69,831 research outputs found

    Large-Scale Traffic Flow Prediction Using Deep Learning in the Context of Smart Mobility

    Get PDF
    Designing and developing a new generation of cities around the world (termed as smart cities) is fast becoming one of the ultimate solutions to overcome cities' problems such as population growth, pollution, energy crisis, and pressure demand on existing transportation infrastructure. One of the major aspects of a smart city is smart mobility. Smart mobility aims at improving transportation systems in several aspects: city logistics, info-mobility, and people-mobility. The emergence of the Internet of Car (IoC) phenomenon alongside with the development of Intelligent Transportation Systems (ITSs) opens some opportunities in improving the tra c management systems and assisting the travelers and authorities in their decision-making process. However, this has given rise to the generation of huge amount of data originated from human-device and device-device interaction. This is an opportunity and a challenge, and smart mobility will not meet its full potential unless valuable insights are extracted from these big data. Although the smart city environment and IoC allow for the generation and exchange of large amounts of data, there have not been yet well de ned and mature approaches for mining this wealth of information to bene t the drivers and traffic authorities. The main reason is most likely related to fundamental challenges in dealing with big data of various types and uncertain frequency coming from diverse sources. Mainly, the issues of types of data and uncertainty analysis in the predictions are indicated as the most challenging areas of study that have not been tackled yet. Important issues such as the nature of the data, i.e., stationary or non-stationary, and the prediction tasks, i.e., short-term or long-term, should also be taken into consideration. Based on this observation, a data-driven traffic flow prediction framework within the context of big data environment is proposed in this thesis. The main goal of this framework is to enhance the quality of traffic flow predictions, which can be used to assist travelers and traffic authorities in the decision-making process (whether for travel or management purposes). The proposed framework is focused around four main aspects that tackle major data-driven traffic flow prediction problems: the fusion of hard data for traffic flow prediction; the fusion of soft data for traffic flow prediction; prediction of non-stationary traffic flow; and prediction of multi-step traffic flow. All these aspects are investigated and formulated as computational based tools/algorithms/approaches adequately tailored to the nature of the data at hand. The first tool tackles the inherent big data problems and deals with the uncertainty in the prediction. It relies on the ability of deep learning approaches in handling huge amounts of data generated by a large-scale and complex transportation system with limited prior knowledge. Furthermore, motivated by the close correlation between road traffic and weather conditions, a novel deep-learning-based approach that predicts traffic flow by fusing the traffic history and weather data is proposed. The second tool fuses the streams of data (hard data) and event-based data (soft data) using Dempster Shafer Evidence Theory (DSET). One of the main features of the DSET is its ability to capture uncertainties in probabilities. Subsequently, an extension of DSET, namely Dempsters conditional rules for updating belief, is used to fuse traffic prediction beliefs coming from streams of data and event-based data sources. The third tool consists of a method to detect non-stationarities in the traffic flow and an algorithm to perform online adaptations of the tra c prediction model. The proposed detection approach is developed by monitoring the evolution of the spectral contents of the traffic flow. Furthermore, the approach is specfi cally developed to work in conjunction with state-of-the-art machine learning methods such as Deep Neural Network (DNN). By combining the power of frequency domain features and the known generalization capability and scalability of DNN in handling real-world data, it is expected that high prediction performances can be achieved. The last tool is developed to improve multi-step traffic flow prediction in the recursive and multi-output settings. In the recursive setting, an algorithm that augments the information about the current time-step is proposed. This algorithm is called Conditional Data as Demonstrator (C-DaD) and is an extension of an algorithm called Data as Demonstrator (DaD). Furthermore, in the multi-output setting, a novel approach of generating new history-future pairs of data that are aggregated with the original training data using Conditional Generative Adversarial Network (C-GAN) is developed. To demonstrate the capabilities of the proposed approaches, a series of experiments using arti cial and real-world data are conducted. Each of the proposed approaches is compared with the state-of-the-art or currently existing approaches

    Improving adaptation and interpretability of a short-term traffic forecasting system

    Get PDF
    Traffic management is being more important than ever, especially in overcrowded big cities with over-pollution problems and with new unprecedented mobility changes. In this scenario, road-traffic prediction plays a key role within Intelligent Transportation Systems, allowing traffic managers to be able to anticipate and take the proper decisions. This paper aims to analyse the situation in a commercial real-time prediction system with its current problems and limitations. The analysis unveils the trade-off between simple parsimonious models and more complex models. Finally, we propose an enriched machine learning framework, Adarules, for the traffic prediction in real-time facing the problem as continuously incoming data streams with all the commonly occurring problems in such volatile scenario, namely changes in the network infrastructure and demand, new detection stations or failure ones, among others. The framework is also able to infer automatically the most relevant features to our end-task, including the relationships within the road network. Although the intention with the proposed framework is to evolve and grow with new incoming big data, however there is no limitation in starting to use it without any prior knowledge as it can starts learning the structure and parameters automatically from data. We test this predictive system in different real-work scenarios, and evaluate its performance integrating a multi-task learning paradigm for the sake of the traffic prediction task.Peer ReviewedPostprint (published version

    A deep-learning model for urban traffic flow prediction with traffic events mined from twitter

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2019-05-03, rev-recd 2019-11-12, accepted 2020-02-06, registration 2020-02-06, pub-electronic 2020-03-14, online 2020-03-14, pub-print 2021-07Publication status: PublishedFunder: University of ManchesterAbstract: Short-term traffic parameter forecasting is critical to modern urban traffic management and control systems. Predictive accuracy in data-driven traffic models is reduced when exposed to non-recurring or non-routine traffic events, such as accidents, road closures, and extreme weather conditions. The analytical mining of data from social networks – specifically twitter – can improve urban traffic parameter prediction by complementing traffic data with data representing events capable of disrupting regular traffic patterns reported in social media posts. This paper proposes a deep learning urban traffic prediction model that combines information extracted from tweet messages with traffic and weather information. The predictive model adopts a deep Bi-directional Long Short-Term Memory (LSTM) stacked autoencoder (SAE) architecture for multi-step traffic flow prediction trained using tweets, traffic and weather datasets. The model is evaluated on an urban road network in Greater Manchester, United Kingdom. The findings from extensive empirical analysis using real-world data demonstrate the effectiveness of the approach in improving prediction accuracy when compared to other classical/statistical and machine learning (ML) state-of-the-art models. The improvement in predictive accuracy can lead to reduced frustration for road users, cost savings for businesses, and less harm to the environment

    Effects of Prediction Feedback in Multi-Route Intelligent Traffic Systems

    Full text link
    We first study the influence of an efficient feedback strategy named prediction feedback strategy (PFS) based on a multi-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. In this scenario, our model incorporates the effects of adaptability into the cellular automaton models of traffic flow. Simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e., vehicle number and flux. At the end of this paper, we also discuss in what situation PFS will become invalid in multi-route systems.Comment: 15 pages, 15 figures, Physica A (2010), doi:10.1016/j.physa.2010.02.03
    • …
    corecore