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SVM-BASED NEGATIVE DATA MINING TO BINARY CLASSIFICATION 

by 

 

FUHUA JIANG 

Under the Direction of A. P. Preethy 

ABSTRACT 

 

The properties of training data set such as size, distribution and number of 

attributes significantly contribute to the generalization error of a learning machine. A not-

well-distributed data set is prone to lead to a partial overfitting model. The two 

approaches proposed in this paper for the binary classification enhance the useful data 

information by mining negative data. First, error driven compensating hypothesis 

approach is based on the Support Vector Machines with 1+k times learning, where the 

base learning hypothesis is iteratively compensated k times. This approach produces a 

new hypothesis on the new data set in which, each label is a transformation of the label 

from the negative data set, further produces the child positive and negative data subsets in 

subsequent iterations. This procedure refines the model created by the base learning 

algorithm, creating k number of hypotheses over k iterations. A predicting method is also 

proposed to trace the relationships between the negative subsets and testing data set by 

vector similarity technique. Second, a statistical negative examples learning approach 

based on theoretical analysis improves the performance of base learning algorithm 

learner by creating one or two additional hypothesis audit and booster to mine the 

negative examples output from the learner. The learner employs a regular support vector 



     

 

machine to classify main examples and recognize which examples are negative. The 

audit works on the negative training data created by learner to predict whether an 

instance could be negative. The negative examples are strongly imbalanced. However, 

boosting learning booster is applied when audit does not have enough accuracy to judge 

learner correctly. Booster works on the training data subset with which learner and audit 

do not agree.  The classifier for testing is the combination of learner, audit and booster. 

The classifier for testing a specific instance returns the learner’s result if audit 

acknowledges learner’s result and learner agrees with audit’s judgment, otherwise 

returns the booster’s result. The error ε  of base learning algorithm is proved to decrease 

from )(εO  to )( 2εO . 

 

INDEX WORDS: 

Data partition, Data preparation, Support vector machines, Multiple passes learning, 

Vector similarity, Data classification, Bioinformatics, Machine learning 
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CHAPTER 1  

 INTRODUCTION  

 

The approach to solve the complex problem without precise model is to learn 

functionality from the pairs of input and output of examples. The examples are the 

classification of protein types based on DNA sequence [1], the regression of the surface 

roughness of parts in manufacturing and so forth. In general, the problem of supervised 

machine learning is to search a hypothesis h(x,α) from a space of potential hypotheses H 

to determine the hypothesis that will best fit underlying function f and any prior 

knowledge as well, where x is the testing vector and α is the parameters of hypothesis [2].  

The learning has training and testing phases. The training is to estimate the 

parameter α to the hypothesis or model h(x, α). The testing is to use the model to predict 

the labels of testing data. A hypothesis h(x, α) can be abbreviated by h(x) once α is 

determined. A hypothesis h(x) can be considered as a hyper-surface in the n-dimensional 

input space, where n=|x|, by geometric interpretation. For example, a hypothesis of fuzzy 

controller or the support vector machine (SVM) [1, 3-7] is a hyper-surface, although the 

hypothesis created by instance-based learning[8, 9] is not in this case. A hypothesis h(x) 

can be also considered as a hyperplane in the feature linear space of SVM.  

A hypothesis learned from training examples is not perfect to fit underlying 

function, because the computational errors of approximation and estimation are inevitable 

to overcome; training data includes noises and does not well distributed. Not well 

distributed examples means that these examples are not well represented the whole input 



  2  

 

space. Some areas may have more examples and other areas may only have a few 

examples. Therefore some examples are not negative contribution to the hypothesis 

learned. These negative examples can be mined to improve the accuracy of hypothesis. 

This chapter describes basic concepts and briefly introduces the main approach proposed. 

1.1 Learning Problem Terminology  

There is an instance vector x from an input space X, a response or label y from 

output space Y and a hypothesis h form hypotheses space H for a learner L. We have  

  R,R ∈∈⊆= )()()2()1( ,,),,...,,( inn xXxXxxxx   (1-1)  

where R is a set of real numbers, integer n>0 is the size of vector x. Y = }1,1{ +− or Y 

⊆R is in binary classification, Y = },...,2,1{ m  is m-class classification, and Y⊆R is in 

regression. The learned hypothesis h returns a predicting label, y’=h(x), of an instance x, 

a real number. In the binary classification, if h(x) returns a confidence value then y’>0, 

means y’ is in the class +1 whereas y’<0 means in the class -1.  

A training data set S is a collection of training examples or observations given by 

zi=(xi,yi). It is denoted by 

 )},),..(,(),,{( 2211 ll yxyxyxS = li ..1=  (1-2) 

where ℓ = |S| is the size of the training set. In this paper the label of binary classification 

Y is extended to Y ⊆R, the final output of binary classification is the sign of label.  

There exists a true functional relationship or underlying function f: X ⊆R n → Y, 

which is often based on the knowledge of the essential mechanism. These types of 

models are called mechanistic models. A hypothesis h is an approximation to the 

underlying functional relationship f between variables of interest. The problem for the 
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learner L is to learn an unknown target function h: X→Y drawn from H and output a 

maximum likelihood hypothesis.   

1.2 Evaluating the Performance of Binary Classification 

In a binary classification, examples of class +1 and class -1 are usually said to be 

positives and negatives respectively. Traditionally, three metrics, named accuracy, 

sensitivity and specificity, are used to evaluate the performance of hypothesis based on 

the confusion matrix in Table 1.1:  

 
TPFPFNTN

TPTNaccuracy
+++

+
=  (1-3)  

 
FNTP

TPysensitivit
+

=  (1-4)  

 
TNFP

TNyspecificit
+

=  (1-5)  

Sensitivity is the proportion of true positives and specificity is the proportion of true 

negatives. The predictive value positive and predictive value negative is evaluated 

accuracies of the positive and negative examples respectively. 

 
FPTP

TPpositivevaluepredictive
+

=  (1-6)  

 
FNTN

TNnegativevaluepredictive
+

=  (1-7) 

The sum of FP and FN is the number of misclassification examples on the unseen 

testing dataset whereas the sum of TP and TN is the number of correctly classified 

examples. Predictive positives are consisted of true positives (TP) and true negatives 

(TN). Predictive negatives include false positives (FP) and false negatives (FN). 
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TABLE 1.1 Confusion matrix 

 Real   

   Positive  Negative   

 True Positive  False Positive 

 Positive TP FP  TP + FP 

 False Negative  True Negative Test 

  Negative FN TN  FN + TN 

   TP + FN  FP + TN   

 

The accuracy ρ is usually used as metric to evaluate whether a model is good or 

not in the binary classification. Training accuracy ρt and the testing accuracy ρp are used 

to evaluate the performance of learning machine. Sometimes a high ρt results in a high ρp, 

otherwise a high ρt results in a low ρp which is called overfitting. The testing accuracy is a 

measure of generalization capacity of a model. If there exist two models for the same 

learning problem with the same training accuracy, how can we determine which model 

has a higher probability of performance without predicting. The support vector machine 

(SVM) uses maximal margin as the metric. A hypothesis h(x) could be considered as a 

predicting confidence of an instance x. The relationship between confidence and label is 

shown on Figiure1.1, which is an example predicting task with 30 testing instances. 

Although some instances are labeled as class +1, their confidences are quite different. It 

can be considered that a predictive data with high confidence is true in high probability. 
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Figure 1.1 The relationship of label and predicting confidence 

 

A metric average residual (AR) to evaluate the model is shown on (1-8) based on 

the generalization theory [5] 

 
∑
=

=
l

i
ii xhy

l
AR

1
)(1

 (1-8) 

where l is the size of training data set and yi is the label of input vector xi. The high AR 

means high training accuracy. AR could be negative if there are many misclassified 

examples. The hyper-surface h(x) separates the hyperspace into two sides in the binary 

classification }1,1{ +−=y . In SVM, the predictive value of y’=h(x) is proportional to the 

geometric distance from point x to the hyperplane in the feature space. y’ is the geometric 

distance if maximal margin is normalized to 2. Then the new metric is the average 

distance to hyper-surface as shown on Figure 1.2. One side h(x)>0 is in the class +1 and 

the other side h(x)<0 is in the class -1. The hyperplane h(x)=0 is the separator. The 

hypothesis h(x) becomes a measure of performances to separate vector x.  
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Figure 1.2  Model h(x) is a hyper-surface. Instance x1 is well-separated; instance x2 is not 

well-separated and instance x3 is misclassified where their labels y1, y2 and y3>0. 

 

Furthermore, when the training data are strongly imbalanced, accuracy may 

mislead because the all positive or all negative classifiers may have a very good 

accuracy. The Receiver Operating Characteristics (ROC) curve has been introduced by 

the signal detection theory to evaluate the capability of a human operator of 

distinguishing signal and noise[10]. ROC analysis is now being acknowledged as a 

practical tool to evaluate classifiers of imbalanced data, even when the prior distribution 

of the classes is not known[11]. ROC curve is a two-dimensional measure of 

classification performance. It can be understood as a plot of the probability of correctly 

classifying the positive examples against the rate of incorrectly classifying negative 

examples as shown below.  

The AUC is defined at the area under an ROC curve. Processing the AUC would 

need the computation of an integral in the continuous case. The following equation is the 

AUC on discrete case such as in the classification. 

 ∑ ∑
+ −

−+= = >−+=
l

i

l

j xhxh jill
hAUC

1 1 )()(
11)(  (1-9) 

y 

h(x1) 

h(x2)

x1

x2

h(x)=0

h(x3) 
x3 
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Figure 1.3 An example of ROC Curve for a given hypothesis[12], y-axis is sensitivity and 

x-axis is the 1-specificity. The diagonal line from (0,0) to (1,1) is drawn for random 

classifier as a reference. 

 

where h(x) is the hypothesis. x+ and x− respectively denote the class +1 and -1 examples 

and l+ and l− are respectively the numbers of class +1 and -1 examples and 1π is defined 

to be 1 if the predicate π holds and 0 otherwise. AUC value is the probability P(Y1>Y2) 

where Y1 is the random variable corresponding to the distribution of the outputs for the 

positives and Y2 is the one corresponding to the negatives[13]. The average of AUC is 

monotonically increasing as the accuracy of hypothesis, but the standard deviation for 

imbalanced distributions is grown[14]. Therefore AUC is a better metric than accuracy in 

the case of imbalanced examples distribution. Alain Rakotomamonjy proposed an AUC 

maximization algorithm and show that under certain conditions 2-norm soft margin 

SVMs can maximize AUC[15]. AUC is not as an optimization objective in this 

dissertation but as an evaluation metric. Genuine SVMs assume that misclassification 

costs are equal for both classes of binary classification. So SVMs are not suitable in 

detecting a small size class in the imbalanced data set. For example, it is very hard to 
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detect the negatives when the size of negative is far less than that of positives. Thus, ROC 

curve approach is of interest because it reflects both true positive and false positive 

information. However, if training examples are separable, any hypotheses in the version 

space will maximize AUC.   

In order not to confuse the terminologies of positives and negatives in the following 

chapters and sections, positives and negatives are called class +1 and class -1 examples 

respectively because labels belong to }1,1{ +− . That is very convenient to extend binary 

classification into multiple classifications. For example, 4-category classifications 

problem have class 1, 2, 3, 4 examples because labels belong to }4,3,2,1{ .  

1.3 Relatively Performance Evaluation  

Most literatures evaluated a hypothesis by using absolutely evaluation hypothesis 

method (AEHM). The examples include accuracy, AUC, least square sum.  All AEHMs 

have to assume the data distribution is i.i.d. These methods are necessary in the 

evaluation of generalization capacity in the unseen data. When the size of data set is 

small, AEHMs is not meaningful because a small size of examples is not capable to show 

the whole picture of data distribution. Then a relatively evaluation hypothesis method 

(REHM) is introduced. 

To show how REHMs works, assume a data set D includes l examples and n-fold 

cross-validation are used.  We have n pairs of training and testing data set. The size of 

training data and testing examples are listed below: 

 D
n

nSi ×
−

=
1 , ni ..1=  (1-10) 

 D
n

Ti ×=
1 , ni ..1=  (1-11) 
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Firstly, data set D is trained and hypothesis hD(x) is gotten. We get performance 

value Dη  by testing data set D using hD(x).  The performance value could be accuracy, 

AUC and etc. Secondly, data set Si is trained and hypothesis hi(x) is gotten. We get 

performance value iη  by testing data set Ti using hi(x).  Let the average of iη  be Sη . 

Then REHM is defined below: 

 
D

SREHM
η
η

=  (1-12) 

The performance value Dη is the best value of given hypothesis in terms of data set 

D. Any other iη  cannot be better than Dη  because the testing examples are included in the 

training data in the AEHM. Thereby REHM is a value less or equal than 1.0. To the 

separatable examples, REHM is exactly the same as AEHM.  

 

1.4 Challenges of Machine Learning 

The goal of learning is to have high testing or predicting accuracy rather than 

training accuracy. The underlying function f of the practical problem is unknown and 

even hard to be described. What can be known in the problem are the training data set S, 

and the limit and not full prior knowledge of the problem. The general purpose learning 

algorithm does not even take advantage of domain knowledge, such as statistical learning 

methods. They only consider or assume the distribution of data where all data are drawn 

from this distribution possibility, although such assumption is not realistic. The 

underlying function f of problem is in the target space TS; the model is a hypothesis h 

from the hypotheses space H. Therefore, three types of error are inevitable in the process 

of machine learning [16]. The first is the approximation error from the number of 
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hypotheses in the hypotheses space less than that of target space, H <TS. The underlying 

function f may be beyond the hypothesis space if h≠f. The second is the estimation error 

for a training algorithm from selecting a non-optimal model or hypothesis due to the 

technique of computation, for example, the back propagation algorithm cannot produce 

the optimal solution because of local minima problem. The last one is the generalization 

error jointly from the approximation and estimation error.  

In addition to those, the properties of data such as a small size, dirty, imbalanced or 

not well-distributed training data set, which means that the training data set does not well 

reflect the real problem, contribute to the generalization error. Hence, the generalization 

error is the composite error from all aspects. In the supervised machine learning, the 

hypotheses space is selected by human, and the number of types of hypotheses spaces 

that are available to human is limited. The hypotheses space in the artificial neural 

network (ANN) is the topology of network and the approximation functions, such as 

sigmoid functions, in the neuron[17-20].  In the support vector machine (SVM), the 

hypotheses spaces could be regarded as the kernel functions such as polynomial kernel; 

radial basis function kernel (RBF) and etc. Therefore the approximation error cannot be 

reduced once the hypotheses space is chosen. How to choose a suitable hypothesis space 

depends on human’s a priori knowledge of identifying characteristics of a real learning 

problem and the learning accuracy.  

It is known from above discussion, the performance of testing or capacity of 

generalization relies on the shape of the hyper-surface or model. Sometimes the 

hypotheses spaces are larger enough than the target spaces; the model is still prone to 

overfitting due to not well distributed training data as shown on Figure 1.4. Not well 
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distributed data are scattered on the input space un-uniformly. One challenge is there 

exists a general method to compensate a hypothesis and let it fall in hypothesis space to 

reduce approximation error. Another is how to reduce estimation error. SVMs are proved 

as global optimization method once kernel is chosen.  

 

Figure 1.4 Comparing to classifier h1(x) and h2(x) of the binary classification, the model 

with high degree is prone to overfitting, where f(x) is the underlying function. 

 

1.5 Negative Data Mining 

According to traditional Chinese philosophy, Yin and Yang are the two primal 

cosmic principles of the universe. Yin is the passive, female principle while Yang is the 

active, masculine principle. The best state for everything in the universe is a state of 

harmony represented by a balance of Yin and Yang. True harmony requires Yang to be 

dominant. It's just the natural phenomena. As show on Figure 1.5 Yin-Yang symbol, 

when Yin and Yang are in harmony with one another, they are two halves of the circle, 

Training y=+
y=-1 

y=+1 Test Set 
y=-1 Underlying f(x) 

h1(x) 
h2(x) 
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one dark and the other light. The small circle within each half shows that the part of each 

opposite is always found within the other. They are not really opposites at all. Yin and 

Yang is interrelated. Partial Yin is inside of Yang whereas partial Yang is inside of Yin. 

Yin and Yang should be respected to an equal extent. 

 

Figure 1.5 The Yin-Yang symbol. 

  The target space could be considered as a universe in the Yin-Yang theory. To a 

specified hypothesis h∈H, all examples in the universe TS are divided into two primal 

groups positive and negative data, which matches Yang and Yin. The positive data is the 

subset of all correctly classified examples where negative data is the rest. An example 

could be positive or negative. The negative data does not mean the data is wrong or 

corrupt. What negative data can be known is that a hypothesis cannot make it well-

separated. Negative data strongly depends on the hypothesis.  Whether an example is 

positive or negative is relative. To a specific example, hypothesis A classifies it to be 

negative while hypothesis B may classify it to be positive. Furthermore, even for the 

same hypothesis, an example probably belongs to positive or negative in terms of the 

different parameters α of a hypothesis h(x)=f(x, α). 

Yin-Yang Theory claims that Yin and Yang together form a universe. Yin and 

Yang are opposite group, and each can be always found in the opposite within the other. 

This is the foundation philosophy of negative data mining. The Yin-Yang theory 

indicates that negative data contains the positive information. The more information, the 
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higher accuracy of learn machine can be gotten. By mining negative data, the accuracy of 

machine learning will be enhanced[21].  

There are two ways of improving the performance of classification. One improves 

the learning algorithm or method to reduce approximation and estimation error by 

choosing a suitable learning algorithm or invent a new algorithm. Here we only consider 

the other way to mine training data to increase the accuracy of hypothesis such as 

boosting and bagging[22-25].  

 

1.6 Introduction to Negative Data Driven Compensating Hypothesis Approach 

(NDDCHA)  

For a specific model to a specific learning problem, there are several ways to 

improve the model or hypothesis if misclassified examples exist. The first way makes 

hypothesis space larger than the target space. The second is to reduce estimation error. 

The third is to make the size of examples large. The last is the training data mining in 

which a sequence of learning algorithms takes advantage of the distribution of data to 

create a combination of algorithm. A good example is the SVM ensemble powered by the 

bagging and boosting approach [22-25].  

In bagging, each base learning algorithm is trained independently by using 

randomly chosen training examples via a bootstrap technique. In boosting, the base 

learning algorithm is trained using training data examples chosen according to the 

examples' distribution. The boosting approach calls a weak base learning algorithm more 

than one time. The base learning algorithm could be any algorithms such as ANN or 

SVM. Each time weak algorithm is fed with a different subset of the training examples 
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and generates a new weak prediction rule. After many rounds, the boosting algorithm 

combines these weak rules into a single prediction rule to produce more accurate rule. 

The problems of how each distribution should be chosen in each round, and how the 

weak rules should be combined into a single rule is to maintain set of weights over the 

training set. Therefore, the boosting approach is combining a series of hyper-surfaces into 

a single hyper-surface where each hyper-surface is independent. Chang [26] proposed a 

boosting SVM classifier with logistic regression for imbalanced training data by using 

clustering technique. Kim et al. [27] proposed bagging and boosting SVM approach and 

tested majority voting, least squares estimation based weighting, and double-layer 

hierarchical combination aggregating methods. Vapnik in his book [5] gave a detail 

explanation on how to use SVM ensemble powered by Schapire’s AdaBoost algorithm 

[25]. The main drawbacks of bagging and boosting are time consuming and the 

performance largely depends on the training data of probability distribution and 

aggregation methods. The Boosting could be considered as a negative mining algorithm 

which emphasizes learning on misclassified data or negative data. 

The negative data driven compensating hypothesis approach (NDDCHA) driven by 

the negative data information is proposed in this paper. This approach looks similar to the 

SVM ensemble, which is learning technique where multiple SVMs are trained to solve 

the same problem [5, 28-30]. The SVM ensemble is to generate a sequence of SVMs by 

using Bagging or Boosting approaches and then combining their predicting. The 

difference is that the ensemble approach is combining the results of SVMs and each SVM 

is independent, while NDDCHA is compensating the labels of base SVM by a sequence 

of patching SVMs and making training examples well separated by using AR metric 
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(1-8). The NDDCHA works on the negative data and the size of negative training data is 

reduced in each pass and therefore it converges quickly in the rate of exponentially. In 

our practice, the number of passes is not greater than 3. 

The main idea of the approach proposed here is to maximize the yh(x) for every 

example x in the training phase by using a series of hypotheses h(i)(x) i=0...k, whereas 

testing data find appropriate h(i)(x) by using vector similarity technique to predict the 

example in the predicting phase. The approach is to improve the capacity of 

generalization and reduce the approximation error by extending the traditional learning 

method like SVMs in two aspects. The first is to compensate hypothesis by making use of 

the examples from training data S with high training error due to H<TS and not well-

separated examples. The second is data cleaning and data enhancing by utilizing the 

negative data which has high predicting error or not well-separated in the phase of 

training and testing. 

The rest of this paper is organized as follows. In Chapter 2, the related work 

including boosting, k-nearest neighbor algorithm (KNN) and SVM are introduced; the 

concepts of NDDCHA and principle of generalization theory are also introduced. In the 

Chapter 3, the concept of negative examples is introduced. In Chapter 4, the algorithm of 

NDDCHA is studied in detail. In Chapter 5, the statistical negative example learning is 

studied. Finally in Chapter 6, the main contribution of this paper is summarized. 



  16  

 

 

CHAPTER 2  

 RELATED WORK  

 

There are two general strategies in improving an algorithm. One is modification of 

algorithm structure, and the other is modification training data. The first one includes 

changing the objective function of optimization, for examples, approach of support vector 

machine to decision tree[31]. The second one includes the bagging and boosting. The 

approaches in this dissertation focus on the second strategy. The related works are briefly 

introduced in this chapter, including boosting and bagging, locally weighted regression, 

kernel and support vector machines. 

2.1 Boosting and Bagging 

Breimans’s bagging[24] and Freund and Schapire’s boosting[23, 25, 32] [33] both 

form a set of classifiers or hypotheses that are combined by voting. Bagging generates 

replicated bootstrap examples of the data and boosting adjusts the weights of training 

examples. Two approaches are based on theoretical analyses of the behavior of the 

composite classifiers. Bagging can be applied for the situation where a small agitating the 

training data set will result in significant changes in the classifier built. Boosting 

strengthens the base or weak learn algorithm. 

Boosting based on PAC learning[34] causes the learner to focus on those 

misclassified examples then it generates new classifiers by adjusting the weight of 

examples. The high weight of example indicates the high influence on the classifier 
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constructed. Boosting learns examples many times. In every time of learning, the weight 

of examples is adjusted to reflect the accuracy of classifier built on previous iteration. 

Obviously, the misclassified example will be assigned high weight on the next iteration. 

In the testing phase multiple classifiers are combined by majority voting strategy to form 

a composite classifier. Boosting uses different voting strength in terms of the accuracy of 

component classifier in the training phase. How to determine the weight of examples is 

key point of boosting. One implementation of boosting is AdaBoost[33] shown in the 

following: 

Given: Training data set S defined on the (1-2). 

Initialize the weight distribution: 
l
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Train weak learner using distribution Dt 
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Determining the number of T is stop criterion that uses two ways:  

• if 5.0>tε  
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• )(xht  correctly classified all examples 

Other boosting implementations include Brownboost[35] and Logitboost[36]. If 

weight zero was assigned to the correctly classified examples in the extremely condition, 

then the next iteration of learning will only use the negative data. The side effect in this 

case is that the size of next generation training data may be imbalanced. The assumption 

of bagging and boosting is that a small change of examples on a given distribution will 

cause significant changes on the classifier built. As long as the accuracy of every 

component classifier is greater than 50%, Freund and Schapire proved that accuracy of 

the composite classifier on the given training data set increases in the rate of 

exponentially quickly as the number of iterations increasing. However, the composite 

classifier cannot guarantee the generalization performance. And boosting also produces 

severe degradation on some datasets [37]. Most existing boosting algorithms are limited 

to combine only a finite number of hypotheses, and the generated ensemble is usually 

sparse.  Lin et al. proposed infinite ensembles may surpass finite and/or sparse ensembles 

in learning performance and robustness[38]. Bagging and boosting requires that the 

learning system should not be stable, and then the small changes to the training examples 

should have considerable changes in the hypothesis[37, 39]. 

2.2 Kernel Methods 

Kernel methods[40] provide an alternative solution to non-linear system by 

projecting the data into a high dimensional feature space where data can be solved by 

linear system. The successful applications of kernel based algorithm have been found in 

different areas, for examples, pattern recognition[41, 42], time series prediction[43], text 
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categorization[44], gene expression profile analysis[45], DNA and protein analysis[46] 

and etc.  

Suppose a vector x in the input space X projects into )(xφ in the feature space F. 

 ))(),...,(),(()(),...,,( 221121 mmn xxxxxxxx φφφφ == a ,  

 }|)({)(, XxxFxXx ∈=∈∈ φφ  (2-1) 

The n-dimensional vector x has n coordinates in the input space, the coordinates are 

called attributes. And the coordinates in the feature space is called features. If m<n, this 

is known as dimensionality reduction. If m>>n, this is known as curse of dimensionality. 

Using to large number of features may lead to the overfitting problem[1]. In the mean 

time, the large number of features increases the computational cost. 

A kernel is a function K, such that Xzx ∈∀ ,  

 )()(),( zxzxK φφ ⋅=  (2-2)  

where function )(xφ  is a non-linear mapping function from X to an inner product feature 

space F. A kernel function calculates an inner product which expresses a degree of 

similarity of two vectors. Kernel function is symmetric, but not all of symmetric 

functions over XX ×  are kernels. Kernel function has to be positive definite according 

to Mercer’s theorem[1]. Many researches extended kernel function in practical 

application. Ong et al. proposed methods to learn non-positive kernel [47], which has 

been promising in empirical applications. Kernel function plays a key role in determining 

the performance of SVM. S. Armari and S. Wu proposed a method of modifying a kernel 

function to improve the performance of SVM based on the Riemannian geometrical 

structure[48]. Srivastava et al. proposed a method of mixture density Mercer Kernels 
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which learn kernel directly from data[49]. The following are some most common used 

nonlinear kernel functions 

Polynomial Kernel dczxazxK )*(),( +=  (2-3)  

Radial Basis Kernel  )||||exp(),( 2zxzxK −−= γ  (2-4)  

Sigmoid Kernel )*tanh(),( czxzxK += γ  (2-5)  

 

2.2.1 Distance in the Feature Space 

Kernel expresses domain knowledge about the pattern being constructed, encoded 

as a similarity metric between two vectors [50, 51]. Let K be a kernel over XX × , then a 

distance d of two vectors x and z in the feature space defined as [52]:  

 ),(),(2),()()(),( zzKzxKxxKzxzxd +−=−= φφ  (2-6)  

Radial basis kernel (2-4) function has a close relation between kernel and distance. 

2|||| zx −  can be substituted by any metric that calculates the distance between x and z. 

The angle θ between two vectors x and z in the feature space satisfies 

 )2,0[  ,
),(),(

),(
)()(

)()(
cos πθ

φφ
φφ

θ ∈
⋅

=
⋅

=
zzKxxK

zxK
zx

zx
 (2-7)  

Suppose θ 1 is the angle between vectors x1 and z andθ 2 is the angle between vectors x2 

and z. The follow equation can be gotten: 
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===
θ
θη  (2-8)  

Theorem 2.1 Given that the feature space defined by kernel function 

)()(),( zxzxK φφ=  is linear space, and then the hypothesis )(xh  in the feature space is 
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linear which can be expressed bwxxh +⋅= )()( φ , where w is a constant vector to define 

hyperplane, b is a bias.  

• The vector x1 is closer to vector z than vector x2, )()()()( 21 zxzx φφφφ −≤−   

• 21 coscos θθ ≤ , where angles θ 1, ],0[2 πθ ∈  defined on the equation (2-7). θ 1 

is the angles between )()( 1 zx φφ −  and w; and θ 2 is the angles between 

)()( 2 zx φφ −  and w, as shown below.  

 

Figure 2.1 h(x) is the hyper-plane in the feature space. Points x1, x2, and z in the input 

space are mapped into feature space. w is the normal vector of hyper-plane h(x)=0. 

Then: 

 )()()()( 21 zhxhzhxh −≤−  (2-9)  

Proof:  

Q )()()()( 21 zxzx φφφφ −≤− , both sides multiply 21 coscos θθ ⋅⋅w  

⇒ 122211 coscos)()(coscos)()( θθφφθθφφ ⋅⋅⋅−≤⋅⋅⋅− wzxwzx  

w

)( 1xφ  

)( 2xφ  

)(zφ  

h(x)=+1 h(x)=-1

θ1 

θ2 
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⇒ 1221 cos)()(cos)()( θφφθφφ wzxwzx −≤−  and Q θcoszxzx ⋅=  

⇒ 1221 cos)()(cos)()( θφφθφφ wzwxwzwx −≤−  since inner product is 

distributive. 

⇒ 1221 cos)()(cos)()( θθ ⋅−≤⋅− zhxhzhxh  and Q 21 coscos θθ ≤  

⇒ )()()()( 21 zhxhzhxh −≤− , then the theorem is proved. 

The theorem  2.1 shows that predicating label is much similar if two vectors in the 

feature space are closer, and the angle between vectors is smaller. It also shows that the 

predicting label depends on hyperplane because the angle is relative to w . 

Suppose that vector z is an instance from testing data set; examples ),( 11 yx and 

),( 22 yx  are from training data set. If ),(),( 21 zxdzxd ≤  in equation (2-6) and 12 ≥η  in 

equation (2-7), the conclusion is the value of predicting label )(zh of instance z is closer 

to 1y .than 2y . If θ 1=0, that means vector )()( 1 zx φφ − parallels to hyperplane, and no 

matter what θ 2 is, vector )( 2xφ is further to )(zφ than vector )( 1xφ . The theorem  2.1 is the 

foundation of vector similarity in the feature space. 

2.2.2 Polynomial kernel 

The polynomial kernel is defined: 

 dczxzxK )(),( += , d>1 (2-10)  

For example d=2, and vector x or z has n dimensions, 
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Therefore, the total feature of degree 2 polynomial kernel is ⎟⎟
⎠

⎞
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⎝
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general, the total feature of degree d polynomial kernel has ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
n

dn
 number of features.  

2.3 Support Vector Machines (SVMs) 

Support Vector Machines (SVMs) [1, 5, 53-55] is a learning algorithm for classification, 

regression and density estimation. SVM has been used successfully in many areas 

including bioinformatics[56]. For example, the SVM can be used to learn polynomial, 

radial basis function (RBF) and multi-layer perceptron (MLP) classifiers. SVMs are 

based on the structural risk minimization (SRM) principle, which incorporates capacity 

control to reduce overfitting.  

 

2.3.1 The Maximal Margin Classifier 

The basic SVM is a linear classifier to separate the training data S into two 

classes. The separator or hyperplane is wTx+b=0, where w is the weight vector and b is 

the bias term. Suppose the training data are separable, the optimal hyperplane satisfies 

conditions in the following by maximize the margin of separator which is the width of 

separation between classes, 
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The risk functional is the Φ(w). Lagrange multipliers are introduced 0≥iλ , li ,...,1= for 

each constraint in (2-12). The following Lagrangian is gotten: 
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1),,( xwww λ   (2-13)  

where T
l ),,( 1 λλ K=Λ  are the Lagrange multipliers, one for each example. The task is to 

minimize (2-13) with respect to w, b, and maximize it with respect toΛ . Differentiating 

with respect to w and b and setting the derivatives equal to 0 to get optimal point 
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and 
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The optimal w* is  
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Substituting (2-13) by (2-16): 
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We get dual problem of primal problem (2-12): 
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where T
lyyy ),,( 1 K= , I is an identity matrix and D is a symmetric ll ×  matrix with 

elements j
T

ijiij yyD xx= . To solve the above convex quadratic programming (QP) 

problem, we get the classifier )(xf , 
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where λ*i>0. If λ*i≠0, the ith vector xi is a support vector. To a nonlinear separable 

problem, an n-dimensional input vector x is projected into a high m-dimensional space 

using nonlinear function mn RR →:)(xφ , and then the output is linear. Then (2-19) 

becomes 

 ⎟
⎠

⎞
⎜
⎝

⎛
+=+== ∑
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iii bybhxf

1

*T***T )()(sgn))(sgn()(sgn)( xxwxx φφλφ  (2-20)  

The function (2-20) is in the form of inner products )()( zx φφ T , which can be represented 

by a kernel function )()()()(),( zxzxzx φφφφ == TK . Using kernel functions makes it not 

necessary to find the mapping function. Therefore the kernel function is a way to 

construct non-linear hyper-surface. For instance, if a polynomial kernel is used, then 

hypothesis h(x) can be represented by a continuous hyper-surface with polynomial h(x) in 

the input space whereas h(x) is also a hyperplane in the high-dimensional feature space 

through mapping function )(xφ . The hyperplane h(x) is determined by the training 

examples xi  i=1...l.  If the training examples are changed the shape of the hyper-surface 

will also be changed. The hyper-surface is usually vectors sensitive. In the SVM, the 
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hyperplane is determined by the support vectors that are only part of example subset of 

training set. Only the support vectors will affect the hyperplane. The overfitting is much 

serious if the number of the support vectors is close to the size of training data set. By 

using kernel function, the decision function (2-19) becomes   

 ⎟
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iii bKyxhf
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** ),(sgn)(sgn)( xxx λ  (2-21) 

where the bias is given by 

 ∑
=

−=−=
l

j
ijijii

T
i Kyyyb

1

*** ),()( xxxw λφ  (2-22) 

for any support vector ix . 

 

2.3.2 The Soft Margin Optimization 

SVM introduced a vector of slack variables T
l ),...,,( 21 ξξξ=Ξ  when the hypothesis is 

found to be inconsistent with any single example as show on Figure 2.2. It does not 

completely eliminate a hypothesis if an inconsistent example is found. 
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where C is a regularization parameter that controls the trade-off between maximizing the 

margin and minimizing the training error term; k is integer k>0.  If C is too small, 

insufficient stress will be placed on fitting the training data.  If C is too large, the 

algorithm leads to overfitting. The slack variable kξ  is related to noise sensitivity. The 

optimization hypothesis h(x) of learning task (2-23) has a similar form to the equation 

(2-19).  
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where T
l ),,( 1 λλ K=Λ as before, and T

l ),,( 1 γγ K=Γ  are the Lagrange multipliers 

corresponding to the positive of the slack variables. Differentiating with respect to w , 

b and Ξ  and setting the results equal to zero to obtain   
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The dual problem of soft margin is: 
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where T
lyyy ),,( 1 K= , I is an identity matrix and D is a symmetric ll ×  matrix with 

elements j
T

ijiij yyD xx= . The decision function implemented is exactly as before in 

(2-19).  The bias term *b  is given by (2-18) where a support vector ix is for 

which Ci << λ0 . Hsu et al paper [57] gives a general guide to choose a good value of C. 

The paper[58] also discussed how to tune parameter automatically. An alternative 

algorithm was presented to get maximum margin between training examples and  

decision boundary[59]. To compare different SVMs, C is not easy to use. v-Support 

Vector Machine(v-SVM) is introduced in[60]. In v-SVM, C is replaced by v limited on 

interval (0, 1]. The parameter v is asymptotically with an upper bound on the number of 

margin errors and a lower bound on the number of support vectors.  
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2.3.3 Karush-Kuhn-Tucker condition (KKT) 

Karush-Kuhn-Tucker conditions (KKT), are[1]  
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The KKT conditions imply that non-zero slack variables iξ  can be occur in Ci ≠λ . Then 

the following can be obtained [61].  
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 If )( ii xhy  1≥ , then xi is correctly classified and well separated. Otherwise, xi is support 

vector.  If )( ii xhy  0≤ , then xi is misclassified. If 0 < )( ii xhy  <1, then xi is correctly 

classified but its confidence is small. 

 

Figure 2.2 Maximal Margin, Support vectors and noisy examples 

ξi ξi 
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The geometrical interpretation of support vector classification is that the SVM 

searches the optimal separating surface in the hypotheses space. This optimal separating 

hyperplane has many nice statistical properties. The value wxh /)(  is the geometric 

distance between vector x to the hyperplane.  

According to KTT condition (2-27) and for all  1)( ≤ii xhy , we get Ci ≤λ and 

 0 1))(( =+−+ ii
T

i bxwy ξφ   (2-29) 

 iii xhy ξ 1)( −=⇒   (2-30) 

)( ixh is the predicting label of instance xi. Maximizing AR metric is exactly minimizing 

the 1-norm empirical error in the soft margin SVM if )( ixh is set to 1 when )( ixh >1. The 

reason is below: 
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In SVM application, one only needs to determine the kernel function, and the 

regulation parameter to control trade off between margin and empirical error. This 

characteristic is convenient because of less parameter user needs to decide. However, this 

is also drawback because it provides less control in a complex application.  NDDCHA 

gives much control than standard SVM, like Boosting provides much control than base 

learning algorithm. 

2.4 k-NEAREST NEIGHBOR (KNN) and Knowledge Representation 

The instance-based approaches can construct a different hypothesis for each distinct 

testing vector where the hypothesis is created from a subset of training data. Aha, Kibler 

and Albert described three experiments in Instance-based learning (IBL)[62]. In the first 
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experiment (IB1), to learn a concept or knowledge simply required the program to store 

every example. When an unclassified example was presented to be classified, it used a 

simple Euclidean distance measure as vector similarity method to determine the nearest 

neighbor of the object and the class given to it was the class of the neighbor. This scheme 

has capability to tolerate some degree of noise in the data.  The disadvantage is that it 

requires a large amount of storage memory. IB1 is actually an instance (k=1) of k-nearest 

neighbor method under the condition of all possible examples are known. 

In the second experiment, it extended the performance of IB1 and reduced the 

storage by classifying new example. Examples correctly classified were ignored and only 

incorrectly classified examples were stored to be part of concept. The knowledge of 

correctly classified examples (positive data) is included in the classifier or hypothesis. 

This scheme used less memory and was less noise tolerant than IB1.  

The third experiment (IB3) used the scheme of IB2 and maintained a record of the 

number of correct and incorrect classification attempts for each saved examples. This 

record summarized an example’s classification performance. IB3 uses a significance test 

to determine which examples are good classifiers and which ones are believed to be noisy. 

The latter are discarded from the concept description. This method strengthens noise 

tolerance while keeping storage requirements down. In the IBL, it is a naïve approach to 

only store and search those incorrectly classified examples (negative data).  

Euclidean distance between two vectors could be a metric of vector similarity. This 

technique is widely used in the instance-based learning[63, 64] such as k-nearest 

neighbor and locally weighted regression[2]. However the distance is calculated on the 

Euclidean space which is not suitable for the feature space defined by kernel function. 
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Kernel function also describes a similarity of vectors, for example, the basic kernel 

function zxzxK =),( = )cos(θzx ⋅ . Therefore, the kernel function is a probably way 

to tell the similarity of vectors in the feature space because the feature space is defined by 

kernel methods. When the distance metric is applied, the distance between two vectors is 

calculated based on all attributes of vector. This metric may lead to performance 

degradation if irrelevant attributes are present, which is a type of the curse of 

dimensionality. As the number of attributes increasing, the computational cost and 

generalization capacity can be degraded which is a phenomenon also belongs to the 

category of curse of dimensionality. 

Binary classification k-NEAREST NEIGHBOR algorithm[2, 65] is in the following:  

Training algorithm: 

For each training example liyx ii ..1),,( = , add the examples to the training set S. 

Classification algorithm: 

Given a query instances xt to be classified. 

Let ,,...,, 21 kxxx denote the k instances from S that are nearest to xt,, kyyy ,...,, 21  

are labels of these instances. The hypothesis returns: 

 ∑
=+−∈

=
k

i
i

v
t yvxh

1}1,1{
),(maxarg)( δ  (2-32) 

where δ  is an indicator function, 1),( 21 =xxδ if 21 xx = and where 

0),( 21 =xxδ otherwise. 

When target function is a continuous real value, the k-NEAREST NEIGHBOR algorithm 

will be the same as binary classification on above except the equitation (2-32) is replaced 

by 
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The distance-weighted NEAREST NEIGHBOR algorithm uses equation (2-32) to be 

replaced by  
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where weight wi is the reciprocal value of  Euclidean distance between xt and xi.  
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The performance of the KNN depends on a locally constant posteriori probability 

assumption. This assumption, however, becomes problematic in high dimensional spaces 

due to the curse of dimensionality and the noise of data. Wang el at proposed an adaptive 

nearest neighbor algorithm for classification by considering the size of influence sphere 

and confidence level of example instead of Euclidean distance[66]. KNN could be 

considered a presentation of knowledge. KNN provides a method of vector similarity 

which could be used in the feature space defined by kernel function.  
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CHAPTER 3  

 METHODOLOGY 

 

The computational cost of learning method and accuracy and intelligibility issues are 

concerned in the empirical machine learning processing. In the rapid increasing 

computational capability of computer, the performance/cost ratio has not been 

emphasized in most applications, especially in the batch machine learning which is 

trained off-line. Accuracy is a main concern in all applications of learning and relatively 

easy to be measured compared to the intelligibility. The approach proposed mainly 

focuses on the accuracy by mining negative data. 

3.1 Concepts of Negative Data 

3.1.1 Introduction of negative and positive data 

The training data set is partitioned into two disjoint subsets, misclassified, and 

correctly classified examples in terms of a hypothesis h(x). The misclassified examples 

are negative data. The correctly classified examples are positive data. Positive data is 

consisted of not well-separated and well-separated data. Not well-separated data has 

small confidence, say its confidence |h(x)| < μ and threshold μ is an arbitrary number 

great than zero, to claim that they are positive while well separated data has high 

confidence to be positive. Negative and not well-separated examples together are called 

μ-extended negative data whereas the well-separated examples are called μ-shrunk 

positive data. Negative data and extended negative data are exchangeable to be used in 
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the not confused environment. For the same reason, positive data and shrunk positive 

data are also exchangeable. Positive or negative data are exactly 0-shrunk positive or 0-

extended negative data respectively. To ground our discussion of concepts above, 

consider the example task of learning which has 5 training examples and hypothesis h(x): 

)}1,(),1,(),1,(),1,(),1,{( 54321 −−+−+= xxxxxS   

Suppose the predicted values h(x1)=0.3, h(x2)= -1.2, h(x3)= 1.0, h(x4)= -0.5, h(x5)= 0.8, 

and the threshold μ=0.6. Then misclassified data or negative data is )}1,{( 5 −x , and 

classified data is )}1,(),1,(),1,(),1,{( 4321 −+−+ xxxx . The 0.6-extended negative data is 

)}1,(),1,(),1,{( 541 −−+ xxx  and 0.6-shrunk positive data is )}1,(),1,{( 32 +− xx . 

An example could be positive or negative. The negative data does not mean the data is 

wrong or corrupt. What negative data can be known is that a hypothesis can not make it 

well-separated. Negative data depends on the hypothesis.  Whether an example is positive 

or negative is relative. To a specific example, hypothesis A classifies it to be negative 

while hypothesis B may classify it to be positive. Furthermore, even for the same 

hypothesis, an example probably belongs to positive or negative in terms of the different 

confidence threshold μ. 

The parts of the hyper-surface classifying negative examples need to be repaired 

in order to improve performance. As shown on Figure 1.2, the rectangle with thick solid 

color needs to be repaired. The other parts of the hyper-surface classify the positive data 

sets as well-separated and they have high generalization capacity. 

3.1.2 Separator and partitioner 

A binary classification of SVM is a linear classifier in the feature space. The data 

set must be mapped into feature space from input space if the classifier is non-linear. The 
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mapping mechanism is finished by so-called kernel function. Then it is much suitable to 

discuss data separable concepts on the linear space if SVM is a base learning algorithm. 

Without loss of generality, we discuss concepts on the linear space where the hyper-

surface becomes a hyperplane since a non-linear space can be mapped into linear space 

by a mapping function. If there is a hyperplane h(x) that correctly classifies all training 

data set S, we say that the data set are separable. If no such hyperplane exists the data set 

are said to be non-separable. In general, if the data set has noise or non-optimal 

hypothesis is used, the data set cannot be separated. As shown in Figure 3.1, the subset 

consists of misclassified examples which are points with the solid color. If an example 

(x,y) is correctly classified according to the classifier or separator h(x)=0, (x,y) is said to 

be in the consistent subset (x,y) ∈CS⊆ S, otherwise (x,y) is in the inconsistent subset 

IS=S-CS, (x,y)�IS. The testing data set T is the union of all correct and in correct 

classified data set T=TP+TF+FP+FN, then consistent subset is CS=TP+TN,  and 

inconsistent subset IS=FP+FN as seen on Table 1.1. 

A data subset of CS is said to be not well-separated, denoted to NWSS, if the 

points of these examples are much close to the hyperplane h(x)=0. The data subset 

WSS=CS - NWSS is said to be well separated. Examples in the IS and together with 

NWSS is called in the extended negative data subset N=IS+NWSS. The metric of “much 

close to” is given by a partitioner p(h,x,y) which is a fuzzy word depending on the 

hyperplane h(x) and data set S. The return value of p(h,x,y) is the logical value either true 

or false.  
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Figure 3.1 Well-separated data and not well-separated data are in the different area. The 

points with solid pattern are misclassified. 

 

One simple example of partitioner in the classification is the crisp boundary p(h, 

x, y): |y-h(x)|≤μ, μ=0.5 then not-well-separated data set is  

 NWSS={(x, y)| (x, y)∈CS, ||y-h(x)||≤ μ, μ =0.5}.  

The second example is the fuzzy partitioner, and then WSS and NSWW are fuzzy set. The 

boundary of partitioner is a range. In the third example, a non-symmetric linear 

partitioner p(h,x,y): y-h(x)≤- μ1, y-h(x)≥ μ2 , μ1, μ2∈[0,0.5] is defined on both sides of 

hyperplane, 

 NWSS={(x,y)| (x,y)∈CS, y-h(x)≤- μ 1, y-h(x)≥ μ2 , μ1, μ 2∈[0,0.5]}. 

How to define a partitioner and how to choose the parameter for the partitioner depend on 

the real application which could reference to the ratio of number of support vectors and 

training examples, VC Dimensions, the size of training set, cross-validation and etc. 

Usually, the cross validation is an efficient method to determine the partitioner. Note that 

y=-1 
Data 

h(x) Well-separated set 
Not well-separated set 

y=-1 

y=+1 

Δy 
Δy 

p(h,x,y) 

y=+1
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the well separated data set WSS is correctly classified. And it is also called shrunk 

positive data subset P, briefly called positive data. The boundary between positive data 

set and negative data set is called border. In general, the relationships of the subset 

mentioned above are 

S = CS+IS, 

CS = {(x,y)| (x,y)∈S, y*h(x)>0}, 

IS = {(x,y)| (x,y)∈S, y*h(x)≤0}, 

 CS = WSS+ NWSS, (3-1) 

NWSS  = {(x,y) | (x,y)∈CS, p(h, x, y)=true}, 

WSS = {(x,y)|(x,y) ∈CS, p(h, x, y)=false}, 

P = WSS, 

N = NWSS+IS. 

We can say the positive and negative data set are divided by both separator h(x) and 

partitioner p(h,x,y). Let d(h,x,y) = [p(h(x), x, y)=true or y*h(x)≤0]. Then N= {(x,y) | 

(x,y)∈S, d(h,x,y)} and d(h,x,y) is denoted a divider to divide the training data set into 

positive and negative data set. In this dissertation, only linear partitioner is considered 

then the precise definition of negative data is given in the section. 

3.1.3 μ-Negative data 

Definition 3.1 (Data Type): suppose h(x) is a hypothesis learned from a training data set  

 )}.,),..(,(),,{( 2211 ll yxyxyxS = li ..1=  (3-2) 

and a vector of variables  

 lii
T

l ,,1,,),...,,( 21 K=∈=Ξ Rξξξξ   (3-3) 

to let it satisfy the following equality: 
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 )(1 iii xhy−=ξ   (3-4) 

An example xi is negative data if 1>iξ , whereas it is positive data if 1<iξ . An example 

xi is μ-negative data if μξ −>1i , 10 << μ , which is extended negative data whereas it 

is μ -positive data if μξ −<1i  which is shrunk positive data. The μ-negative data is 

denoted by 

 ),,( μhSN   (3-5) 

The μ-positive data is denoted by 

 ),,( μhSP   (3-6) 

The ratio of the μ-negative data and μ-positive data is denoted by 

 
),,(
),,(),,(

μ
μμ

hSP
hSNhSc =   (3-7) 

which is a measure of degree of unbalancing in terms of training data, hypothesis and 

threshold μ.  

The misclassified examples are )0,,( hSN  according to definition of μ-negative 

data while correctly classified examples are )0,,( hSP . The accuracy of hypothesis h(x) is 

least 50%, then we get 1)0,,( <hSc . However, ),,( μhSc  is not always less than 1 which 

depends on the number of support vectors. The threshold μ plays a divider role in the 

training data set. The concept of negative data can be extended to the testing data set. The 

terms of negative data, extended negative data or μ-negative data are exchangeable to be 

used in the not confused environment. It is the same reason to exchange the terms of 

positive data, shrunk positive data or μ-positive data. 
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Figure 3.2 μ-negative examples are defined in the SVM feature space, which are points 

marked with solid pattern.  

 

Theorem 3.1(Negative Support Vectors) all negative examples of training data 

in SVM are support vectors. 

Proof:  

For all negative examples, the maximum of threshold μ is less than 1, 10 << μ , 

according to definition of negative data. 

Since μξ −>1i , we get 0>iξ .  

According to the equality of iii xhy ξ−= 1)( , all negative examples satisfies the 

inequality 1)( <ii xhy for li ..1= .  

According to the KKT conditions 0)( =−Cii λξ  in the (2-27), we can get 

0=−Ciλ  ⇒ 0≠=Ciλ  

h(x) 

μ  

y=-1 

y=+1 

μ  
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All examples with non-zero Lagrange multipliers are support vectors according to 

the definition of support vector. Therefore, the theorem is proved.  

The misclassified examples ix meet the condition 0)( <ii xhy , thereby all 

misclassified examples are support vectors. According to the Theorem 3.1, all 

misclassified training examples and examples located on the region between SVM 

margins are support vectors. It is known there is negative data if examples are not 

separable, because there are existed misclassified examples. 

Theorem 3.1 shows that the number of negative examples is related to number of 

support vectors. Negative examples are caused from non-separatable data. Decreasing 

number of negative examples obviously enhances generalization capability of SVM 

because that means less classification error. Based on this reason, reducing the number of 

support vectors can improve the performance of SVM. Reduced SVM actually 

demonstrates this idea[67, 68]. 

The hypothesis of SVM is determined by kernel function and support vectors, 

therefore the negative data dominate the performance of classifier. One kind of negative 

example xi is named outlier where 1>>iξ . Thereby, outliers will degrade largely 

performance of hypothesis. Outliers are assumed to be removed from original training 

data in the data preprocessing phase in this dissertation. 

3.2 Motivation 

The classifier or hypothesis in the classification is a hyper-surface in 

multidimensional space. A low accuracy hypothesis indicates that some areas of hyper-

surface are not exactly or close to the underlying function. Intuitively, repairing those 

lower accuracy areas will improve the hypothesis accuracy. Then compensating a 
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hypothesis has the same meaning as repairing a hyper-surface. The hyper-surface in the 

input space is mapping to a hyperplane in the feature space by a kernel function in the 

SVM [1]. The hyper-surface is smooth in the SVM since feature space is a linear space 

and commonly used kernel functions are continuous in the space. A hyper-surface is 

comprised of a set of small pieces of sub-hyper-surface in the fuzzy control because of 

the nature of fuzzy membership function segments [69]. Therefore, the hyper-surface 

could have more than one outlines either a single large surface or a series of small 

surfaces. As shown in Figure 1.4, the single hyper-surface h1(x) is not enough for the high 

predicting accuracy because any improvements in training accuracy will be prone to 

overfitting, such as in the high degree of polynomial hyper-surface. To reduce the 

possibility of overfitting, the low degree of hyper-surface h2(x) is preferred, here h2(x) is 

curve line. However, h2(x) will lead to low predicting accuracy or underfitting. Therefore, 

in order to improve the predicting accuracy or generalization capacity, the hyper-surface 

h1(x) needs to be repaired so that it approximates to the underlying function f(x). There 

are five possible ways in which one can repair. 

In the first method, a spline hyper-surface is a set of piecewise sub-hyper-surface 

which is applied to a collection of subsets of input space X by using clustering technique 

to segment the input space X into sub-spaces. The method can be thought in this way 

using a pile of mosaics to lay tiles to cover the whole surface of terrain. Each sub-hyper-

surface predicts the sub input space. The advantage is that each sub-hyper-surface 

matches specific sub input space well; hence, the machine gives output with low error. A 

sub-hyper-surface only has relationship to neighbor sub-hyper-surface. This feature 

makes good improvement capability by decreasing the overfitting. The property of 
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locality of spline hyperplane makes the re-training machine in a partial area of hyper-

surface rather than the whole system, which reduces re-training time and also makes the 

system robust. The limitation is to resolve the issue of connecting the sub-hyper-surface 

smoothly in the boundary to combine together as a whole hyper-surface and also to 

divide into sub-space. The criteria of clustering are still not really clear and large size of 

training data is needed. This method also requires a reasonable size of training data set. 

Vladimir Vapnik gave a method of kernel generating spline [5]. Spline kernel is powerful 

and B-spline kernel SVM can be interpreted the CMAC network introduced by Horvath 

[70]. 

In the second method, a spline kernel [71] in SVMs is chosen to repair hyper-

surface. In this approach, the continuity is guaranteed but the locality is lost because h(x) 

is not a spline function. Another limitation of spline kernel method is that the order k of 

spline kernel cannot be high, usually, k≤4 [3]. 

The third and fourth methods are tentative ideas and may not be practical. In the 

third method, cut-paste approach keeps the most area of h(x). It replaces the partial area 

with high error in h(x) by a new small size of hyper-surface h’(x), like patching a hole of 

h(x) by a new small hyper-surface h’(x). This procedure assumes that there are a lot of 

holes needed to patch. In this method the issues, like how to determine the holes and how 

to make the boundary smooth between patches and hyper-surface, have not been 

addressed to. The fourth method pre-stress is to find the high error regions in the hyper-

surface and further to give the opposite regulation on those regions. This method 

stretches and compresses the hyper-surface by the force according to negative data set. 

The advantage is to keep the hyper-surface smooth, whereas, the disadvantage is the 
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difficulty to control force and the neighbor areas of repaired parts in the hyper-surface are 

affected. 

In the last method, overlapping approach uses a base hyper-surface, which 

approximates the main outline of underlying function, which is created by a base learning 

algorithm. Further, a number of patching hyper-surfaces are overlapped onto base hyper-

surface to form a new hyper-surface. This approach is adopted in this work. 

 So far, we know why, where, and how to repair a hyper-surface. Now the question 

is, how we could ascertain whether the compensated hyper-surface is enhanced or not. In 

the generalization theory, the structural risk minimization (SRM) model is to maximize 

the hyperplane margin measures in the feature space while minimizing the empirical error 

and hence prevent overfitting by controlling [5]. The empirical risk minimization model 

(ERM) only minimizes the empirical risk which may lead to low capacity of 

generalization. The ERM principle is intended to use in the large size of examples. 

Suppose the empirical risk is fixed, the hypothesis with large margin has higher capacity 

of generalization than those hypotheses with small margins. The SRM principle defines a 

trade off between the quality of the approximation of given examples and complexity of 

the approximation function[3, 5]. 

In fact, the SVM is based on the SRM to expand the capacity of generalization and 

then reducing the overfitting. A hypothesis h with large value h(x) for a given vector x in 

the binary classification makes examples well-separated in the data set; while h with 

small margin makes examples not well-separated. A hypothesis making examples well-

separated has high generalization capacity because the margin of these examples is large. 

If h(x)<0, it is said that x is classified into class -1 whereas if h(x)>0, x is in the class +1. 
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The h(x)=0 is a separator. For instance, the two hypotheses h1 and h2 both make all 

examples separated. Here, h1(x)>0 means that x is in the class +1 while h1(x)<0 means 

that x is in the class -1, where x is an example. If |h1(x)| > |h2(x)|, then h1 has higher 

generalization capacity x on than h2. Therefore, the accuracy of training is not a precise 

measure because of the fact that both hypotheses with 100% accuracy have different 

generalization abilities. The formula (1-8) is more suitable to be a metric for 

generalization ability. We expect the hypothesis to output a real number h(x) � R. 

Therefore, a learner like the decision tree is not considered as base learning approach 

here. This is because the hypothesis of decision tree is an indicator function. The SVM 

will be used as a learner and predictor. Yet another reason for using SVM is that the 

estimation error is well controlled [1, 3, 4].  

3.3 Characteristics of SVMs 

A training data set S with number of examples l=|S| is generated in independently 

and identically (i.i.d) according to a fixed and unknown distribution D. The examples are 

drawn from the distribution P(x) while response y is from distribution P(y|x) and an 

example (xi,yi) drawn according to D = P(x,y) = P(x)P(y|x). A learner L consists of some 

classes of functions h(x, α) defined over X, which are the subset of hypotheses H, h(x, 

α)⊆H, α�Δ, α is an adjustable parameter which is generated by the learner according to 

the training set. For example, α is corresponding to the weights and biases in the neural 

network with fixed architecture. h(x, α) is written by h(x) shortly once α is determined. 

Each h in H is a function of the form h:X→Y. To choose a best approximation to the 

underlying functional relationship based on the training set, one must consider the loss 

L(y, h(x, α)) between response y from training set to a given input x and the response h(x, 
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α) provided by the learner. The expected value of the loss (3-8) given by the risk 

functional [72]: 

 ∫= ),()),(,()( yxdPxhyLR αα .  (3-8)  

The goal is to minimize the risk functional to find the h0=h(x, α0) a maximum 

likelihood hypothesis. P(x, y) is unknown but its information is covered by the training 

set. The empirical regression model, empirical risk minimization (ERM), minimizes the 

following loss function (3-9): 

 L(y, f(x, α)) = (y - f(x, α))2 (3-9) 

The task of learning algorithm is to minimize the risk functional (3-1) with loss 

function (3-9) where distribution P(x, y) is unknown and fixed and training data is given. 

The general model of learning problem can be described as follows [73]. The risk 

function: 

 SzzdPzQR ∈Λ∈= ∫ ,,)(),()( ααα   (3-10) 

where Q(z, α) is a specific loss function and z is a pair of (x, y) in the training examples. 

The empirical risk functional is 

 ∑
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=
l

i
emp zQ

l
R

1

),(1)( αα . (3-11) 

There are two theorems from Vapnik [11]:  

Theorem 3.2: A hypothesis space H has VC dimension d.  For any probability 

distribution P(x,y) on binary classification with probability δ−1  over random training 

sets S, any hypothesis h�H that makes k errors on S has error no more than 
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provided d ≤ l. The VC dimension of a hypothesis space is a measure of the number of 

different classifications ability. The value of k/l is true error.  

The inequality (3-12) shows that the capacity of generalization depends not only 

on the empirical error but also on the hypothesis space. It provides several ways to low 

error bound: 

• Reduce VC dimension d 

• Minimize number of training error k 

• Increase size of data set 

Theorem 3.3: If a size l of training set S is separated by the maximal margin hyperplane, 

then the expectation of the probability of test error is bounded by the expectation of the 

minimum of three values: the ratio n/l, where n is the number of support vectors, the ratio 

(R||w||2)/l, where R=max(||x||), x∈S  and ||w||2 is the value of margin, and the ratio m/l. 

where m is the dimensionality of the input space X. 

  ),,min(
2

l
m

l
wR

l
nerr ≤  (3-13) 

Inequality (3-13) gives four ways to improve the generalization ability 

• increase the size of training set  

• make margin as large as possible 

• reduce the dimensionality 

• reduce support vectors 

Reducing support vectors can also speed up the classification of SVM; Quang-Anh 

Tran et al proposed a method by using k-mean clustering. The k central vectors from k 

groups of clusters form new data set to reduce the size of data set. According to [74], the 
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support data can be extracted and then to reduce support vector. The tradeoff between 

speed and performance is controlled by k value[75]. ERM principle succeeds in dealing 

with large size of training data. It can be justified by considering the inequality (3-12). 

When k/l is large, err is small. A small value of k/l cannot guarantee a small value of the 

actual risk. Classical approach ignores the last three ways; only relies on the first one. 

The NDDCHA relies on the first one by mining negative data, the second one by making 

training data well-separated and third one by implicitly calculating the vector similarity in 

the feature space through kernel function. 

SVM assumes training examples is i.i.d.; and costs of misclassification into 

different classes are the same. When these assumptions are violated, the standard SVM 

does not work properly[76]. 

3.4 VC Dimension 

VC dimension of a set of indicator functions ),( αzQ . Λ∈α , is the maximum 

number d of examples that can be separated examples dzzz ,...,, 21  into two classes in all 

2d possible ways using functions of the set, if for any n there exists a set of n examples 

that can be shattered by the set ),( αzQ . Λ∈α , then the VC dimension is equal to 

infinity. VC dimension can be estimated by [73]:  

 22 wRd ≥  (3-14) 

where R is the radius of the smallest sphere that contains the all vectors in the feature 

spaces, and w  is the norm of the weights in the SVM. VC dimension is determined by 

kernel and training examples. 

Gaussian kernel is employing an infinite dimensional feature space.  
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3.5 Vector Similarity 

The vector-similarity is a metric to describe similar degree of two vectors. The 

vector-similarity depends on the learning problem greatly. 

Definition 3.1: given 2 vectors x1 and x2, {x1, x2} X⊂ . The similar degree is defined 

by function vs(x1, x2) ]1,0[∈ .  
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The symbol ∝  is borrowed as similar operator here. The Euclidean distance of vector x1 

and x2, the cosine of the angle between x1 and x2, correlation coefficient [77, 78], and the 

sum of errors of all attributes of two vectors can be used as measures of the vector-

similarity. Bandemer [79] gives a batch of vector similarity functions on fuzzy set. vs is 

not related to label y and it can be defined in many ways, e.g. 
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Data set similarity describes overall similar degree of two different data sets by 

comparing vector similarity of every vector in two data sets. In the binary classification, 

each vector x associated with a label y. If y1 and y2 are in the same class +1 or -1, vs(x1, 

x2) keeps unchanged, otherwise, if y1 and y2 are in different class, we let vs(x1, x2) <0.  

Therefore, the extended similarity defined by: 

   yy )(),( 212121 xxxxvs ∝=  (3-17) 

Definition 3.2 (Vector Similarity): given 2 data set A and B data sets, where 

A X⊂   and B X⊂ , and a constant number ]1,0[∈υ . 
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A∈∀ A  x  and B∈∃ B  x  

such that: υ≥), x( A Bxvs  

where vs is the function of vector similarity defined in the (3-17) . Then we can say data 

sets A and B is similar in the degree ofυ , which is denoted by: 

 υ≥∝ BA  (3-18) 

For example, 7.0≥∝ BA  is the lowest similar degree of xA and xB greater than 

0.7 for any vector xA in A and xB in B. To positive data P and negative data N in terms 

of hypothesis h(x), it is desired NP ∝ has lower value. Otherwise, an instance x from 

test data set T is hard to be recognized as similar to P or N in the KNN. Therefore, the 

following conditions are desired: 

 
2

1

υ
υ

≥∝
≤∝

TN
NP

 (3-19) 

where 1υ  and 2υ are decided by application. In contrast with similar degree of two data 

sets, dissimilar degree of two data sets can be defined as below: 

 BA∝−1  (3-20) 

When Euclidean distance is used as similar metric, vector similarity is exactly 1- 

NEAREST NEIGHBOR algorithm. In terms of the concept of KNN, vector similarity can 

be extended to 1-k vector similarity from 1-1 vector similarity which compares only two 

vectors. 

3.6 Theoretical Analysis on NDDCHA 

A feature space is a linear space determined by a kernel function implicitly. The 

dimensionality in the feature space is very large although the dimensionality in the input 
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space is not large. And the dimensionality increases abruptly as the complexity of kernel 

increasing. For example, feature spaces F3 and F4 constructed by a polynomial kernel in 

degree 3 and degree 4 respectively, the dimensionality of F3 is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

m
m 3

dim3  and the 

dimensionality of F4 is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

m
m 4

dim4 , where m is dimensionality in the input space. 

Supposed m=50, this number is reasonable large for most applications, then the radio of 

d4 and d3: 

 11
4

350
4

3
!4)2)(1(

!3)3)(2)(1(
dim
dim

3

4 ≈
−

=
−

=
−−

−−−
=

m
mmm

mmmm  (3-21) 

The sparse algebraic polynomial ),( αxPm , mR∈α , is a set of polynomials of 

arbitrary degree that contains m terms. For 

example, 21
212 ),( dd xxxP ααα += , 2

21 ),( R∈αα with two nonzero terms. To estimate VC 

dimension with the set of loss of functions  

 2)),((),( αα xPyzQ m−=  (3-22) 

Karpinskyi and Werther[80] showed that the bound of VC dimension d for the sparse 

algebraic polynomials is 2d*, 

 343 * +≤≤ mdm  (3-23) 

If ),( αxPm  is a hypothesis, which is determined by a kernel function of SVM, then 

formula (3-23) indicates that a high degree of polynomial has a large VC dimension and a 

low degree of polynomial kernel has a small VC dimension. To avoid overfitting or to get 

a small confidence interval, one has to construct machines with small VC dimension[3], 

such as low degree of polynomial kernel. 
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The VC dimension in the above example on (3-21) will increase 33 times according 

the formula (3-23). F3 has dim3 terms and F4, has dim 4 terms. The VC dimension d3 in 

the feature space is limited in the range of formula (3-23). 

 
3dim4dim3

3dim4dim3

4
*
44

3
*
33

+≤≤

+≤≤

d

d
 (3-24) 

Then the ratio of VC dimensions in the feature space F4 and F3 is about 3*11=33. VC 

dimension is a metric to evaluate the complexity of a hypothesis. A hypothesis with high 

VC dimension will be prone to overfitting easily according to inequality (3-12)[3].  

The above example of polynomial kernel tells that using lower degree polynomial 

as much as possible can get the high generalization capacity. On the other hand, if the set 

of functions has small VC dimension, then it is difficult to approximate the training data. 

To other types of kernel, the similar conclusion can be also gotten. For example, the 

exponential kernel could be approximated by polynomial kernel. However, there exists a 

tradeoff between overfitting and poor approximation. Therefore, the approach NDDCHA 

proposed here uses a lower complexity of kernel as a base learning algorithm to reduce 

the chance of overfitting, and uses compensated hypotheses to increase the accuracy of 

approximation.  

3.7 The Patterns of Examples Distribution in the Feature Space 

Two factors of the value of the empirical risk and the value of the confidence 

interval have been considered to minimize the risk in a given set of functions in 

implementing the SRM inductive principle. If examples are linear separable, then no 

extra work needs to do since basic SVM can solve this kind of applications perfectly as 

shown on Figure 3.5. In practice, data and hypotheses are not perfect. To the point of 
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view of data, the examples from input space include noise, outlier; distribution of 

examples is not i.i.d.; the number of examples in class +1 and -1 are imbalanced. To the 

point of view of hypothesis, the size of hypothesis space is limited. The optimization 

method also restricts the learning machine to get global optimal solution in most learning 

algorithm except SVM. These issues are considered in NDDCHA.   
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Figure 3.3 Distribution of target labels and predicating label on the hepatitis[81]  

 

The figure 3.3 and 3.4 show the distribution of target labels and predicating label in the 

data sets of hepatitis and musk2. To predicting labels, degree 3 of polynomial kernel with 

C=0.0001 are used on the hepatitis. And degree 3 of polynomial kernel with C=0.0050 

are used on the musk2. The top box shows the distribution of target label. Two data sets 

illustrate that datasets are strongly imbalanced. The middle box shows the distribution of 
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predicting labels. The instances which predicting value is within -1 and +1 are support 

vectors. The bottom box shows that all positives are correctly classified instances. 
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Figure 3.4 Distribution of target labels and predicating label on the musk2  

 

3.7.1 Small size or imbalanced training data 

The example size l is said to be small when ratio of l/d is small, say l/d<20, where 

d is the VC dimension of hypotheses space[5]. E.g. data set Hepatitis [82]has 155 

examples with 19 input attributes. 123 examples are in the class +1 and 32 examples in 

the class -1. The estimated VC dimension of Hepatitis is about d=3253.84 according to 
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inequality (3-14) when polynomial kernel 3)1( +zx  is used in SVMlight[83, 84]. The 

ratio of l/d is 0.0496 << 20. The number of support vector is 80 and training error is zero. 

When polynomial kernel 2)1( +zx  is used, VC dimension is about d=328.72 with 

2.38% training error. The ratio of l/d is 0.4715<<20. Therefore, Theorem 3.2 of 

predicating error bound cannot be applied in the small size training data set application.  

 

 

Figure 3.5 Linear separable examples 

 

3.7.2 Noise, outlier and missing value example 

An outlier is an example that lies outside the overall pattern of a distribution[85]. 

Usually, the presence of an outlier indicates some sort of problem. This can be a case 

which does not fit the hypothesis constructed, or an error in measurement as shown on 

Figure 3.6. In NDDCHA, the outliers are negative examples having long distances to the 
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hyperplane which could be simply deleted from data set. Noisy examples are also 

negative data which are either random or systematic. The random noise examples can be 

eliminated in the SVM. One of systematic noises could be caused from the small size of 

hypothesis space or non-optimal parameters α of specified hypothesis Λ∈αα ),,(xh . 

Because SVM depends on a small set of support vectors comparing to training data set, 

the hypothesis may be sensitive to noises and outliers. According to Theorem 3.1, outliers 

are support vectors. Sometimes, a few of attributes in an example are missing value 

because of several reasons including: the value is hard to get or the value is still going to 

get. Then the value of kernel is decreased if all values of attributes are normalized to 

interval [0, 1].  The symptom is exactly like noisy examples because we can think the 

missing value is resulted from noises. 

 

Figure 3.6 An example of outlier, the red circle on the right-bottom is an outlier which is 

far from other examples. 
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 Chun-fu Lin and Sheng-de Wang proposed fuzzy support vector machines 

(FSVMs) providing a method to classify data with noises and outliers by associated with 

a fuzzy membership value to each training example[86]. The knowledge of membership 

is acquired from strategies of kernel-target[87] and KNN, which find the modified 

hyperplane by FSVMs in the feature space.  FSVM provides a way to deal with the 

noises and outliers although the computational cost is high. 

3.7.3 Compensatable negative examples 

The pattern of compensatable negative data shown on Figure 3.7 is compensatable 

directly by patching a single hypothesis. Some examples of class +1 appeared circle 

points on area B are misclassified. However, these examples are not interviewed with 

class -1 appeared rectangle points. SVM tries to minimize total risk for all examples. To 

achieve that, examples on area B is obviously not on the margin according to the risk 

functional of soft margin SVM defined on Equation (2-23). The regulation parameter C  

is preferred to choose a small value then insufficient stress will be placed on fitting the 

training data, otherwise SVM will trend to overfit the training data. The parameter k on 

the equation (2-23) also contributes to the negative data. If 0=k  then second term 

∑
=

l

i

k
iC

1

ξ counts the number of training errors, therefore, the lowest value k is 1=k .  The 

value 2=k  is also used although this is more sensitive to outliers in the data.  If we 

choose 2=k  then we are performing regularized least squares, i.e. the assumption is that 

the noise in examples is normally distributed. No matter what parameters are chosen on 

SVM, the pattern of Figure 3.7 cannot be eliminated since pattern is that result of that 

examples is not well distributed or i.i.d..  
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Figure 3.7 Single side negative examples 

 

 

Figure 3.8  Patching a testing example in the directly compensatable pattern. Circle 

points are in class+1; rectangle points are class -1; triangle point is test point. 
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x2
x1
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3.7.4 Not compensatable negative examples 

The pattern of compensatable negative data shown on Figure 3.9 is not 

compensatable directly by patching a hypothesis. Positive and negative examples are 

interwoven on the area A where examples cannot be linear separated in the feature space. 

One idea is to re-use SVM again to only those examples in the area A. Since feature 

space is implicated by kernel function, examples cannot be gotten directly. Furthermore, 

the dimensionality of vector in the feature space is very high based on the analysis of 

applying a polynomial kernel on the section of Theoretical Analyzing on NDDCHA. The 

approach proposed here is still patching hypothesis. However, the difficulty is how to 

select a desired patching hypothesis in the testing phase.  

Applying which patching hypothesis to testing examples is based on the vector 

similarity between a testing example and negative data set. As shown on Figure3.8, 

vector x1 is in the negative data subset Ni which is similar with testing vector x2, then x2 

will apply for the patching hypothesis used for Ni. If any similar vector of x2 cannot 

found, x2 cannot not be compensated.  

Sometimes it is very difficult to find a similar vector in the negative data subset as 

shown on Figure 3.10, x2 is similar with }1{1 +∈x and }1{3 −∈x . The direction of 

compensating for x2 is opposite. Suppose real }1{2 +∈x , if we choose x1 as similar vector 

x2, then result is desired. Otherwise, we choose x3 as similar vector x2, and then the result 

is even worse. To attach whether x2 is in the class {+1} or {-1}, k-nearest neighbor 

method are used, which method is more precise than vector similarity by comparing a 

vector x2 to a group of neighbor vectors in the negative examples.  
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Figure 3.9 Interweaved positive and negative examples 

 

 

 

Figure 3.10  Patching a testing example in the non-directly compensatable pattern. Circle 

points are in class+1; rectangle points are class -1; triangle point is test point. 

Negative examples

Similar examples?

x1
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Figure 3.11  The negative training example is compensated by h1(x) when in the training 

phase, but negative testing example can not be compensated by h1(x). 

 

3.7.5 Imbalanced examples 

SVM minimizes the risk functional for all examples. It does not try to minimize 

distinctively the risk of class +1 examples or the risk of class -1 examples. This is 

because SVM adopts the assumption of examples which is i.i.d., and number of two 

classes }1,1{ +− of examples is balanced. Because of this inherent insufficiency of SVM, 

SVM has less power on imbalanced examples than on well balanced examples. Figure 

3.12 shows imbalanced examples, the number of class +1 examples is great than number 

of class -1. The hyperplane created by SVM will be prone to the side that has more 

examples than other side. Therefore, the predictive negative value is closed to zero if 

minority class is class -1 because SVM optimizes accuracy. In this case ROC metric can 

Negative Training example

Negative Testing example 

h1(x)

h0(x)
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let SVM focus on the minority class. In certain conditions 2-norm soft margin SVMs can 

maximize AUC[15]. 

 

Figure 3.12 Imbalanced examples 

To deal with imbalanced class problem, one could modify data distribution by 

using over-sampling and under-sampling[88]. Over-sampling replicates the minority 

class while under-sampling removes partial majority class. Both sampling makes training 

dataset balanced. The drawback of under-sampling is to lose some useful data. To 

overcome that, the support vectors can be kept and non-support vectors can be removed 

in the SVM because SVM is determined by support vectors. Over-sampling may bring 

overfitting. In this dissertation, under-sampling is adopted as shown on Figure 3.13. 

Under-sampling training data keeps all supports vectors and partial non-support vectors 

which depend on the number of negative data. Non-support vectors may not be included 

when support vectors area has more positive data. 
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Figure 3.13 Under-sampling strategy 

 

Yan et al proposed SVM ensemble to deal with imbalanced examples by 

combining small class examples with a piece of large class examples to form new k data 

sets and use k SVMs [89].  Each kixhi ..1),( =  is a decision function. Since majority 

voting and probability based combination assumes all classifiers are equal weights, the 

proposed strategy is creating a hierarchical SVM.  The final classifier or hypothesis for 

an instance x is  ))(),...,(),(()( 21 xhxhxhhxh k=  as shown on Figure 3.14.  

The bias b could be used as a regulation parameter to control the position of 

hyperplane. So far, the problem, how to recognize these cases above, is still remained. 

Imbalanced examples, outlier, and linear separatable examples can be detected 

intuitively. Our work focuses on the compensatable negative examples and interweaved 

positive and negative examples. Compenstable examples can be compensated by moving 

patching hyper-surface to the desired direction. Interweaved examples can be 

distinguished by k-nearest neighbor in the feature space. Vector similarity can be thought 

as 1-nearest neighbor. 
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Non-support vectors Support vectors 

Under-sampling Data 
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Figure 3.14 Architecture of Yan et al SVM ensembles 

 

3.8 Compensating Hypothesis Approach 

Compensating hypothesis approach proposed in this paper for the binary classification 

enhances the useful data information by mining negative data. This approach is based on 

the Support Vector Machines with 1+k times learning, where the base learning 

hypothesis is iteratively compensated k times. This approach produces a new hypothesis 

on the new data set in which, each label is a transformation of the label from the negative 

data set, further producing the child positive and negative data subsets in subsequent 

iterations. This procedure refines the model created by the base learning algorithm, 

creating k number of hypotheses over k iterations, as shown on Figure 3.15. h(x,i-1) is the 

(i-1)th patched hypothesis, i=1..k. A patching hypothesis h(i)(x) is patching hypothesis to 

compensate the base hypothesis. Area A belongs to not well distributed examples. If 
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h(x,i-1) fits the area A, h(x,i-1) will be overfitting. The compensated hypothesis is 

h(x,i)=h(x,i-1)+ h(i)(x). Note that h(x,0) is base hypothesis created by binary SVM. 

 

Figure 3.15  Compensating hypothesis approach 

 

This approach is similarly applying for the Divide and Conquer principle. It 

perfectly accord with the philosophy of attacking the main issues first and then minor 

issues. The main issue is attacked by creating a main framework, which is a base 

hypothesis, to fit most of i.i.d. examples in the training data set. The minor issues are 

attacked by compensating hypotheses. 

 

h(x,i-1)=0 

h(i)(x)

A
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CHAPTER 4  

 ERROR DRIVEN COMPENSATING HYPOTHESIS APRROACH 

 

It is impossible to select a perfect model for a practical problem without approximation 

error in a learning algorithm. Imagining that underlying function f(x) is a fluctuant 

terrain, it is hard to fit the terrain by using a huge size of carpet h(x). The reason is that 

only training set and limited priori knowledge is available. The main idea to reduce the 

approximation error is to compensate the parts of not well-fit huge carpet by a sequence 

of small size of carpets h(i)(x) which is driven by the negative data subset of training data. 

4.1 Negative Data 

Let training data set S0=S in the definition (1-1). It can be partitioned into two 

subsets according to a divider d(h,x,y), (x,y) ∈ S0,where h(x) is produced by a base 

learning algorithm. One subset is positive subset #
1S , which is a set of well-separated 

examples from S0 by the hypothesis h(0)(x)=h(x). The remaining of S0 is the negative 

subset S1 satisfying 1
#

10 SSS += . The negative data does not mean the data is wrong or 

corrupt. What negative data can be known is that the hypothesis cannot make it well-

separated. The negative data is not limited to those incorrect data alone, but may also 

contain a few correctly classified data as well. The definition of negative data is given on 

3.1. Boosting uses an equation )1ln(
2
1

t

t
ta

ε
ε−

= , whereε is the error in the last iteration, to 

weight those negative examples. In NDDCHA, the divider is strongly related to the 
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number of support vectors, size of training examples, VC dimension, and radius of the 

sphere containing all examples, which can be determined by cross- validation method.  

Not all negative examples contain useful information. The outliers obviously are junk. 

Thereby, the negative examples with confidence grater than 1.0 will not be considered in 

the negative patching learning. 

To the μ-negative data, the criterion to judge which example needs to compensate 

is below: 

 μ≤)( ii xhy , li ..1=   (4-1) 

because the misclassified examples meet 0)( ≤ii xhy and not well separated examples 

meet μ≤≤ )(0 ii xhy . The compensation value is  

 )( ii xhy − , li ..1=   (4-2) 

E.g. assume 4.0=μ  predicting value of an instance x1is h(x1) = -0.3 and target label is 

y1=-1, μ<=−−= 3.0)3.0(*1)( 11 xhy , then instance x1 needs to compensate. The 

compensation value of the instance x1 is 7.0)3.0(1)( 11 −=−−−=− xhy .  

  

4.2 Training Phase 

Let X be a collection of input vectors from training set S, and Y be a vector 

consisting of all labels of training set  

  S}  y)(x,|{x=X ∈  and   S} y)(x,|{y=Y ∈ . (4-3) 

Let h(i)(x) are the patching negative models working on the training negative subset Si and 

d(i)(h(i),x,y) be dividers. And Si is the negative subset of Si-1 according to d(i-1)(h(i-1),x,y). 
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Here h(x,i) is the  comprehensive patching model. And h(x,k) is the final model providing 

to testing procedure. 

 kifor
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The sign + in above expression (4-4) provides an overlap operation for two models. 

Therefore the hypothesis h(x) of the NDDCHA approach is 0,)(),(
0

)( >= ∑
=

kforxhkxh
k

i

i . 

The training data sets are defined as follows, 
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The labels on the training subset Si are the differences or residuals of predicated labels 

and expected labels. For instance, a vector (x,y)=(0.9,+1) has one attribute 0.9 and label 

+1 from training data. The predicting label y’ of x is 0.01. Although (x,y) is correctly 

classified because y’=0.01>0 is in the class +1, (x,y) is not well separated. On the next 

pass learning, the vector (x,y) becomes (0.9, +1-0.01)=(0.9, 0.99) as the new training 

data. The hypothesis is produced by training on the residual data since the idea of 

NDDCHA is to compensate the base hypothesis each time. Since above algorithm is 

iterated over k times, it has to be regression learning algorithm. There are a total of 1+k 

passes in this algorithm. #
iS  are the positive data subsets and do not change during the 

training. The algorithm has two phases, training and testing as shown in Figure 4.1 and 

4.2. The final training output isU
1

1
#+

=

k

i iS . In the training phase, the hierarchy of training is a 
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chain. 

  

4.3 Learning Termination Criteria 

In every step, training is driven by negative data and it produces a series of 

hypotheses h(i)(x). The key point in the training is the learning termination criteria 

TC(k,S) and depends on how large the value of k is. There are many possible ways to 

determine k, out of which, three are mentioned here. In the first case, k is taken as the 

number  

 

Figure 4.1 Training phase: Si is negative data subset, S#
i is the positive data subset, h(i)(x) 

is the patching model or hyper-surface, and d(i) are dividers, for i=1…k 

 

of iterations when the size of Sk is less than the number of input attributes |Sk|≤|x|. In the 

second case, k is taken as the number of iterations when the difference size between Sk-1 

and Sk ,i.e.,  |Sk-1|-|Sk|≤μ is small enough, here μ is a positive integer. In the third case, k is 

taken as the number of iterations when h(x, k) gives the expected output with the 

specified accuracy.  
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4.4 Testing Phase 

In the testing phase, the hypotheses from training are used to create patching data to 

compensate the base hypothesis. The key point in the testing phase is to determine the 

suitable patching hypothesis. The function of vector set similarity VS accepts two data 

sets Si and Ti-1, one from the training data set and the other from the testing data set, to 

generate a subset of Ti from Ti-1. As a result, each vector x1�Ti-1 becomes similar to at 

least one vector x2�Si, denoted to vs(x1, x2)≥ δ, where δ�[0,1] is the degree of similarity. 

For example, when x1=x2, then vs(x1, x2)= 1, and when x1≠x2,then vs(x1, x2)= 0. Here Pi 

predicts labels on negative data set Ti 
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Figure 4.2 Testing phase. 
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VS is the module of vector-similarity, OV is the module of overlapping. Si is negative data 

from training phase. T0=T is testing data set. Ti has the similar vectors or elements 

between Si and Ti-1  Pi is the patching hyper-surface. P#
i is compensated testing outputs. 

i=1..k.  P#
k is final testing output. 

In above expressions, δ is the regulating parameter to control the degree of two 

vectors’ similarity. It can be seen that, Ti is similar to Si, so that h(i)(x) can be used for 

testing Ti .to generate the values of Pi . These values are overlapped on to compensate 

labels as P#
i=OV(P#

i,P#
i-1). The final ouputs P#

k are the predicting labels. For instance, 

Euclidean distance ||x1-x2|| can be used as vector similarity function, where x1 is in the 

testing set Ti-1 and x2 is in the negative training data subset Si. The vector similarity 

function vs(x1,x2) is  1.0-||x1-x2|| if x1 and x2 are normalized. The output labels which are 

compensated value are given as follows. 

 ki
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It can be seen that in the training phase the learner uses the hypotheses h(x)=h(x,i) 

together with the partitioner function p(i)(h(i),x,y) as divider, generating a positive group 

S#(k)=U
1

1
#+

=

k

i iS  and a negative group Sk+1=S-S#(k).  We find a subset of testing data Ti, 

which is similar to Si and use the hypotheses produced on Si for testing Ti. The ‘+’ 

operation is one case of OV function, and hence the final testing result is treated as a 

summation of overlapping function ∑
=

=
k

i
ik PP

1

## . 
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4.5 Discussion of Vector Similarity in the Feature Space 

Compensating an example strongly depends on the function of vector similarity. 

There are four possibilities of compensating an example: 

1. expected to compensate, the result compensates 

2. expected to compensate, but not compensate 

3. expected not to compensate, the result compensates 

4. expected not to compensate, and not compensate 

Case 1 improves accuracy of base hypothesis. Case 2 and 4 are harmless. In worst case, 

they keep the accuracy of base hypothesis. Case 3 is dangerous case and need further 

study.  

Those testing examples which meet the conditions of Theorem 2.1 will be 

compensated. The vector-similarity plays extremely important role in NDDCHA 

learning. To apply the repairing hyper-surface, the first thing is to find out which vectors 

in testing data set need to be compensated. The vector-similarity is used to find the 

relationship of vectors in the negative data subset Si and testing data subset Ti-1. Only 

those vectors in Ti-1 with high similarity to those in Si need to be compensated, that 

is υ≥∝ −1ii TS , v is the degree of similarity. 

The evaluation of vector-similarity in the classification application in the SVMs 

cannot be obtained directly because of the fact that the similarity in the feature space is 

different with in the input space X. The connection between input space and feature space 

was discussed to find a vector in the input space by given a vector in the feature 

space[90]. The main idea is that the comparison of two vectors x1 and x2 are computed on 
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the feature space. There are three criteria of similarity to be considered to determine the 

similar degree of x1 and x2 if: 

1. x1 and x2 are located on the same side of the hyperplane on either class +1 side or 

class -1 side. 

2. Distances of x1 and x2 to the hyperplane are close, then, x1 and x2 have similar 

separable capability. The difference of two distances is less than δ1 

3. ||x1 - x2|| is small enough, which is less than δ2. 

To compute the vector-similarity in the feature space h(x,i), suppose h(x,i)=wTx+b. The 

condition 1 is equivalent to h(x1,i)*h(x2,i) >0; and condition 2 is  

θδ
δ

=≤−⇒

≤

−=

−=

−

wixhixh

ixhixh
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Note that θ is constant. The difference of ),(),( 21 ixhixh − is bound on ||w|| that means 

the limitation is not tight if ||w|| is large. This phenomenon shows again that SVM 

maximizing the ||w||2/2 is correct. Condition 3 is 

222211121 ),(),(2),(),( δ≤+−= xxKxxKxxKxxd iiii  based on the equation (2-6), where 

Ki is the kernel function used in the ith training. 

The vector similarity algorithm in the feature space of SVM is 

function vector_similarity(x1, x2, i) 

if h(x1,i)*h(x2,i) <0 then  

return +∞ 
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else 

return 1-max( sigmoid(h(x1,i) - h(x2,i)),  sigmoid(di(x1,x2))  ) 

The difference of confidence h(x1,i) - h(x2,i)  and distance di(x1,x2) need to normalize so 

that the output of function vector_similarity  has comparability among examples. One 

example of normalization method is a sigmoid function which outputs a value between 0 

and 1.  

 

Figure 4.3 Sigmoid function 

 

 xe
xsigmoid −+

=
1

1)( . (4-9) 

Algorithm k-nearest neighbor is an instance learning method which learns 

hypothesis only upon a new instance querying. The significant advantage of instance-

based learning is local approximation. The disadvantage of that is that the cost of 

classifying a new example can be high. When vector-similarity function vs is called, k-

nearest neighbor algorithm retrieves k number of similar related examples from negative 

data to determine how strong relationship between x1 and x2.  

In the NDDCHA, suppose it Tx ∈ , inn Syx ∈),( , where Ti is testing subset and Si is 

negative subset in the training data. The function vs(xt,xn, i) >0 if xn is in the class +1, 

otherwise vs(xt,xn, i) <0 if xn is in the class -1.  
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vs(xt, xn, i) 

if  yn <0 

      then return   – vector_similarity(xt, xn, i) 

else 

       return  + vector_similarity(xt, xn, i) 

To enhance to power of vector similarity function, k-NEAREST NEIGHBOR 

algorithm is introduced. A testing example is 1−∈ iT Tx  and k examples nearest 

to Tx are ik Sxxx ∈,..., 21 . The distances between Tx and kxxx ,..., 21 are kddd ,...,, 21 . The 

distance weighted k-NEAREST NEIGHBOR gives estimated value of vector similarity 

TyΔ to Tx : 

 
∑

∑

=

=

Δ
=Δ k

j
j

k

j
jj

T

d

yd
y

1

1 . (4-10) 

where jyΔ is the compensated value in the ith training phase.  To normalize the vector 

similarity value ]1,1[ +−∈vs , an extended sigmoid function is introduced: 

 1
1

21)(2)(_ −
+

=−= − xe
xsigmoidxsigmoidextended . (4-11) 

 

4.6 Algorithm of NDDCHA 

The procedure of NDDCHA has three parameters, S0 is the training data set; T0 is 

the testing data set; and δ is the degree of vector similarity. The return value of the 

algorithm is the predictive labels of testing data set. Six subroutines are invoked:  

h(i)(x)=LEARN(Si)   
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Pi=PREDICT(Ti, h(i)(x))  

S#
i+1∪Si+1= DIVIDER(Si, h(i)(x)) 

Ti = VS(Si, Ti-1,δ) 

P#
i = OV(P#

i-1,Pi) 

TC(k,S) 

 

LEARN denotes training routine to get the model or hypothesis; PREDICT 

routine predicts the labels of given data set and model. DIVIDER is the routine to divide 

training data set into positive and negative data subset by given the hypothesis and the 

function partitioner d(h,x,y). In each pass, the function VS and DIVDER could be 

different. The algorithm is described below as pseudo-code. The code given below 

follows the sequence or procedure developed and shown above in this section. 

NDDCHA (S0, T0, δ) 

>Learning phase 

S[0] ← S0 

h[0] ← LEARN(S[0]) 

i ← 0 

repeat 

   i ←i+1 

   (S#[i], S[i]) ← DIVIDER(S[i-1], h[i-1]) 

   h[i] ← LEARN(S[i]) 

until TC(i,S)  

k ← i   > the number of iteration in repeat loop 
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> Testing phase 

T[0] ← T0 

P[0] ← PREDICT (T, h[0])  

P#[0] ← P[0] 

for i←1 to k do 

    (T[i],V[i]) ← VS(S[i],T[i-1], δ) 

    if T[i] ≠ Φ      > T[i] is not empty set 

    then P[i] ← PREDICT(T[i], h[i]) 

            P#[i] ← OV(P#[i-1], P[i], V[i]) 

return P#[k] 

 

DIVIDER(S[i-1], h[i-1]) 

X ← ΔY←Φ     > initialize to empty set 

foreach (x,y) in S[i-1]  do    > let (X,ΔY) be S[i-1] 

   X ← X ∪ {x} 

   ΔY← ΔY ∪ {y} 

S[i] ← Φ 

foreach (x, Δy[i-1]) in (X,ΔY)  do 

     Δy[i] ← PREDICT(x, h[i-1]) 

     if d(h[i-1], x, Δy[i-1]) 

     then  S[i] ← S[i]∪{(x, Δy[i])} 

           Δy[i] ← Δy[i-1]- Δy[i]   > update ΔY 
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S#← S[i-1] - S[i] 

return (S#[i], S[i]) 

 

VS(S[i],T[i-1], δ) 

T[i] ← Φ 

V[i] ← Φ 

foreach x1 in T[i-1] do 

   foreach x2 in S[i] do 

       if  |vs(x1,x2, i)| ≥ δ 

       then T[i] ← T[i] ∪ {x1} 

           V[i] ← V[i] ∪ {sign( vs(x1,x2, i))} 

           break 

return (T[i], V[i]) 

To apply the NDDCHA learning algorithm, it is required that the partitioner 

function d(h,x,y), terminate criteria function TC(k, S) and vector similarity vs(x1,x2, i) to 

be provided. The performance of NDDCHA very much depends on the selection of 

partitioner and vector-similarity function which needs a priori knowledge of learning 

task. 

4.7 NDDCHA Algorithm Simulation 

NDDCHA algorithm is implemented by Perl which uses a slight modified SVMlight 

[83, 84] as the base learning algorithm including learning and classifying modules. Three 

binary classification case studies, on musk2[91], breast cancer, and cement, have been 

analyzed. Before the cases were studied, the three functions, partitioner function d(h,x,y), 
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terminate criteria function TC(k,S) and vector similarity vs(x1,x2) needed to be defined. 

To simplify the complexity of computation, the partitioner was defined on the feature 

space by d(h, x, y)= iff(h(x) < ε,true, false), ε�[0,0.5]. And TC(k,S) was defined by TC(i, 

S[i])=iff( |S[i]|≤|x|, true, false). Vector similarity Euclidean distance method was used 

for musk2; and feature space method was used for breast cancer and cement. Feature 

space vector similarity approach is adopted in our work because of the fact that  

 

TABLE 4.1 Comparison of three data sets 

 musk2 cancer cement 

SVM Average 
accuracy% 90.30 89.92 70.92 

NDDCHA average 
accuracy% 94.92 90.86 72.56 

Increase accuracy% 4.62 0.94 1.64 

 

 

the data in two cases of three has missing value. The euclidean method is obviously not 

suitable for this situation since this method will make a vector with missing value in a 

high degree of similarity. The threshold δ of vector similarity is 0.7 in the dataset musk2, 

and δ =0.6 is used for both datasets breast cancer and cement.  

The data sets used in case studies musk2 and breast cancer are from UCI 

Knowledge Discovery in Databases (KDD) Archive [82], and the data set used in cement 

is from Wangchang cement company. The n-fold cross-validation is performed in each 

case. The original data is randomly divided into n groups; each group has the same or 
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approximate size.  Each group does not have the similar distribution of classes. One 

group is used as testing data and the remaining n-1 groups are grouped as training data. 

The validation procedure runs n times and each time the testing data is from the ith group, 

i=1...n. The average result of n-fold is the final accuracy given as shown in TABLE 4.1. 

It should be mentioned that the parameters of SVM are not well tuned because the cases 

are used to show the NDDCHA has better performance than the base learning algorithm. 

 

TABLE 4.2 Simulation on the data set musk2 

No TP FN FP TN M C A% TP FN FP TN M C A% I% 
1 39 63 0 558 63 597 90.45 83 19 14 544 33 627 95.00  5.03 
2 41 61 0 558 61 599 90.76 83 19 13 545 32 628 95.15  4.84 
3 38 64 0 558 64 596 90.30 84 18 14 544 32 628 95.15  5.37 
4 36 66 0 558 66 594 90.00 87 15 22 536 37 623 94.39  4.88 
5 39 63 0 558 63 597 90.45 93 9 15 543 24 636 96.36  6.54 
6 37 65 0 558 65 595 90.15 88 14 14 544 28 632 95.76  6.22 
7 39 63 0 558 63 597 90.45 81 21 19 539 40 620 93.94  3.86 
8 37 64 0 559 64 596 90.30 86 15 19 540 34 626 94.85  5.04 
9 35 66 0 558 66 593 89.98 78 23 15 543 38 621 94.23  4.73 

10 36 65 0 558 65 594 90.14 81 20 17 541 37 622 94.39  4.71 
Aver 38 64 0 558 64 596 90.30 84.4 17 16 542 34 626 94.92  5.12 

 

The table has left and right sides. The left side is the result of regular SVM. The right side 

is the result of NDDCHA. TP = true positives, FN = false negatives, FP = false positives, 

TN = true negatives, M = misclassified = FN+FP, C=correct classified, A%=accuracy = 

C/(C+M)*100% and I%= the accuracy improved= (right A% - left A%)/left A% *100% 

 

Musk2 has 6,598 examples with 168 attributes and no missing value. 10-fold 

cross-validation shows that the accuracy of prediction is 90.3% by using SVM RBF 

model with parameter γ=0.5. Before SVM is used to predict the test data, all data 
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including training set and test set are normalized by unit normal scaling approach [92]. 

The operation of normalization improves the average accuracy improvement from 72% to 

90.3%. The unit normal scaling approach is applied on all data sets. The number of 

support vectors is very large near the size of training set, the ratio of support vectors to 

examples r=88%, which means that there are lots of noise involved in the data set, or the 

hypothesis space is less than the target space. In a high noise problem, many of the slack 

variables become non-zero, and the corresponding examples become support vectors 

[93]. The model h(0)(x) classify training set and positive data P and negative data N are 

divided by the partitioner d(h, x, y)= iff(h(0)(x) < 0.3,true, false), which implies all data  

TABLE 4.3 Simulation on the data set Cancer  

No TP FN FP TN M C A% TP FN FP TN M C A% I% 
1 28 12 0 74 12 102 89.47 29 11 0 74 11 103 90.35 0.98 
2 22 16 0 76 16 98 85.96 24 14 0 76 14 100 87.72 2.05 
3 41 9 0 64 9 105 92.11 43 7 0 64 7 107 93.86 1.90 
4 32 10 0 72 10 104 91.23 36 6 0 72 6 108 94.74 3.84 
5 26 16 0 71 16 97 85.84 28 14 0 71 14 99 87.61 2.06 

Aver 30 13 0 71 13 101 88.92 32 10 0 71.4 10 103 90.86 2.17 

The labels have the same meaning as TABLE 4.2 

predicting output  in (-0.3, 0.3) are negative subset. The number of compensating is one. 

The size of N is 612, data set N is trained as hypothesis h(1)(x) and then h(1)(x) classifies 

the testing data set again. The accuracy is as low as 15.7% and uses only 2 support 

vectors. The reason is the size of training set N is too small. However, h(1)(x) with 0.5% 

ratio of number of support vectors and the number of training data gives 100% accuracy 

to classify group N. It is interesting to note that only two support vectors alone can give 

such a high accuracy on the negative training data set N. Dietterich et al. [94] proposed 

this algorithm, iterated-discrim APR, in their paper. Compared to their other seven 

algorithms described in different papers, the iterated-discrim APR demonstrated the best 
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performance, resulting in the correct prediction of 89.2% with confidence interval 

[83.2%-95.2%] by using 10-fold cross-validation with 102 examples on Musk data 2.  

The NDDCHA using 10-fold cross-validation with 612 examples gave the high 

predicating confidence interval with [94.23, 95.76] as shown in Table 4.2.  

 

TABLE 4.4 Simulation on the data set Cement 

 No. TP FN FP TN M C A% TP FN FP TN M C A% I% 
1 46 53 14 132 67 178 72.65 55 44 21 125 65 180 73.47 1.13 
2 33 50 10 151 60 184 75.41 43 40 19 142 59 185 75.82 0.54 
3 36 60 10 138 70 174 71.31 45 51 16 132 67 177 72.54 1.73 
4 23 67 12 142 79 165 67.62 36 54 18 136 72 172 70.49 4.25 
5 35 69 10 130 79 165 67.62 48 56 16 124 72 172 70.49 4.25 

Aver 34.6 59.8 11.2 138.6 71 173 70.92 45.4 49 18 131.8 67 177.2 72.56 2.38 

The labels have the same meaning as TABLE 4.2. 

 

Cancer has 569 examples with 32 attributes and missing value. 5-fold cross-

validation shows that the accuracy of prediction has been improved from 88.92% to 

90.86% by using two learning approaches as shown in Table 4.3. Since there are missing 

values in this data set, the vector similarity works on the feature space. The kernel 

function of SVM is mapping x from input space into feature space. Note that the ith 

attribute of vector x in the feature space is the combination of attributes of x in the input 

space, and then it overcomes the effects due to missing value. The same vector similarity 

method is used for cement data set for the same reason as Cancer. The cement has 1221 

examples with 11 attributes and missing data. The partitioner in the cancer and cement is 

also d(h, x, y)= iff(h(0)(x) < 0.3,true, false). The similarity degree is vs(x1,x2) ≥ 0.99. The 

5-fold cross-validation shows that the testing accuracy is increased from 72.56% to 

74.94%. From Table 4.2,4.3 and 4.4, it is observed that NDDCHA can always improve 
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the testing accuracy in every fold testing. The time cost on Musk2 is around 30 minutes in 

the M-Pentium 2.0 GHz, Windows XP PRO computer. It is less than 5 minutes in the 

other two data sets.  

It is shown that the vector similarity function is sensitive to learning problems in 

the cases studied. The final performance is dependent on the degree of vector similarity. 

The Euclidean distance method works on input space which means that the predicting 

value should be similar if input vectors are similar. However, Euclidean distance method 

treats every attribute in the vector with equal contribution. This is not true for the real 

world problem because some attributes are more significant. Therefore, all attributes 

must be at least normalized before data is fed into the learning machine. When missing 

value exists in the data set, the distances between the vector with missing attributes and 

normal vector will be small. As a result, these two vectors seem to be similar, but, in fact, 

they are not. In general, the Euclidean method is suitable for large size of examples 

without missing data such as in data set musk2. Conversely, the data set cancer has small 

size examples and missing attributes. The good vector similarity approach is to compare 

the similarity of two vectors in the feature space. The reason is that n-dimensional input 

vector x is projected into a high m-dimensional space using nonlinear 

function mn RR →:)(xφ , and then missing attributes in the input space do not appear to be 

missing on the feature space. The feature space is determined by kernel functions, so the 

similarity is related to learning model.  
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CHAPTER 5  

STATISTICAL NEGATIVE EXAMPLES LEARNING APPROACH  

Statistical negative examples learning approach (SNELA) has two or three stages of 

learning including the base learning, the negative learning and the boosting learning for 

binary classification as shown in Figure 5.1.  

 

1:Learner

2:Audit

3:Booster

S0

D0

h0(x)

h1(x)

h0(x)

h1(x)

h2(x)

D1 Combining
h(x)

h0(x)

h0(x)

h0(x),
h1(x)

D2

 

Figure 5.1 Scheme of SNELA 

 

The base learning which is named learner, employs a regular support vector 

machine to classify main examples and recognize which examples are negative. The 

negative learning which is named audit, judges the predicting results of learner, works on 

the negative training data which is strongly imbalanced to predict which instance could 

be negative based on learner. When an instance is predicted by audit as negative, this 

instance is claimed to be misclassified by learner. The next step is compensation, where 
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we move this instance into opposite class either from class +1 to class -1 or vice versa if 

the instance is negative. Furthermore, boosting learning booster is applied when audit 

does not have enough accuracy to judge learner correctly. Booster works on the training 

data subset with which learner and audit do not agree.  The classifier for testing is the 

combination of learner, audit and booster. The classifier for testing a specific instance 

returns the learner’s result if audit acknowledges learner’s result and learner agrees with 

audit’s judgment, otherwise returns the booster’s result. If audit has enough accuracy, 

boosting learning may be skipped.  

5.1 Concept of True Error 

The notation )]([Pr x
x

π
D∈

means the probability of Boolean expression )(xπ  holding 

on instance x drawn from input space X according to distribution D. In general, the 

equation below is held[2]: 

 ∑
∈

∈
=

Xxx
xxDx )](Pr[)()]([Pr ππ

D
 (5-1) 

where D(x) is the probability of instance x chosen under distribution D. 

Concept c is a Boolean function on some spaces of instances. The probability 

)]()([Pr xcxh
x

≠
∈D

is called the error of hypothesis h on concept c under the distribution D. 

The instance x is drawn from input space X according to the distribution D.  If the error is 

equal to or less thanε , then h is called ε -close to the target concept c under D. In the 

binary classification )]()([Pr xcxh
x

≠
∈D

 is equivalent to ]0)([Pr <
∈

xyh
x D

 where y is target 

label of instance x. 

The true error concept is introduced here to demonstrate the compensation 

condition in the worst case of negative learning. The error is related to the distribution of 
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examples and hypothesis specified. The following is the definition of the true error.  

Definition 5.1: The true error )(herrD  of hypothesis h with respect to target label 

y and distribution D is the probability that a randomly generated instance x drawn from D 

is misclassified.  

 ε=≠≡
∈

])([Pr)( yxhherr
x D

D  (5-2) 

where the notation 
D∈x

Pr is denoted by the probability taken over the instance distribution D  

and the pair (x, y) is an underlying labeled example.  

The training error )(herrS  is the ratio of the number of misclassified examples over the 

total number of examples on the training data set S in terms of a hypothesis h(x) that is 

defined below. 

 S
Syx

yxhS S
herr ε=≡ ∑

∈
≠

),(
)(11)(  (5-3) 

The expression 1π is defined to be 1 if the predicate π holds and 0 otherwise. |S| is 

the size of data set S. Suppose training examples S are chosen i.i.d. according to the 

distribution D. If there exists an algorithm A learning on S to output a hypothesis h that 

probability at least δ−1  isε -close to the target concept c under D for given parameter 

δ )5.0,0[∈ andε )5.0,0[∈ . It is denoted by 

 δεδε <>≡
∈

})({Pr),,( herrSh Sx

A

D
 (5-4) 

The training error could be zero. For example, we choose a high VC dimension kernel 

and a large number of regularation parameter in the soft margin of SVM. The predicting 

error is the ratio of the number of misclassified examples over the total number of 

examples on the testing data set. 



  86  

 

The testing error or predicting error )(herrT  is the ratio of the number of 

misclassified examples over total number of instance on the testing data set T in terms of 

a hypothesis h(x) which is defined below:  

 T
Tx

yxhT T
herr ε=≡ ∑

∈
≠)(11)(  (5-5) 

The expression 1π is defined to be 1 if the predicate π holds and 0 otherwise. |T| is the 

size of testing data set T, the label y is the underlying target value of instance x. 

A data set S is i.i.d. drawn from D divided into four parts as TP, TN, FP and FN 

in terms of a fixed binary hypothesis h(x) by which the true error is great than training 

error Sε = )(herrS , such that FNFPTNTPS UUU= , TNTPP U= , FNFPN U= and 

Sherr ε≥)(D  because the S is a sub- set of the whole space with distribution D.  

 }..1,0)(|),{( lixhyyxTNTP i =>=∪  (5-6) 

 }..1,0)(|),{( lixhyyxFNFP i =<=∪  (5-7) 

The true error is not training error.  The true error is a real metric of generalization 

capacity. A learner is consistent if it outputs hypothesis that perfectly fits the training 

examples. |P| is the number of examples in the positive set whereas |N| is the number of 

examples in the negative data set. For any classification algorithm, the result is 

meaningless if |P| is less than |N|. The random learner can give error of 0.5. 

Since NP > , then )5.0,0[   ∈ε  where ε is true error of hypothesis h(x). The true 

accuracy is ε−1 . 

To deal with imbalanced class problem, one could modify data distribution by 

using over-sampling and under-sampling[88]. Over-sampling replicates the minority 

class while under-sampling removes partial majority class. Both sampling makes training 
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dataset balanced. The drawback of under-sampling is to lose some useful data. Over-

sampling may bring overfitting. Given an imbalanced data set 000 NPD ∪= , where P0 is 

the subset of class +1 and N0 is the subset of class -1, the size of P0 is greatly larger than 

the size of N0, that is 00 NP >> . We have three methods to alleviate the unbalancing 

including under-sampling, over-sampling and the combination of above two sampling 

which is named hybrid-sampling. 

The under-sampling technique is shown on the Figure 5.2. The result of under 

sampling is 111 NPD ∪= . The data subset N1 is simply duplicated from N0, while P1 is 

extracted randomly from P0.   

 

Figure 5.2 Under-sampling strategy 

The under-sampling coefficient and the over-sampling coefficient are defined as 

below: 

 
0

1

P
P

=γ  (5-8) 

 
0

1

N
N

=ρ  (5-9) 

where ]1,0(∈γ  and ),1[ +∞∈ρ . In under-sampling ρ =1 while in the S is a sub- set of 

the whole space with distribution over-sampling 1=γ . The parameter c is the ratio of 

negative examples N over positive examples P which describes the degree of 

unbalancing. Parameter r is the reciprocal of c. 
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Where ]1,0(∈c , means that the sampling technique cannot make N1 larger than P1. 

The over-sampling technique is shown on Figure 5.3. The data subset P1 is simply 

duplicated from P0, while N1 is created by copying all examples in N0 and duplicating 

some examples in N0.   

 

Figure 5.3 Over-sampling strategy 

The hybrid-sampling combines the under-sampling and over-sampling strategies as 

shown on Figure 5.4. We get 1,01 <= γγ PP  and 1,01 >= ρρ NN . 

 

Figure 5.4 Hybrid-sampling strategy 

Suppose D0(x) and D1(x) are the possibilities of instance x being chosen under D0 and D1 

respectively as shown on Figure 5.5. P0 and P1 are in class +1 whereas N0 and N1 are in 

class -1. P1 and N0 is separated by ),,( 0000 δεShSVM . D1=P1+N1 is the result of sampling 

from D0. The hypothesis h1(x) = ),,( 1111 δεDhSVM  if SVM learning algorithm is used here.  

Let ])(Pr[ yxhp ii ≠= be the chance for instance x is misclassified by hypothesis 

hi(x). The true error of hypothesis h0(x) is 0ε  learned from data set S0. P0 is in class +1 
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correctly classified by h0(x) while N0 is in class -1. The hypothesis h1(x) with error 1ε is 

learned from D1 which is the output of sampling from D0. The sampling strategy used 

here is randomly extracting or duplicating the examples from D0. When domain 

knowledge is used, for example, only support vectors are extracted during sampling, it is 

not in this case. Then the following equation is obtained[95]: 
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The hypothesis h1(x) with error 1ε is gotten by training on S1.  We have the following 

equation: 
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Then we get  

 
0

100 ]))(1()[1(
γε

ρργεεε ut −+−−
=  (5-13) 

The data set sampling is to construct a new data set S from another data set D 

according to the controlling parameterα  and sampling technique sampling. 

 DSDsamplingS αα =≡ such that ),,(  (5-14) 

The data set S could be the subset of D if under-sampling technique is 

used ),( 01 γPingUnderSamplP ≡ . Or data set D is a subset of S on the over-

sampling ),( 01 ρNngOverSampliN ≡ .  

 



  90  

 

P0 N0

1-ε0 ε0

D0
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P1=undersampling(P0,r) N1=oversampling(N0,p)

1-ε1 h1(x)

h0(x)

S0

ts u v

 

Figure 5.5 Possibility of sampling data 

 

 

5.2 Introduction to Statistical Negative Examples Learning Approach 

The hypothesis of the naïve learning of SNELA is a decision function, which 

considers an instance either in class +1 or class -1. The extended learning of SNELA 

considers the confidence which is associated to an example.  The scheme of two stages 

SNELA is shown on Figure 5.6.  The figure shows a scheme of negative example 

learning. S0 is the training data set. The learner gets the hypothesis h0(x) 

= ),,( 0000 δεShSVM  by base learning algorithm SVM. The data sets 0P and 0N  are positive 

and negative data of S0 respectively separated by h0(x). S1 is the training data set for 

audit, which is under sampling from positive data P0 and over sampling from negative 
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data N0. The negative hypothesis h1(x) is audit h1(x) = ),,( 1111 δεShSVM . TP1 and TN1 can 

be used to correct testing error created by base hypothesis. 

 

Figure 5.6 The scheme of two stages learning including base and negative learning.   

 

Since 00 NP >> , construction compensated data set S1 for negative learning is to 

use under sampling on P0 whereas over sampling on N0. The data set S1 is not simplified 

from the union of the results of under and over sampling. It was translated into 

compensated data set format for training by the function auditsampling() defined in 

(5-16). 
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The section of SNELA considers that the hypothesis outputs a confidence value.  

Given a training data set liyxS ii ..1)},,{(0 == , testing data set mixT i ..1},{0 ==  and a 

parameter 01 >> μ , an SVM is trained on S0 to output hypothesis h0(x). When S0 is not 

separable, negative data subset N0 of S0 is not empty, as shown on the figure below.  

 

Figure 5.7 The scheme of base learning. 000 NPS U=  

 

 The testing data set T0 is predicted by h0(x) to output correctly classified instances 

TP and misclassified instances TN since h0(x) is not capable to separate all examples as 

shown on the figure below. 

 

Figure 5.8 The scheme of base testing. TP is the correctly predicted instances and TN is 

incorrectly predicted instances. In this stage, TP and TN are unknown, where NP TTT U=0 . 
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If some of instances in the TN were known in advance, those instances could be inversed 

into the opposite class. For example, the target label of an instance x5 is class +1. The 

instance x5 is a misclassified instance in the T0 by using hypothesis h0(x), so instance x5 is 

predicted to be class -1. In this stage of practical application, whether the instance x5 is 

correctly classified or misclassified is unknown if we do not have known target label.  If 

x5 can be predicted to be misclassified instance by another hypothesis h1(x) with a certain 

confidence, say 70% possibility, x5 can be corrected from class -1 into class +1. For that 

reason, the key point is how to construct the hypothesis h1(x).   

In order to construct the hypothesis h1(x), a training data set S1, named 

compensated data set, is required to be constructed. The information including training 

data set S0, hypothesis h0(x), positive examples P0 and negative examples N0 are available 

before h1(x) is constructed.  The main idea is to extract partial examples from P0 and all 

examples from N0 because |P0|>>|N0|. Another reason to include all negative examples is 

because the goal of h1(x) is to predict misclassified instances which are strong related to 

the negative N0 example. 

P0 N0

S1
 

Figure 5.9 Construction of compensated training data S1 for h1(x) using under-sampling 

strategy 

 

The compensated training data set S1 is defined below: 

 Let ),( 01 γPingundersamplP =  and N1=N0 (5-15) 
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The hypothesis h1(x) is learned from training data set S1. If over-sampling is used, 

let ),( 01 ρNngoversampliN = .  Testing data set T0 is predicted by both hypotheses h0(x) 

and h1(x). 
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 (5-17) 

Assume the error of hypotheses h0(x) and h1(x) are 0ε and 1ε respectively. If 0ε and 1ε  

meet some criterions, which will be discussed in the sections 5.4, h1(x) can improve the 

predicting of h0(x) on the testing data set T0.  If h0(x) has less confidence on predicting 

instance x to be y while h1(x) has large confidence to say x is negative, then the predicted 

label y by h0(x) should be inversed; let y be -y.  

 

5.3 Analysis of Two Stages Learning 

Theoretically, true error ε is less than predicting error Tε , Tεε ≤ , while predicting 

error Tε is greater than training error Sε practically, TS εε ≤ , if the hypothesis is fixed. 

This is resulted from the approximation and estimation error of learning machine. The 

true error is hard to get without exact data distribution information. Therefore, in most 

cases, predicting error is the substitution of true error as approximate estimation because 

the true error is impossible to get in almost all applications. When we work on the worst 

case of negative learning, training error is used to replace predicting error or true error. 

The reason is if a hypothesis with small training error cannot make final predicting get 

desired accuracy, the true error must be greater than the desired error. Therefore, the 



  95  

 

following discussion assumes true error, training error and predicting error are not 

discriminated.  

• The training data set S0 has l examples, l=|S0|.  

• The true errors )5.0  ,0[ ),5.0  ,0[ 10 ∈∈ εε  are the error of hypotheses of h0(x) 

and h1(x). Then, |P0|>|N0| and |P1|>|N1| for the base training data 

sets 000 NPS U= and compensated training data set 111 NPS U= . 

 

The parameter c is the ratio of negative examples N over positive examples P. 

Parameter r is the reciprocal of c. 

 
c

r
P
N

c 1          
1

1 ==  (5-18) 

5.3.1 Under-Sampling 

 In under-sampling, P1 is a subset of P0 where all examples in P1 are extracted 

from P0 randomly. N1 is small data set comparing to P1. Therefore, N1 keeps all examples 

from N0 except outliers: 
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The minimum of c and maximum of r in the training phase of base leaning in terms of 

hypothesis h0(x) are also defined below. |N0| could be considered as fixed value. 
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In the negative learning stage, under-sampling strategy is adopted. So let 

001 εlNN == because lS =0  and 00 PN << .  For example, 00 25.0 PN =  if the 

accuracy of h0(x) is 80%.  The training data of negative learning is 111 NPS U= . The size 

of S1 and the predicted data subsets in terms of hypothesis h1(x) are listed below: 

 01011            εε lNlrNrP ===  (5-21) 
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 (5-22) 

To make negative learning useful, the number of correctly classified examples must be 

greater than the number of misclassified examples, including misclassified negative 

examples and positive examples. Then, the following inequality needs be met.  
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 (5-23) 

The explanation is shown in Figure Error! Reference source not found.. 

 The strong condition 111      FNFPTN +>  needs to be met in order to improve the 

accuracy of base learning. The weak condition 11   FNTN >  must be met too. 

The 1 FP examples are misclassified and still are not judged correctly in negative 

learning.  This tells us that the upper bound of true error 1ε  in negative learning stage 

is
r+2

1 . If the training error of negative learning is greater than the upper bound, negative 

learning should not be processed. As shown in the Figure 5.11, the relationship of true 

error of negative learning and the ratio of the size of positive and negative examples in 
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base learning indicates that goal is not hard to achieve, because the area under curve is 

small comparing to the area over curve. 

 

Figure 5.10 The number of correctly judged examples in the negative leaning is 1 TN . 

The 1 FN  examples are correctly classified in base learning but not be judged correctly. 

 

 

Figure 5.11  1ε−r  relationship diagram 
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In the Figure 5.11, the x-axis is r which is the ratio of the size of positive and negative 

examples in base learning stage; y-axis is 1ε  which is the true error of hypothesis in 

negative learning stage. When 1ε  falls into the area under the curve, the improvement is 

made in the predicting negative examples. 

The under-sampling strategy shows how to select the parameter r is more critical.  

In the worst case, r is equal to rmax. In that case, the following inequality is gotten. 
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 (5-24) 

The relationship between max,10 εε −  is shown below. 

 

Figure 5.12  max,10 εε −  relationship diagram, the performance is improved in the 

predicting negative examples when 1ε  falls into the area under the curve 

 

To understand the given analysis, here are a couple examples: 
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(1) 0ε =0.20, r=2, |T|=200 

4
20.0

20.01
max =

−
=⇒ r  

0max,1 1667.0
20.01

20.0 εε <=
+

<⇒  

250
22

1
2

1
1 .

r
=

+
=

+
<⇒ε  

In base learning, 40200*20.000 === TN ε examples are probably misclassified and 

160200*8.0)1( 00 ==−= TP ε  are correctly classified. In negative learning, 

1025.0*40011 === NFN ε examples in N0 are not compensated while 

3075.0*40)1( 011 ==−= NTN ε  examples in N0 are compensated. In the meantime, 

2025.0*80011 === NrFP ε   examples in P0 are correctly classified in base learning 

while they are compensated wrongly in negative learning. So the total misclassified 

examples are 11     FNFP +  =30. The negative learning makes |TN1| examples correctly 

classified and |FP1| examples misclassified.  The inequality | 111     FNFPTN +>  has to 

be met; otherwise, the negative learning is useless. This example shows that it is possible 

for SNELA to improve final performance provided true error of negative learning is less 

than 0.1667 no matter what the ratio r is. On the other hand, SNELA cannot improve 

performance when true error is greater than 0.1667 if no positive examples are 

suppressed. The data set is close to be balanced when r=2. In this case, true error 1ε =0.33 

is allowed to be larger than max,1ε =0.1667.  

 (2) 0ε =0.10, r=2,  
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091.0
10.01

10.0
max,1 =

+
<⇒ ε  

250
22

1
1 .=

+
<⇒ε  

5.3.2 Over-Sampling and Hybrid Sampling 

The over-sampling and hybrid-sampling are illustrated on the figures as follows. 

 

Figure 5.13 over-sampling strategy 

 

FP1TP1

P0 N0

1-ε0 ε0

FN1

1-ε1

h0(x)

TN1

P1 N1

h1(x)

 

Figure 5.14 under-sampling and over-sampling could be considered as the special case of 

hybrid-sampling. 

In hybrid-sampling as shown on above figure, let ),( 01 γPingundersamplP =  and 

),( 01 ρNngoversampliN = . Then the following equations can be gotten: 
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In over-sampling γ  = 1, ρ >1 is used whereas γ  < 1, ρ =1 in under-sampling. The 

strong condition still maintains the same in different sampling techniques as it can be 

seen on the inequality (5-27).  
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Then the discussion in the last section is still true here. In order to balance the data, the 

condition 11 NP ≥ should be met.  
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5.4 Algorithm of Two-stage Learning 

Given a training data set S0 and corresponding hypothesis h0(x), positive examples 

P0 and negative examples N0 can be gotten by h0(x) such that 0
)(

00
0 SNP xh⎯⎯ ⎯←U . Under 
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sampling algorithm or over-sampling can be used for the imbalanced data set, where the 

size of negative data is far less than that of positive |N| << |P|.  To construct a new 

training data set S1, which is called compensated data set, for negative learning; all 

positive examples P1 of S1 are labeled as class +1 whereas the rest of negative examples 

N1 are labeled by class -1. Removing some positive examples is controlled by under- 

sampling regularization parameterγ that controls the size of positive examples P1. The 

over- sampling parameter ρ  controls the possibility to duplicate the negative example (x, 

y) from N0 assigning the weight of negative example (x, y), and then we 

get 01 NN ρ= where ρ≤1 . Function rand () generates random value between 0 and 1. 

The function construct_audit_dataset returns a data set S1 for audit learning. Below is the 

algorithm to construct compensated training data for audit: 

construct_audit_dataset (S0, h0, P0, N0, γ , ρ ) 

  i ← 0 

  k ← 0 

  foreach (x, y) in S0 do 

   > Predict the label of instance in the testing data set S0 

       y1←h0(x) 

   > Append feedback from last predicting label 

      x[|x|+1] ← y1; 

   > Keep all negative examples because of unbalance examples 

      if (x, y)∈N0  > μ negative example 

           > Let negative be class -1 
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           if  rand() ≤ ρ  

                 S1[k++]← (x, -1) 

p←ρ  

            while  p≥ 1  

     if rand() ≤  p-1    > Duplicate the negative example if |N1| is too small 

                       S1[k++]← (x, -1) 

            p ← p-1 

 end while  

     > (x, y)∈P0 Keep partial positive examples, under sampling 

      else if  rand()≤   γ   

               > let positive example be class +1 

               S1[k++]← (x, +1) 

      i ← i+1 

     end foreach 

  return S1   

 

Two-stage learning algorithm including training and testing algorithms: 

SNELA2 (S0, T0,μ , γ , ρ , 1δ , 2δ ) 

>Learning phase 

   (h0, 0ε )← LEARN (S0)   > 0ε  is training error 

> S0 is divided into positive and negative data set in terms ofμ  

   (P0, N0) ← DIVIDE (S0, h0,μ  )   



  104  

 

> Form a compensated training set for negative learning 

   S1 ←  construct_audit_dataset (S0, h0, P0, N0, γ , ρ ) 

 (h1, 1ε ) ← LEARN (S1) 

 

> Testing phase 

  T1 ← PREDICT (T0, h0)  

> if the criterion is not met, return base predicting result. 

  if 
r+

≥
2

1
1ε   

  then  

          return T1 

  T2 ← PREDICT (T0, h1)  

  for i=1 to |T0| do 

> Positive constants 1δ , 2δ are confidence threshold. 

if T1[i].y  < 1δ and T2[i].y < - 2δ   

then 

T3[i].y ← - T1[i].y    > reverse predicting class 

else 

T3[i].y ← T1[i].y    > keep class unchanged 

  end for 

  return T3 
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5.5 Three-stage Learning of SNELA 

The limitation of two-stage negative learning is that the strong condition or upper 

bound is related to the ratio of positive and negative examples. And it assumes a small 

size of examples for the audit. Comparing to original training data set for the learner, it 

can still reflect the distribution of data space. The condition 1ε <
r+2

1  is not easy to meet 

because learning on the imbalanced data is much more difficult than that on the balanced 

data. The audit has strong capability on correcting the predicting results of the learner by 

reversing possibility of sampling data the result from class +1 into -1 or vice versa. That 

requires the audit has a higher accuracy than the respective learner’s. Two-stage learning 

overcomes those shortcomings by applying the confidence of SVM, which assumes a 

lower confidence of instance and then has lower possibility to predict correctly. Three-

stage learning extends two-stage learning by adding an extra learning stage to learn on 

the hardest negative data. The extra learning algorithm is called booster and its behavior 

is close to the boosting algorithm. The booster’s goal is to enhance the audit’s accuracy 

by mining those negative examples that are disagreed by the learner and the audit.  

Three-stage learning learns on three different distributions D0, D1 and D2; and 

output a combined hypothesis. Three learning methods are learner, audit and booster 

respectively. In this dissertation these methods are SVMs. The learner is trained on 

original distribution of data in the normal way to output hypothesis h0(x) with 

error 0ε = ]0)([Pr 0
0

<
∈

xyh
Dx

as shown on the top of Figure 5.15. The learner has found some 

examples that are misclassified on the original distribution. To enhance the capability of 

leaner, the audit works on the distribution D1 that includes harder parts of the distribution 
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to judge the learner’s ability of prediction. The instances chosen according to the 

distribution D1 are sampled from positive and negative examples classified by h0. The 

audit outputs hypothesis h1(x) with error 1ε = ]0)([Pr 1
1

<
∈

xyh
Dx

. Finally, D3 is constructed 

by removing from D0 the examples on which h1 agree with h0.  The booster produces 

hypothesis h2(x). The combinational hypothesis h(x) is: given an instance x, if 

1)(1 +=xh then let )()( 0 xhxh = ; otherwise if 1)(2 +=xh then let )()( 0 xhxh =  

else )()( 0 xhxh −= . 

The area us NP ∪ with distribution D1 cannot be classified by hypothesis h1(x) 

because h1(x) outputs class -1 in this area. Therefore, the hypothesis h2(x) learned from 

us NP ∪  enhances prediction as majority vote[96] strategy.  

The possibility of s, t, u, v is defined as follows: 

• The possibility ]1)(0)([Pr 10
0

−=∧>=
∈

xhxyhs
Dx

, the area that is NOT supposed to be 

compensated is compensated.  This is a bad situation. 

• The possibility ]1)(0)([Pr 10
0

+=∧>=
∈

xhxyht
Dx

, the area that is NOT supposed to be 

compensated is not compensated. This is a good situation. 

• The possibility ]1)(0)([Pr 10
0

−=∧<=
∈

xhxyhu
Dx

, the area that is supposed to be 

compensated is compensated. This is a good situation. 

• The possibility ]1)(0)([Pr 10
0

+=∧<=
∈

xhxyhv
Dx

, the area that is supposed to be 

compensated is NOT compensated. This is a bad situation. 
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The possibility s + u is the area expected NOT to be compensated, while u + v is the area 

expected to be compensated. In summary, the four possibility areas are listed in the table 

below. 

 

P0 N0

ts u v

1-ε0 ε0
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D1

FP1
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FN1

undersampling(P0,r) oversampling(N0,p)
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Figure 5.15 The distribution D0, D1 and D2 on the three-stage learning. ts PPP ∪=0 , 

vu NNN ∪=0 . 111 TNTPP ∪= and 111 FNFPN ∪=  
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TABLE 5.1 The possibility of four areas 

Area 
Target

Label 

Learner 

h0(x) 

Audit 

h1(x) 
audit 

+1 +1 -1  
s 

-1 -1 -1 
Detect wrong 

+1 +1 +1  
t 

-1 -1 +1 
Correctly detect 

+1 -1 -1  
u 

-1 +1 -1 
Correctly detect 

+1 -1 +1  
v 

-1 +1 +1 
Not detect 

 
 00 1]0)([Pr
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ε−=>=+
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xyhts
Dx

 (5-29) 
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∈

xyhvu
Dx

 (5-30) 

Combining equation (5-13), (5-29) and (5-30), we know the value of s and v can be 

solved:  
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 uv −= 0ε  (5-32) 

where ])([1
1

0 ρργε
γ
ε

−+
−

=a  and 
0

0 )1(
γε

ερ −
=b  
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The probability of instance x being chosen under D2 is defined: 
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Then, we get the error of combinational hypothesis h(x) as follows. 
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0 ε≤uQ  
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We know 2,1,0,5.0 =< iiε , and then the rightmost item above is less than 0. The 

following equality can be gotten:  
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If we do not consider the prior knowledge of the difference among the errors 210 ,, εεε , 

then we assume 2,1,0, =< ii εε  

 ])()2[(1  ]0)([Pr 32 εργεργ
γ

+−+≤<
∈

xyh
Dx

 (5-37) 

We get the error bound of three-stage learning h(x) below: 

 )()(]0)([Pr 2 εε OOxyh
Dx

<=<
∈

 (5-38) 

The error bound (5-37) indicates that the error bound is small whenε  is small. In 

conclusion, for 2,1,0, =<∀ ii εε  in the three-stage learning, the error of hypothesis 

returned is bounded )( 2εO . That significantly reduces the error of original hypothesis 

learner which is bound to )(εO . The error bound is exactly the same as the result of 

Boosting algorithm[95] when 5.0== ργ , that is 32 23]0)([Pr εε −≤<
∈

xyh
Dx

. The 

inequality (5-36) of the error bound of h(x) is rewritten in below format: 

      ])()([  ]0)([Pr 10110102 εεε
γ
ρεεεεε −+−+≤<

∈
xyh

Dx
 (5-39) 
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This indicates that a small value γρ / is preferred to have small error bound. However, a 

small γ and large ρ are usually chosen in the practical application because the audit 

shows low error 1ε  in the balanced training examples D1. Therefore, there exists a 

tradeoff between 1ε  and γρ / .  

We know 210 εεε ≤≤ ; and we choose 10 ≤≤ γ , ρ≤1 and 
0

01
ε
ε

γ
ρ −
≤  in the 

practice because the small size of training examples leads to bad performance of 

hypothesis. Thus from inequality (5-36) and equation (5-26) the error bound of h(x) is 

equivalent to the following: 

 

)1(dc

     ])1)(1([   
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γ
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γ
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xyh
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 (5-40) 

 )11(dc   ]0)([Pr
0

0
1 ε

εε
r

xyh
Dx

−
++≤<

∈
 (5-41) 

Where c= 20εε and d= )1( 02 εε − are constants as long as 20 ,εε are fixed. If over-sampling 

strategy decreases the value )1(1 γ
ρε + or )11(

0

0
1 ε

εε
r
−

+ , then the over-sampling strategy can 

be used. The algorithm of three-stage learning SNELA3 is shown below: 

SNELA3 (S0, T0,μ , γ , ρ ) 

>Learning phase 

   (h0, 0ε )← LEARN (S0)   > 0ε  is training error 

> S0 is divided into positive and negative data set in terms ofμ  
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   (P0, N0) ← DIVIDE (S0, h0,μ  )   

> Form a compensated training set for audit in the negative learning 

    S1 ←  construct_audit_dataset (S0, h0, P0, N0,γ , ρ ) 

   (h1, 1ε ) ← LEARN (S1) 

> Form a compensated training set for booster in the third stage learning 

    S2 ←  construct_booster_dataset (S0, h0, h1) 

   (h2, 2ε ) ← LEARN (S2) 

 

> Testing phase 

Foreach x in T0 do  

if 1)(1 +=xh  

T1[i] ← )(0 xh  

else if 1)(2 +=xh  

T1[i] ← )(0 xh   

                   else 

T1[i] ← )(0 xh−   

  end foreach 

 return T1 
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The function of construct data set S2 for booster in the third stage learning is in the 

following. 

construct_booster_dataset (S0, h0, h1) 

  k ← 0 

  foreach (x, y) in S0 do 

   > Predict the label of instance in the testing data set S0 

       y1←h0(x) 

   > Append feedback from last predicting label 

      x[|x|+1] ← y1; 

   > x ∈  us∪ , h1 does not agree with h0 

      if h1(x) < 0 

          if y*h0(x)<0 

           > x ∈u learner misclassified instance x, let negative be class -1 

                 S2[k++]← (x, -1) 

      else if y*h0(x)>0 

       > x ∈s,  let positive example be class +1 

              S2[k++]← (x, +1) 

     end foreach 

  return S2   

Comparing to two-stage learning, three-stage learning is guaranteed to have good 

performance although 210 εεε ≤≤ . The lower accuracy hypothesis can improve the base 

learning accuracy by choosing appropriated parameter of γρ / which is independent with 
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the error bound )( 2εO . The third stage learning is a booster which can be run many times 

to boost the base learning algorithm. Note that the error bound is only related to the ratio 

of the size of positive and negative examples instead of the total number of examples. 

This indicates that the balance of positive and negative is sensitive to the final 

performance. 

The algorithm run in the SVM can be modified in this way: 

• 1)( +=xhi is equivalent to ii xh μ>)( , i=0,1,2 

• 1)( −=xhi is equivalent to ii xh μ<)( , i=0,1,2 

The parameter μ  can be verified by AUC on the equation (1-9) because AUC is 

independent on the bias b. The default value of μ  is zero in the SVMs as shown on the 

figure below. Sometimes, SVM gives a low accuracy whereas AUC shows high value in 

imbalanced examples prediction. The reason is that bias value is not correct. The bias can 

be moved around to maximize the accuracy of the hypothesis. The parameter μ  is 

computed in the equation (5-42). 

TP h(x)

TN

µ

0

-1 +1

FP

FN

B

 

Figure 5.16 The parameter μ  is determined by moving around the line B to minimize the 
size of FNFP∪   
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where 1π is defined to be 1 if the predicate π holds and 0 otherwise. 

5.6 Simulation  

Six data sets were studied in this simulation. Breast-cancer-Wisconsin[97-99] with 

699 examples and 10 attributes is binary classification problem. The class +1 examples 

are Benign 458 (65.5%) and class -1 examples are Malignant 241 (34.5%). Zhang,J. used 

369 examples of them and the best accuracy obtained is 93.7% by 1-nearest 

neighbor[100].  Ionosphere is the data set with size of 351 examples and 34 attributes. 

David Aha used nearest neighbor to attain an accuracy of 92.1%, and Ross Quinlan's C4 

algorithm attains 94.0% (no windowing), and that IB3attained 96.7% [101].  

TABLE 5.2   Overview of negative learning performance 

Accuracy% Other SVM NDDCHA SNELA2 SNELA3
Breast-cancer-Wisconsin 93.7 89.6 90.3 92.3 92.5

Ionosphere 96.7 84.3 84.3 84.3 83.4

Liver-disorder - 69.0 68.3 72.5 75.3

Lung-cancer 77.0 74.0 72.0 70.8 77.2

Pima Indians Diabetes 76.0 72.3 72.4 73.2 74.0

 

Liver-disorder has 345 examples with 6 attributes without missing values. Lung-

cancer has 32 examples with 34 attributes. It is 3 classes classification,  the number of 

three classes are 9,13,10 respectively[102]. The best bias accuracy is 77%. Pima Indians 
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Diabetes has 768 examples with 8 attributes, 500 positive examples and 268 negative 

examples. Using 576 training instances, the sensitivity and specificity of their algorithm 

was 76% on the remaining 192 instances[103].  

In the Table 5.3, the column other is the best accuracy found in other approaches. 

The columns SVM, NDDCHA, SNELA2 and SNELA3 are the accuracy values by using 

their methods. The results show that SNELA3 has better performance than SNELA3 in 

most cases.  SNELA2 has high risk in predicting negative data because it depends on the 

confidence value of SVM. It tells us the value of h(x) is not exact confidence of instance 

x in the feature space defined by h(x). SNELA does give the best performance and it does 

improve the single SVM method. That is the goal of negative data mining to improve the 

accuracy of original algorithm by mining negative data. 
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CHAPTER 6  

 CONCLUSION AND FUTURE WORK 

 

6.1 Summary  

In the supervised machine learning field, the generalization capability is archived 

by training on a set of known examples from the input spaces. The predicting error is 

inevitable. One source of error is from the low powerful learning algorithm which either 

has approximation error or estimation error or both. Another source is from not-well- 

distributed data which is not i.i.d.. Therefore, the negative examples exist widely in all 

known learning algorithms. Two negative data mining approaches are proposed in this 

dissertation by understanding two types of errors. The basic philosophy of two 

approaches is that firstly negative examples contains positive information, and secondly 

the approaches make improvement on the generalization capacity of base learning 

algorithm as much as possible, and does not make any changes on the base learning 

machine if the improvement cannot be made. Therefore, the challenges include learning 

on the imbalanced positive and negative examples, and the determination of improvement 

criteria on the base learning algorithm.  

The proposed NDDCHA improves the learning algorithm performance through 

compensating the base hypothesis by utilizing the negative data set. Useful information 

content in the negative data is mined to benefit the model of an application. This 

approach expands the hypotheses space to close the target space so that the 
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approximation error will be reduced. A hypothesis with high VC dimension has high 

capability to classify the examples. Its drawback is that it is prone to overfitting. 

NDDCHA can use low VC dimension hypothesis as base algorithm and use high VC 

dimension of hypothesis to compensate the base one to reduce overfitting. NDDCHA 

separates every example in the hyperplane as much as possible which matches the 

principle of Vapnik’s generalization theory of maximizing the margins. The cases show 

that the NDDCHA does increase the performance.  

A tutor usually can predict a student performance based on judging student’s 

work. If the tutor’s judgment on student’s work has high confidence, then it is helpful to 

the student. Otherwise, a mentor may be needed to confirm which one is correct between 

the student and the tutor in order to improve student’s performance. SNELA is two or 

three stages learning including learner, audit and booster like the scenario cooperated by 

student, tutor and mentor. SNELA based on the theoretical analysis improves the 

performance of base learning algorithm learner by creating one or two additional 

hypothesis audit and booster to mine the negative examples. The error ε  of learner is 

proved to decrease from )(εO  to )( 2εO . 

6.2 Future Work 

The NDDCHA offers the flexibility of using other non-SVM algorithms as base 

and patching learning algorithm. Hence, as a future work, we will study the above said 

cases with other learning algorithms like ANN as base learning algorithm. The methods 

of vector similarity and partitioner functions are chosen by the user based on the 

understanding of the properties of the training data. The future work also includes 
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investigating the relationship between the vector similarity function and the data 

distribution, using the fuzzy partitioner.  

SNELA assumes the data used is i.i.d. and a hypothesis learned on a small size of 

examples is still capable to predict other instances. This is not true in the practical 

application, especially, in the imbalanced training data. The compensated data set and 

boost data set are transformed from original data set which is not exactly under the 

control of original data distribution.  Then, further work will investigate this 

phenomenon.  Future work of SNELA also includes the run time and memory space 

complexity analysis. 
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