2,696 research outputs found

    A hybrid algorithm to improve the accuracy of support vector machines on skewed data-sets

    Get PDF
    Over the past few years, has been shown that generalization power of Support Vector Machines (SVM) falls dramatically on imbalanced data-sets. In this paper, we propose a new method to improve accuracy of SVM on imbalanced data-sets. To get this outcome, firstly, we used undersampling and SVM to obtain the initial SVs and a sketch of the hyperplane. These support vectors help to generate new artificial instances, which will take part as the initial population of a genetic algorithm. The genetic algorithm improves the population in artificial instances from one generation to another and eliminates instances that produce noise in the hyperplane. Finally, the generated and evolved data were included in the original data-set for minimizing the imbalance and improving the generalization ability of the SVM on skewed data-sets

    Detecting Sockpuppets in Deceptive Opinion Spam

    Full text link
    This paper explores the problem of sockpuppet detection in deceptive opinion spam using authorship attribution and verification approaches. Two methods are explored. The first is a feature subsampling scheme that uses the KL-Divergence on stylistic language models of an author to find discriminative features. The second is a transduction scheme, spy induction that leverages the diversity of authors in the unlabeled test set by sending a set of spies (positive samples) from the training set to retrieve hidden samples in the unlabeled test set using nearest and farthest neighbors. Experiments using ground truth sockpuppet data show the effectiveness of the proposed schemes.Comment: 18 pages, Accepted at CICLing 2017, 18th International Conference on Intelligent Text Processing and Computational Linguistic

    Cluster-Based Supervised Classification

    Get PDF

    Optimization of distributions differences for classification

    Full text link
    In this paper we introduce a new classification algorithm called Optimization of Distributions Differences (ODD). The algorithm aims to find a transformation from the feature space to a new space where the instances in the same class are as close as possible to one another while the gravity centers of these classes are as far as possible from one another. This aim is formulated as a multiobjective optimization problem that is solved by a hybrid of an evolutionary strategy and the Quasi-Newton method. The choice of the transformation function is flexible and could be any continuous space function. We experiment with a linear and a non-linear transformation in this paper. We show that the algorithm can outperform 6 other state-of-the-art classification methods, namely naive Bayes, support vector machines, linear discriminant analysis, multi-layer perceptrons, decision trees, and k-nearest neighbors, in 12 standard classification datasets. Our results show that the method is less sensitive to the imbalanced number of instances comparing to these methods. We also show that ODD maintains its performance better than other classification methods in these datasets, hence, offers a better generalization ability

    SVM-Based Negative Data Mining to Binary Classification

    Get PDF
    The properties of training data set such as size, distribution and the number of attributes significantly contribute to the generalization error of a learning machine. A not well-distributed data set is prone to lead to a partial overfitting model. Two approaches proposed in this dissertation for the binary classification enhance useful data information by mining negative data. First, an error driven compensating hypothesis approach is based on Support Vector Machines (SVMs) with (1+k)-iteration learning, where the base learning hypothesis is iteratively compensated k times. This approach produces a new hypothesis on the new data set in which each label is a transformation of the label from the negative data set, further producing the positive and negative child data subsets in subsequent iterations. This procedure refines the base hypothesis by the k child hypotheses created in k iterations. A prediction method is also proposed to trace the relationship between negative subsets and testing data set by a vector similarity technique. Second, a statistical negative example learning approach based on theoretical analysis improves the performance of the base learning algorithm learner by creating one or two additional hypotheses audit and booster to mine the negative examples output from the learner. The learner employs a regular Support Vector Machine to classify main examples and recognize which examples are negative. The audit works on the negative training data created by learner to predict whether an instance is negative. However, the boosting learning booster is applied when audit does not have enough accuracy to judge learner correctly. Booster works on training data subsets with which learner and audit do not agree. The classifier for testing is the combination of learner, audit and booster. The classifier for testing a specific instance returns the learner\u27s result if audit acknowledges learner\u27s result or learner agrees with audit\u27s judgment, otherwise returns the booster\u27s result. The error of the classifier is decreased to O(e^2) comparing to the error O(e) of a base learning algorithm
    corecore