(destination/source). In x86, there are zero to three operands (separated by commas), two of which
specify the destination and source. For example, when AES performs a single round of an encryption
flow it calls the instruction 66 0f 38 dc d1 which can be disassembled as aesenc xmm2, xmm1. Directly
operating on the first operand, in this case xmm2, it performs a round of AES encryption using
the 128-bit round key from xmm1. Although this is an interesting example, the Advanced Encryption
Standard New Instructions (AES-NI) architecture presents a problem for later generalisation as
cryptographic acceleration prevents detailed analysis.

Alternate object code is typically quite distinctive, a primitive may employ several operations, in
any order, and it is important to not dwell on specificities—i.e., exact semantics. For each instruction
in the ‘carved’ linear trace we weight its ratio of bitwise operations upon the cross-correlation of
prominent operators from a pool of cryptographic routines for discriminatory emphasis.

3.4.3. Entropy

As characterized by Rényi et al. [32], the associated uncertainty of a finite discrete probability
distribution p = (p1, p2, . . . , pn) can be measured using Shannon’s Entropy. Suppose pk > 0
(k = 1, 2, . . . , n) and ∑n

k=1 pk = 1, distribution p is measured by quantity H[p] = H (p1, p2, . . . , pn)

hence defined as:

H(p1, p2, . . . , pn) =
n

∑
k=1

pklog2
1
pk

(1)

Upon detecting a memory write, the respective location’s contents can be replicated. Casting
its value to distribution p will allow the immediate calculation of H[p]. Related memory can then be
deleted to prevent unnecessary exhaustion. Each BBLs absolute entropy increase/decrease can then be
scored by its relation to prior activations over opposing registers and then summated as in Figure 2
where each BBL is ∈W.

Information 2018, 9, 231 8 of 15

0 1,000 2,000

0

2,000

4,000

6,000

8,000
Blowfish

0 1,000 2,000

0

2,000

4,000

6,000

8,000 RC4

0 1,000 2,000

0

2,000

4,000

6,000

8,000 MD5

0 1,000 2,000 3,000 4,000 5,000

0

2,000

4,000

6,000

8,000 RSA

0 1,000 2,000 3,000 4,000 5,000

0

2

4

6

·104

AES

Figure 2. Entropy Scoring. The relative entropy scoring (y) of each BBL (x) within the traces from a
sample set of algorithms. Each pattern is unique and should aid discrimination.

3.5. Model

Founded in earlier research [33], this proposed definition of DCNN treats the input in a manner
similar to that of a sentence. For each word, embeddings are defined as d, where di corresponds to
the total weight of a particular operation, multiplied by its entropic score. Feature vector wi ∈Wd is a
therefore a column in sentence matrix s such that s ∈Wd×s. Let’s say w = 128, exclusively assessing
pure arithmetic impact would make d = 12, so s would equal 12× 128. The model itself combines
several one wide convolutions with (dynamic) k-max pooling and folding to map variable-length
input. Topologically presented in Figure 3, the model combines several one wide convolutions with
(dynamic) k-max pooling and folding to map variable-length input.

Mathematically, convolution is an operation on two functions of a real-valued argument, in this
case a vector of weights m ∈Wm and a vector of inputs s ∈Ws, to yield a new sequence c. With kernel
m, the convolved sequence in a one-wide convolution takes the form c ∈ Rs+m−1, thus preserving

Information 2018, 9, 231 9 of 15

the number of defined embeddings. Equation (2) describes the selection of k, a distinct subset of s that
most relevantly depicts an l-th order’s progression. Based on the total number of convolutional layers
L, the current layer l, the projected sentence length s and the predefined final pooling parameter ktop,
any particular layer’s selection is delimited as:

kl = max(ktop, [
L− l

L
s]) (2)

Convolution k-Max Pooling

Folding Fully Connected

Figure 3. Dynamic Convolutional Neural Network. The architecture of a DCNN as illustrated by [33].
In this case, the model is intended for a seven word input sentence of embedding d = 4 with two
convolutional layers (m = 3 and m = 2), two (dynamic) k-max pooling layers (k = 5 and k = 3) within
two feature maps.

With value k and sequence p ∈ Rp of length p ≥ k the base k-max pooling operation selects
the subsequence pk

max of the k most active features. Completely unreactive to positional variation, it not
only preserves the original perspective, but can also distinguish repetitious features. Since identifiable
cryptographic routines may execute at any point in a sequential trace, this operation fits perfectly.

Another significant phase in this procedure simplifies the way the model perceives complex
dependencies over rows. Veritable feature independence is removed through component-wise
summation of every two rows, shrinking d/2. Nested between a convolutional layer and (dynamic)
k-max pooling, a folding layer halves the respective matrix.

Information 2018, 9, 231 10 of 15

While the model itself can automatically scale with new variants, several hyper-parameters may
need to be adjusted to better suit the sample pool. Manual tuning is an inefficient, costly process
that frequently offers no advantage. Bergstra and Bengio [34] empirically show that randomly chosen
trials are more efficient for hyper-parameter optimization than manual or grid search over the same
domain—calculating the most viable constants in a fraction of the time. Taking the shuffled Cartesian
product of all hyper-parameter subsets allows the ambiguated selection of distinct constants for trial
on a small number of epochs.

3.6. Experimentation

Table 1 presents a range of popular algorithms which were selected for experimental analysis
as they are widely employed for both legitimate and fraudulent purposes. CryptoKnight was
configured to build two feature maps from its first convolution through a round of k-max pooling
in combination with the Parametric Rectified Linear Unit (PReLU) activation function. Eighteen
further hidden one-dimensional wide convolutions interspersed with Rectified Linear Unit (ReLU)
non-linear activations and k-max pooling further reduced the feature space. Due to the number of
embeddings the model used three folding operations, one at the start and two simultaneously prior to
the penultimate pooling layer, after its convolution. The final convolution built three additional feature
maps and then pooled on the stipulated topmost magnitude of 800. A linear transformation, of output
size 200, was then applied with softmax to fully connect the model. Within this, a dropout probability
of 0.5 was selected to improve regularization as recommended by Hinton et al. [35]. Filter widths
were specified for the first and last convolutional layers of 99 and 358 respectfully, the remaining
hidden layers shared a width of 9. In total, the model employed 20 convolutions to efficiently reduce
the extensive feature space.

Table 1. Cryptographic Algorithms.

Category Algorithm

Symmetric
AES
RC4

Blowfish

Asymmetric RSA

Hashing MD5

Based on a frequency analysis of simplified opcodes, the following operations were selected due
to their prevalence in the cryptographic sample pool: cmp, mov, test, lea, and, or, xor, pxor, add, sub, inc,
dec, shr, shl, sar, not. The final design matrix, of embedding 16, contained a variable number of vectors
corresponding to the numeration and associated weightings of each basic block in a subject binary.
A distribution of size n = 750 was drawn in which ∼75% was used for training and ∼25% remained
for testing. After 200 epochs, the model successfully converged at 96% accuracy with a minimal loss of
0.35. Figure 4a shows the test accuracy over 200 epochs, and Figure 4b displays its simultaneous loss.
Two further tests were conducted to trial the model on data without the alternate scaling techniques;
in both cases, the performance was significantly poorer (Figure 5) but the effectiveness of entropy
scoring is noted.

Table 2 diagnoses the pre-trained model’s associated confusion on an additional collection of
validation samples where n = 150 with an F1 score of 0.96.

We collected and compiled several open source implementations for the sample pool, leveraging
pure (non-library linked) cryptographic functionality to assess our methodology. The classification rate
varied with hyper-parameter optimisations and distribution sizes, but was most notably able to classify
4/5 Rivest Cipher 4 (RC4), 4/5 Blowfish and 3/5 MD5 samples. Unfortunately no representational

Information 2018, 9, 231 11 of 15

RSA instances were identified at time of testing and AES was overlooked due to the model having
been trained on cryptographically accelerated binaries.

0 50 100 150 200

0

20

40

60

80

100

Epoch

A
cc

ur
ac

y

(a) Accuracy

0 50 100 150 200
0

2

4

6

Epoch
Lo

ss
(b) Loss

Figure 4. Training Performance—200 Epochs.

0 50 100 150 200

0

10

20

30

40

Epoch

A
cc

ur
ac

y

(a) No Entropy

0 50 100 150 200

0

20

40

Epoch

A
cc

ur
ac

y

(b) No Loops

Figure 5. Training Performance (Comparison)—200 Epochs. Without scoring the associated entropy,
the model immediately converges to ∼44% and clearly under-fits the data. Removing loop occurrence
based feature scaling, the model fits at ∼53% which indicates that the entropy metric effectively
boosts recognition.

Table 2. Validation Results. x = predicted, y = label.

AES RC4 BLF MD5 RSA R/A
AES 13 0 0 0 0 0
RC4 0 12 1 0 0 0
BLF 0 0 12 0 0 1
MD5 0 1 0 12 0 0
RSA 0 0 0 0 13 0
R/A 0 0 0 0 0 13

The model’s performance in regards to the effectual discrimination of Blowfish was
heavily reliant on hyper-parameter optimisations, whereas the other classes generalised easier.

Information 2018, 9, 231 12 of 15

Analysing GnuPG 1.4.20, the software was directed to encrypt an empty text document using 256-bit
AES. With a trace time of ∼1 min 40 s, CryptoKnight predicted the use of AES and RSA. Finally,
a real-world crypto-ransomware sample named ‘GonnaCry’ [36] was exclusively examined in a
Virtual Machine (VM). This is an open-source demonstrative tool for examining the effects of targeted
attacks through the recursive encryption of all files using AES and RSA. Although its execution was
preemptively halted to limit its effect, CryptoKnight quickly identified the usage of RSA.

4. Evaluation

Traditional cryptographic identification techniques are inherently expensive [8,9,11,14] and
heavily rely on human intuition. CryptoKnight was built to reduce this associated error-prone
interaction, with refined sampling of the latent feature space, a procedurally synthesised distribution
allowed our DCNN to map proportional linear sequences with a finer granularity than that of
conventional architectures without overfitting, CryptoKnight converged at 96% accuracy through
the optimisation of hyper-parameters based on a grid search. The model ultimately fit the synthetic
distribution well, with performance on par to that of Kalchbrenner et al. [33].

Discussion

The impediment of dynamic binary instrumentation was made clear by [9] who highlighted
an extensive twenty two hour trace and analysis time. CryptoKnight’s analysis time also varied,
but not quite to this extent; for the sample binaries, analysis took up to a maximum of around one
minute. However, synthesis saw exponential draw times of indefinable length, but since manual
analysis often takes invariably longer than an adequate draw time, this footprint is arguably marginal.
The entropy metric assumes that a cryptographic function’s associated uncertainty is higher than
that of conventional interaction. Lutz [8] discovered that this negatively affected the recognition
of simple substitution ciphers; however, it did not affect CryptoKnight in the same way due to its
scoring mechanics and demonstrably high accuracy in subjective tests without the metric. Figure 5a
proves that the entropy metric distinctly benefited the task, improving accuracy far beyond plain
loop scaling. Unfortunately, problems with cryptographic acceleration played an important role
in the detection of native AES implementations. Intel’s AES-NI extension was proposed in 2008
for boosting the relative speed of encryption and decryption on microprocessors from Intel and
AMD. Akdemir et al. [37] describe the instruction set with regard to its breakthrough performance
increase. As the six instructions, prefixed by AES, directly perform each of the cipher’s operations on
the Streaming SIMD Extensions (SSE) XMM registers, the natural progression of the cipher could not
be fully observed, thus warranting further investigation.

Once trained, the proposed framework would be most beneficial as part of an analyst’s toolkit—to
quickly verify known cryptographic instances. The DCNN was intended to map time-invariant
cryptographic execution despite control or data flow obfuscation; an intrinsic problem of prior
literature—Section 2. While successful, this formulation still has a few preliminary issues to
address. For instance, the predefined operator embeddings explicitly define the entire feature set,
therefore new samples which perhaps deviate from traditional operation may be unidentifiable.
Should the framework not immediately generalise to an additional algorithm, correlating its most
predominant operators by interchanging embeddings or enlarging the scope should enhance cognition.
Additional signatures from other cryptographic libraries (such as Libgcrypt or PolarSSL) would further
benefit generalisation. Another fundamental part of CryptoKnight’s supervised design is that it
can only classify known samples; new cryptographic algorithms must be added to the generation
pool, a process this framework has strived to simplify, but an unavoidable limitation of the proposed
architecture nonetheless. This also makes custom cryptography more difficult to classify, as no
high-level reference implementations would feasibly exist to import. Integrating an unsupervised
component into the core model could facilitate the detection of non-cryptographic signatures,
or alternatively advanced synthesis could negate the need for procedural generation entirely, to

Information 2018, 9, 231 13 of 15

further reduce the presently expensive time requirement. There are several additional optimizations
to improve the existing framework’s efficiency however; the new layers [33] would benefit from
Graphics Processing Unit (GPU) acceleration through integrated C binaries, distribution synthesis
could be multi-threaded to decrease draw time, and a multi-class element to learn application
invariant primitives would remove the need to pre-combine functions. A similar model could
also be re-purposed to decompile binaries with more accuracy than traditional methods—which
typically only manage simplistic control flow dissections. Other work could include the detection of
cryptographic functions in parallel with the execution of a subject binary, perhaps using a Recurrent
Neural Network (RNN). In any case, the full code base has been published on GitHub for future
researchers to use and improve.

5. Conclusions

Despite advanced countermeasures, the cryptovirological threat has significantly increased over
the last decade. To aid malware analysis, our research has demonstrated that cryptographic primitive
classification in compiled binary executables can be successfully achieved using a DCNN with ∼96%
accuracy. Moreover, our implementation is fundamentally more flexible than that of previous work,
marginalising the error prone human element with automated distribution synthesis, training and
optimisation. The framework successfully detected many externally sourced non-library applications
and maintained a distinctively high accuracy on our synthetic samples. When trialled on GnuPG and
a real-world ransomware binary, CryptoKnight successfully distinguished the use of AES and RSA
almost instantaneously.

Author Contributions: Investigation, G.H.; Supervision, X.B.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Young, A.; Yung, M. Cryptovirology: Extortion-based security threats and countermeasures. In Proceedings
of the 1996 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 6–8 May 1996; pp. 129–140.

2. Snow, J. CryptXXX Ransomware, 2016. Available online: https://blog.kaspersky.com/cryptxxx-
ransomware/11939/ (accessed on 10 September 2018).

3. Chiu, A. Player 3 Has Entered the Game: Say Hello to ‘WannaCry’. Available online: https://www.cybrary.it/
channelcontent/player-3-has-entered-the-game-say-hello-to-wannacry/ (accessed on 7 September 2018).

4. Kharraz, A.; Robertson, W.; Balzarotti, D.; Bilge, L.; Kirda, E. Cutting the gordian knot: A look under the hood
of ransomware attacks. In International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment; Springer: Berlin, Germany, 2015; pp. 3–24.

5. Scaife, N.; Carter, H.; Traynor, P.; Butler, K.R. Cryptolock (and drop it): Stopping ransomware attacks on user
data. In Proceedings of the 2016 IEEE 36th International Conference on Distributed Computing Systems
(ICDCS), Nara, Japan, 27–30 June 2016; pp. 303–312.

6. Deane-McKenna, C. NHS Ransomware Cyber-Attack was Preventable; The Conversation, 13 May 2017. Available
online: https://theconversation.com/nhs-ransomware-cyber-attack-was-preventable-77674 (accessed on 10
September 2018).

7. Beek, C. McAfee Labs Threats Report; Intel Security: Santa Clara, CA, USA, 2016.
8. Lutz, N. Towards Revealing Attackers’ Intent by Automatically Decrypting Network Traffic. Master’s Thesis,

ETH Zürich, Zürich, Switzerland, August 2008. (A joint project between the ETH Zurich and Google, Inc.)
9. Gröbert, F.; Willems, C.; Holz, T. Automated Identification of Cryptographic Primitives in Binary Programs.

In Proceedings of the 14th International Symposium on Recent Advances in Intrusion Detection (RAID 2011),
Menlo Park, CA, USA, 20–21 September 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 41–60.

10. IBM. Bucbi Ransomware. Available online: https://exchange.xforce.ibmcloud.com/collection/Bucbi-
Ransomware-16eef23d3b7ea484ed69ecd78b6c1232 (accessed on 7 September 2018).

https://blog.kaspersky.com/cryptxxx-ransomware/11939/
https://blog.kaspersky.com/cryptxxx-ransomware/11939/
https://www.cybrary.it/channelcontent/player-3-has-entered-the-game-say-hello-to-wannacry/
https://www.cybrary.it/channelcontent/player-3-has-entered-the-game-say-hello-to-wannacry/
https://theconversation.com/nhs-ransomware-cyber-attack-was-preventable-77674
https://exchange.xforce.ibmcloud.com/collection/Bucbi-Ransomware-16eef23d3b7ea484ed69ecd78b6c1232
https://exchange.xforce.ibmcloud.com/collection/Bucbi-Ransomware-16eef23d3b7ea484ed69ecd78b6c1232

Information 2018, 9, 231 14 of 15

11. Lestringant, P.; Guihéry, F.; Fouque, P.A. Automated Identification of Cryptographic Primitives in Binary
Code with Data Flow Graph Isomorphism. In Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, Singapore, 14–17 April 2015; ACM: New York, NY, USA, 2015;
pp. 203–214.

12. Moser, A.; Kruegel, C.; Kirda, E. Limits of static analysis for malware detection. In Proceedings of the
Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007), Miami Beach, FL, USA,
10–14 December 2007; pp. 421–430.

13. Luk, C.K.; Cohn, R.; Muth, R.; Patil, H.; Klauser, A.; Lowney, G.; Wallace, S.; Reddi, V.J.; Hazelwood, K.
Pin: Building customized program analysis tools with dynamic instrumentation. In Proceedings of the
2005 ACM SIGPLAN conference on Programming language design and implementation, Chicago, IL, USA,
12–15 June 2005; ACM: New York, NY, USA, 2005; Volume 40, pp. 190–200.

14. Xu, D.; Ming, J.; Wu, D. Cryptographic function detection in obfuscated binaries via bit-precise symbolic
loop mapping. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA,
22–26 May 2017; pp. 921–937.

15. Li, X.; Wang, X.; Chang, W. CipherXRay: Exposing cryptographic operations and transient secrets from
monitored binary execution. IEEE Trans. Dependable Secur. Comput. 2014, 11, 101–114. [CrossRef]

16. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
17. LeCun, Y. Generalization and network design strategies. In Connectionism in Perspective; Elsevier:

New York, NY, USA, 1989; pp. 143–155.
18. LeCun, Y.; Kavukcuoglu, K.; Farabet, C. Convolutional networks and applications in vision. In Proceedings of

the 2010 IEEE International Symposium on Circuits and Systems (ISCAS), Paris, France, 30 May–2 June 2010;
pp. 253–256.

19. Hu, B.; Lu, Z.; Li, H.; Chen, Q. Convolutional neural network architectures for matching natural language
sentences. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA,
2014; pp. 2042–2050.

20. Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem Solving; U.S. Department of Energy:
Washington, DC, USA, 1984.

21. Gröbert, F. Automatic Identification of Cryptographic Primitives in Software. In Proceedings of the 27th
Chaos Communication Congress, Berlin, Germany, 27–30 December 2010.

22. Matenaar, F.; Wichmann, A.; Leder, F.; Gerhards-Padilla, E. CIS: The Crypto Intelligence System for Automatic
Detection and Localization of Cryptographic Functions in Current Malware. In Proceedings of the 2012 7th
International Conference on Malicious and Unwanted Software, Fajardo, PR, USA, 16–18 October 2012.

23. Zhang, P.; Wu, J.; Wang, X.; Wu, Z. Decrypted data detection algorithm based on dynamic dataflow analysis.
In Proceedings of the 2014 International Conference on Computer, Information and Telecommunication
Systems (CITS), Jeju, Korea, 7–9 July 2014; pp. 1–4.

24. Zhao, R.; Gu, D.; Li, J.; Yu, R. Detection and Analysis of Cryptographic Data Inside Software. In Proceedings
of the 14th International Conference on Information Security, Xi’an, China, 26–29 October 2011; Lai, X.,
Zhou, J., Li, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 182–196.

25. Calvet, J.; Fernandez, J.M.; Marion, J.Y. Aligot: Cryptographic function identification in obfuscated binary
programs. In Proceedings of the 2012 ACM Conference on Computer and Communications Security, Raleigh,
NC, USA, 16–18 October 2012; ACM: New York, NY, USA, 2012; pp. 169–182.

26. Hosfelt, D.D. Automated detection and classification of cryptographic algorithms in binary programs
through machine learning. arXiv 2015, arXiv:1503.01186.

27. Baldwin, J.; Dehghantanha, A. Leveraging support vector machine for opcode density based detection of
crypto-ransomware. In Cyber Threat Intelligence; Springer: Berlin, Germany, 2018; pp. 107–136.

28. Sgandurra, D.; Muñoz-González, L.; Mohsen, R.; Lupu, E.C. Automated Dynamic Analysis of Ransomware:
Benefits, Limitations and use for Detection. arXiv 2016, arXiv:1609.03020.

29. Drape, S. Intellectual Property Protection using Obfuscation. In Proceedings of the 2009 IEEE Sensors
Applications Symposium, New Orleans, LA, USA, 17–19 February 2009.

30. Tubella, J.; Gonzalez, A. Control speculation in multithreaded processors through dynamic loop detection.
In Proceedings of the 1998 Fourth International Symposium on High-Performance Computer Architecture,
Las Vegas, NV, USA, 1–4 February 1998; pp. 14–23.

http://dx.doi.org/10.1109/TDSC.2012.83
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442

Information 2018, 9, 231 15 of 15

31. Moseley, T.; Grunwald, D.; Connors, D.A.; Ramanujam, R.; Tovinkere, V.; Peri, R. Loopprof: Dynamic
techniques for loop detection and profiling. In Proceedings of the 2006 Workshop on Binary Instrumentation
and Applications (WBIA), San Jose, CA, USA, 21–25 October 2006.

32. Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on
Mathematical Statistics and Probability, Berkeley, CA, USA, 20 June–30 July 1961; pp. 547–561.

33. Kalchbrenner, N.; Grefenstette, E.; Blunsom, P. A Convolutional Neural Network for Modelling Sentences.
arXiv 2014, arXiv:1404.2188.

34. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012,
13, 281–305.

35. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks
by preventing co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580.

36. Marinho, T. GonnaCry. 2018. Available online: https://github.com/tarcisio-marinho/GonnaCry
(accessed on 7 September 2018).

37. Akdemir, K.; Dixon, M.; Feghali, W.; Fay, P.; Gopal, V.; Guilford, J.; Ozturk, E.; Wolrich, G.; Zohar, R.
Breakthrough AES Performance with Intel AES New Instructions; White Paper; Intel Corporatlon: Santa Clara,
CA, USA, June 2010.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/tarcisio-marinho/GonnaCry
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Heuristics
	Data Flow Analysis
	Machine Learning
	Overview

	Methodology
	Artefacts
	Obfuscation
	Interpretation
	Feature Extraction
	Basic Blocks and Loops
	Instructions
	Entropy

	Model
	Experimentation

	Evaluation
	Conclusions
	References

