
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

8-3-2006

SVM-Based Negative Data Mining to Binary
Classification
Fuhua Jiang

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Jiang, Fuhua, "SVM-Based Negative Data Mining to Binary Classification." Dissertation, Georgia State University, 2006.
https://scholarworks.gsu.edu/cs_diss/8

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71421677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

SVM-BASED NEGATIVE DATA MINING TO BINARY CLASSIFICATION

by

FUHUA JIANG

Under the Direction of A. P. Preethy

ABSTRACT

The properties of training data set such as size, distribution and number of

attributes significantly contribute to the generalization error of a learning machine. A not-

well-distributed data set is prone to lead to a partial overfitting model. The two

approaches proposed in this paper for the binary classification enhance the useful data

information by mining negative data. First, error driven compensating hypothesis

approach is based on the Support Vector Machines with 1+k times learning, where the

base learning hypothesis is iteratively compensated k times. This approach produces a

new hypothesis on the new data set in which, each label is a transformation of the label

from the negative data set, further produces the child positive and negative data subsets in

subsequent iterations. This procedure refines the model created by the base learning

algorithm, creating k number of hypotheses over k iterations. A predicting method is also

proposed to trace the relationships between the negative subsets and testing data set by

vector similarity technique. Second, a statistical negative examples learning approach

based on theoretical analysis improves the performance of base learning algorithm

learner by creating one or two additional hypothesis audit and booster to mine the

negative examples output from the learner. The learner employs a regular support vector

machine to classify main examples and recognize which examples are negative. The

audit works on the negative training data created by learner to predict whether an

instance could be negative. The negative examples are strongly imbalanced. However,

boosting learning booster is applied when audit does not have enough accuracy to judge

learner correctly. Booster works on the training data subset with which learner and audit

do not agree. The classifier for testing is the combination of learner, audit and booster.

The classifier for testing a specific instance returns the learner’s result if audit

acknowledges learner’s result and learner agrees with audit’s judgment, otherwise

returns the booster’s result. The error ε of base learning algorithm is proved to decrease

from)(εO to)(2εO .

INDEX WORDS:

Data partition, Data preparation, Support vector machines, Multiple passes learning,

Vector similarity, Data classification, Bioinformatics, Machine learning

SVM-BASED NEGATIVE DATA MINING TO BINARY CLASSIFICATION

by

FUHUA JIANG

A Dissertation Submitted in Partial Fulfillment of Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia Stage University

2006

Copyright by
Fuhua Jiang

2006

SVM-BASED NEGATIVE DATA MINING TO BINARY CLASSIFICATION

by

FUHUA JIANG

Major Professor: A.P. Preethy
Committee: Yan-Qing Zhang
 Yi Pan
 Yichuan Zhao

Electronic Version Approved:
Office of Graduate Studies
College of Arts and Sciences
Georgia State University
August 2006

 iv

 ACKNOWLEGMENTS

Firstly, my specific thanks go to my advisor, Dr. A. P. Preethy and Dr. Yan-qing

Zhang, for their kind guidance and precise advisement during the process of my Ph.D.

dissertation. The dissertation would not have been possible without their helps.

Secondly, I would like to thank Dr. Yi Pan and Dr. Yichuan Zhao for their well-

appreciated support and assistance.

Finally, I want to thank my family and friends for their support and beliefs.

 v

Table of Contents

ACKNOWLEGMENTS .. iv

LIST OF FIGURES ..iiiviii

LIST OF TABLES... xi

LIST OF ACRONYMS .. xii

CHAPTER 1 INTRODUCTION.. 1

1.1 Learning Problem Terminology .. 2

1.2 Evaluating the Performance of Binary Classification ... 3

1.3 Relatively Performance Evaluation ... 8

1.4 Challenges of Machine Learning... 9

1.5 Negative Data Mining ... 11

1.6 Introduction to Negative Data Driven Compensating Hypothesis Approach

(NDDCHA) ... 13

CHAPTER 2 RELATED WORK .. 16

2.1 Boosting and Bagging ... 16

2.2 Kernel Methods ... 18

2.2.1 Distance in the Feature Space ... 20

2.2.2 Polynomial kernel ... 22

2.3 Support Vector Machines (SVMs) .. 23

2.3.1 The Maximal Margin Classifier .. 23

2.3.2 The Soft Margin Optimization .. 26

2.3.3 Karush-Kuhn-Tucker condition (KKT) .. 28

 vi

2.4 k-NEAREST NEIGHBOR (KNN) and Knowledge Representation................... 29

CHAPTER 3 METHODOLOGY... 33

3.1 Concepts of Negative Data .. 33

3.1.1 Introduction of negative and positive data .. 33

3.1.2 Separator and partitioner ... 34

3.1.3 μ-Negative data ... 37

3.2 Motivation ... 40

3.3 Characteristics of SVMs.. 44

3.4 VC Dimension ... 47

3.5 Vector Similarity ... 48

3.6 Theoretical Analysis on NDDCHA... 49

3.7 The Patterns of Examples Distribution in the Feature Space 51

3.7.1 Small size or imbalanced training data ... 53

3.7.2 Noise, outlier and missing value example... 54

3.7.3 Compensatable negative examples.. 56

3.7.4 Not compensatable negative examples ... 58

3.7.5 Imbalanced examples .. 60

3.8 Compensating Hypothesis Approach .. 63

CHAPTER 4 ERROR DRIVEN COMPENSATING HYPOTHESIS APRROACH.. 65

4.1 Negative Data .. 65

4.2 Training Phase ... 66

4.3 Learning Termination Criteria... 68

4.4 Testing Phase... 69

 vii

4.5 Discussion of Vector Similarity in the Feature Space... 71

4.6 Algorithm of NDDCHA .. 74

4.7 NDDCHA Algorithm Simulation.. 77

CHAPTER 5 STATISTICAL NEGATIVE EXAMPLES LEARNING APPROACH 83

5.1 Concept of True Error.. 84

5.2 Introduction to Statistical Negative Examples Learning Approach 90

5.3 Analysis of Two Stages Learning.. 94

5.3.1 Under-Sampling .. 95

5.3.2 Over-Sampling and Hybrid Sampling... 100

5.4 Algorithm of Two-stage Learning... 101

5.5 Three-stage Learning of SNELA... 105

5.6 Simulation.. 115

CHAPTER 6 CONCLUSION AND FUTURE WORK... 117

6.1 Summary.. 117

6.2 Future Work... 118

BIBLIOGRAPHY... 120

 viii

 LIST OF FIGURES

Figure 1.1 The relationship of label and predicting confidence 5

Figure 1.2 Model h(x) is a hyper-surface. Instance x1 is well-separated; instance x2 is not

well-separated and instance x3 is misclassified where their labels y1, y2 and y3>0. 6

Figure 1.3 An example of ROC Curve for a given hypothesis[12], y-axis is sensitivity and

x-axis is the 1-specificity. The diagonal line from (0,0) to (1,1) is drawn for random

classifier as a reference. 7

Figure 1.4 Comparing to classifier h1(x) and h2(x) of the binary classification, the model

with high degree is prone to overfitting, where f(x) is the underlying function. 11

Figure 1.5 The Yin-Yang symbol. 12

Figure 2.1 h(x) is the hyper-plane in the feature space. Points x1, x2, and z in the input

space are mapped into feature space. w is the normal vector of hyper-plane h(x)=0. 21

Figure 2.2 Maximal Margin, Support vectors and noisy examples 28

Figure 3.1 Well-separated data and not well-separated data are in the different area. The

points with solid pattern are misclassified. 36

Figure 3.2 μ-negative examples are defined in the SVM feature space, which are points

marked with solid pattern. 39

Figure 3.3 Distribution of target labels and predicating label on the hepatitis[81] 52

Figure 3.4 Distribution of target labels and predicating label on the musk2 53

Figure 3.5 Linear separable examples 54

 ix

Figure 3.6 An example of outlier, the red circle on the right-bottom is an outlier which is

far from other examples. 55

Figure 3.7 Single side negative examples 57

Figure 3.8 Patching a testing example in the directly compensatable pattern. Circle

points are in class+1; rectangle points are class -1; triangle point is test point. 57

Figure 3.9 Interweaved positive and negative examples 59

Figure 3.10 Patching a testing example in the non-directly compensatable pattern. Circle

points are in class+1; rectangle points are class -1; triangle point is test point. 59

Figure 3.11 The negative training example is compensated by h1(x) when in the training

phase, but negative testing example can not be compensated by h1(x). 60

Figure 3.12 Imbalanced examples 61

Figure 3.13 Under-sampling strategy 62

Figure 3.14 Architecture of Yan et al. SVM ensembles 63

Figure 3.15 Compensating hypothesis approach 64

Figure 4.1 Training phase: Si is negative data subset, S#
i is the positive data subset, h(i)(x)

is the patching model or hyper-surface, and d(i) are dividers, for i=1…k 68

Figure 4.2 Testing phase. 69

Figure 4.3 Sigmoid function 73

Figure 5.1 Scheme of SNELA 83

Figure 5.2 Under-sampling strategy 87

Figure 5.3 Over-sampling strategy 88

Figure 5.4 Hybrid-sampling strategy 88

Figure 5.5 Possibility of sampling data 90

 x

Figure 5.6 The scheme of two stages learning including base and negative learning. 91

Figure 5.7 The scheme of base learning. 000 NPS U= 92

Figure 5.8 The scheme of base testing. TP is the correctly predicted instances and TN is

incorrectly predicted instances. In this stage, TP and TN are unknown,

where NP TTT U=0 . 92

Figure 5.9 Construction of compensated training data S1 for h1(x) using under-sampling

strategy 93

Figure 5.10 The number of correctly judged examples in the negative leaning is 1 TN .

The 1 FN examples are correctly classified in base learning but not be judged

correctly. 97

Figure 5.11 1ε−r relationship diagram 97

Figure 5.12 max,10 εε − relationship diagram, the performance is improved in the

predicting negative examples when 1ε falls into the area under the curve 98

Figure 5.13 over-sampling strategy 100

Figure 5.14 under-sampling and over-sampling could be considered as the special case of

hybrid-sampling. 100

Figure 5.15 The distribution D0, D1 and D2 on the three-stage learning. ts PPP ∪=0 ,

vu NNN ∪=0 . 111 TNTPP ∪= and 111 FNFPN ∪= 107

Figure 5.16 The parameter μ is determined by moving around the line B to minimize the

size of FNFP∪ 114

 xi

 LIST OF TABLES

TABLE 1.1 Confusion matrix 4

TABLE 4.1 Comparison of three data sets 78

TABLE 4.2 Simulation on the data set musk2 79

TABLE 4.3 Simulation on the data set Cancer 80

TABLE 4.4 Simulation on the data set Cement 81

TABLE 5.1 The possibility of four areas 108

TABLE 5.2 Overview of negative learning performance 115

 xii

 LIST OF ACRONYMS

Support Vector Machine SVM

Negative Data Driven Compensating Hypotheses Approach NDDCHA

Instance Based Learning IBL

k-Nearest Neighbor KNN

Statistical Negative Examples Learning Approach SNELA

Independent Identically Distributed i.i.d.

Vapnik Chervonenkis Dimension VC Dimension

Receiver Operating Characteristics ROC

Area Under Curve AUC

Probably Approximately Correct PAC

 1

CHAPTER 1

 INTRODUCTION

The approach to solve the complex problem without precise model is to learn

functionality from the pairs of input and output of examples. The examples are the

classification of protein types based on DNA sequence [1], the regression of the surface

roughness of parts in manufacturing and so forth. In general, the problem of supervised

machine learning is to search a hypothesis h(x,α) from a space of potential hypotheses H

to determine the hypothesis that will best fit underlying function f and any prior

knowledge as well, where x is the testing vector and α is the parameters of hypothesis [2].

The learning has training and testing phases. The training is to estimate the

parameter α to the hypothesis or model h(x, α). The testing is to use the model to predict

the labels of testing data. A hypothesis h(x, α) can be abbreviated by h(x) once α is

determined. A hypothesis h(x) can be considered as a hyper-surface in the n-dimensional

input space, where n=|x|, by geometric interpretation. For example, a hypothesis of fuzzy

controller or the support vector machine (SVM) [1, 3-7] is a hyper-surface, although the

hypothesis created by instance-based learning[8, 9] is not in this case. A hypothesis h(x)

can be also considered as a hyperplane in the feature linear space of SVM.

A hypothesis learned from training examples is not perfect to fit underlying

function, because the computational errors of approximation and estimation are inevitable

to overcome; training data includes noises and does not well distributed. Not well

distributed examples means that these examples are not well represented the whole input

 2

space. Some areas may have more examples and other areas may only have a few

examples. Therefore some examples are not negative contribution to the hypothesis

learned. These negative examples can be mined to improve the accuracy of hypothesis.

This chapter describes basic concepts and briefly introduces the main approach proposed.

1.1 Learning Problem Terminology

There is an instance vector x from an input space X, a response or label y from

output space Y and a hypothesis h form hypotheses space H for a learner L. We have

 R,R ∈∈⊆=)()()2()1(,,),,...,,(inn xXxXxxxx (1-1)

where R is a set of real numbers, integer n>0 is the size of vector x. Y = }1,1{ +− or Y

⊆R is in binary classification, Y = },...,2,1{ m is m-class classification, and Y⊆R is in

regression. The learned hypothesis h returns a predicting label, y’=h(x), of an instance x,

a real number. In the binary classification, if h(x) returns a confidence value then y’>0,

means y’ is in the class +1 whereas y’<0 means in the class -1.

A training data set S is a collection of training examples or observations given by

zi=(xi,yi). It is denoted by

)},),..(,(),,{(2211 ll yxyxyxS = li ..1= (1-2)

where ℓ = |S| is the size of the training set. In this paper the label of binary classification

Y is extended to Y ⊆R, the final output of binary classification is the sign of label.

There exists a true functional relationship or underlying function f: X ⊆R n → Y,

which is often based on the knowledge of the essential mechanism. These types of

models are called mechanistic models. A hypothesis h is an approximation to the

underlying functional relationship f between variables of interest. The problem for the

 3

learner L is to learn an unknown target function h: X→Y drawn from H and output a

maximum likelihood hypothesis.

1.2 Evaluating the Performance of Binary Classification

In a binary classification, examples of class +1 and class -1 are usually said to be

positives and negatives respectively. Traditionally, three metrics, named accuracy,

sensitivity and specificity, are used to evaluate the performance of hypothesis based on

the confusion matrix in Table 1.1:

TPFPFNTN

TPTNaccuracy
+++

+
= (1-3)

FNTP

TPysensitivit
+

= (1-4)

TNFP

TNyspecificit
+

= (1-5)

Sensitivity is the proportion of true positives and specificity is the proportion of true

negatives. The predictive value positive and predictive value negative is evaluated

accuracies of the positive and negative examples respectively.

FPTP

TPpositivevaluepredictive
+

= (1-6)

FNTN

TNnegativevaluepredictive
+

= (1-7)

The sum of FP and FN is the number of misclassification examples on the unseen

testing dataset whereas the sum of TP and TN is the number of correctly classified

examples. Predictive positives are consisted of true positives (TP) and true negatives

(TN). Predictive negatives include false positives (FP) and false negatives (FN).

 4

TABLE 1.1 Confusion matrix

 Real

 Positive Negative

 True Positive False Positive

 Positive TP FP TP + FP

 False Negative True Negative Test

 Negative FN TN FN + TN

 TP + FN FP + TN

The accuracy ρ is usually used as metric to evaluate whether a model is good or

not in the binary classification. Training accuracy ρt and the testing accuracy ρp are used

to evaluate the performance of learning machine. Sometimes a high ρt results in a high ρp,

otherwise a high ρt results in a low ρp which is called overfitting. The testing accuracy is a

measure of generalization capacity of a model. If there exist two models for the same

learning problem with the same training accuracy, how can we determine which model

has a higher probability of performance without predicting. The support vector machine

(SVM) uses maximal margin as the metric. A hypothesis h(x) could be considered as a

predicting confidence of an instance x. The relationship between confidence and label is

shown on Figiure1.1, which is an example predicting task with 30 testing instances.

Although some instances are labeled as class +1, their confidences are quite different. It

can be considered that a predictive data with high confidence is true in high probability.

 5

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

examples

la
be

l/c
on

fid
en

ce

confidence
label

Figure 1.1 The relationship of label and predicting confidence

A metric average residual (AR) to evaluate the model is shown on (1-8) based on

the generalization theory [5]

∑
=

=
l

i
ii xhy

l
AR

1
)(1

 (1-8)

where l is the size of training data set and yi is the label of input vector xi. The high AR

means high training accuracy. AR could be negative if there are many misclassified

examples. The hyper-surface h(x) separates the hyperspace into two sides in the binary

classification }1,1{ +−=y . In SVM, the predictive value of y’=h(x) is proportional to the

geometric distance from point x to the hyperplane in the feature space. y’ is the geometric

distance if maximal margin is normalized to 2. Then the new metric is the average

distance to hyper-surface as shown on Figure 1.2. One side h(x)>0 is in the class +1 and

the other side h(x)<0 is in the class -1. The hyperplane h(x)=0 is the separator. The

hypothesis h(x) becomes a measure of performances to separate vector x.

 6

Figure 1.2 Model h(x) is a hyper-surface. Instance x1 is well-separated; instance x2 is not

well-separated and instance x3 is misclassified where their labels y1, y2 and y3>0.

Furthermore, when the training data are strongly imbalanced, accuracy may

mislead because the all positive or all negative classifiers may have a very good

accuracy. The Receiver Operating Characteristics (ROC) curve has been introduced by

the signal detection theory to evaluate the capability of a human operator of

distinguishing signal and noise[10]. ROC analysis is now being acknowledged as a

practical tool to evaluate classifiers of imbalanced data, even when the prior distribution

of the classes is not known[11]. ROC curve is a two-dimensional measure of

classification performance. It can be understood as a plot of the probability of correctly

classifying the positive examples against the rate of incorrectly classifying negative

examples as shown below.

The AUC is defined at the area under an ROC curve. Processing the AUC would

need the computation of an integral in the continuous case. The following equation is the

AUC on discrete case such as in the classification.

 ∑ ∑
+ −

−+= = >−+=
l

i

l

j xhxh jill
hAUC

1 1)()(
11)((1-9)

y

h(x1)

h(x2)

x1

x2

h(x)=0

h(x3)
x3

 7

Figure 1.3 An example of ROC Curve for a given hypothesis[12], y-axis is sensitivity and

x-axis is the 1-specificity. The diagonal line from (0,0) to (1,1) is drawn for random

classifier as a reference.

where h(x) is the hypothesis. x+ and x− respectively denote the class +1 and -1 examples

and l+ and l− are respectively the numbers of class +1 and -1 examples and 1π is defined

to be 1 if the predicate π holds and 0 otherwise. AUC value is the probability P(Y1>Y2)

where Y1 is the random variable corresponding to the distribution of the outputs for the

positives and Y2 is the one corresponding to the negatives[13]. The average of AUC is

monotonically increasing as the accuracy of hypothesis, but the standard deviation for

imbalanced distributions is grown[14]. Therefore AUC is a better metric than accuracy in

the case of imbalanced examples distribution. Alain Rakotomamonjy proposed an AUC

maximization algorithm and show that under certain conditions 2-norm soft margin

SVMs can maximize AUC[15]. AUC is not as an optimization objective in this

dissertation but as an evaluation metric. Genuine SVMs assume that misclassification

costs are equal for both classes of binary classification. So SVMs are not suitable in

detecting a small size class in the imbalanced data set. For example, it is very hard to

 8

detect the negatives when the size of negative is far less than that of positives. Thus, ROC

curve approach is of interest because it reflects both true positive and false positive

information. However, if training examples are separable, any hypotheses in the version

space will maximize AUC.

In order not to confuse the terminologies of positives and negatives in the following

chapters and sections, positives and negatives are called class +1 and class -1 examples

respectively because labels belong to }1,1{ +− . That is very convenient to extend binary

classification into multiple classifications. For example, 4-category classifications

problem have class 1, 2, 3, 4 examples because labels belong to }4,3,2,1{ .

1.3 Relatively Performance Evaluation

Most literatures evaluated a hypothesis by using absolutely evaluation hypothesis

method (AEHM). The examples include accuracy, AUC, least square sum. All AEHMs

have to assume the data distribution is i.i.d. These methods are necessary in the

evaluation of generalization capacity in the unseen data. When the size of data set is

small, AEHMs is not meaningful because a small size of examples is not capable to show

the whole picture of data distribution. Then a relatively evaluation hypothesis method

(REHM) is introduced.

To show how REHMs works, assume a data set D includes l examples and n-fold

cross-validation are used. We have n pairs of training and testing data set. The size of

training data and testing examples are listed below:

 D
n

nSi ×
−

=
1 , ni ..1= (1-10)

 D
n

Ti ×=
1 , ni ..1= (1-11)

 9

Firstly, data set D is trained and hypothesis hD(x) is gotten. We get performance

value Dη by testing data set D using hD(x). The performance value could be accuracy,

AUC and etc. Secondly, data set Si is trained and hypothesis hi(x) is gotten. We get

performance value iη by testing data set Ti using hi(x). Let the average of iη be Sη .

Then REHM is defined below:

D

SREHM
η
η

= (1-12)

The performance value Dη is the best value of given hypothesis in terms of data set

D. Any other iη cannot be better than Dη because the testing examples are included in the

training data in the AEHM. Thereby REHM is a value less or equal than 1.0. To the

separatable examples, REHM is exactly the same as AEHM.

1.4 Challenges of Machine Learning

The goal of learning is to have high testing or predicting accuracy rather than

training accuracy. The underlying function f of the practical problem is unknown and

even hard to be described. What can be known in the problem are the training data set S,

and the limit and not full prior knowledge of the problem. The general purpose learning

algorithm does not even take advantage of domain knowledge, such as statistical learning

methods. They only consider or assume the distribution of data where all data are drawn

from this distribution possibility, although such assumption is not realistic. The

underlying function f of problem is in the target space TS; the model is a hypothesis h

from the hypotheses space H. Therefore, three types of error are inevitable in the process

of machine learning [16]. The first is the approximation error from the number of

 10

hypotheses in the hypotheses space less than that of target space, H <TS. The underlying

function f may be beyond the hypothesis space if h≠f. The second is the estimation error

for a training algorithm from selecting a non-optimal model or hypothesis due to the

technique of computation, for example, the back propagation algorithm cannot produce

the optimal solution because of local minima problem. The last one is the generalization

error jointly from the approximation and estimation error.

In addition to those, the properties of data such as a small size, dirty, imbalanced or

not well-distributed training data set, which means that the training data set does not well

reflect the real problem, contribute to the generalization error. Hence, the generalization

error is the composite error from all aspects. In the supervised machine learning, the

hypotheses space is selected by human, and the number of types of hypotheses spaces

that are available to human is limited. The hypotheses space in the artificial neural

network (ANN) is the topology of network and the approximation functions, such as

sigmoid functions, in the neuron[17-20]. In the support vector machine (SVM), the

hypotheses spaces could be regarded as the kernel functions such as polynomial kernel;

radial basis function kernel (RBF) and etc. Therefore the approximation error cannot be

reduced once the hypotheses space is chosen. How to choose a suitable hypothesis space

depends on human’s a priori knowledge of identifying characteristics of a real learning

problem and the learning accuracy.

It is known from above discussion, the performance of testing or capacity of

generalization relies on the shape of the hyper-surface or model. Sometimes the

hypotheses spaces are larger enough than the target spaces; the model is still prone to

overfitting due to not well distributed training data as shown on Figure 1.4. Not well

 11

distributed data are scattered on the input space un-uniformly. One challenge is there

exists a general method to compensate a hypothesis and let it fall in hypothesis space to

reduce approximation error. Another is how to reduce estimation error. SVMs are proved

as global optimization method once kernel is chosen.

Figure 1.4 Comparing to classifier h1(x) and h2(x) of the binary classification, the model

with high degree is prone to overfitting, where f(x) is the underlying function.

1.5 Negative Data Mining

According to traditional Chinese philosophy, Yin and Yang are the two primal

cosmic principles of the universe. Yin is the passive, female principle while Yang is the

active, masculine principle. The best state for everything in the universe is a state of

harmony represented by a balance of Yin and Yang. True harmony requires Yang to be

dominant. It's just the natural phenomena. As show on Figure 1.5 Yin-Yang symbol,

when Yin and Yang are in harmony with one another, they are two halves of the circle,

Training y=+
y=-1

y=+1 Test Set
y=-1 Underlying f(x)

h1(x)
h2(x)

 12

one dark and the other light. The small circle within each half shows that the part of each

opposite is always found within the other. They are not really opposites at all. Yin and

Yang is interrelated. Partial Yin is inside of Yang whereas partial Yang is inside of Yin.

Yin and Yang should be respected to an equal extent.

Figure 1.5 The Yin-Yang symbol.

 The target space could be considered as a universe in the Yin-Yang theory. To a

specified hypothesis h∈H, all examples in the universe TS are divided into two primal

groups positive and negative data, which matches Yang and Yin. The positive data is the

subset of all correctly classified examples where negative data is the rest. An example

could be positive or negative. The negative data does not mean the data is wrong or

corrupt. What negative data can be known is that a hypothesis cannot make it well-

separated. Negative data strongly depends on the hypothesis. Whether an example is

positive or negative is relative. To a specific example, hypothesis A classifies it to be

negative while hypothesis B may classify it to be positive. Furthermore, even for the

same hypothesis, an example probably belongs to positive or negative in terms of the

different parameters α of a hypothesis h(x)=f(x, α).

Yin-Yang Theory claims that Yin and Yang together form a universe. Yin and

Yang are opposite group, and each can be always found in the opposite within the other.

This is the foundation philosophy of negative data mining. The Yin-Yang theory

indicates that negative data contains the positive information. The more information, the

 13

higher accuracy of learn machine can be gotten. By mining negative data, the accuracy of

machine learning will be enhanced[21].

There are two ways of improving the performance of classification. One improves

the learning algorithm or method to reduce approximation and estimation error by

choosing a suitable learning algorithm or invent a new algorithm. Here we only consider

the other way to mine training data to increase the accuracy of hypothesis such as

boosting and bagging[22-25].

1.6 Introduction to Negative Data Driven Compensating Hypothesis Approach

(NDDCHA)

For a specific model to a specific learning problem, there are several ways to

improve the model or hypothesis if misclassified examples exist. The first way makes

hypothesis space larger than the target space. The second is to reduce estimation error.

The third is to make the size of examples large. The last is the training data mining in

which a sequence of learning algorithms takes advantage of the distribution of data to

create a combination of algorithm. A good example is the SVM ensemble powered by the

bagging and boosting approach [22-25].

In bagging, each base learning algorithm is trained independently by using

randomly chosen training examples via a bootstrap technique. In boosting, the base

learning algorithm is trained using training data examples chosen according to the

examples' distribution. The boosting approach calls a weak base learning algorithm more

than one time. The base learning algorithm could be any algorithms such as ANN or

SVM. Each time weak algorithm is fed with a different subset of the training examples

 14

and generates a new weak prediction rule. After many rounds, the boosting algorithm

combines these weak rules into a single prediction rule to produce more accurate rule.

The problems of how each distribution should be chosen in each round, and how the

weak rules should be combined into a single rule is to maintain set of weights over the

training set. Therefore, the boosting approach is combining a series of hyper-surfaces into

a single hyper-surface where each hyper-surface is independent. Chang [26] proposed a

boosting SVM classifier with logistic regression for imbalanced training data by using

clustering technique. Kim et al. [27] proposed bagging and boosting SVM approach and

tested majority voting, least squares estimation based weighting, and double-layer

hierarchical combination aggregating methods. Vapnik in his book [5] gave a detail

explanation on how to use SVM ensemble powered by Schapire’s AdaBoost algorithm

[25]. The main drawbacks of bagging and boosting are time consuming and the

performance largely depends on the training data of probability distribution and

aggregation methods. The Boosting could be considered as a negative mining algorithm

which emphasizes learning on misclassified data or negative data.

The negative data driven compensating hypothesis approach (NDDCHA) driven by

the negative data information is proposed in this paper. This approach looks similar to the

SVM ensemble, which is learning technique where multiple SVMs are trained to solve

the same problem [5, 28-30]. The SVM ensemble is to generate a sequence of SVMs by

using Bagging or Boosting approaches and then combining their predicting. The

difference is that the ensemble approach is combining the results of SVMs and each SVM

is independent, while NDDCHA is compensating the labels of base SVM by a sequence

of patching SVMs and making training examples well separated by using AR metric

 15

(1-8). The NDDCHA works on the negative data and the size of negative training data is

reduced in each pass and therefore it converges quickly in the rate of exponentially. In

our practice, the number of passes is not greater than 3.

The main idea of the approach proposed here is to maximize the yh(x) for every

example x in the training phase by using a series of hypotheses h(i)(x) i=0...k, whereas

testing data find appropriate h(i)(x) by using vector similarity technique to predict the

example in the predicting phase. The approach is to improve the capacity of

generalization and reduce the approximation error by extending the traditional learning

method like SVMs in two aspects. The first is to compensate hypothesis by making use of

the examples from training data S with high training error due to H<TS and not well-

separated examples. The second is data cleaning and data enhancing by utilizing the

negative data which has high predicting error or not well-separated in the phase of

training and testing.

The rest of this paper is organized as follows. In Chapter 2, the related work

including boosting, k-nearest neighbor algorithm (KNN) and SVM are introduced; the

concepts of NDDCHA and principle of generalization theory are also introduced. In the

Chapter 3, the concept of negative examples is introduced. In Chapter 4, the algorithm of

NDDCHA is studied in detail. In Chapter 5, the statistical negative example learning is

studied. Finally in Chapter 6, the main contribution of this paper is summarized.

 16

CHAPTER 2

 RELATED WORK

There are two general strategies in improving an algorithm. One is modification of

algorithm structure, and the other is modification training data. The first one includes

changing the objective function of optimization, for examples, approach of support vector

machine to decision tree[31]. The second one includes the bagging and boosting. The

approaches in this dissertation focus on the second strategy. The related works are briefly

introduced in this chapter, including boosting and bagging, locally weighted regression,

kernel and support vector machines.

2.1 Boosting and Bagging

Breimans’s bagging[24] and Freund and Schapire’s boosting[23, 25, 32] [33] both

form a set of classifiers or hypotheses that are combined by voting. Bagging generates

replicated bootstrap examples of the data and boosting adjusts the weights of training

examples. Two approaches are based on theoretical analyses of the behavior of the

composite classifiers. Bagging can be applied for the situation where a small agitating the

training data set will result in significant changes in the classifier built. Boosting

strengthens the base or weak learn algorithm.

Boosting based on PAC learning[34] causes the learner to focus on those

misclassified examples then it generates new classifiers by adjusting the weight of

examples. The high weight of example indicates the high influence on the classifier

 17

constructed. Boosting learns examples many times. In every time of learning, the weight

of examples is adjusted to reflect the accuracy of classifier built on previous iteration.

Obviously, the misclassified example will be assigned high weight on the next iteration.

In the testing phase multiple classifiers are combined by majority voting strategy to form

a composite classifier. Boosting uses different voting strength in terms of the accuracy of

component classifier in the training phase. How to determine the weight of examples is

key point of boosting. One implementation of boosting is AdaBoost[33] shown in the

following:

Given: Training data set S defined on the (1-2).

Initialize the weight distribution:
l

D 1
1 =

For t=1 to T

Train weak learner using distribution Dt

Get week hypothesis }1,1{: +−→Xht with error])([Pr ~ iitDit yxh
t

≠=ε

Choose)1ln(
2
1

t

t
ta

ε
ε−

=

Update:
t

ititt

iit
a

iit
a

t

i
t Z

xhyaiD
yxhife
yxhife

Z
iDiD

t

t))(exp()(
)(
)()()(1

−
=

⎩
⎨
⎧

≠
=

=
−

+ where Zt is a

normalization factor

The output the composite classifier or hypothesis:

))(()(
1
∑
=

=
T

t
tt xhasignxH

Determining the number of T is stop criterion that uses two ways:

• if 5.0>tε

 18

•)(xht correctly classified all examples

Other boosting implementations include Brownboost[35] and Logitboost[36]. If

weight zero was assigned to the correctly classified examples in the extremely condition,

then the next iteration of learning will only use the negative data. The side effect in this

case is that the size of next generation training data may be imbalanced. The assumption

of bagging and boosting is that a small change of examples on a given distribution will

cause significant changes on the classifier built. As long as the accuracy of every

component classifier is greater than 50%, Freund and Schapire proved that accuracy of

the composite classifier on the given training data set increases in the rate of

exponentially quickly as the number of iterations increasing. However, the composite

classifier cannot guarantee the generalization performance. And boosting also produces

severe degradation on some datasets [37]. Most existing boosting algorithms are limited

to combine only a finite number of hypotheses, and the generated ensemble is usually

sparse. Lin et al. proposed infinite ensembles may surpass finite and/or sparse ensembles

in learning performance and robustness[38]. Bagging and boosting requires that the

learning system should not be stable, and then the small changes to the training examples

should have considerable changes in the hypothesis[37, 39].

2.2 Kernel Methods

Kernel methods[40] provide an alternative solution to non-linear system by

projecting the data into a high dimensional feature space where data can be solved by

linear system. The successful applications of kernel based algorithm have been found in

different areas, for examples, pattern recognition[41, 42], time series prediction[43], text

 19

categorization[44], gene expression profile analysis[45], DNA and protein analysis[46]

and etc.

Suppose a vector x in the input space X projects into)(xφ in the feature space F.

))(),...,(),(()(),...,,(221121 mmn xxxxxxxx φφφφ == a ,

 }|)({)(, XxxFxXx ∈=∈∈ φφ (2-1)

The n-dimensional vector x has n coordinates in the input space, the coordinates are

called attributes. And the coordinates in the feature space is called features. If m<n, this

is known as dimensionality reduction. If m>>n, this is known as curse of dimensionality.

Using to large number of features may lead to the overfitting problem[1]. In the mean

time, the large number of features increases the computational cost.

A kernel is a function K, such that Xzx ∈∀ ,

)()(),(zxzxK φφ ⋅= (2-2)

where function)(xφ is a non-linear mapping function from X to an inner product feature

space F. A kernel function calculates an inner product which expresses a degree of

similarity of two vectors. Kernel function is symmetric, but not all of symmetric

functions over XX × are kernels. Kernel function has to be positive definite according

to Mercer’s theorem[1]. Many researches extended kernel function in practical

application. Ong et al. proposed methods to learn non-positive kernel [47], which has

been promising in empirical applications. Kernel function plays a key role in determining

the performance of SVM. S. Armari and S. Wu proposed a method of modifying a kernel

function to improve the performance of SVM based on the Riemannian geometrical

structure[48]. Srivastava et al. proposed a method of mixture density Mercer Kernels

 20

which learn kernel directly from data[49]. The following are some most common used

nonlinear kernel functions

Polynomial Kernel dczxazxK)*(),(+= (2-3)

Radial Basis Kernel)||||exp(),(2zxzxK −−= γ (2-4)

Sigmoid Kernel)*tanh(),(czxzxK += γ (2-5)

2.2.1 Distance in the Feature Space

Kernel expresses domain knowledge about the pattern being constructed, encoded

as a similarity metric between two vectors [50, 51]. Let K be a kernel over XX × , then a

distance d of two vectors x and z in the feature space defined as [52]:

),(),(2),()()(),(zzKzxKxxKzxzxd +−=−= φφ (2-6)

Radial basis kernel (2-4) function has a close relation between kernel and distance.

2|||| zx − can be substituted by any metric that calculates the distance between x and z.

The angle θ between two vectors x and z in the feature space satisfies

)2,0[,
),(),(

),(
)()(

)()(
cos πθ

φφ
φφ

θ ∈
⋅

=
⋅

=
zzKxxK

zxK
zx

zx
 (2-7)

Suppose θ 1 is the angle between vectors x1 and z andθ 2 is the angle between vectors x2

and z. The follow equation can be gotten:

),(),(
),(),(

),(),(),(
),(),(),(

cos
cos

221

112

221

112

1

2

xxKzxK
xxKzxK

zzKxxKzxK
zzKxxKzxK

===
θ
θη (2-8)

Theorem 2.1 Given that the feature space defined by kernel function

)()(),(zxzxK φφ= is linear space, and then the hypothesis)(xh in the feature space is

 21

linear which can be expressed bwxxh +⋅=)()(φ , where w is a constant vector to define

hyperplane, b is a bias.

• The vector x1 is closer to vector z than vector x2,)()()()(21 zxzx φφφφ −≤−

• 21 coscos θθ ≤ , where angles θ 1,],0[2 πθ ∈ defined on the equation (2-7). θ 1

is the angles between)()(1 zx φφ − and w; and θ 2 is the angles between

)()(2 zx φφ − and w, as shown below.

Figure 2.1 h(x) is the hyper-plane in the feature space. Points x1, x2, and z in the input

space are mapped into feature space. w is the normal vector of hyper-plane h(x)=0.

Then:

)()()()(21 zhxhzhxh −≤− (2-9)

Proof:

Q)()()()(21 zxzx φφφφ −≤− , both sides multiply 21 coscos θθ ⋅⋅w

⇒ 122211 coscos)()(coscos)()(θθφφθθφφ ⋅⋅⋅−≤⋅⋅⋅− wzxwzx

w

)(1xφ

)(2xφ

)(zφ

h(x)=+1 h(x)=-1

θ1

θ2

 22

⇒ 1221 cos)()(cos)()(θφφθφφ wzxwzx −≤− and Q θcoszxzx ⋅=

⇒ 1221 cos)()(cos)()(θφφθφφ wzwxwzwx −≤− since inner product is

distributive.

⇒ 1221 cos)()(cos)()(θθ ⋅−≤⋅− zhxhzhxh and Q 21 coscos θθ ≤

⇒)()()()(21 zhxhzhxh −≤− , then the theorem is proved.

The theorem 2.1 shows that predicating label is much similar if two vectors in the

feature space are closer, and the angle between vectors is smaller. It also shows that the

predicting label depends on hyperplane because the angle is relative to w .

Suppose that vector z is an instance from testing data set; examples),(11 yx and

),(22 yx are from training data set. If),(),(21 zxdzxd ≤ in equation (2-6) and 12 ≥η in

equation (2-7), the conclusion is the value of predicting label)(zh of instance z is closer

to 1y .than 2y . If θ 1=0, that means vector)()(1 zx φφ − parallels to hyperplane, and no

matter what θ 2 is, vector)(2xφ is further to)(zφ than vector)(1xφ . The theorem 2.1 is the

foundation of vector similarity in the feature space.

2.2.2 Polynomial kernel

The polynomial kernel is defined:

 dczxzxK)(),(+= , d>1 (2-10)

For example d=2, and vector x or z has n dimensions,

 23

∑∑

∑∑∑

∑∑

==

== =

==

++=

++=

++=+=

n

i
ii

nn

ji
jiji

n

i
ii

n

i
jij

n

j
i

n

j
jj

n

i
ii

czcxczzxx

czcxzzxx

czxczxczxzxK

1

2
),(

)1,1(),(

1

2

1 1

11

2

)2)(2())((

2

)()()(),(

 (2-11)

Therefore, the total feature of degree 2 polynomial kernel is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
n

n
n

n
n 2

1
1

. In

general, the total feature of degree d polynomial kernel has ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
n

dn
 number of features.

2.3 Support Vector Machines (SVMs)

Support Vector Machines (SVMs) [1, 5, 53-55] is a learning algorithm for classification,

regression and density estimation. SVM has been used successfully in many areas

including bioinformatics[56]. For example, the SVM can be used to learn polynomial,

radial basis function (RBF) and multi-layer perceptron (MLP) classifiers. SVMs are

based on the structural risk minimization (SRM) principle, which incorporates capacity

control to reduce overfitting.

2.3.1 The Maximal Margin Classifier

The basic SVM is a linear classifier to separate the training data S into two

classes. The separator or hyperplane is wTx+b=0, where w is the weight vector and b is

the bias term. Suppose the training data are separable, the optimal hyperplane satisfies

conditions in the following by maximize the margin of separator which is the width of

separation between classes,

 24

 liby i
T

i

b

,,1,1)(subject to
2
1)(Minimize 2

,

K=≥+

=Φ

xw

ww
w

. (2-12)

The risk functional is the Φ(w). Lagrange multipliers are introduced 0≥iλ , li ,...,1= for

each constraint in (2-12). The following Lagrangian is gotten:

 []∑
=

−+−=Λ
l

i
i

T
ii bybL

1

2 1)(
2
1),,(xwww λ (2-13)

where T
l),,(1 λλ K=Λ are the Lagrange multipliers, one for each example. The task is to

minimize (2-13) with respect to w, b, and maximize it with respect toΛ . Differentiating

with respect to w and b and setting the derivatives equal to 0 to get optimal point

 0),,(
1

=−=
Λ ∑

=

l

i
iii y

bL xw
w

w λ
∂

∂ (2-14)

and

 ∑
=

=−=
Λ l

i
ii y

b
bL

1
0),,(λ

∂
∂ w (2-15)

The optimal w* is

∑

∑

=

=

=

=

l

i
ii

l

i
iii

y

y

1

1

**

0 subject to λ

λ xw
 (2-16)

Substituting (2-13) by (2-16):

 ∑∑∑∑
= ===

−=−=Λ
l

i

l

j
j

T
ijiji

l

i
i

l

i
i yyF

1 11

2

1 2
1

2
1)(xxw λλλλ (2-17)

We get dual problem of primal problem (2-12):

 25

0,0 subject to

2
1)(Maximize

=≥

−=

y

DIF

T

TT

ΛΛ

ΛΛΛΛ
 (2-18)

where T
lyyy),,(1 K= , I is an identity matrix and D is a symmetric ll × matrix with

elements j
T

ijiij yyD xx= . To solve the above convex quadratic programming (QP)

problem, we get the classifier)(xf ,

)(sgn)(

,)(**

1

**

xx

xwxxx

hf

ybbyh i
T

i

l

i
i

T
ii

=

−=+= ∑
=

λ (2-19)

where λ*i>0. If λ*i≠0, the ith vector xi is a support vector. To a nonlinear separable

problem, an n-dimensional input vector x is projected into a high m-dimensional space

using nonlinear function mn RR →:)(xφ , and then the output is linear. Then (2-19)

becomes

 ⎟
⎠

⎞
⎜
⎝

⎛
+=+== ∑

=

l

i
iii bybhxf

1

*T***T)()(sgn))(sgn()(sgn)(xxwxx φφλφ (2-20)

The function (2-20) is in the form of inner products)()(zx φφ T , which can be represented

by a kernel function)()()()(),(zxzxzx φφφφ == TK . Using kernel functions makes it not

necessary to find the mapping function. Therefore the kernel function is a way to

construct non-linear hyper-surface. For instance, if a polynomial kernel is used, then

hypothesis h(x) can be represented by a continuous hyper-surface with polynomial h(x) in

the input space whereas h(x) is also a hyperplane in the high-dimensional feature space

through mapping function)(xφ . The hyperplane h(x) is determined by the training

examples xi i=1...l. If the training examples are changed the shape of the hyper-surface

will also be changed. The hyper-surface is usually vectors sensitive. In the SVM, the

 26

hyperplane is determined by the support vectors that are only part of example subset of

training set. Only the support vectors will affect the hyperplane. The overfitting is much

serious if the number of the support vectors is close to the size of training data set. By

using kernel function, the decision function (2-19) becomes

 ⎟
⎠

⎞
⎜
⎝

⎛
+== ∑

=

l

i
iii bKyxhf

1

**),(sgn)(sgn)(xxx λ (2-21)

where the bias is given by

 ∑
=

−=−=
l

j
ijijii

T
i Kyyyb

1

***),()(xxxw λφ (2-22)

for any support vector ix .

2.3.2 The Soft Margin Optimization

SVM introduced a vector of slack variables T
l),...,,(21 ξξξ=Ξ when the hypothesis is

found to be inconsistent with any single example as show on Figure 2.2. It does not

completely eliminate a hypothesis if an inconsistent example is found.

liby

Cb

iii
T

i

l

i

k
i

,,1,0,1))((subject to
2
1),,(Minimize

1

2

b,,

K=≥−≥+

+=ΞΦ ∑
=Ξ

ξξφ

ξ

xw

ww
w (2-23)

where C is a regularization parameter that controls the trade-off between maximizing the

margin and minimizing the training error term; k is integer k>0. If C is too small,

insufficient stress will be placed on fitting the training data. If C is too large, the

algorithm leads to overfitting. The slack variable kξ is related to noise sensitivity. The

optimization hypothesis h(x) of learning task (2-23) has a similar form to the equation

(2-19).

 27

 ∑∑∑
===

+−+−++=ΓΞΛ
l

i
i

l

i
ii

l

i
ii

T
ii CbybL

111

2]1))(([
2
1),,,,(ξξγξφλ xwww (2-24)

where T
l),,(1 λλ K=Λ as before, and T

l),,(1 γγ K=Γ are the Lagrange multipliers

corresponding to the positive of the slack variables. Differentiating with respect to w ,

b and Ξ and setting the results equal to zero to obtain

.0),,,,(

0),,,,(

0)(),,,,(

1

1

=−−=
ΓΞΛ

=−=
ΓΞΛ

=−=
ΓΞΛ

∑

∑

=

=

ii
i

l

i
ii

l

i
iii

CbL

y
b

bL

ybL

γλ
ξ∂

∂

λ
∂

∂

φλ
∂

∂

w

w

xw
w

w

 (2-25)

The dual problem of soft margin is:

0,0 subject to

2
1)(Maximize

=Λ≤Λ≤

ΛΛ−Λ=Λ

yC

DIF

T

TT

 (2-26)

where T
lyyy),,(1 K= , I is an identity matrix and D is a symmetric ll × matrix with

elements j
T

ijiij yyD xx= . The decision function implemented is exactly as before in

(2-19). The bias term *b is given by (2-18) where a support vector ix is for

which Ci << λ0 . Hsu et al paper [57] gives a general guide to choose a good value of C.

The paper[58] also discussed how to tune parameter automatically. An alternative

algorithm was presented to get maximum margin between training examples and

decision boundary[59]. To compare different SVMs, C is not easy to use. v-Support

Vector Machine(v-SVM) is introduced in[60]. In v-SVM, C is replaced by v limited on

interval (0, 1]. The parameter v is asymptotically with an upper bound on the number of

margin errors and a lower bound on the number of support vectors.

 28

2.3.3 Karush-Kuhn-Tucker condition (KKT)

Karush-Kuhn-Tucker conditions (KKT), are[1]

0)(

0] 1))(([
=−

=+−+
C

bxwy

ii

ii
T

ii

λξ
ξφλ

 (2-27)

The KKT conditions imply that non-zero slack variables iξ can be occur in Ci ≠λ . Then

the following can be obtained [61].

0 1)(
0 1)(0
0 1)(0

><⇒=
==⇒<<
=≥⇒=

iiii

iiii

iiii

andxhyC
andxhyC
andxhy

ξλ
ξλ
ξλ

 (2-28)

 If)(ii xhy 1≥ , then xi is correctly classified and well separated. Otherwise, xi is support

vector. If)(ii xhy 0≤ , then xi is misclassified. If 0 <)(ii xhy <1, then xi is correctly

classified but its confidence is small.

Figure 2.2 Maximal Margin, Support vectors and noisy examples

ξi ξi

 29

The geometrical interpretation of support vector classification is that the SVM

searches the optimal separating surface in the hypotheses space. This optimal separating

hyperplane has many nice statistical properties. The value wxh /)(is the geometric

distance between vector x to the hyperplane.

According to KTT condition (2-27) and for all 1)(≤ii xhy , we get Ci ≤λ and

 0 1))((=+−+ ii
T

i bxwy ξφ (2-29)

 iii xhy ξ 1)(−=⇒ (2-30)

)(ixh is the predicting label of instance xi. Maximizing AR metric is exactly minimizing

the 1-norm empirical error in the soft margin SVM if)(ixh is set to 1 when)(ixh >1. The

reason is below:

 ∑∑∑
===

−=−==
l

i
i

l

i
i

l

i
ii ll

xhy
l

AR
111

11) 1(1)(1 ξξ (2-31)

In SVM application, one only needs to determine the kernel function, and the

regulation parameter to control trade off between margin and empirical error. This

characteristic is convenient because of less parameter user needs to decide. However, this

is also drawback because it provides less control in a complex application. NDDCHA

gives much control than standard SVM, like Boosting provides much control than base

learning algorithm.

2.4 k-NEAREST NEIGHBOR (KNN) and Knowledge Representation

The instance-based approaches can construct a different hypothesis for each distinct

testing vector where the hypothesis is created from a subset of training data. Aha, Kibler

and Albert described three experiments in Instance-based learning (IBL)[62]. In the first

 30

experiment (IB1), to learn a concept or knowledge simply required the program to store

every example. When an unclassified example was presented to be classified, it used a

simple Euclidean distance measure as vector similarity method to determine the nearest

neighbor of the object and the class given to it was the class of the neighbor. This scheme

has capability to tolerate some degree of noise in the data. The disadvantage is that it

requires a large amount of storage memory. IB1 is actually an instance (k=1) of k-nearest

neighbor method under the condition of all possible examples are known.

In the second experiment, it extended the performance of IB1 and reduced the

storage by classifying new example. Examples correctly classified were ignored and only

incorrectly classified examples were stored to be part of concept. The knowledge of

correctly classified examples (positive data) is included in the classifier or hypothesis.

This scheme used less memory and was less noise tolerant than IB1.

The third experiment (IB3) used the scheme of IB2 and maintained a record of the

number of correct and incorrect classification attempts for each saved examples. This

record summarized an example’s classification performance. IB3 uses a significance test

to determine which examples are good classifiers and which ones are believed to be noisy.

The latter are discarded from the concept description. This method strengthens noise

tolerance while keeping storage requirements down. In the IBL, it is a naïve approach to

only store and search those incorrectly classified examples (negative data).

Euclidean distance between two vectors could be a metric of vector similarity. This

technique is widely used in the instance-based learning[63, 64] such as k-nearest

neighbor and locally weighted regression[2]. However the distance is calculated on the

Euclidean space which is not suitable for the feature space defined by kernel function.

 31

Kernel function also describes a similarity of vectors, for example, the basic kernel

function zxzxK =),(=)cos(θzx ⋅ . Therefore, the kernel function is a probably way

to tell the similarity of vectors in the feature space because the feature space is defined by

kernel methods. When the distance metric is applied, the distance between two vectors is

calculated based on all attributes of vector. This metric may lead to performance

degradation if irrelevant attributes are present, which is a type of the curse of

dimensionality. As the number of attributes increasing, the computational cost and

generalization capacity can be degraded which is a phenomenon also belongs to the

category of curse of dimensionality.

Binary classification k-NEAREST NEIGHBOR algorithm[2, 65] is in the following:

Training algorithm:

For each training example liyx ii ..1),,(= , add the examples to the training set S.

Classification algorithm:

Given a query instances xt to be classified.

Let ,,...,, 21 kxxx denote the k instances from S that are nearest to xt,, kyyy ,...,, 21

are labels of these instances. The hypothesis returns:

 ∑
=+−∈

=
k

i
i

v
t yvxh

1}1,1{
),(maxarg)(δ (2-32)

where δ is an indicator function, 1),(21 =xxδ if 21 xx = and where

0),(21 =xxδ otherwise.

When target function is a continuous real value, the k-NEAREST NEIGHBOR algorithm

will be the same as binary classification on above except the equitation (2-32) is replaced

by

 32

 ∑
=

=
k

i
it y

k
xh

1

1)((2-33)

The distance-weighted NEAREST NEIGHBOR algorithm uses equation (2-32) to be

replaced by

∑

∑

=

== k

i
i

k

i
ii

t

w

yw
xh

1

1)((2-34)

where weight wi is the reciprocal value of Euclidean distance between xt and xi.

iiitttit

i
xxxxxxxx

w
+−

=
−

=
2

11
2 (2-35)

The performance of the KNN depends on a locally constant posteriori probability

assumption. This assumption, however, becomes problematic in high dimensional spaces

due to the curse of dimensionality and the noise of data. Wang el at proposed an adaptive

nearest neighbor algorithm for classification by considering the size of influence sphere

and confidence level of example instead of Euclidean distance[66]. KNN could be

considered a presentation of knowledge. KNN provides a method of vector similarity

which could be used in the feature space defined by kernel function.

 33

CHAPTER 3

 METHODOLOGY

The computational cost of learning method and accuracy and intelligibility issues are

concerned in the empirical machine learning processing. In the rapid increasing

computational capability of computer, the performance/cost ratio has not been

emphasized in most applications, especially in the batch machine learning which is

trained off-line. Accuracy is a main concern in all applications of learning and relatively

easy to be measured compared to the intelligibility. The approach proposed mainly

focuses on the accuracy by mining negative data.

3.1 Concepts of Negative Data

3.1.1 Introduction of negative and positive data

The training data set is partitioned into two disjoint subsets, misclassified, and

correctly classified examples in terms of a hypothesis h(x). The misclassified examples

are negative data. The correctly classified examples are positive data. Positive data is

consisted of not well-separated and well-separated data. Not well-separated data has

small confidence, say its confidence |h(x)| < μ and threshold μ is an arbitrary number

great than zero, to claim that they are positive while well separated data has high

confidence to be positive. Negative and not well-separated examples together are called

μ-extended negative data whereas the well-separated examples are called μ-shrunk

positive data. Negative data and extended negative data are exchangeable to be used in

 34

the not confused environment. For the same reason, positive data and shrunk positive

data are also exchangeable. Positive or negative data are exactly 0-shrunk positive or 0-

extended negative data respectively. To ground our discussion of concepts above,

consider the example task of learning which has 5 training examples and hypothesis h(x):

)}1,(),1,(),1,(),1,(),1,{(54321 −−+−+= xxxxxS

Suppose the predicted values h(x1)=0.3, h(x2)= -1.2, h(x3)= 1.0, h(x4)= -0.5, h(x5)= 0.8,

and the threshold μ=0.6. Then misclassified data or negative data is)}1,{(5 −x , and

classified data is)}1,(),1,(),1,(),1,{(4321 −+−+ xxxx . The 0.6-extended negative data is

)}1,(),1,(),1,{(541 −−+ xxx and 0.6-shrunk positive data is)}1,(),1,{(32 +− xx .

An example could be positive or negative. The negative data does not mean the data is

wrong or corrupt. What negative data can be known is that a hypothesis can not make it

well-separated. Negative data depends on the hypothesis. Whether an example is positive

or negative is relative. To a specific example, hypothesis A classifies it to be negative

while hypothesis B may classify it to be positive. Furthermore, even for the same

hypothesis, an example probably belongs to positive or negative in terms of the different

confidence threshold μ.

The parts of the hyper-surface classifying negative examples need to be repaired

in order to improve performance. As shown on Figure 1.2, the rectangle with thick solid

color needs to be repaired. The other parts of the hyper-surface classify the positive data

sets as well-separated and they have high generalization capacity.

3.1.2 Separator and partitioner

A binary classification of SVM is a linear classifier in the feature space. The data

set must be mapped into feature space from input space if the classifier is non-linear. The

 35

mapping mechanism is finished by so-called kernel function. Then it is much suitable to

discuss data separable concepts on the linear space if SVM is a base learning algorithm.

Without loss of generality, we discuss concepts on the linear space where the hyper-

surface becomes a hyperplane since a non-linear space can be mapped into linear space

by a mapping function. If there is a hyperplane h(x) that correctly classifies all training

data set S, we say that the data set are separable. If no such hyperplane exists the data set

are said to be non-separable. In general, if the data set has noise or non-optimal

hypothesis is used, the data set cannot be separated. As shown in Figure 3.1, the subset

consists of misclassified examples which are points with the solid color. If an example

(x,y) is correctly classified according to the classifier or separator h(x)=0, (x,y) is said to

be in the consistent subset (x,y) ∈CS⊆ S, otherwise (x,y) is in the inconsistent subset

IS=S-CS, (x,y)�IS. The testing data set T is the union of all correct and in correct

classified data set T=TP+TF+FP+FN, then consistent subset is CS=TP+TN, and

inconsistent subset IS=FP+FN as seen on Table 1.1.

A data subset of CS is said to be not well-separated, denoted to NWSS, if the

points of these examples are much close to the hyperplane h(x)=0. The data subset

WSS=CS - NWSS is said to be well separated. Examples in the IS and together with

NWSS is called in the extended negative data subset N=IS+NWSS. The metric of “much

close to” is given by a partitioner p(h,x,y) which is a fuzzy word depending on the

hyperplane h(x) and data set S. The return value of p(h,x,y) is the logical value either true

or false.

 36

Figure 3.1 Well-separated data and not well-separated data are in the different area. The

points with solid pattern are misclassified.

One simple example of partitioner in the classification is the crisp boundary p(h,

x, y): |y-h(x)|≤μ, μ=0.5 then not-well-separated data set is

 NWSS={(x, y)| (x, y)∈CS, ||y-h(x)||≤ μ, μ =0.5}.

The second example is the fuzzy partitioner, and then WSS and NSWW are fuzzy set. The

boundary of partitioner is a range. In the third example, a non-symmetric linear

partitioner p(h,x,y): y-h(x)≤- μ1, y-h(x)≥ μ2 , μ1, μ2∈[0,0.5] is defined on both sides of

hyperplane,

 NWSS={(x,y)| (x,y)∈CS, y-h(x)≤- μ 1, y-h(x)≥ μ2 , μ1, μ 2∈[0,0.5]}.

How to define a partitioner and how to choose the parameter for the partitioner depend on

the real application which could reference to the ratio of number of support vectors and

training examples, VC Dimensions, the size of training set, cross-validation and etc.

Usually, the cross validation is an efficient method to determine the partitioner. Note that

y=-1
Data

h(x) Well-separated set
Not well-separated set

y=-1

y=+1

Δy
Δy

p(h,x,y)

y=+1

 37

the well separated data set WSS is correctly classified. And it is also called shrunk

positive data subset P, briefly called positive data. The boundary between positive data

set and negative data set is called border. In general, the relationships of the subset

mentioned above are

S = CS+IS,

CS = {(x,y)| (x,y)∈S, y*h(x)>0},

IS = {(x,y)| (x,y)∈S, y*h(x)≤0},

 CS = WSS+ NWSS, (3-1)

NWSS = {(x,y) | (x,y)∈CS, p(h, x, y)=true},

WSS = {(x,y)|(x,y) ∈CS, p(h, x, y)=false},

P = WSS,

N = NWSS+IS.

We can say the positive and negative data set are divided by both separator h(x) and

partitioner p(h,x,y). Let d(h,x,y) = [p(h(x), x, y)=true or y*h(x)≤0]. Then N= {(x,y) |

(x,y)∈S, d(h,x,y)} and d(h,x,y) is denoted a divider to divide the training data set into

positive and negative data set. In this dissertation, only linear partitioner is considered

then the precise definition of negative data is given in the section.

3.1.3 μ-Negative data

Definition 3.1 (Data Type): suppose h(x) is a hypothesis learned from a training data set

)}.,),..(,(),,{(2211 ll yxyxyxS = li ..1= (3-2)

and a vector of variables

 lii
T

l ,,1,,),...,,(21 K=∈=Ξ Rξξξξ (3-3)

to let it satisfy the following equality:

 38

)(1 iii xhy−=ξ (3-4)

An example xi is negative data if 1>iξ , whereas it is positive data if 1<iξ . An example

xi is μ-negative data if μξ −>1i , 10 << μ , which is extended negative data whereas it

is μ -positive data if μξ −<1i which is shrunk positive data. The μ-negative data is

denoted by

),,(μhSN (3-5)

The μ-positive data is denoted by

),,(μhSP (3-6)

The ratio of the μ-negative data and μ-positive data is denoted by

),,(
),,(),,(

μ
μμ

hSP
hSNhSc = (3-7)

which is a measure of degree of unbalancing in terms of training data, hypothesis and

threshold μ.

The misclassified examples are)0,,(hSN according to definition of μ-negative

data while correctly classified examples are)0,,(hSP . The accuracy of hypothesis h(x) is

least 50%, then we get 1)0,,(<hSc . However,),,(μhSc is not always less than 1 which

depends on the number of support vectors. The threshold μ plays a divider role in the

training data set. The concept of negative data can be extended to the testing data set. The

terms of negative data, extended negative data or μ-negative data are exchangeable to be

used in the not confused environment. It is the same reason to exchange the terms of

positive data, shrunk positive data or μ-positive data.

 39

Figure 3.2 μ-negative examples are defined in the SVM feature space, which are points

marked with solid pattern.

Theorem 3.1(Negative Support Vectors) all negative examples of training data

in SVM are support vectors.

Proof:

For all negative examples, the maximum of threshold μ is less than 1, 10 << μ ,

according to definition of negative data.

Since μξ −>1i , we get 0>iξ .

According to the equality of iii xhy ξ−= 1)(, all negative examples satisfies the

inequality 1)(<ii xhy for li ..1= .

According to the KKT conditions 0)(=−Cii λξ in the (2-27), we can get

0=−Ciλ ⇒ 0≠=Ciλ

h(x)

μ

y=-1

y=+1

μ

 40

All examples with non-zero Lagrange multipliers are support vectors according to

the definition of support vector. Therefore, the theorem is proved.

The misclassified examples ix meet the condition 0)(<ii xhy , thereby all

misclassified examples are support vectors. According to the Theorem 3.1, all

misclassified training examples and examples located on the region between SVM

margins are support vectors. It is known there is negative data if examples are not

separable, because there are existed misclassified examples.

Theorem 3.1 shows that the number of negative examples is related to number of

support vectors. Negative examples are caused from non-separatable data. Decreasing

number of negative examples obviously enhances generalization capability of SVM

because that means less classification error. Based on this reason, reducing the number of

support vectors can improve the performance of SVM. Reduced SVM actually

demonstrates this idea[67, 68].

The hypothesis of SVM is determined by kernel function and support vectors,

therefore the negative data dominate the performance of classifier. One kind of negative

example xi is named outlier where 1>>iξ . Thereby, outliers will degrade largely

performance of hypothesis. Outliers are assumed to be removed from original training

data in the data preprocessing phase in this dissertation.

3.2 Motivation

The classifier or hypothesis in the classification is a hyper-surface in

multidimensional space. A low accuracy hypothesis indicates that some areas of hyper-

surface are not exactly or close to the underlying function. Intuitively, repairing those

lower accuracy areas will improve the hypothesis accuracy. Then compensating a

 41

hypothesis has the same meaning as repairing a hyper-surface. The hyper-surface in the

input space is mapping to a hyperplane in the feature space by a kernel function in the

SVM [1]. The hyper-surface is smooth in the SVM since feature space is a linear space

and commonly used kernel functions are continuous in the space. A hyper-surface is

comprised of a set of small pieces of sub-hyper-surface in the fuzzy control because of

the nature of fuzzy membership function segments [69]. Therefore, the hyper-surface

could have more than one outlines either a single large surface or a series of small

surfaces. As shown in Figure 1.4, the single hyper-surface h1(x) is not enough for the high

predicting accuracy because any improvements in training accuracy will be prone to

overfitting, such as in the high degree of polynomial hyper-surface. To reduce the

possibility of overfitting, the low degree of hyper-surface h2(x) is preferred, here h2(x) is

curve line. However, h2(x) will lead to low predicting accuracy or underfitting. Therefore,

in order to improve the predicting accuracy or generalization capacity, the hyper-surface

h1(x) needs to be repaired so that it approximates to the underlying function f(x). There

are five possible ways in which one can repair.

In the first method, a spline hyper-surface is a set of piecewise sub-hyper-surface

which is applied to a collection of subsets of input space X by using clustering technique

to segment the input space X into sub-spaces. The method can be thought in this way

using a pile of mosaics to lay tiles to cover the whole surface of terrain. Each sub-hyper-

surface predicts the sub input space. The advantage is that each sub-hyper-surface

matches specific sub input space well; hence, the machine gives output with low error. A

sub-hyper-surface only has relationship to neighbor sub-hyper-surface. This feature

makes good improvement capability by decreasing the overfitting. The property of

 42

locality of spline hyperplane makes the re-training machine in a partial area of hyper-

surface rather than the whole system, which reduces re-training time and also makes the

system robust. The limitation is to resolve the issue of connecting the sub-hyper-surface

smoothly in the boundary to combine together as a whole hyper-surface and also to

divide into sub-space. The criteria of clustering are still not really clear and large size of

training data is needed. This method also requires a reasonable size of training data set.

Vladimir Vapnik gave a method of kernel generating spline [5]. Spline kernel is powerful

and B-spline kernel SVM can be interpreted the CMAC network introduced by Horvath

[70].

In the second method, a spline kernel [71] in SVMs is chosen to repair hyper-

surface. In this approach, the continuity is guaranteed but the locality is lost because h(x)

is not a spline function. Another limitation of spline kernel method is that the order k of

spline kernel cannot be high, usually, k≤4 [3].

The third and fourth methods are tentative ideas and may not be practical. In the

third method, cut-paste approach keeps the most area of h(x). It replaces the partial area

with high error in h(x) by a new small size of hyper-surface h’(x), like patching a hole of

h(x) by a new small hyper-surface h’(x). This procedure assumes that there are a lot of

holes needed to patch. In this method the issues, like how to determine the holes and how

to make the boundary smooth between patches and hyper-surface, have not been

addressed to. The fourth method pre-stress is to find the high error regions in the hyper-

surface and further to give the opposite regulation on those regions. This method

stretches and compresses the hyper-surface by the force according to negative data set.

The advantage is to keep the hyper-surface smooth, whereas, the disadvantage is the

 43

difficulty to control force and the neighbor areas of repaired parts in the hyper-surface are

affected.

In the last method, overlapping approach uses a base hyper-surface, which

approximates the main outline of underlying function, which is created by a base learning

algorithm. Further, a number of patching hyper-surfaces are overlapped onto base hyper-

surface to form a new hyper-surface. This approach is adopted in this work.

 So far, we know why, where, and how to repair a hyper-surface. Now the question

is, how we could ascertain whether the compensated hyper-surface is enhanced or not. In

the generalization theory, the structural risk minimization (SRM) model is to maximize

the hyperplane margin measures in the feature space while minimizing the empirical error

and hence prevent overfitting by controlling [5]. The empirical risk minimization model

(ERM) only minimizes the empirical risk which may lead to low capacity of

generalization. The ERM principle is intended to use in the large size of examples.

Suppose the empirical risk is fixed, the hypothesis with large margin has higher capacity

of generalization than those hypotheses with small margins. The SRM principle defines a

trade off between the quality of the approximation of given examples and complexity of

the approximation function[3, 5].

In fact, the SVM is based on the SRM to expand the capacity of generalization and

then reducing the overfitting. A hypothesis h with large value h(x) for a given vector x in

the binary classification makes examples well-separated in the data set; while h with

small margin makes examples not well-separated. A hypothesis making examples well-

separated has high generalization capacity because the margin of these examples is large.

If h(x)<0, it is said that x is classified into class -1 whereas if h(x)>0, x is in the class +1.

 44

The h(x)=0 is a separator. For instance, the two hypotheses h1 and h2 both make all

examples separated. Here, h1(x)>0 means that x is in the class +1 while h1(x)<0 means

that x is in the class -1, where x is an example. If |h1(x)| > |h2(x)|, then h1 has higher

generalization capacity x on than h2. Therefore, the accuracy of training is not a precise

measure because of the fact that both hypotheses with 100% accuracy have different

generalization abilities. The formula (1-8) is more suitable to be a metric for

generalization ability. We expect the hypothesis to output a real number h(x) � R.

Therefore, a learner like the decision tree is not considered as base learning approach

here. This is because the hypothesis of decision tree is an indicator function. The SVM

will be used as a learner and predictor. Yet another reason for using SVM is that the

estimation error is well controlled [1, 3, 4].

3.3 Characteristics of SVMs

A training data set S with number of examples l=|S| is generated in independently

and identically (i.i.d) according to a fixed and unknown distribution D. The examples are

drawn from the distribution P(x) while response y is from distribution P(y|x) and an

example (xi,yi) drawn according to D = P(x,y) = P(x)P(y|x). A learner L consists of some

classes of functions h(x, α) defined over X, which are the subset of hypotheses H, h(x,

α)⊆H, α�Δ, α is an adjustable parameter which is generated by the learner according to

the training set. For example, α is corresponding to the weights and biases in the neural

network with fixed architecture. h(x, α) is written by h(x) shortly once α is determined.

Each h in H is a function of the form h:X→Y. To choose a best approximation to the

underlying functional relationship based on the training set, one must consider the loss

L(y, h(x, α)) between response y from training set to a given input x and the response h(x,

 45

α) provided by the learner. The expected value of the loss (3-8) given by the risk

functional [72]:

 ∫=),()),(,()(yxdPxhyLR αα . (3-8)

The goal is to minimize the risk functional to find the h0=h(x, α0) a maximum

likelihood hypothesis. P(x, y) is unknown but its information is covered by the training

set. The empirical regression model, empirical risk minimization (ERM), minimizes the

following loss function (3-9):

 L(y, f(x, α)) = (y - f(x, α))2 (3-9)

The task of learning algorithm is to minimize the risk functional (3-1) with loss

function (3-9) where distribution P(x, y) is unknown and fixed and training data is given.

The general model of learning problem can be described as follows [73]. The risk

function:

 SzzdPzQR ∈Λ∈= ∫ ,,)(),()(ααα (3-10)

where Q(z, α) is a specific loss function and z is a pair of (x, y) in the training examples.

The empirical risk functional is

 ∑
=

=
l

i
emp zQ

l
R

1

),(1)(αα . (3-11)

There are two theorems from Vapnik [11]:

Theorem 3.2: A hypothesis space H has VC dimension d. For any probability

distribution P(x,y) on binary classification with probability δ−1 over random training

sets S, any hypothesis h�H that makes k errors on S has error no more than

⎟
⎠
⎞

⎜
⎝
⎛ ++≤

δ
4log2log2)err(

d
eld

ll
kh

 (3-12)

 46

provided d ≤ l. The VC dimension of a hypothesis space is a measure of the number of

different classifications ability. The value of k/l is true error.

The inequality (3-12) shows that the capacity of generalization depends not only

on the empirical error but also on the hypothesis space. It provides several ways to low

error bound:

• Reduce VC dimension d

• Minimize number of training error k

• Increase size of data set

Theorem 3.3: If a size l of training set S is separated by the maximal margin hyperplane,

then the expectation of the probability of test error is bounded by the expectation of the

minimum of three values: the ratio n/l, where n is the number of support vectors, the ratio

(R||w||2)/l, where R=max(||x||), x∈S and ||w||2 is the value of margin, and the ratio m/l.

where m is the dimensionality of the input space X.

),,min(
2

l
m

l
wR

l
nerr ≤ (3-13)

Inequality (3-13) gives four ways to improve the generalization ability

• increase the size of training set

• make margin as large as possible

• reduce the dimensionality

• reduce support vectors

Reducing support vectors can also speed up the classification of SVM; Quang-Anh

Tran et al proposed a method by using k-mean clustering. The k central vectors from k

groups of clusters form new data set to reduce the size of data set. According to [74], the

 47

support data can be extracted and then to reduce support vector. The tradeoff between

speed and performance is controlled by k value[75]. ERM principle succeeds in dealing

with large size of training data. It can be justified by considering the inequality (3-12).

When k/l is large, err is small. A small value of k/l cannot guarantee a small value of the

actual risk. Classical approach ignores the last three ways; only relies on the first one.

The NDDCHA relies on the first one by mining negative data, the second one by making

training data well-separated and third one by implicitly calculating the vector similarity in

the feature space through kernel function.

SVM assumes training examples is i.i.d.; and costs of misclassification into

different classes are the same. When these assumptions are violated, the standard SVM

does not work properly[76].

3.4 VC Dimension

VC dimension of a set of indicator functions),(αzQ . Λ∈α , is the maximum

number d of examples that can be separated examples dzzz ,...,, 21 into two classes in all

2d possible ways using functions of the set, if for any n there exists a set of n examples

that can be shattered by the set),(αzQ . Λ∈α , then the VC dimension is equal to

infinity. VC dimension can be estimated by [73]:

 22 wRd ≥ (3-14)

where R is the radius of the smallest sphere that contains the all vectors in the feature

spaces, and w is the norm of the weights in the SVM. VC dimension is determined by

kernel and training examples.

Gaussian kernel is employing an infinite dimensional feature space.

 48

3.5 Vector Similarity

The vector-similarity is a metric to describe similar degree of two vectors. The

vector-similarity depends on the learning problem greatly.

Definition 3.1: given 2 vectors x1 and x2, {x1, x2} X⊂ . The similar degree is defined

by function vs(x1, x2)]1,0[∈ .

⎪
⎩

⎪
⎨

⎧

≈∈
==
≠=

=∝

21

21

21

2121

 if)1,0(
 if 1
 if 0

),(
xx
xx
xx

xxvsxx (3-15)

The symbol ∝ is borrowed as similar operator here. The Euclidean distance of vector x1

and x2, the cosine of the angle between x1 and x2, correlation coefficient [77, 78], and the

sum of errors of all attributes of two vectors can be used as measures of the vector-

similarity. Bandemer [79] gives a batch of vector similarity functions on fuzzy set. vs is

not related to label y and it can be defined in many ways, e.g.

21

21
21

2121

)mod(

xx
xx

xx

xxsigxx

⋅
=∝

−=∝
 (3-16)

Data set similarity describes overall similar degree of two different data sets by

comparing vector similarity of every vector in two data sets. In the binary classification,

each vector x associated with a label y. If y1 and y2 are in the same class +1 or -1, vs(x1,

x2) keeps unchanged, otherwise, if y1 and y2 are in different class, we let vs(x1, x2) <0.

Therefore, the extended similarity defined by:

 yy)(),(212121 xxxxvs ∝= (3-17)

Definition 3.2 (Vector Similarity): given 2 data set A and B data sets, where

A X⊂ and B X⊂ , and a constant number]1,0[∈υ .

 49

A∈∀ A x and B∈∃ B x

such that: υ≥), x(A Bxvs

where vs is the function of vector similarity defined in the (3-17) . Then we can say data

sets A and B is similar in the degree ofυ , which is denoted by:

 υ≥∝ BA (3-18)

For example, 7.0≥∝ BA is the lowest similar degree of xA and xB greater than

0.7 for any vector xA in A and xB in B. To positive data P and negative data N in terms

of hypothesis h(x), it is desired NP ∝ has lower value. Otherwise, an instance x from

test data set T is hard to be recognized as similar to P or N in the KNN. Therefore, the

following conditions are desired:

2

1

υ
υ

≥∝
≤∝

TN
NP

 (3-19)

where 1υ and 2υ are decided by application. In contrast with similar degree of two data

sets, dissimilar degree of two data sets can be defined as below:

 BA∝−1 (3-20)

When Euclidean distance is used as similar metric, vector similarity is exactly 1-

NEAREST NEIGHBOR algorithm. In terms of the concept of KNN, vector similarity can

be extended to 1-k vector similarity from 1-1 vector similarity which compares only two

vectors.

3.6 Theoretical Analysis on NDDCHA

A feature space is a linear space determined by a kernel function implicitly. The

dimensionality in the feature space is very large although the dimensionality in the input

 50

space is not large. And the dimensionality increases abruptly as the complexity of kernel

increasing. For example, feature spaces F3 and F4 constructed by a polynomial kernel in

degree 3 and degree 4 respectively, the dimensionality of F3 is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

m
m 3

dim3 and the

dimensionality of F4 is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

m
m 4

dim4 , where m is dimensionality in the input space.

Supposed m=50, this number is reasonable large for most applications, then the radio of

d4 and d3:

 11
4

350
4

3
!4)2)(1(

!3)3)(2)(1(
dim
dim

3

4 ≈
−

=
−

=
−−

−−−
=

m
mmm

mmmm (3-21)

The sparse algebraic polynomial),(αxPm , mR∈α , is a set of polynomials of

arbitrary degree that contains m terms. For

example, 21
212),(dd xxxP ααα += , 2

21),(R∈αα with two nonzero terms. To estimate VC

dimension with the set of loss of functions

 2)),((),(αα xPyzQ m−= (3-22)

Karpinskyi and Werther[80] showed that the bound of VC dimension d for the sparse

algebraic polynomials is 2d*,

 343 * +≤≤ mdm (3-23)

If),(αxPm is a hypothesis, which is determined by a kernel function of SVM, then

formula (3-23) indicates that a high degree of polynomial has a large VC dimension and a

low degree of polynomial kernel has a small VC dimension. To avoid overfitting or to get

a small confidence interval, one has to construct machines with small VC dimension[3],

such as low degree of polynomial kernel.

 51

The VC dimension in the above example on (3-21) will increase 33 times according

the formula (3-23). F3 has dim3 terms and F4, has dim 4 terms. The VC dimension d3 in

the feature space is limited in the range of formula (3-23).

3dim4dim3

3dim4dim3

4
*
44

3
*
33

+≤≤

+≤≤

d

d
 (3-24)

Then the ratio of VC dimensions in the feature space F4 and F3 is about 3*11=33. VC

dimension is a metric to evaluate the complexity of a hypothesis. A hypothesis with high

VC dimension will be prone to overfitting easily according to inequality (3-12)[3].

The above example of polynomial kernel tells that using lower degree polynomial

as much as possible can get the high generalization capacity. On the other hand, if the set

of functions has small VC dimension, then it is difficult to approximate the training data.

To other types of kernel, the similar conclusion can be also gotten. For example, the

exponential kernel could be approximated by polynomial kernel. However, there exists a

tradeoff between overfitting and poor approximation. Therefore, the approach NDDCHA

proposed here uses a lower complexity of kernel as a base learning algorithm to reduce

the chance of overfitting, and uses compensated hypotheses to increase the accuracy of

approximation.

3.7 The Patterns of Examples Distribution in the Feature Space

Two factors of the value of the empirical risk and the value of the confidence

interval have been considered to minimize the risk in a given set of functions in

implementing the SRM inductive principle. If examples are linear separable, then no

extra work needs to do since basic SVM can solve this kind of applications perfectly as

shown on Figure 3.5. In practice, data and hypotheses are not perfect. To the point of

 52

view of data, the examples from input space include noise, outlier; distribution of

examples is not i.i.d.; the number of examples in class +1 and -1 are imbalanced. To the

point of view of hypothesis, the size of hypothesis space is limited. The optimization

method also restricts the learning machine to get global optimal solution in most learning

algorithm except SVM. These issues are considered in NDDCHA.

-4 -3 -2 -1 0 1 2 3 4
0

50

100

y

fre
qu

en
cy

Distribution of Target Label

-4 -3 -2 -1 0 1 2 3 4
0

50

100

confidence

fre
qu

en
cy

Distribution of Predicting Label

-4 -3 -2 -1 0 1 2 3 4
0

50

100

y*confidence

fre
qu

en
cy

Distribution of Correctly Clssified and Misclassified Label

Figure 3.3 Distribution of target labels and predicating label on the hepatitis[81]

The figure 3.3 and 3.4 show the distribution of target labels and predicating label in the

data sets of hepatitis and musk2. To predicting labels, degree 3 of polynomial kernel with

C=0.0001 are used on the hepatitis. And degree 3 of polynomial kernel with C=0.0050

are used on the musk2. The top box shows the distribution of target label. Two data sets

illustrate that datasets are strongly imbalanced. The middle box shows the distribution of

 53

predicting labels. The instances which predicting value is within -1 and +1 are support

vectors. The bottom box shows that all positives are correctly classified instances.

-4 -3 -2 -1 0 1 2 3 4
0

2000

4000

6000

y

fre
qu

en
cy

Distribution of Target Label

-4 -3 -2 -1 0 1 2 3 4
0

2000

4000

6000

confidence

fre
qu

en
cy

Distribution of Predicting Label

-4 -3 -2 -1 0 1 2 3 4
0

2000

4000

6000

y*confidence

fre
qu

en
cy

Distribution of Correctly Clssified and Misclassified Label

Figure 3.4 Distribution of target labels and predicating label on the musk2

3.7.1 Small size or imbalanced training data

The example size l is said to be small when ratio of l/d is small, say l/d<20, where

d is the VC dimension of hypotheses space[5]. E.g. data set Hepatitis [82]has 155

examples with 19 input attributes. 123 examples are in the class +1 and 32 examples in

the class -1. The estimated VC dimension of Hepatitis is about d=3253.84 according to

 54

inequality (3-14) when polynomial kernel 3)1(+zx is used in SVMlight[83, 84]. The

ratio of l/d is 0.0496 << 20. The number of support vector is 80 and training error is zero.

When polynomial kernel 2)1(+zx is used, VC dimension is about d=328.72 with

2.38% training error. The ratio of l/d is 0.4715<<20. Therefore, Theorem 3.2 of

predicating error bound cannot be applied in the small size training data set application.

Figure 3.5 Linear separable examples

3.7.2 Noise, outlier and missing value example

An outlier is an example that lies outside the overall pattern of a distribution[85].

Usually, the presence of an outlier indicates some sort of problem. This can be a case

which does not fit the hypothesis constructed, or an error in measurement as shown on

Figure 3.6. In NDDCHA, the outliers are negative examples having long distances to the

 55

hyperplane which could be simply deleted from data set. Noisy examples are also

negative data which are either random or systematic. The random noise examples can be

eliminated in the SVM. One of systematic noises could be caused from the small size of

hypothesis space or non-optimal parameters α of specified hypothesis Λ∈αα),,(xh .

Because SVM depends on a small set of support vectors comparing to training data set,

the hypothesis may be sensitive to noises and outliers. According to Theorem 3.1, outliers

are support vectors. Sometimes, a few of attributes in an example are missing value

because of several reasons including: the value is hard to get or the value is still going to

get. Then the value of kernel is decreased if all values of attributes are normalized to

interval [0, 1]. The symptom is exactly like noisy examples because we can think the

missing value is resulted from noises.

Figure 3.6 An example of outlier, the red circle on the right-bottom is an outlier which is

far from other examples.

 56

 Chun-fu Lin and Sheng-de Wang proposed fuzzy support vector machines

(FSVMs) providing a method to classify data with noises and outliers by associated with

a fuzzy membership value to each training example[86]. The knowledge of membership

is acquired from strategies of kernel-target[87] and KNN, which find the modified

hyperplane by FSVMs in the feature space. FSVM provides a way to deal with the

noises and outliers although the computational cost is high.

3.7.3 Compensatable negative examples

The pattern of compensatable negative data shown on Figure 3.7 is compensatable

directly by patching a single hypothesis. Some examples of class +1 appeared circle

points on area B are misclassified. However, these examples are not interviewed with

class -1 appeared rectangle points. SVM tries to minimize total risk for all examples. To

achieve that, examples on area B is obviously not on the margin according to the risk

functional of soft margin SVM defined on Equation (2-23). The regulation parameter C

is preferred to choose a small value then insufficient stress will be placed on fitting the

training data, otherwise SVM will trend to overfit the training data. The parameter k on

the equation (2-23) also contributes to the negative data. If 0=k then second term

∑
=

l

i

k
iC

1

ξ counts the number of training errors, therefore, the lowest value k is 1=k . The

value 2=k is also used although this is more sensitive to outliers in the data. If we

choose 2=k then we are performing regularized least squares, i.e. the assumption is that

the noise in examples is normally distributed. No matter what parameters are chosen on

SVM, the pattern of Figure 3.7 cannot be eliminated since pattern is that result of that

examples is not well distributed or i.i.d..

 57

Figure 3.7 Single side negative examples

Figure 3.8 Patching a testing example in the directly compensatable pattern. Circle

points are in class+1; rectangle points are class -1; triangle point is test point.

Negative examples

x1 , x2 are similar examples

x2
x1

B

 58

3.7.4 Not compensatable negative examples

The pattern of compensatable negative data shown on Figure 3.9 is not

compensatable directly by patching a hypothesis. Positive and negative examples are

interwoven on the area A where examples cannot be linear separated in the feature space.

One idea is to re-use SVM again to only those examples in the area A. Since feature

space is implicated by kernel function, examples cannot be gotten directly. Furthermore,

the dimensionality of vector in the feature space is very high based on the analysis of

applying a polynomial kernel on the section of Theoretical Analyzing on NDDCHA. The

approach proposed here is still patching hypothesis. However, the difficulty is how to

select a desired patching hypothesis in the testing phase.

Applying which patching hypothesis to testing examples is based on the vector

similarity between a testing example and negative data set. As shown on Figure3.8,

vector x1 is in the negative data subset Ni which is similar with testing vector x2, then x2

will apply for the patching hypothesis used for Ni. If any similar vector of x2 cannot

found, x2 cannot not be compensated.

Sometimes it is very difficult to find a similar vector in the negative data subset as

shown on Figure 3.10, x2 is similar with }1{1 +∈x and }1{3 −∈x . The direction of

compensating for x2 is opposite. Suppose real }1{2 +∈x , if we choose x1 as similar vector

x2, then result is desired. Otherwise, we choose x3 as similar vector x2, and then the result

is even worse. To attach whether x2 is in the class {+1} or {-1}, k-nearest neighbor

method are used, which method is more precise than vector similarity by comparing a

vector x2 to a group of neighbor vectors in the negative examples.

 59

Figure 3.9 Interweaved positive and negative examples

Figure 3.10 Patching a testing example in the non-directly compensatable pattern. Circle

points are in class+1; rectangle points are class -1; triangle point is test point.

Negative examples

Similar examples?

x1
x2
x3

A

 60

Figure 3.11 The negative training example is compensated by h1(x) when in the training

phase, but negative testing example can not be compensated by h1(x).

3.7.5 Imbalanced examples

SVM minimizes the risk functional for all examples. It does not try to minimize

distinctively the risk of class +1 examples or the risk of class -1 examples. This is

because SVM adopts the assumption of examples which is i.i.d., and number of two

classes }1,1{ +− of examples is balanced. Because of this inherent insufficiency of SVM,

SVM has less power on imbalanced examples than on well balanced examples. Figure

3.12 shows imbalanced examples, the number of class +1 examples is great than number

of class -1. The hyperplane created by SVM will be prone to the side that has more

examples than other side. Therefore, the predictive negative value is closed to zero if

minority class is class -1 because SVM optimizes accuracy. In this case ROC metric can

Negative Training example

Negative Testing example

h1(x)

h0(x)

 61

let SVM focus on the minority class. In certain conditions 2-norm soft margin SVMs can

maximize AUC[15].

Figure 3.12 Imbalanced examples

To deal with imbalanced class problem, one could modify data distribution by

using over-sampling and under-sampling[88]. Over-sampling replicates the minority

class while under-sampling removes partial majority class. Both sampling makes training

dataset balanced. The drawback of under-sampling is to lose some useful data. To

overcome that, the support vectors can be kept and non-support vectors can be removed

in the SVM because SVM is determined by support vectors. Over-sampling may bring

overfitting. In this dissertation, under-sampling is adopted as shown on Figure 3.13.

Under-sampling training data keeps all supports vectors and partial non-support vectors

which depend on the number of negative data. Non-support vectors may not be included

when support vectors area has more positive data.

 62

Figure 3.13 Under-sampling strategy

Yan et al proposed SVM ensemble to deal with imbalanced examples by

combining small class examples with a piece of large class examples to form new k data

sets and use k SVMs [89]. Each kixhi ..1),(= is a decision function. Since majority

voting and probability based combination assumes all classifiers are equal weights, the

proposed strategy is creating a hierarchical SVM. The final classifier or hypothesis for

an instance x is))(),...,(),(()(21 xhxhxhhxh k= as shown on Figure 3.14.

The bias b could be used as a regulation parameter to control the position of

hyperplane. So far, the problem, how to recognize these cases above, is still remained.

Imbalanced examples, outlier, and linear separatable examples can be detected

intuitively. Our work focuses on the compensatable negative examples and interweaved

positive and negative examples. Compenstable examples can be compensated by moving

patching hyper-surface to the desired direction. Interweaved examples can be

distinguished by k-nearest neighbor in the feature space. Vector similarity can be thought

as 1-nearest neighbor.

Training Data

Positive Data Negative Data

Non-support vectors Support vectors

Under-sampling Data

 63

Figure 3.14 Architecture of Yan et al SVM ensembles

3.8 Compensating Hypothesis Approach

Compensating hypothesis approach proposed in this paper for the binary classification

enhances the useful data information by mining negative data. This approach is based on

the Support Vector Machines with 1+k times learning, where the base learning

hypothesis is iteratively compensated k times. This approach produces a new hypothesis

on the new data set in which, each label is a transformation of the label from the negative

data set, further producing the child positive and negative data subsets in subsequent

iterations. This procedure refines the model created by the base learning algorithm,

creating k number of hypotheses over k iterations, as shown on Figure 3.15. h(x,i-1) is the

(i-1)th patched hypothesis, i=1..k. A patching hypothesis h(i)(x) is patching hypothesis to

compensate the base hypothesis. Area A belongs to not well distributed examples. If

 64

h(x,i-1) fits the area A, h(x,i-1) will be overfitting. The compensated hypothesis is

h(x,i)=h(x,i-1)+ h(i)(x). Note that h(x,0) is base hypothesis created by binary SVM.

Figure 3.15 Compensating hypothesis approach

This approach is similarly applying for the Divide and Conquer principle. It

perfectly accord with the philosophy of attacking the main issues first and then minor

issues. The main issue is attacked by creating a main framework, which is a base

hypothesis, to fit most of i.i.d. examples in the training data set. The minor issues are

attacked by compensating hypotheses.

h(x,i-1)=0

h(i)(x)

A

 65

CHAPTER 4

 ERROR DRIVEN COMPENSATING HYPOTHESIS APRROACH

It is impossible to select a perfect model for a practical problem without approximation

error in a learning algorithm. Imagining that underlying function f(x) is a fluctuant

terrain, it is hard to fit the terrain by using a huge size of carpet h(x). The reason is that

only training set and limited priori knowledge is available. The main idea to reduce the

approximation error is to compensate the parts of not well-fit huge carpet by a sequence

of small size of carpets h(i)(x) which is driven by the negative data subset of training data.

4.1 Negative Data

Let training data set S0=S in the definition (1-1). It can be partitioned into two

subsets according to a divider d(h,x,y), (x,y) ∈ S0,where h(x) is produced by a base

learning algorithm. One subset is positive subset #
1S , which is a set of well-separated

examples from S0 by the hypothesis h(0)(x)=h(x). The remaining of S0 is the negative

subset S1 satisfying 1
#

10 SSS += . The negative data does not mean the data is wrong or

corrupt. What negative data can be known is that the hypothesis cannot make it well-

separated. The negative data is not limited to those incorrect data alone, but may also

contain a few correctly classified data as well. The definition of negative data is given on

3.1. Boosting uses an equation)1ln(
2
1

t

t
ta

ε
ε−

= , whereε is the error in the last iteration, to

weight those negative examples. In NDDCHA, the divider is strongly related to the

 66

number of support vectors, size of training examples, VC dimension, and radius of the

sphere containing all examples, which can be determined by cross- validation method.

Not all negative examples contain useful information. The outliers obviously are junk.

Thereby, the negative examples with confidence grater than 1.0 will not be considered in

the negative patching learning.

To the μ-negative data, the criterion to judge which example needs to compensate

is below:

 μ≤)(ii xhy , li ..1= (4-1)

because the misclassified examples meet 0)(≤ii xhy and not well separated examples

meet μ≤≤)(0 ii xhy . The compensation value is

)(ii xhy − , li ..1= (4-2)

E.g. assume 4.0=μ predicting value of an instance x1is h(x1) = -0.3 and target label is

y1=-1, μ<=−−= 3.0)3.0(*1)(11 xhy , then instance x1 needs to compensate. The

compensation value of the instance x1 is 7.0)3.0(1)(11 −=−−−=− xhy .

4.2 Training Phase

Let X be a collection of input vectors from training set S, and Y be a vector

consisting of all labels of training set

 S} y)(x,|{x=X ∈ and S} y)(x,|{y=Y ∈ . (4-3)

Let h(i)(x) are the patching negative models working on the training negative subset Si and

d(i)(h(i),x,y) be dividers. And Si is the negative subset of Si-1 according to d(i-1)(h(i-1),x,y).

 67

Here h(x,i) is the comprehensive patching model. And h(x,k) is the final model providing

to testing procedure.

 kifor
xhixhixh

xhxh
i

..1
)()1,(),(

)()0,(
)(

)0(

=
⎩
⎨
⎧

+−=
= . (4-4)

The sign + in above expression (4-4) provides an overlap operation for two models.

Therefore the hypothesis h(x) of the NDDCHA approach is 0,)(),(
0

)(>= ∑
=

kforxhkxh
k

i

i .

The training data sets are defined as follows,

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=−=

∈Δ−−Δ=Δ
Δ∈∈Δ=

=

−

−

−
−−

−

kiforSSS

Y}yand)h(x,iyy
yxhX,d|xS)y{(x,S

SS

iii

ii

i
ii

iii

..1

,1
),,,(

1
#

01

1
)1()1(

1

0

. (4-5)

The labels on the training subset Si are the differences or residuals of predicated labels

and expected labels. For instance, a vector (x,y)=(0.9,+1) has one attribute 0.9 and label

+1 from training data. The predicting label y’ of x is 0.01. Although (x,y) is correctly

classified because y’=0.01>0 is in the class +1, (x,y) is not well separated. On the next

pass learning, the vector (x,y) becomes (0.9, +1-0.01)=(0.9, 0.99) as the new training

data. The hypothesis is produced by training on the residual data since the idea of

NDDCHA is to compensate the base hypothesis each time. Since above algorithm is

iterated over k times, it has to be regression learning algorithm. There are a total of 1+k

passes in this algorithm. #
iS are the positive data subsets and do not change during the

training. The algorithm has two phases, training and testing as shown in Figure 4.1 and

4.2. The final training output isU
1

1
#+

=

k

i iS . In the training phase, the hierarchy of training is a

 68

chain.

4.3 Learning Termination Criteria

In every step, training is driven by negative data and it produces a series of

hypotheses h(i)(x). The key point in the training is the learning termination criteria

TC(k,S) and depends on how large the value of k is. There are many possible ways to

determine k, out of which, three are mentioned here. In the first case, k is taken as the

number

Figure 4.1 Training phase: Si is negative data subset, S#
i is the positive data subset, h(i)(x)

is the patching model or hyper-surface, and d(i) are dividers, for i=1…k

of iterations when the size of Sk is less than the number of input attributes |Sk|≤|x|. In the

second case, k is taken as the number of iterations when the difference size between Sk-1

and Sk ,i.e., |Sk-1|-|Sk|≤μ is small enough, here μ is a positive integer. In the third case, k is

taken as the number of iterations when h(x, k) gives the expected output with the

specified accuracy.

h(k) h(1) h(0)

d(1) d(2)d(0)
S0

S#
1

S1

S#
2

S2 Sk
d(k)

S#
k+

Sk+1

S#
3

 69

4.4 Testing Phase

In the testing phase, the hypotheses from training are used to create patching data to

compensate the base hypothesis. The key point in the testing phase is to determine the

suitable patching hypothesis. The function of vector set similarity VS accepts two data

sets Si and Ti-1, one from the training data set and the other from the testing data set, to

generate a subset of Ti from Ti-1. As a result, each vector x1�Ti-1 becomes similar to at

least one vector x2�Si, denoted to vs(x1, x2)≥ δ, where δ�[0,1] is the degree of similarity.

For example, when x1=x2, then vs(x1, x2)= 1, and when x1≠x2,then vs(x1, x2)= 0. Here Pi

predicts labels on negative data set Ti

⎩
⎨
⎧

=∈≥∈∃∈∀=
=

−− kiforxxvsSxTxifTSVST
TT

iiiii ..1],1,0[,),(,,),,(212111

0

δδ
(4-6)

⎩
⎨
⎧

==≥∈∈=
=∈=

− kiforixhyxxvsSxTxyxP
xhyTxyxP

iii ..1)},,(,),(,,|),{(
)}(,|),{(

1212111

)0(
00

δ
 (4-7)

Figure 4.2 Testing phase.

P#
k-1

P#
3

Tk-1

T0

T

P1

S2

P0

T1
S1

h(0)(x) OV

VS h(1)(x)

VS h(2)(x)

Sk
VS h(k)(x)

OV

OV

P2

Pk

OV

Tk

P#
1

P#
2

P#
k

 70

VS is the module of vector-similarity, OV is the module of overlapping. Si is negative data

from training phase. T0=T is testing data set. Ti has the similar vectors or elements

between Si and Ti-1 Pi is the patching hyper-surface. P#
i is compensated testing outputs.

i=1..k. P#
k is final testing output.

In above expressions, δ is the regulating parameter to control the degree of two

vectors’ similarity. It can be seen that, Ti is similar to Si, so that h(i)(x) can be used for

testing Ti .to generate the values of Pi . These values are overlapped on to compensate

labels as P#
i=OV(P#

i,P#
i-1). The final ouputs P#

k are the predicting labels. For instance,

Euclidean distance ||x1-x2|| can be used as vector similarity function, where x1 is in the

testing set Ti-1 and x2 is in the negative training data subset Si. The vector similarity

function vs(x1,x2) is 1.0-||x1-x2|| if x1 and x2 are normalized. The output labels which are

compensated value are given as follows.

 ki
PPOVP

PP

iii

..1
),(#

1
#

0
#

0 =
⎩
⎨
⎧

=
=

−

. (4-8)

It can be seen that in the training phase the learner uses the hypotheses h(x)=h(x,i)

together with the partitioner function p(i)(h(i),x,y) as divider, generating a positive group

S#(k)=U
1

1
#+

=

k

i iS and a negative group Sk+1=S-S#(k). We find a subset of testing data Ti,

which is similar to Si and use the hypotheses produced on Si for testing Ti. The ‘+’

operation is one case of OV function, and hence the final testing result is treated as a

summation of overlapping function ∑
=

=
k

i
ik PP

1

.

 71

4.5 Discussion of Vector Similarity in the Feature Space

Compensating an example strongly depends on the function of vector similarity.

There are four possibilities of compensating an example:

1. expected to compensate, the result compensates

2. expected to compensate, but not compensate

3. expected not to compensate, the result compensates

4. expected not to compensate, and not compensate

Case 1 improves accuracy of base hypothesis. Case 2 and 4 are harmless. In worst case,

they keep the accuracy of base hypothesis. Case 3 is dangerous case and need further

study.

Those testing examples which meet the conditions of Theorem 2.1 will be

compensated. The vector-similarity plays extremely important role in NDDCHA

learning. To apply the repairing hyper-surface, the first thing is to find out which vectors

in testing data set need to be compensated. The vector-similarity is used to find the

relationship of vectors in the negative data subset Si and testing data subset Ti-1. Only

those vectors in Ti-1 with high similarity to those in Si need to be compensated, that

is υ≥∝ −1ii TS , v is the degree of similarity.

The evaluation of vector-similarity in the classification application in the SVMs

cannot be obtained directly because of the fact that the similarity in the feature space is

different with in the input space X. The connection between input space and feature space

was discussed to find a vector in the input space by given a vector in the feature

space[90]. The main idea is that the comparison of two vectors x1 and x2 are computed on

 72

the feature space. There are three criteria of similarity to be considered to determine the

similar degree of x1 and x2 if:

1. x1 and x2 are located on the same side of the hyperplane on either class +1 side or

class -1 side.

2. Distances of x1 and x2 to the hyperplane are close, then, x1 and x2 have similar

separable capability. The difference of two distances is less than δ1

3. ||x1 - x2|| is small enough, which is less than δ2.

To compute the vector-similarity in the feature space h(x,i), suppose h(x,i)=wTx+b. The

condition 1 is equivalent to h(x1,i)*h(x2,i) >0; and condition 2 is

θδ
δ

=≤−⇒

≤

−=

−=

−

wixhixh

ixhixh
w

w
ixh

w
ixh

ixdistixdist

121

1

21

21

21

),(),(

),(),(1

),(),(

),(),(

Note that θ is constant. The difference of),(),(21 ixhixh − is bound on ||w|| that means

the limitation is not tight if ||w|| is large. This phenomenon shows again that SVM

maximizing the ||w||2/2 is correct. Condition 3 is

222211121),(),(2),(),(δ≤+−= xxKxxKxxKxxd iiii based on the equation (2-6), where

Ki is the kernel function used in the ith training.

The vector similarity algorithm in the feature space of SVM is

function vector_similarity(x1, x2, i)

if h(x1,i)*h(x2,i) <0 then

return +∞

 73

else

return 1-max(sigmoid(h(x1,i) - h(x2,i)), sigmoid(di(x1,x2)))

The difference of confidence h(x1,i) - h(x2,i) and distance di(x1,x2) need to normalize so

that the output of function vector_similarity has comparability among examples. One

example of normalization method is a sigmoid function which outputs a value between 0

and 1.

Figure 4.3 Sigmoid function

 xe
xsigmoid −+

=
1

1)(. (4-9)

Algorithm k-nearest neighbor is an instance learning method which learns

hypothesis only upon a new instance querying. The significant advantage of instance-

based learning is local approximation. The disadvantage of that is that the cost of

classifying a new example can be high. When vector-similarity function vs is called, k-

nearest neighbor algorithm retrieves k number of similar related examples from negative

data to determine how strong relationship between x1 and x2.

In the NDDCHA, suppose it Tx ∈ , inn Syx ∈),(, where Ti is testing subset and Si is

negative subset in the training data. The function vs(xt,xn, i) >0 if xn is in the class +1,

otherwise vs(xt,xn, i) <0 if xn is in the class -1.

 74

vs(xt, xn, i)

if yn <0

 then return – vector_similarity(xt, xn, i)

else

 return + vector_similarity(xt, xn, i)

To enhance to power of vector similarity function, k-NEAREST NEIGHBOR

algorithm is introduced. A testing example is 1−∈ iT Tx and k examples nearest

to Tx are ik Sxxx ∈,..., 21 . The distances between Tx and kxxx ,..., 21 are kddd ,...,, 21 . The

distance weighted k-NEAREST NEIGHBOR gives estimated value of vector similarity

TyΔ to Tx :

∑

∑

=

=

Δ
=Δ k

j
j

k

j
jj

T

d

yd
y

1

1 . (4-10)

where jyΔ is the compensated value in the ith training phase. To normalize the vector

similarity value]1,1[+−∈vs , an extended sigmoid function is introduced:

 1
1

21)(2)(_ −
+

=−= − xe
xsigmoidxsigmoidextended . (4-11)

4.6 Algorithm of NDDCHA

The procedure of NDDCHA has three parameters, S0 is the training data set; T0 is

the testing data set; and δ is the degree of vector similarity. The return value of the

algorithm is the predictive labels of testing data set. Six subroutines are invoked:

h(i)(x)=LEARN(Si)

 75

Pi=PREDICT(Ti, h(i)(x))

S#
i+1∪Si+1= DIVIDER(Si, h(i)(x))

Ti = VS(Si, Ti-1,δ)

P#
i = OV(P#

i-1,Pi)

TC(k,S)

LEARN denotes training routine to get the model or hypothesis; PREDICT

routine predicts the labels of given data set and model. DIVIDER is the routine to divide

training data set into positive and negative data subset by given the hypothesis and the

function partitioner d(h,x,y). In each pass, the function VS and DIVDER could be

different. The algorithm is described below as pseudo-code. The code given below

follows the sequence or procedure developed and shown above in this section.

NDDCHA (S0, T0, δ)

>Learning phase

S[0] ← S0

h[0] ← LEARN(S[0])

i ← 0

repeat

 i ←i+1

 (S#[i], S[i]) ← DIVIDER(S[i-1], h[i-1])

 h[i] ← LEARN(S[i])

until TC(i,S)

k ← i > the number of iteration in repeat loop

 76

> Testing phase

T[0] ← T0

P[0] ← PREDICT (T, h[0])

P#[0] ← P[0]

for i←1 to k do

 (T[i],V[i]) ← VS(S[i],T[i-1], δ)

 if T[i] ≠ Φ > T[i] is not empty set

 then P[i] ← PREDICT(T[i], h[i])

 P#[i] ← OV(P#[i-1], P[i], V[i])

return P#[k]

DIVIDER(S[i-1], h[i-1])

X ← ΔY←Φ > initialize to empty set

foreach (x,y) in S[i-1] do > let (X,ΔY) be S[i-1]

 X ← X ∪ {x}

 ΔY← ΔY ∪ {y}

S[i] ← Φ

foreach (x, Δy[i-1]) in (X,ΔY) do

 Δy[i] ← PREDICT(x, h[i-1])

 if d(h[i-1], x, Δy[i-1])

 then S[i] ← S[i]∪{(x, Δy[i])}

 Δy[i] ← Δy[i-1]- Δy[i] > update ΔY

 77

S#← S[i-1] - S[i]

return (S#[i], S[i])

VS(S[i],T[i-1], δ)

T[i] ← Φ

V[i] ← Φ

foreach x1 in T[i-1] do

 foreach x2 in S[i] do

 if |vs(x1,x2, i)| ≥ δ

 then T[i] ← T[i] ∪ {x1}

 V[i] ← V[i] ∪ {sign(vs(x1,x2, i))}

 break

return (T[i], V[i])

To apply the NDDCHA learning algorithm, it is required that the partitioner

function d(h,x,y), terminate criteria function TC(k, S) and vector similarity vs(x1,x2, i) to

be provided. The performance of NDDCHA very much depends on the selection of

partitioner and vector-similarity function which needs a priori knowledge of learning

task.

4.7 NDDCHA Algorithm Simulation

NDDCHA algorithm is implemented by Perl which uses a slight modified SVMlight

[83, 84] as the base learning algorithm including learning and classifying modules. Three

binary classification case studies, on musk2[91], breast cancer, and cement, have been

analyzed. Before the cases were studied, the three functions, partitioner function d(h,x,y),

 78

terminate criteria function TC(k,S) and vector similarity vs(x1,x2) needed to be defined.

To simplify the complexity of computation, the partitioner was defined on the feature

space by d(h, x, y)= iff(h(x) < ε,true, false), ε�[0,0.5]. And TC(k,S) was defined by TC(i,

S[i])=iff(|S[i]|≤|x|, true, false). Vector similarity Euclidean distance method was used

for musk2; and feature space method was used for breast cancer and cement. Feature

space vector similarity approach is adopted in our work because of the fact that

TABLE 4.1 Comparison of three data sets

 musk2 cancer cement

SVM Average
accuracy% 90.30 89.92 70.92

NDDCHA average
accuracy% 94.92 90.86 72.56

Increase accuracy% 4.62 0.94 1.64

the data in two cases of three has missing value. The euclidean method is obviously not

suitable for this situation since this method will make a vector with missing value in a

high degree of similarity. The threshold δ of vector similarity is 0.7 in the dataset musk2,

and δ =0.6 is used for both datasets breast cancer and cement.

The data sets used in case studies musk2 and breast cancer are from UCI

Knowledge Discovery in Databases (KDD) Archive [82], and the data set used in cement

is from Wangchang cement company. The n-fold cross-validation is performed in each

case. The original data is randomly divided into n groups; each group has the same or

 79

approximate size. Each group does not have the similar distribution of classes. One

group is used as testing data and the remaining n-1 groups are grouped as training data.

The validation procedure runs n times and each time the testing data is from the ith group,

i=1...n. The average result of n-fold is the final accuracy given as shown in TABLE 4.1.

It should be mentioned that the parameters of SVM are not well tuned because the cases

are used to show the NDDCHA has better performance than the base learning algorithm.

TABLE 4.2 Simulation on the data set musk2

No TP FN FP TN M C A% TP FN FP TN M C A% I%
1 39 63 0 558 63 597 90.45 83 19 14 544 33 627 95.00 5.03
2 41 61 0 558 61 599 90.76 83 19 13 545 32 628 95.15 4.84
3 38 64 0 558 64 596 90.30 84 18 14 544 32 628 95.15 5.37
4 36 66 0 558 66 594 90.00 87 15 22 536 37 623 94.39 4.88
5 39 63 0 558 63 597 90.45 93 9 15 543 24 636 96.36 6.54
6 37 65 0 558 65 595 90.15 88 14 14 544 28 632 95.76 6.22
7 39 63 0 558 63 597 90.45 81 21 19 539 40 620 93.94 3.86
8 37 64 0 559 64 596 90.30 86 15 19 540 34 626 94.85 5.04
9 35 66 0 558 66 593 89.98 78 23 15 543 38 621 94.23 4.73

10 36 65 0 558 65 594 90.14 81 20 17 541 37 622 94.39 4.71
Aver 38 64 0 558 64 596 90.30 84.4 17 16 542 34 626 94.92 5.12

The table has left and right sides. The left side is the result of regular SVM. The right side

is the result of NDDCHA. TP = true positives, FN = false negatives, FP = false positives,

TN = true negatives, M = misclassified = FN+FP, C=correct classified, A%=accuracy =

C/(C+M)*100% and I%= the accuracy improved= (right A% - left A%)/left A% *100%

Musk2 has 6,598 examples with 168 attributes and no missing value. 10-fold

cross-validation shows that the accuracy of prediction is 90.3% by using SVM RBF

model with parameter γ=0.5. Before SVM is used to predict the test data, all data

 80

including training set and test set are normalized by unit normal scaling approach [92].

The operation of normalization improves the average accuracy improvement from 72% to

90.3%. The unit normal scaling approach is applied on all data sets. The number of

support vectors is very large near the size of training set, the ratio of support vectors to

examples r=88%, which means that there are lots of noise involved in the data set, or the

hypothesis space is less than the target space. In a high noise problem, many of the slack

variables become non-zero, and the corresponding examples become support vectors

[93]. The model h(0)(x) classify training set and positive data P and negative data N are

divided by the partitioner d(h, x, y)= iff(h(0)(x) < 0.3,true, false), which implies all data

TABLE 4.3 Simulation on the data set Cancer

No TP FN FP TN M C A% TP FN FP TN M C A% I%
1 28 12 0 74 12 102 89.47 29 11 0 74 11 103 90.35 0.98
2 22 16 0 76 16 98 85.96 24 14 0 76 14 100 87.72 2.05
3 41 9 0 64 9 105 92.11 43 7 0 64 7 107 93.86 1.90
4 32 10 0 72 10 104 91.23 36 6 0 72 6 108 94.74 3.84
5 26 16 0 71 16 97 85.84 28 14 0 71 14 99 87.61 2.06

Aver 30 13 0 71 13 101 88.92 32 10 0 71.4 10 103 90.86 2.17

The labels have the same meaning as TABLE 4.2

predicting output in (-0.3, 0.3) are negative subset. The number of compensating is one.

The size of N is 612, data set N is trained as hypothesis h(1)(x) and then h(1)(x) classifies

the testing data set again. The accuracy is as low as 15.7% and uses only 2 support

vectors. The reason is the size of training set N is too small. However, h(1)(x) with 0.5%

ratio of number of support vectors and the number of training data gives 100% accuracy

to classify group N. It is interesting to note that only two support vectors alone can give

such a high accuracy on the negative training data set N. Dietterich et al. [94] proposed

this algorithm, iterated-discrim APR, in their paper. Compared to their other seven

algorithms described in different papers, the iterated-discrim APR demonstrated the best

 81

performance, resulting in the correct prediction of 89.2% with confidence interval

[83.2%-95.2%] by using 10-fold cross-validation with 102 examples on Musk data 2.

The NDDCHA using 10-fold cross-validation with 612 examples gave the high

predicating confidence interval with [94.23, 95.76] as shown in Table 4.2.

TABLE 4.4 Simulation on the data set Cement

 No. TP FN FP TN M C A% TP FN FP TN M C A% I%
1 46 53 14 132 67 178 72.65 55 44 21 125 65 180 73.47 1.13
2 33 50 10 151 60 184 75.41 43 40 19 142 59 185 75.82 0.54
3 36 60 10 138 70 174 71.31 45 51 16 132 67 177 72.54 1.73
4 23 67 12 142 79 165 67.62 36 54 18 136 72 172 70.49 4.25
5 35 69 10 130 79 165 67.62 48 56 16 124 72 172 70.49 4.25

Aver 34.6 59.8 11.2 138.6 71 173 70.92 45.4 49 18 131.8 67 177.2 72.56 2.38

The labels have the same meaning as TABLE 4.2.

Cancer has 569 examples with 32 attributes and missing value. 5-fold cross-

validation shows that the accuracy of prediction has been improved from 88.92% to

90.86% by using two learning approaches as shown in Table 4.3. Since there are missing

values in this data set, the vector similarity works on the feature space. The kernel

function of SVM is mapping x from input space into feature space. Note that the ith

attribute of vector x in the feature space is the combination of attributes of x in the input

space, and then it overcomes the effects due to missing value. The same vector similarity

method is used for cement data set for the same reason as Cancer. The cement has 1221

examples with 11 attributes and missing data. The partitioner in the cancer and cement is

also d(h, x, y)= iff(h(0)(x) < 0.3,true, false). The similarity degree is vs(x1,x2) ≥ 0.99. The

5-fold cross-validation shows that the testing accuracy is increased from 72.56% to

74.94%. From Table 4.2,4.3 and 4.4, it is observed that NDDCHA can always improve

 82

the testing accuracy in every fold testing. The time cost on Musk2 is around 30 minutes in

the M-Pentium 2.0 GHz, Windows XP PRO computer. It is less than 5 minutes in the

other two data sets.

It is shown that the vector similarity function is sensitive to learning problems in

the cases studied. The final performance is dependent on the degree of vector similarity.

The Euclidean distance method works on input space which means that the predicting

value should be similar if input vectors are similar. However, Euclidean distance method

treats every attribute in the vector with equal contribution. This is not true for the real

world problem because some attributes are more significant. Therefore, all attributes

must be at least normalized before data is fed into the learning machine. When missing

value exists in the data set, the distances between the vector with missing attributes and

normal vector will be small. As a result, these two vectors seem to be similar, but, in fact,

they are not. In general, the Euclidean method is suitable for large size of examples

without missing data such as in data set musk2. Conversely, the data set cancer has small

size examples and missing attributes. The good vector similarity approach is to compare

the similarity of two vectors in the feature space. The reason is that n-dimensional input

vector x is projected into a high m-dimensional space using nonlinear

function mn RR →:)(xφ , and then missing attributes in the input space do not appear to be

missing on the feature space. The feature space is determined by kernel functions, so the

similarity is related to learning model.

 83

CHAPTER 5

STATISTICAL NEGATIVE EXAMPLES LEARNING APPROACH

Statistical negative examples learning approach (SNELA) has two or three stages of

learning including the base learning, the negative learning and the boosting learning for

binary classification as shown in Figure 5.1.

1:Learner

2:Audit

3:Booster

S0

D0

h0(x)

h1(x)

h0(x)

h1(x)

h2(x)

D1 Combining
h(x)

h0(x)

h0(x)

h0(x),
h1(x)

D2

Figure 5.1 Scheme of SNELA

The base learning which is named learner, employs a regular support vector

machine to classify main examples and recognize which examples are negative. The

negative learning which is named audit, judges the predicting results of learner, works on

the negative training data which is strongly imbalanced to predict which instance could

be negative based on learner. When an instance is predicted by audit as negative, this

instance is claimed to be misclassified by learner. The next step is compensation, where

 84

we move this instance into opposite class either from class +1 to class -1 or vice versa if

the instance is negative. Furthermore, boosting learning booster is applied when audit

does not have enough accuracy to judge learner correctly. Booster works on the training

data subset with which learner and audit do not agree. The classifier for testing is the

combination of learner, audit and booster. The classifier for testing a specific instance

returns the learner’s result if audit acknowledges learner’s result and learner agrees with

audit’s judgment, otherwise returns the booster’s result. If audit has enough accuracy,

boosting learning may be skipped.

5.1 Concept of True Error

The notation)]([Pr x
x

π
D∈

means the probability of Boolean expression)(xπ holding

on instance x drawn from input space X according to distribution D. In general, the

equation below is held[2]:

 ∑
∈

∈
=

Xxx
xxDx)](Pr[)()]([Pr ππ

D
 (5-1)

where D(x) is the probability of instance x chosen under distribution D.

Concept c is a Boolean function on some spaces of instances. The probability

)]()([Pr xcxh
x

≠
∈D

is called the error of hypothesis h on concept c under the distribution D.

The instance x is drawn from input space X according to the distribution D. If the error is

equal to or less thanε , then h is called ε -close to the target concept c under D. In the

binary classification)]()([Pr xcxh
x

≠
∈D

 is equivalent to]0)([Pr <
∈

xyh
x D

 where y is target

label of instance x.

The true error concept is introduced here to demonstrate the compensation

condition in the worst case of negative learning. The error is related to the distribution of

 85

examples and hypothesis specified. The following is the definition of the true error.

Definition 5.1: The true error)(herrD of hypothesis h with respect to target label

y and distribution D is the probability that a randomly generated instance x drawn from D

is misclassified.

 ε=≠≡
∈

])([Pr)(yxhherr
x D

D (5-2)

where the notation
D∈x

Pr is denoted by the probability taken over the instance distribution D

and the pair (x, y) is an underlying labeled example.

The training error)(herrS is the ratio of the number of misclassified examples over the

total number of examples on the training data set S in terms of a hypothesis h(x) that is

defined below.

 S
Syx

yxhS S
herr ε=≡ ∑

∈
≠

),(
)(11)((5-3)

The expression 1π is defined to be 1 if the predicate π holds and 0 otherwise. |S| is

the size of data set S. Suppose training examples S are chosen i.i.d. according to the

distribution D. If there exists an algorithm A learning on S to output a hypothesis h that

probability at least δ−1 isε -close to the target concept c under D for given parameter

δ)5.0,0[∈ andε)5.0,0[∈ . It is denoted by

 δεδε <>≡
∈

})({Pr),,(herrSh Sx

A

D
 (5-4)

The training error could be zero. For example, we choose a high VC dimension kernel

and a large number of regularation parameter in the soft margin of SVM. The predicting

error is the ratio of the number of misclassified examples over the total number of

examples on the testing data set.

 86

The testing error or predicting error)(herrT is the ratio of the number of

misclassified examples over total number of instance on the testing data set T in terms of

a hypothesis h(x) which is defined below:

 T
Tx

yxhT T
herr ε=≡ ∑

∈
≠)(11)((5-5)

The expression 1π is defined to be 1 if the predicate π holds and 0 otherwise. |T| is the

size of testing data set T, the label y is the underlying target value of instance x.

A data set S is i.i.d. drawn from D divided into four parts as TP, TN, FP and FN

in terms of a fixed binary hypothesis h(x) by which the true error is great than training

error Sε =)(herrS , such that FNFPTNTPS UUU= , TNTPP U= , FNFPN U= and

Sherr ε≥)(D because the S is a sub- set of the whole space with distribution D.

 }..1,0)(|),{(lixhyyxTNTP i =>=∪ (5-6)

 }..1,0)(|),{(lixhyyxFNFP i =<=∪ (5-7)

The true error is not training error. The true error is a real metric of generalization

capacity. A learner is consistent if it outputs hypothesis that perfectly fits the training

examples. |P| is the number of examples in the positive set whereas |N| is the number of

examples in the negative data set. For any classification algorithm, the result is

meaningless if |P| is less than |N|. The random learner can give error of 0.5.

Since NP > , then)5.0,0[∈ε where ε is true error of hypothesis h(x). The true

accuracy is ε−1 .

To deal with imbalanced class problem, one could modify data distribution by

using over-sampling and under-sampling[88]. Over-sampling replicates the minority

class while under-sampling removes partial majority class. Both sampling makes training

 87

dataset balanced. The drawback of under-sampling is to lose some useful data. Over-

sampling may bring overfitting. Given an imbalanced data set 000 NPD ∪= , where P0 is

the subset of class +1 and N0 is the subset of class -1, the size of P0 is greatly larger than

the size of N0, that is 00 NP >> . We have three methods to alleviate the unbalancing

including under-sampling, over-sampling and the combination of above two sampling

which is named hybrid-sampling.

The under-sampling technique is shown on the Figure 5.2. The result of under

sampling is 111 NPD ∪= . The data subset N1 is simply duplicated from N0, while P1 is

extracted randomly from P0.

Figure 5.2 Under-sampling strategy

The under-sampling coefficient and the over-sampling coefficient are defined as

below:

0

1

P
P

=γ (5-8)

0

1

N
N

=ρ (5-9)

where]1,0(∈γ and),1[+∞∈ρ . In under-sampling ρ =1 while in the S is a sub- set of

the whole space with distribution over-sampling 1=γ . The parameter c is the ratio of

negative examples N over positive examples P which describes the degree of

unbalancing. Parameter r is the reciprocal of c.

 88

1

1

1

1 1
N
P

c
r

P
N

c === (5-10)

Where]1,0(∈c , means that the sampling technique cannot make N1 larger than P1.

The over-sampling technique is shown on Figure 5.3. The data subset P1 is simply

duplicated from P0, while N1 is created by copying all examples in N0 and duplicating

some examples in N0.

Figure 5.3 Over-sampling strategy

The hybrid-sampling combines the under-sampling and over-sampling strategies as

shown on Figure 5.4. We get 1,01 <= γγ PP and 1,01 >= ρρ NN .

Figure 5.4 Hybrid-sampling strategy

Suppose D0(x) and D1(x) are the possibilities of instance x being chosen under D0 and D1

respectively as shown on Figure 5.5. P0 and P1 are in class +1 whereas N0 and N1 are in

class -1. P1 and N0 is separated by),,(0000 δεShSVM . D1=P1+N1 is the result of sampling

from D0. The hypothesis h1(x) =),,(1111 δεDhSVM if SVM learning algorithm is used here.

Let])(Pr[yxhp ii ≠= be the chance for instance x is misclassified by hypothesis

hi(x). The true error of hypothesis h0(x) is 0ε learned from data set S0. P0 is in class +1

 89

correctly classified by h0(x) while N0 is in class -1. The hypothesis h1(x) with error 1ε is

learned from D1 which is the output of sampling from D0. The sampling strategy used

here is randomly extracting or duplicating the examples from D0. When domain

knowledge is used, for example, only support vectors are extracted during sampling, it is

not in this case. Then the following equation is obtained[95]:

])(
1

)(1[)()(
0

0

0

00
1 ε

ρ
ε

γ
ργ

xpxpxDxD ×+
−

−
×

+
= (5-11)

The hypothesis h1(x) with error 1ε is gotten by training on S1. We have the following

equation:

]
1

[1

)]}(1)[()()](1)][(1[)(
1

{1

)](1)[(1

00

100
0

100
0

111

ut

xpxpxDxpxpxD

xpxD

XxXx

Xx

×+×
−+

=

−+−−
−+

=

−=−

∑∑

∑

∈∈

∈

ε
ρ

ε
γ

ργ

ε
ρ

ε
γ

ργ

ε

(5-12)

Then we get

0

100]))(1()[1(
γε

ρργεεε ut −+−−
= (5-13)

The data set sampling is to construct a new data set S from another data set D

according to the controlling parameterα and sampling technique sampling.

 DSDsamplingS αα =≡ such that),,((5-14)

The data set S could be the subset of D if under-sampling technique is

used),(01 γPingUnderSamplP ≡ . Or data set D is a subset of S on the over-

sampling),(01 ρNngOverSampliN ≡ .

 90

P0 N0

1-ε0 ε0

D0

D1

FP1TP1+TN1FN1

P1=undersampling(P0,r) N1=oversampling(N0,p)

1-ε1 h1(x)

h0(x)

S0

ts u v

Figure 5.5 Possibility of sampling data

5.2 Introduction to Statistical Negative Examples Learning Approach

The hypothesis of the naïve learning of SNELA is a decision function, which

considers an instance either in class +1 or class -1. The extended learning of SNELA

considers the confidence which is associated to an example. The scheme of two stages

SNELA is shown on Figure 5.6. The figure shows a scheme of negative example

learning. S0 is the training data set. The learner gets the hypothesis h0(x)

=),,(0000 δεShSVM by base learning algorithm SVM. The data sets 0P and 0N are positive

and negative data of S0 respectively separated by h0(x). S1 is the training data set for

audit, which is under sampling from positive data P0 and over sampling from negative

 91

data N0. The negative hypothesis h1(x) is audit h1(x) =),,(1111 δεShSVM . TP1 and TN1 can

be used to correct testing error created by base hypothesis.

Figure 5.6 The scheme of two stages learning including base and negative learning.

Since 00 NP >> , construction compensated data set S1 for negative learning is to

use under sampling on P0 whereas over sampling on N0. The data set S1 is not simplified

from the union of the results of under and over sampling. It was translated into

compensated data set format for training by the function auditsampling() defined in

(5-16).

 92

The section of SNELA considers that the hypothesis outputs a confidence value.

Given a training data set liyxS ii ..1)},,{(0 == , testing data set mixT i ..1},{0 == and a

parameter 01 >> μ , an SVM is trained on S0 to output hypothesis h0(x). When S0 is not

separable, negative data subset N0 of S0 is not empty, as shown on the figure below.

Figure 5.7 The scheme of base learning. 000 NPS U=

 The testing data set T0 is predicted by h0(x) to output correctly classified instances

TP and misclassified instances TN since h0(x) is not capable to separate all examples as

shown on the figure below.

Figure 5.8 The scheme of base testing. TP is the correctly predicted instances and TN is

incorrectly predicted instances. In this stage, TP and TN are unknown, where NP TTT U=0 .

 93

If some of instances in the TN were known in advance, those instances could be inversed

into the opposite class. For example, the target label of an instance x5 is class +1. The

instance x5 is a misclassified instance in the T0 by using hypothesis h0(x), so instance x5 is

predicted to be class -1. In this stage of practical application, whether the instance x5 is

correctly classified or misclassified is unknown if we do not have known target label. If

x5 can be predicted to be misclassified instance by another hypothesis h1(x) with a certain

confidence, say 70% possibility, x5 can be corrected from class -1 into class +1. For that

reason, the key point is how to construct the hypothesis h1(x).

In order to construct the hypothesis h1(x), a training data set S1, named

compensated data set, is required to be constructed. The information including training

data set S0, hypothesis h0(x), positive examples P0 and negative examples N0 are available

before h1(x) is constructed. The main idea is to extract partial examples from P0 and all

examples from N0 because |P0|>>|N0|. Another reason to include all negative examples is

because the goal of h1(x) is to predict misclassified instances which are strong related to

the negative N0 example.

P0 N0

S1

Figure 5.9 Construction of compensated training data S1 for h1(x) using under-sampling

strategy

The compensated training data set S1 is defined below:

 Let),(01 γPingundersamplP = and N1=N0 (5-15)

 94

}),(|)1),(|{(}),(|)1),(|{(

)(

10101

1

NyxxhxPyxxhxS
Singauditsampl

∈−∪∈+=
≡

 (5-16)

The hypothesis h1(x) is learned from training data set S1. If over-sampling is used,

let),(01 ρNngoversampliN = . Testing data set T0 is predicted by both hypotheses h0(x)

and h1(x).

)}(,|),{(
)}(,|),{(

102

001

xhyTxyxT
xhyTxyxT

=∈=
=∈=

 (5-17)

Assume the error of hypotheses h0(x) and h1(x) are 0ε and 1ε respectively. If 0ε and 1ε

meet some criterions, which will be discussed in the sections 5.4, h1(x) can improve the

predicting of h0(x) on the testing data set T0. If h0(x) has less confidence on predicting

instance x to be y while h1(x) has large confidence to say x is negative, then the predicted

label y by h0(x) should be inversed; let y be -y.

5.3 Analysis of Two Stages Learning

Theoretically, true error ε is less than predicting error Tε , Tεε ≤ , while predicting

error Tε is greater than training error Sε practically, TS εε ≤ , if the hypothesis is fixed.

This is resulted from the approximation and estimation error of learning machine. The

true error is hard to get without exact data distribution information. Therefore, in most

cases, predicting error is the substitution of true error as approximate estimation because

the true error is impossible to get in almost all applications. When we work on the worst

case of negative learning, training error is used to replace predicting error or true error.

The reason is if a hypothesis with small training error cannot make final predicting get

desired accuracy, the true error must be greater than the desired error. Therefore, the

 95

following discussion assumes true error, training error and predicting error are not

discriminated.

• The training data set S0 has l examples, l=|S0|.

• The true errors)5.0 ,0[),5.0 ,0[10 ∈∈ εε are the error of hypotheses of h0(x)

and h1(x). Then, |P0|>|N0| and |P1|>|N1| for the base training data

sets 000 NPS U= and compensated training data set 111 NPS U= .

The parameter c is the ratio of negative examples N over positive examples P.

Parameter r is the reciprocal of c.

c

r
P
N

c 1
1

1 == (5-18)

5.3.1 Under-Sampling

 In under-sampling, P1 is a subset of P0 where all examples in P1 are extracted

from P0 randomly. N1 is small data set comparing to P1. Therefore, N1 keeps all examples

from N0 except outliers:

11

01

01

NrP
NN
PP

=

=
⊆

 (5-19)

The minimum of c and maximum of r in the training phase of base leaning in terms of

hypothesis h0(x) are also defined below. |N0| could be considered as fixed value.

)[1,r 111

c
1

1] [0,c
1

)1(

c

00

0

min
max

0

0

0

0

0

0

max1

min1
min

+∞∈⇒−=
−

==

∈⇒
−

=
−

===

εε
ε

ε
ε

ε
ε

r

l
l

P
N

P
N

 (5-20)

 96

In the negative learning stage, under-sampling strategy is adopted. So let

001 εlNN == because lS =0 and 00 PN << . For example, 00 25.0 PN = if the

accuracy of h0(x) is 80%. The training data of negative learning is 111 NPS U= . The size

of S1 and the predicted data subsets in terms of hypothesis h1(x) are listed below:

 01011 εε lNlrNrP === (5-21)

101101

101101

)1(

)1(

εεεε

εεεε

lFNlTN

lrTPlrFP

=−=

−==
 (5-22)

To make negative learning useful, the number of correctly classified examples must be

greater than the number of misclassified examples, including misclassified negative

examples and positive examples. Then, the following inequality needs be met.

r

r
llrl

FNFPTN

+
<⇒

+>−⇒
+>−⇒

+>

2
1

1
)1(

1

111

101010

111

ε

εεε
εεεεεε

 (5-23)

The explanation is shown in Figure Error! Reference source not found..

 The strong condition 111 FNFPTN +> needs to be met in order to improve the

accuracy of base learning. The weak condition 11 FNTN > must be met too.

The 1 FP examples are misclassified and still are not judged correctly in negative

learning. This tells us that the upper bound of true error 1ε in negative learning stage

is
r+2

1 . If the training error of negative learning is greater than the upper bound, negative

learning should not be processed. As shown in the Figure 5.11, the relationship of true

error of negative learning and the ratio of the size of positive and negative examples in

 97

base learning indicates that goal is not hard to achieve, because the area under curve is

small comparing to the area over curve.

Figure 5.10 The number of correctly judged examples in the negative leaning is 1 TN .

The 1 FN examples are correctly classified in base learning but not be judged correctly.

Figure 5.11 1ε−r relationship diagram

 98

In the Figure 5.11, the x-axis is r which is the ratio of the size of positive and negative

examples in base learning stage; y-axis is 1ε which is the true error of hypothesis in

negative learning stage. When 1ε falls into the area under the curve, the improvement is

made in the predicting negative examples.

The under-sampling strategy shows how to select the parameter r is more critical.

In the worst case, r is equal to rmax. In that case, the following inequality is gotten.

0

0

0

max
max,1 1112

1
2

1
ε

ε

ε

ε
+

=
−+

=
+

<
r

 (5-24)

The relationship between max,10 εε − is shown below.

Figure 5.12 max,10 εε − relationship diagram, the performance is improved in the

predicting negative examples when 1ε falls into the area under the curve

To understand the given analysis, here are a couple examples:

 99

(1) 0ε =0.20, r=2, |T|=200

4
20.0

20.01
max =

−
=⇒ r

0max,1 1667.0
20.01

20.0 εε <=
+

<⇒

250
22

1
2

1
1 .

r
=

+
=

+
<⇒ε

In base learning, 40200*20.000 === TN ε examples are probably misclassified and

160200*8.0)1(00 ==−= TP ε are correctly classified. In negative learning,

1025.0*40011 === NFN ε examples in N0 are not compensated while

3075.0*40)1(011 ==−= NTN ε examples in N0 are compensated. In the meantime,

2025.0*80011 === NrFP ε examples in P0 are correctly classified in base learning

while they are compensated wrongly in negative learning. So the total misclassified

examples are 11 FNFP + =30. The negative learning makes |TN1| examples correctly

classified and |FP1| examples misclassified. The inequality | 111 FNFPTN +> has to

be met; otherwise, the negative learning is useless. This example shows that it is possible

for SNELA to improve final performance provided true error of negative learning is less

than 0.1667 no matter what the ratio r is. On the other hand, SNELA cannot improve

performance when true error is greater than 0.1667 if no positive examples are

suppressed. The data set is close to be balanced when r=2. In this case, true error 1ε =0.33

is allowed to be larger than max,1ε =0.1667.

 (2) 0ε =0.10, r=2,

 100

091.0
10.01

10.0
max,1 =

+
<⇒ ε

250
22

1
1 .=

+
<⇒ε

5.3.2 Over-Sampling and Hybrid Sampling

The over-sampling and hybrid-sampling are illustrated on the figures as follows.

Figure 5.13 over-sampling strategy

FP1TP1

P0 N0

1-ε0 ε0

FN1

1-ε1

h0(x)

TN1

P1 N1

h1(x)

Figure 5.14 under-sampling and over-sampling could be considered as the special case of

hybrid-sampling.

In hybrid-sampling as shown on above figure, let),(01 γPingundersamplP = and

),(01 ρNngoversampliN = . Then the following equations can be gotten:

 101

11

01

01

NrP

NN

PP

=

=

=

ρ

γ

 (5-25)

0

0

0

0

1

1)1(
ρε
εγ

ρ
γ −

===⇒
N
P

N
P

r (5-26)

In over-sampling γ = 1, ρ >1 is used whereas γ < 1, ρ =1 in under-sampling. The

strong condition still maintains the same in different sampling techniques as it can be

seen on the inequality (5-27).

r

r

lll
FNFPTN

+
<⇒

+=
−

+>−⇒

−+>−⇒

+>

2
1

)1(1

)1()1(

1

11
0

10
11

101010

111

ε

εε
ρε

εεγεε

εεγερεερε

 (5-27)

Then the discussion in the last section is still true here. In order to balance the data, the

condition 11 NP ≥ should be met.

0

0
max

0

0
max

000000

11

1

1)(

)1(

ε
ε
ε
ε

γ
ρ

εγερ

−
=⇒

−
=⇒

−∪≤∪⇒

≥

r

NPNP

NP

 (5-28)

5.4 Algorithm of Two-stage Learning

Given a training data set S0 and corresponding hypothesis h0(x), positive examples

P0 and negative examples N0 can be gotten by h0(x) such that 0
)(

00
0 SNP xh⎯⎯ ⎯←U . Under

 102

sampling algorithm or over-sampling can be used for the imbalanced data set, where the

size of negative data is far less than that of positive |N| << |P|. To construct a new

training data set S1, which is called compensated data set, for negative learning; all

positive examples P1 of S1 are labeled as class +1 whereas the rest of negative examples

N1 are labeled by class -1. Removing some positive examples is controlled by under-

sampling regularization parameterγ that controls the size of positive examples P1. The

over- sampling parameter ρ controls the possibility to duplicate the negative example (x,

y) from N0 assigning the weight of negative example (x, y), and then we

get 01 NN ρ= where ρ≤1 . Function rand () generates random value between 0 and 1.

The function construct_audit_dataset returns a data set S1 for audit learning. Below is the

algorithm to construct compensated training data for audit:

construct_audit_dataset (S0, h0, P0, N0, γ , ρ)

 i ← 0

 k ← 0

 foreach (x, y) in S0 do

 > Predict the label of instance in the testing data set S0

 y1←h0(x)

 > Append feedback from last predicting label

 x[|x|+1] ← y1;

 > Keep all negative examples because of unbalance examples

 if (x, y)∈N0 > μ negative example

 > Let negative be class -1

 103

 if rand() ≤ ρ

 S1[k++]← (x, -1)

p←ρ

 while p≥ 1

 if rand() ≤ p-1 > Duplicate the negative example if |N1| is too small

 S1[k++]← (x, -1)

 p ← p-1

 end while

 > (x, y)∈P0 Keep partial positive examples, under sampling

 else if rand()≤ γ

 > let positive example be class +1

 S1[k++]← (x, +1)

 i ← i+1

 end foreach

 return S1

Two-stage learning algorithm including training and testing algorithms:

SNELA2 (S0, T0,μ , γ , ρ , 1δ , 2δ)

>Learning phase

 (h0, 0ε)← LEARN (S0) > 0ε is training error

> S0 is divided into positive and negative data set in terms ofμ

 (P0, N0) ← DIVIDE (S0, h0,μ)

 104

> Form a compensated training set for negative learning

 S1 ← construct_audit_dataset (S0, h0, P0, N0, γ , ρ)

 (h1, 1ε) ← LEARN (S1)

> Testing phase

 T1 ← PREDICT (T0, h0)

> if the criterion is not met, return base predicting result.

 if
r+

≥
2

1
1ε

 then

 return T1

 T2 ← PREDICT (T0, h1)

 for i=1 to |T0| do

> Positive constants 1δ , 2δ are confidence threshold.

if T1[i].y < 1δ and T2[i].y < - 2δ

then

T3[i].y ← - T1[i].y > reverse predicting class

else

T3[i].y ← T1[i].y > keep class unchanged

 end for

 return T3

 105

5.5 Three-stage Learning of SNELA

The limitation of two-stage negative learning is that the strong condition or upper

bound is related to the ratio of positive and negative examples. And it assumes a small

size of examples for the audit. Comparing to original training data set for the learner, it

can still reflect the distribution of data space. The condition 1ε <
r+2

1 is not easy to meet

because learning on the imbalanced data is much more difficult than that on the balanced

data. The audit has strong capability on correcting the predicting results of the learner by

reversing possibility of sampling data the result from class +1 into -1 or vice versa. That

requires the audit has a higher accuracy than the respective learner’s. Two-stage learning

overcomes those shortcomings by applying the confidence of SVM, which assumes a

lower confidence of instance and then has lower possibility to predict correctly. Three-

stage learning extends two-stage learning by adding an extra learning stage to learn on

the hardest negative data. The extra learning algorithm is called booster and its behavior

is close to the boosting algorithm. The booster’s goal is to enhance the audit’s accuracy

by mining those negative examples that are disagreed by the learner and the audit.

Three-stage learning learns on three different distributions D0, D1 and D2; and

output a combined hypothesis. Three learning methods are learner, audit and booster

respectively. In this dissertation these methods are SVMs. The learner is trained on

original distribution of data in the normal way to output hypothesis h0(x) with

error 0ε =]0)([Pr 0
0

<
∈

xyh
Dx

as shown on the top of Figure 5.15. The learner has found some

examples that are misclassified on the original distribution. To enhance the capability of

leaner, the audit works on the distribution D1 that includes harder parts of the distribution

 106

to judge the learner’s ability of prediction. The instances chosen according to the

distribution D1 are sampled from positive and negative examples classified by h0. The

audit outputs hypothesis h1(x) with error 1ε =]0)([Pr 1
1

<
∈

xyh
Dx

. Finally, D3 is constructed

by removing from D0 the examples on which h1 agree with h0. The booster produces

hypothesis h2(x). The combinational hypothesis h(x) is: given an instance x, if

1)(1 +=xh then let)()(0 xhxh = ; otherwise if 1)(2 +=xh then let)()(0 xhxh =

else)()(0 xhxh −= .

The area us NP ∪ with distribution D1 cannot be classified by hypothesis h1(x)

because h1(x) outputs class -1 in this area. Therefore, the hypothesis h2(x) learned from

us NP ∪ enhances prediction as majority vote[96] strategy.

The possibility of s, t, u, v is defined as follows:

• The possibility]1)(0)([Pr 10
0

−=∧>=
∈

xhxyhs
Dx

, the area that is NOT supposed to be

compensated is compensated. This is a bad situation.

• The possibility]1)(0)([Pr 10
0

+=∧>=
∈

xhxyht
Dx

, the area that is NOT supposed to be

compensated is not compensated. This is a good situation.

• The possibility]1)(0)([Pr 10
0

−=∧<=
∈

xhxyhu
Dx

, the area that is supposed to be

compensated is compensated. This is a good situation.

• The possibility]1)(0)([Pr 10
0

+=∧<=
∈

xhxyhv
Dx

, the area that is supposed to be

compensated is NOT compensated. This is a bad situation.

 107

The possibility s + u is the area expected NOT to be compensated, while u + v is the area

expected to be compensated. In summary, the four possibility areas are listed in the table

below.

P0 N0

ts u v

1-ε0 ε0

D0

D1

FP1

P1

FN1

undersampling(P0,r) oversampling(N0,p)

1-ε1

r p

D2

TN2

P2

FN2

Ps, Nu

1-ε2

FN1 TP1 TN1 FP1

w

Nu NvPs Pt

Figure 5.15 The distribution D0, D1 and D2 on the three-stage learning. ts PPP ∪=0 ,

vu NNN ∪=0 . 111 TNTPP ∪= and 111 FNFPN ∪=

 108

TABLE 5.1 The possibility of four areas

Area
Target

Label

Learner

h0(x)

Audit

h1(x)
audit

+1 +1 -1
s

-1 -1 -1
Detect wrong

+1 +1 +1
t

-1 -1 +1
Correctly detect

+1 -1 -1
u

-1 +1 -1
Correctly detect

+1 -1 +1
v

-1 +1 +1
Not detect

 00 1]0)([Pr

0

ε−=>=+
∈

xyhts
Dx

 (5-29)

 00]0)([Pr
0

ε=<=+
∈

xyhvu
Dx

 (5-30)

Combining equation (5-13), (5-29) and (5-30), we know the value of s and v can be

solved:

bua

u

u

u
ts

+=

+−+
−

=

++−+
−

=

−+−−
−−=

−−=

])([1

]))(1([1

]))(1()[1(1

1

010
0

0

100
0

0

0

100
0

0

ρρεργεε
γε
ε

ρργεεγε
γε
ε

γε
ρργεεεε

ε

 (5-31)

 uv −= 0ε (5-32)

where])([1
1

0 ρργε
γ
ε

−+
−

=a and
0

0)1(
γε

ερ −
=b

 109

The probability of instance x being chosen under D2 is defined:

us

xhxDxD
+

−=
=

]1)(Pr[)()(10
2 (5-33)

Then, we get the error of combinational hypothesis h(x) as follows.

)(]1)(Pr[)(

]1)(0)([Pr]1)(0)([Pr

]0)([Pr

210

1210

xpxhxDv

xhxyhxhxyh

xyh

Xx

DxDx

Dx

−=+=

−=∧<∨+=∧<=

<

∑
∈

∈∈

∈

]1)1([

)1(
)(

)(

22
0

0
02

2220

20

2

ua

uba
ubuau

usv

−+
−

++=

−+++=
+++−=

++=

εε
γε

ερεε

εεεε
εε

ε

 (5-34)

0 ε≤uQ

)(

])([1

])([1

]0)([Pr

20
22

2022

200202

γ
εεργε

γ
ρε

εεργρε
γ

ε

εεργγερε
γ

εε

−
++=

−++=

−+−++≤

<
∈

a

a

a

xyh
Dx

 (5-35)

We know 2,1,0,5.0 =< iiε , and then the rightmost item above is less than 0. The

following equality can be gotten:

 110

])()([

])1)(([

)(

)]1)(([

)(

])([
1

)(

]0)([Pr

1010
2

010
2

20
010

2

20
221

0

20
22

ργεεργεγε
γ
ε

εργεγε
γ
ε

γ
εεργ

εργερε
γ
ε

γ
εεργ

ε
γ
ρερργε

γ
ε

γ
εεργ

ε
γ
ρε

+−++=

−++=

−
+−++=

−
++−+

−
=

−
++≤

<
∈

a

xyh
Dx

 (5-36)

If we do not consider the prior knowledge of the difference among the errors 210 ,, εεε ,

then we assume 2,1,0, =< ii εε

])()2[(1]0)([Pr 32 εργεργ
γ

+−+≤<
∈

xyh
Dx

 (5-37)

We get the error bound of three-stage learning h(x) below:

)()(]0)([Pr 2 εε OOxyh
Dx

<=<
∈

 (5-38)

The error bound (5-37) indicates that the error bound is small whenε is small. In

conclusion, for 2,1,0, =<∀ ii εε in the three-stage learning, the error of hypothesis

returned is bounded)(2εO . That significantly reduces the error of original hypothesis

learner which is bound to)(εO . The error bound is exactly the same as the result of

Boosting algorithm[95] when 5.0== ργ , that is 32 23]0)([Pr εε −≤<
∈

xyh
Dx

. The

inequality (5-36) of the error bound of h(x) is rewritten in below format:

])()([]0)([Pr 10110102 εεε
γ
ρεεεεε −+−+≤<

∈
xyh

Dx
 (5-39)

 111

This indicates that a small value γρ / is preferred to have small error bound. However, a

small γ and large ρ are usually chosen in the practical application because the audit

shows low error 1ε in the balanced training examples D1. Therefore, there exists a

tradeoff between 1ε and γρ / .

We know 210 εεε ≤≤ ; and we choose 10 ≤≤ γ , ρ≤1 and
0

01
ε
ε

γ
ρ −
≤ in the

practice because the small size of training examples leads to bad performance of

hypothesis. Thus from inequality (5-36) and equation (5-26) the error bound of h(x) is

equivalent to the following:

)1(dc

])1)(1([

]0)([Pr

1

0102

γ
ρε

γ
ρεεεε

++=

+−+≤

<
∈

xyh
Dx

 (5-40)

)11(dc]0)([Pr
0

0
1 ε

εε
r

xyh
Dx

−
++≤<

∈
 (5-41)

Where c= 20εε and d=)1(02 εε − are constants as long as 20 ,εε are fixed. If over-sampling

strategy decreases the value)1(1 γ
ρε + or)11(

0

0
1 ε

εε
r
−

+ , then the over-sampling strategy can

be used. The algorithm of three-stage learning SNELA3 is shown below:

SNELA3 (S0, T0,μ , γ , ρ)

>Learning phase

 (h0, 0ε)← LEARN (S0) > 0ε is training error

> S0 is divided into positive and negative data set in terms ofμ

 112

 (P0, N0) ← DIVIDE (S0, h0,μ)

> Form a compensated training set for audit in the negative learning

 S1 ← construct_audit_dataset (S0, h0, P0, N0,γ , ρ)

 (h1, 1ε) ← LEARN (S1)

> Form a compensated training set for booster in the third stage learning

 S2 ← construct_booster_dataset (S0, h0, h1)

 (h2, 2ε) ← LEARN (S2)

> Testing phase

Foreach x in T0 do

if 1)(1 +=xh

T1[i] ←)(0 xh

else if 1)(2 +=xh

T1[i] ←)(0 xh

 else

T1[i] ←)(0 xh−

 end foreach

 return T1

 113

The function of construct data set S2 for booster in the third stage learning is in the

following.

construct_booster_dataset (S0, h0, h1)

 k ← 0

 foreach (x, y) in S0 do

 > Predict the label of instance in the testing data set S0

 y1←h0(x)

 > Append feedback from last predicting label

 x[|x|+1] ← y1;

 > x ∈ us∪ , h1 does not agree with h0

 if h1(x) < 0

 if y*h0(x)<0

 > x ∈u learner misclassified instance x, let negative be class -1

 S2[k++]← (x, -1)

 else if y*h0(x)>0

 > x ∈s, let positive example be class +1

 S2[k++]← (x, +1)

 end foreach

 return S2

Comparing to two-stage learning, three-stage learning is guaranteed to have good

performance although 210 εεε ≤≤ . The lower accuracy hypothesis can improve the base

learning accuracy by choosing appropriated parameter of γρ / which is independent with

 114

the error bound)(2εO . The third stage learning is a booster which can be run many times

to boost the base learning algorithm. Note that the error bound is only related to the ratio

of the size of positive and negative examples instead of the total number of examples.

This indicates that the balance of positive and negative is sensitive to the final

performance.

The algorithm run in the SVM can be modified in this way:

• 1)(+=xhi is equivalent to ii xh μ>)(, i=0,1,2

• 1)(−=xhi is equivalent to ii xh μ<)(, i=0,1,2

The parameter μ can be verified by AUC on the equation (1-9) because AUC is

independent on the bias b. The default value of μ is zero in the SVMs as shown on the

figure below. Sometimes, SVM gives a low accuracy whereas AUC shows high value in

imbalanced examples prediction. The reason is that bias value is not correct. The bias can

be moved around to maximize the accuracy of the hypothesis. The parameter μ is

computed in the equation (5-42).

TP h(x)

TN

µ

0

-1 +1

FP

FN

B

Figure 5.16 The parameter μ is determined by moving around the line B to minimize the
size of FNFP∪

 115

 2,1,0,
1

maxarg 1
0))((

),(
==

∑
=

>−

∈
k

Sk

S

i
xhy

Syx
k

k

kiki

k

μ

μ (5-42)

where 1π is defined to be 1 if the predicate π holds and 0 otherwise.

5.6 Simulation

Six data sets were studied in this simulation. Breast-cancer-Wisconsin[97-99] with

699 examples and 10 attributes is binary classification problem. The class +1 examples

are Benign 458 (65.5%) and class -1 examples are Malignant 241 (34.5%). Zhang,J. used

369 examples of them and the best accuracy obtained is 93.7% by 1-nearest

neighbor[100]. Ionosphere is the data set with size of 351 examples and 34 attributes.

David Aha used nearest neighbor to attain an accuracy of 92.1%, and Ross Quinlan's C4

algorithm attains 94.0% (no windowing), and that IB3attained 96.7% [101].

TABLE 5.2 Overview of negative learning performance

Accuracy% Other SVM NDDCHA SNELA2 SNELA3
Breast-cancer-Wisconsin 93.7 89.6 90.3 92.3 92.5

Ionosphere 96.7 84.3 84.3 84.3 83.4

Liver-disorder - 69.0 68.3 72.5 75.3

Lung-cancer 77.0 74.0 72.0 70.8 77.2

Pima Indians Diabetes 76.0 72.3 72.4 73.2 74.0

Liver-disorder has 345 examples with 6 attributes without missing values. Lung-

cancer has 32 examples with 34 attributes. It is 3 classes classification, the number of

three classes are 9,13,10 respectively[102]. The best bias accuracy is 77%. Pima Indians

 116

Diabetes has 768 examples with 8 attributes, 500 positive examples and 268 negative

examples. Using 576 training instances, the sensitivity and specificity of their algorithm

was 76% on the remaining 192 instances[103].

In the Table 5.3, the column other is the best accuracy found in other approaches.

The columns SVM, NDDCHA, SNELA2 and SNELA3 are the accuracy values by using

their methods. The results show that SNELA3 has better performance than SNELA3 in

most cases. SNELA2 has high risk in predicting negative data because it depends on the

confidence value of SVM. It tells us the value of h(x) is not exact confidence of instance

x in the feature space defined by h(x). SNELA does give the best performance and it does

improve the single SVM method. That is the goal of negative data mining to improve the

accuracy of original algorithm by mining negative data.

 117

CHAPTER 6

 CONCLUSION AND FUTURE WORK

6.1 Summary

In the supervised machine learning field, the generalization capability is archived

by training on a set of known examples from the input spaces. The predicting error is

inevitable. One source of error is from the low powerful learning algorithm which either

has approximation error or estimation error or both. Another source is from not-well-

distributed data which is not i.i.d.. Therefore, the negative examples exist widely in all

known learning algorithms. Two negative data mining approaches are proposed in this

dissertation by understanding two types of errors. The basic philosophy of two

approaches is that firstly negative examples contains positive information, and secondly

the approaches make improvement on the generalization capacity of base learning

algorithm as much as possible, and does not make any changes on the base learning

machine if the improvement cannot be made. Therefore, the challenges include learning

on the imbalanced positive and negative examples, and the determination of improvement

criteria on the base learning algorithm.

The proposed NDDCHA improves the learning algorithm performance through

compensating the base hypothesis by utilizing the negative data set. Useful information

content in the negative data is mined to benefit the model of an application. This

approach expands the hypotheses space to close the target space so that the

 118

approximation error will be reduced. A hypothesis with high VC dimension has high

capability to classify the examples. Its drawback is that it is prone to overfitting.

NDDCHA can use low VC dimension hypothesis as base algorithm and use high VC

dimension of hypothesis to compensate the base one to reduce overfitting. NDDCHA

separates every example in the hyperplane as much as possible which matches the

principle of Vapnik’s generalization theory of maximizing the margins. The cases show

that the NDDCHA does increase the performance.

A tutor usually can predict a student performance based on judging student’s

work. If the tutor’s judgment on student’s work has high confidence, then it is helpful to

the student. Otherwise, a mentor may be needed to confirm which one is correct between

the student and the tutor in order to improve student’s performance. SNELA is two or

three stages learning including learner, audit and booster like the scenario cooperated by

student, tutor and mentor. SNELA based on the theoretical analysis improves the

performance of base learning algorithm learner by creating one or two additional

hypothesis audit and booster to mine the negative examples. The error ε of learner is

proved to decrease from)(εO to)(2εO .

6.2 Future Work

The NDDCHA offers the flexibility of using other non-SVM algorithms as base

and patching learning algorithm. Hence, as a future work, we will study the above said

cases with other learning algorithms like ANN as base learning algorithm. The methods

of vector similarity and partitioner functions are chosen by the user based on the

understanding of the properties of the training data. The future work also includes

 119

investigating the relationship between the vector similarity function and the data

distribution, using the fuzzy partitioner.

SNELA assumes the data used is i.i.d. and a hypothesis learned on a small size of

examples is still capable to predict other instances. This is not true in the practical

application, especially, in the imbalanced training data. The compensated data set and

boost data set are transformed from original data set which is not exactly under the

control of original data distribution. Then, further work will investigate this

phenomenon. Future work of SNELA also includes the run time and memory space

complexity analysis.

 120

BIBLIOGRAPHY

[1] J. S.-T. Nello Cristianini, An Introduction to Support Vector Machines and Other
Kernel-based Learning Methods: Cambridge University Press, 2000.

[2] T. M. Mitchell, Machine Learning, 1 ed: McGraw-Hill, 1997.

[3] V. N. Vapnik, The Nature of Statistical Learning Theory. New York: Springer-
Verlag, 1995.

[4] M. P. a. A. Shilton, "Adaptive Support Vector Machines for Regression," Proc. of
the 9th International Conference on Neural Information processing, Singapore,
2002.

[5] V. Vapnik, Statistical Learning Theory: John Wiley & Sons, 1998.

[6] M. Palaniswami, Shilton, A., Ralph, D., and Owen B., "Machine learning using
support vector machines," presented at International conference on Artificial
Intelligence in Science and Technology, Hobart, Australia,, 2000.

[7] B. Scholkopf, "Statistical Learning and Kernel Methods,"
http://citeseer.ist.psu.edu/507312.html, 2000.

[8] M. Fuchs, "Instance-based learning by searching," 1997.

[9] T. R. Payne, P. Edwards, and C. L. Green, "Experience with rule induction and k-
nearest neighbor methods for interface agents that learn," Knowledge and Data
Engineering, IEEE Transactions on, vol. 9, pp. 329-335, 1997.

[10] J. Egan, Signal detection theory and ROC analysis: Academic Press, 1975.

[11] A. P. Bradley, "The use of the area under the ROC curve in the evaluation of
machine learning algorithms," Pattern Recognition, vol. 30, pp. 1145-1159, 1997.

[12] Lara and J. v. Schalkwyk, "The magnificent ROC,"
http://www.anaesthetist.com/mnm/stats/roc/, 2000.

[13] D. M. Green and J. A. Swets., Signal detection theory and psychophysics. New
York: Wiley, 1966.

[14] C. C. a. M. Mohri, "AUC optimization vs. error rate minimization,"
http://citeseer.ist.psu.edu/cortes03auc.html, 2004.

[15] A. Rakotomamonjy, "Optimizing Area Under Roc Curve with SVMs,"
http://citeseer.ist.psu.edu/731744.html.

 121

[16] S. R. Gunn, "Support Vector Machine for Classification and Regression,"
Engineering, Science and Math. School of Electronics and Computer
Science,University of Southhampton 1998.

[17] S. Huang, K. K. Tan, and K. Z. Tang, Neural network control : theory and
applications. Hertfordshire, England Williston, VT: Research Studies Press;
Distribution North America, AIDC, 2004.

[18] R. L. Harvey, Neural network principles. Englewood Cliffs, NJ: Prentice Hall,
1994.

[19] R. Bharath and J. Drosen, Neural network computing. New York:
Windcrest/McGraw-Hill, 1994.

[20] O. Omidvar, Elliott, and L. David, Neural systems for control. San Diego:
Academic Press, 1997.

[21] F. Jiang, A. P. Preethy, and Y.-Q. Zhang, "Compensating Hypothesis by Negative
Data," presented at IEEE: International Conference on Neural Networks and
Brain, Beijing,China, 2005.

[22] R. E. Schapire, "The Boosting Approach to Machine Learning An Overview,"
MSRI Workshop on Nonlinear Estimation and Classification, 2002.

[23] R. E. Schapire, "A Brief Introduction to Boosting," presented at Proceedings of
the Sixteenth International Joint Conference on Artificial Intelligence, 1999.

[24] L. Breiman, "Bagging predictors," Machine Learning vol. 24, pp. 123-140, 1996.

[25] R. E. Schapire, "The Boosting Approach to Machine Learning An Overview,"
presented at MSRI Workshop on Nonlinear Estimation and Classification,
Berkeley, CA, 2001.

[26] Y.-c. I. Chang, "Boosting SVM Classifiers with Logistic,
Regression,http://www.stat.sinica.edu.tw/library/c_tec_rep/2003-03.pdf."

[27] S. P. Hyun-Chul Kim, Hong-Mo Je , Daijin Kim , Sung Yang Bang "Pattern
classification using support vector machine ensemble," presented at 16th
International Conference on Pattern Recognition, 2002.

[28] A. J. Sharkey, Combining Artificial Neural Nets: Ensemble and Modular Multi-
Net Systems, 1st ed. New York: Springer-Verlag, 1999.

[29] S. P. Hyun-Chul Kim, Hong-Mo Je, Daijin Kim, Sung Yang Bang: , "Support
Vector Machine Ensemble with Bagging," presented at Pattern Recognition with
Support Vector Machines, First International Workshop, SVM 2002, Niagara
Falls, Canada, 2002.

 122

[30] S. Pang, D. Kim, and S. Y. Bang, "Membership authentication in the dynamic
group by face classification using SVM ensemble," Pattern Recognition Letters
vol. 24, pp. 215-225, 2003.

[31] J. B. Kristin P. Bennett , R.P.I, "A Support Vector Machine Approach to Decision
Trees " Rensselaer Polytechnic Institute, Troy, NY 1997.

[32] R. E. Schapire, Y. Freund, P. L. Bartlett, and W. S. Lee, "Boosting the margin: a
new explanation for the effectiveness of voting methods," presented at 14th Int.
Conf. Machine Learning, San Mateo, CA, 1997.

[33] Y. Freund and R. E. Schapire, "A Short Introduction to Boosting," Journal of
Japanese Society for Artificial Intelligence, vol. 14, pp. 771-780, 1999.

[34] L. G. Valiant, "A theory of the learnable," Communications of the ACM, vol. 27,
pp. 1134-1142, 1984.

[35] Y. Freund, "An Adaptive Version of the Boost By Majority Algorithm," presented
at "{COLT}: Proceedings of the Workshop on Computational Learning Theory,
1999.

[36] J. H. Friedman, T. Hastie, and R. Ribshirani, "Additive Logistic Regression: A
Statistical View of Boosting," The Annals of Statistics, vol. 28, pp. 337-374, 2000.

[37] J. R. Quinlan, "Bagging, Boosting, and C4.5," {AAAI}/{IAAI} vol. 1, pp. 725-730,
1996.

[38] H.-T. Lin and L. Li, "Novel Distance-Based SVM Kernels for Infinite Ensemble
Learning," presented at The 12th International Conference on Neural Information
Processing, Taipei, Taiwan, 2005.

[39] Y. Freund and R. E. Schapire, "Experiments with a New Boosting Algorithm "
presented at International Conference on Machine Learning, 1996.

[40] A. J. Smola and B. Schölkopf, "On a kernel-based method for pattern recognition,
regression, approximation and operator inversion," Algorithmica, vol. 22, pp. 211-
231, 1998.

[41] Y. A. LeCun, L. D. Jackel, L. Bottou, A. Brunot, C. Cortes, J. S. Denker, H.
Drucker, I. Guyon, U. A. Müller, E. Säckinger, P. Y. Simard, and V. N. Vapnik,
"Learning algorithms for classification: A comparison on handwritten digit
recognition,," Neural Networks, pp. 261–276, 1995.

[42] C. J. C. Burges and B. Schölkopf, Improving the accuracy and speed of support
vector learning machines: Cambridge, MA: MIT Press, 1997.

 123

[43] K.-R. Müller, A. J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. N.
Vapnik, "Predicting time series with support vector machines," presented at
Artificial Neural Networks—ICANN’97, Berlin, Germany, 1997.

[44] S. Dumais, J. Platt, D. Heckerman, and M. Sahami, "Inductive learning
algorithms and representations for text categorization," presented at 7th
international conference Information Knowledge Management, 1998.

[45] T. Furey, N. Cristianini, N. Duffy, D. Bednarski, M. Schummer, and D. Haussler,
"Support vector machine classification and validation of cancer tissue samples
using microarray expression data," Bioinformatics, vol. 16, pp. 906-914, 2000.

[46] A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, and K.-R. Müller,
"Engineering support vector machine kernels that recognize translation initiation
sites in DNA," vol. 16, pp. 799-807, 2000.

[47] C. S. Ong, X. Mary, S. Canu, and A. J. Smola, "Learning with Non-Positive
Kernels," presented at Proceedings of the 21st International Conference on
Machine Learning, Banff,Canada, 2004.

[48] S.-i. Amari and S. Wu, "Improving Support Vector Machine Classifiers by
Modifying Kernel Functions," Neural Networks, pp. 783--789, 1999.

[49] A. N. Srivastava, J. Schumann, and B. Fischer, "An Ensemble Approach to
Building Mercer Kernels with Prior Information," presented at IEEE Systems
Manand Cybernetics Conference Workshop on Ensemble Methods in Extreme
Environments,, 2005.

[50] B. Vanschoenwinkel and B. Manderick, "Substitution Matrix based Kernel
Functions for Protein Secondary Structure,"
http://citeseer.ist.psu.edu/723055.html.

[51] B. Scholkopf, "The Kernel Trick for Distances," NIPS, pp. 301-307, 2000.

[52] B. Vanschoenwinkel and B. Manderick, "A weighted polynomial information
gain kernel for resolving pp attachment ambiguities with support vector
machines," presented at The Eighteenth International Joint Conferences on
Artificial Intelligence(IJCAI-03) 2003.

[53] R. F. E. Osuna, and F. Girosi. , "Support vector machines: training and
applications.," in AI Memo: MIT, 1997, pp. 1602.

[54] C. J. C. Burges, "A Tutorial on support vector machines for pattern recognition,"
Data Mining and Knowledge Discovery, pp. 121-167, 1998.

[55] C. C. Kristin P. Bennett, "Support Vector Machines: Hype or Hallelujah?,"
SIGKDD Explorations, vol. 2, 2000.

 124

[56] I. G. Bernhard Schölkopf, Jason Weston, "Statistical Learning and Kernel
Methods in Bioinformatics."

[57] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, "A Practical Guide to Support Vector
Classification " citeseer.ist.psu.edu/689242.html.

[58] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing Multiple
Parameters for Support Vector Machines," Machine Learning, vol. 46, pp. 131-
159, 2002.

[59] B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A Training Algorithm for Optimal
Margin Classifiers " Computational Learing Theory, pp. 144-152, 1992.

[60] P.-H. Chen, C.-J. Lin, and B. Schölkopf, "A Tutorial on v-Support Vector
Machines," www.csie.ntu.edu.tw/~cjlin/papers/nusvmtutorial.pdf, 2002.

[61] V. N. Vapnik, Estimation of Dependences Based on Empirical Data: Springer-
Verlag, 1982.

[62] D. W. Aha, D. Kibler, and M. K. Albert, "Instance-based learning algorithms,"
Machine Learning, vol. 6, pp. 37-66, 1991.

[63] C. G. Atkeson, A. W. Moore, and S. Schaal, "Locally Weighted Learning,"
Artificial Intelligence Review, vol. 11, pp. 11-73, 1997.

[64] C. G. A. A. Moore, and S.A. Schaal, "Locally Weighted Learning For Control,"
AI Review, vol. 11, pp. 75-113, 1997.

[65] J. Zhan, C. LiWu, and S. Matwin, "Building k-nearest neighbor classifiers on
vertically partitioned private data," 2005.

[66] W. Ji-Gang, P. Neskovic, and L. N. Cooper, "An Adaptive Nearest Neighbor
Algorithm for Classification," 2005.

[67] L. Kuan-Ming and L. Chih-Jen, "A study on reduced support vector machines,"
Neural Networks, IEEE Transactions on, vol. 14, pp. 1449-1459, 2003.

[68] W. Fangfang and Z. Yinliang, "A Novel Multi-Reduced Support Vector
Machine," 2005.

[69] C.-T. S. Jyh-Shing Roger Jang, Eiji Mizutani Neuro-Fuzzy and Soft Computing: A
Computational Approach to Learning and Machine Intelligence, 1st ed: Pearson
Education, 1996.

[70] G. Horvath, "CMAC neural network as an SVM with B-spline kernel functions,"
2003.

 125

[71] V. N. Vapnik, "An overview of statistical learning theory," IEEE Transactions on
Neural Networks, vol. 10, pp. 988-999, 1999.

[72] A. Gammerman, Computational learning and probabilistic reasoning. Chichester
; New York: Wiley in association with UNICOM, 1996.

[73] V. N. Vapnik, The nature of statistical learning theory, 2 ed: Springer, 2000.

[74] B. Schölkopf, C. Burges, and V. Vapnik, "Extracting Support Data for a Given
Task," presented at First International Conference on Knowledge Discovery &
Data Mining, Menlo Park, 1995.

[75] Q.-L. Z. Quang-Anh Tran, Xing Li, "Reduce the number of support vectors by
using clustering techniques," presented at Machine Learning and Cybernetics,
2003 International Conference on, 2003.

[76] Y. Lin, Y. Lee, and G. Wahba, "Support Vector Machines for Classification in
Nonstandard Situations," Machine Learning, vol. 46, pp. 191 - 202 2002.

[77] D. H. a. C. K. J. S. Breese, "Empirical Analysis of Predictive Algorithms for
Collaborative Filtering,," Proceeding of the Fourteenth Conference on
Uncertainty in Artificial Intelligence (UAI), 1998.

[78] Z. W. Kai Yu, Xiaowei Xu, Martin Ester, "Feature Weighting and Instance
Selection for Collaborative Filtering," Proc. 2nd International Workshop on
Management of Information on the Web - Web Data and Text Mining (MIW�01),
2001.

[79] H. Bandemer and W. Nather, Fuzzy data analysis. Dordrecht, Netherlands ;
Boston: Kluwer Academic Publishers, 1992.

[80] M. Karpinski and T. Werther, "VC Dimension and Uniform Learnability of
Sparse Polynomials and Rational Functions," SIAM J Computing, vol. 22, pp.
1276 - 1285, 1993.

[81] G. Cestnik, I. Konenenko, and I. Bratko, "A Knowledge-Elicitation Tool for
Sophisticated Users," presented at Progress in Machine Learning, 1987.

[82] S. a. B. Hettich, S. D., "The UCI KDD Archive ": Irvine, CA: University of
California, Department of Information and Computer Science. , 1999.

[83] T. Joachims, Learning to Classify Text Using Support Vector Machines: Kluwer
Academic Publishers, 2002.

[84] T. Joachims, Making large-Scale SVM Learning Practical: MIT Press, 1999.

[85] D. S. Moore and G. P. McCabe, Introduction to the Practice of Statistics 4ed:
W.H. Freeman & Company, 2002.

 126

[86] C.-f. L. S.-d. Wang, "Training algorithms for fuzzy support vector machines with
noisy data," presented at Neural Networks for Signal Processing,NNSP'03. 2003
IEEE 13th Workshop on, 2003.

[87] N. Cristianini, o. Shawe-Taylor, and A. Elisseeff, "On Kernel-Target Alignment,"
Advnaces in Neural Infromation Processing System, vol. 14, 2001.

[88] G. Weiss and F. Provost, "The effect of class distribution on classifier learning,"
Technical Report ML-TR 43, Department of Computer Science, Rutgers
University, 2001.

[89] R. Yan, A. Hauptmann, R. Jin, and Y. Liu, "On Predicting Rare Class with SVM
Ensemble in Scene Classification " presented at IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP'03), 2003.

[90] B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, and
A. J. Smola, "Input Space vs. Feature Space in Kernel-Based Methods," IEEE
Transactions on Neural Networks, vol. 10, pp. 1000-1017, 1999.

[91] T. G. Dietterich, A. Jain, R. Lathrop, and T. Lozano-Perez, A comparison of
dynamic reposing and tangent distance for drug activity prediction, vol. 6. San
Mateo,CA Morgan Kaufmann. . 1994.

[92] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to linear
regression analysis, 3rd ed. New York: Wiley, 2001.

[93] E. F. Osuna, R. Girosi, F. , "An improved training algorithm for support vector
machines," presented at Proceedings of the IEEE Workshop Neural Networks for
Signal Processing, 1997.

[94] R. H. L. T. G Dietterich, and T. Lozano-Perez. , "Solving the multiple instance
problem with axis-parallel rectangles," Artificial Intelligence in Engineering, vol.
89, pp. 31--71, 1997.

[95] R. E. Schapire, "The Strength of Weak Learnability," Machine Learning, vol. 5,
pp. 197-227, 1990.

[96] Freund, "Boosting a Weak Learning Algorithm by Majority," presented at
{COLT}: Proceedings of the Workshop on Computational Learning Theory,
1990.

[97] O. L. Mangasarian and W. H. Wolberg, "Cancer diagnosis via linear
programming," SIAM News, vol. 23, pp. 1&18, 1990.

[98] W. H. Wolberg and O. L. Mangasarian, "Multisurface method of pattern
separation for medical diagnosis applied to breast cytology," presented at
Proceedings of the National Academy of Sciences, USA, 1990.

 127

[99] K. P. Bennett and O. L. Mangasarian, "Robust linear programming discrimination
of two linearly inseparable sets," Optimization Methods and Software pp. 23-34,
1992.

[100] J. Zhang, "Selecting typical instances in instance-based learning," presented at
Proceedings of the Ninth International Machine Learning Conference, Aberdeen,
Scotland 1992.

[101] V. G. Sigillito, S. P. Wing, L. V. Hutton, and K. B. Baker, "Classification of radar
returns from the ionosphere using neural networks," Johns Hopkins APL
Technical Digest, vol. 10, pp. 262-266., 1989.

[102] Z. Q. Hong and J. Y. Yang, "Optimal Discriminant Plane for a Small Number of
Samples and Design Method of Classifier on the Plane," Pattern Recognition, vol.
24, pp. 317-324, 1991.

[103] J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, and R. S. Johannes,
"Using the ADAP learning algorithm to forecast the onset of diabetes mellitus,"
presented at Proceedings of the Symposium on Computer Applications and
Medical Care, 1988.

	Georgia State University
	ScholarWorks @ Georgia State University
	8-3-2006

	SVM-Based Negative Data Mining to Binary Classification
	Fuhua Jiang
	Recommended Citation

	Microsoft Word - Fuhua Jiang.doc

