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Abstract

Designing and developing a new generation of cities around the world (termed as smart
cities) is fast becoming one of the ultimate solutions to overcome cities’ problems such as
population growth, pollution, energy crisis, and pressure demand on existing transporta-
tion infrastructure. One of the major aspects of a smart city is smart mobility. Smart
mobility aims at improving transportation systems in several aspects: city logistics, info-
mobility, and people mobility. The emergence of the Internet of Car (IoC) phenomenon
alongside with the development of Intelligent Transportation Systems (ITSs) opens some
opportunities in improving the traffic management systems and assisting the travelers and
authorities in their decision-making process. However, this has given rise to the generation
of huge amount of data originated from human-device and device-device interaction. This
is an opportunity and a challenge, and smart mobility will not meet its full potential unless
valuable insights are extracted from these big data.

Although the smart city environment and IoC allow for the generation and exchange
of large amounts of data, there have not been yet well defined and mature approaches for
mining this wealth of information to benefit the drivers and traffic authorities. The main
reason is most likely related to fundamental challenges in dealing with big data of various
types and uncertain frequency coming from diverse sources. Mainly, the issues of types of
data and uncertainty analysis in the predictions are indicated as the most challenging areas
of study that have not been tackled yet. Important issues such as the nature of the data,
i.e., stationary or non-stationary, and the prediction tasks, i.e., short-term or long-term,
should also be taken into consideration. Based on this observation, a data-driven traffic
flow prediction framework within the context of big data environment is proposed in this
thesis. The main goal of this framework is to enhance the quality of traffic flow predictions,
which can be used to assist travelers and traffic authorities in the decision-making process
(whether for travel or management purposes).

The proposed framework is focused around four main aspects that tackle major data-
driven traffic flow prediction problems: the fusion of hard data for traffic flow prediction;
the fusion of soft data for traffic flow prediction; prediction of non-stationary traffic flow;
and prediction of multi-step traffic. All these aspects are investigated and formulated as
computational based tools/algorithms/approaches adequately tailored to the nature of the
data at hand. The first tool tackles the inherent big data problems and deals with the
uncertainty in the prediction. It relies on the ability of deep learning approaches in handling
huge amounts of data generated by a large-scale and complex transportation system with
limited prior knowledge. Furthermore, motivated by the close correlation between road
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traffic and weather conditions, a novel deep-learning-based approach that predicts traffic
flow by fusing the traffic history and weather data is proposed.

The second tool fuses the streams of data (hard data) and event-based data (soft data)
using Dempster Shafer Evidence Theory (DSET). One of the main features of the DSET is
its ability to capture uncertainties in probabilities. Subsequently, an extension of DSET,
namely Dempsters conditional rules for updating belief, is used to fuse traffic prediction
beliefs coming from streams of data and event-based data sources.

The third tool consists of a method to detect non-stationarities in the traffic flow and
an algorithm to perform online adaptations of the traffic prediction model. The proposed
detection approach is developed by monitoring the evolution of the spectral contents of
the traffic flow. Furthermore, the approach is specifically developed to work in conjunction
with state-of-the-art machine learning methods such as Deep Neural Network (DNN). By
combining the power of frequency domain features and the known generalization capability
and scalability of DNN in handling real-world data, it is expected that high prediction
performances can be achieved.

The last tool is developed to improve multi-step traffic flow prediction in the recursive
and multi-output settings. In the recursive setting, an algorithm that augments the in-
formation about the current time-step is proposed. This algorithm is called Conditional
Data as Demonstrator (C-DaD) and is an extension of an algorithm called Data as Demon-
strator (DaD). Furthermore, in the multi-output setting, a novel approach of generating
new history-future pairs of data that are aggregated with the original training data using
Conditional Generative Adversarial Network (C-GAN) is developed.

To demonstrate the capabilities of the proposed approaches, a series of experiments
using artificial and real-world data are conducted. Each of the proposed approaches is
compared with the state-of-the-art or currently existing approaches.
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Chapter 1

Introduction

Presently, our cities suffer from ever increasing population growth and pollution leading to
huge pressure on existing transportation infrastructure. The situation will be even more
critical in the future. Recent statistics indicate that 60% of the worlds population will be
living in cities by 2050 [6]. The smart city concept was proposed as a vialable recourse to
deal with these issues. One of the main characteristics of smart cities is smart mobility.
A smart-mobility-enabled city should be effortlessly accessible to its residents and visi-
tors. Therefore, an efficient, intelligent, safe, comfortable, and multifaceted transportation
system, which is linked to various Information and Communication Technology (ICT) in-
frastructures, has to be provided. With more than a billion cars on the roads today, which
is expected to double to around 2.5 billion by 2050 [5], designing super-efficient navigation
and safer travel journey are becoming a major challenge for transportation authorities.
The development of Intelligent Transportation System (ITS) is a cornerstone in the design
and implementation of smart cities. Indeed, building more roads will not radically solve
the problem of large traffic congestion, fuel consumption, longer travel delays and safety.

Today, ITS is revolutionizing the how drivers and passengers use their transportation
networks. The classical Vehicular Adhoc Networks (VANETs) were proposed to connect
vehicles and infrastructure using Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) communications, respectively. VANET plays an important role in safety-oriented
applications, e.g., notifications of car accidents or hazardous weather condition, and traffic
management applications. However, VANET constitutes only a small portion of a smart
city. Moreover, some intrinsic characteristics of large cities hamper the efficient use of
VANET such as tall buildings, complex road infrastructure and bad driver behavior. As
such, smart cities should benefit from the Internet of Things (IoT) technology [165], clouds
computing, and/or smart grids for the purposes of achieving more relevant, valuable and
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anticipated decisions. Connected streets and cars represent a swarm of sensors that can
feed citizens and authorities with rich data which can be used for predictive analytics. The
target is to ensure smoother and sleeker traffic on the roads by anticipating traffic jams
and roads congestion. In this regard, the IoT is paving the way for a new concept: the
Internet of Cars (IoCs) [115]. Vehicles, drivers, ”things” and environment are perceived as
intelligent entities through the use of new computational paradigms such as deep learning,
swarm computing and artificial intelligence [45].

Cisco estimates that 50 billion devices and objects will be connected to the Internet
by 2020. Hence, connected cars evolve in a data-rich environment where they consistently
generate and receive a variety of data that pours in from everywhere: weather stations,
roads, traffic and social networks streams. Thus, this type of data has the great potential
of enriching our experiences on how cities function and become a fuel that drives predictive
related traffic application such as traffic flow prediction and informed decision-making.

The abstraction level of data ranges from raw low-level sensor data to higher-level
information transmitted to connected cars and people for high quality predictive decision
making. Thus, this unprecedented huge volume of data is becoming a major tool to help
with traffic prediction and route planning. An interesting example is the city of Eindhoven
where authorities have collaborated with IBM to design a traffic management solution that
merges data coming from in-vehicles sensors with traffic gathered from roads [3]. Using
Big data in IoC aims not only at storing and processing data but also at predicting and
making decision in a timely and accurate way.

1.1 Motivation

Traffic flow prediction or forecasting is one of the major functionalities of ITS that should
be achieved. It is particularly useful for planning proactive operations to alleviate road
congestion. Moreover, timely and accurate prediction offers guidance to drivers so they
can better plan their trip, choose the ideal departure time and best routes to avoid grid-
lock. However, traffic prediction is very challenging. Drivers use cities infrastructures to
reach a specific destination following certain traffic rules. They interact with surround-
ing connected things, e.g., infrastructure, traffic light, cars, and with each other. During
their trip, they are exposed also to changing weather conditions. Favorable or inclement
weather will influence drastically drivers and their behavior on the roads.. Statistics made
by the Federal Highway Administration (FHWA) reveal that 23% of road crashes are due
to adverse weather conditions [2]. In given situation, it is crucial to investigate the impact
of weather on traffic flow prediction. Quantifying such an impact will help transportation
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operators and road users in terms of better pre-trip planning and best navigation strategies
that match weather conditions.

In the context of smart cities, transportation networks are complex systems since they
involve a considerable number of interconnected roads, which are often affected by several
external factors: weather, scheduled and unscheduled events, and other traffic related con-
ditions. Citizens also produce huge data using social media such as Twitter and Facebook
that are installed on their mobile devices. Twitter is considered as a near real-time source
of heterogeneous information of various importance. Twitter has over 300 million active
users worldwide that generate 500 million tweets per day. In the case of traffic information,
the users provide interesting and vital information such as travel plans or attendance of
an event and share information regarding current traffic or road conditions. Indeed, social
media contain unique information that can be used to extract traffic indicators. Thus,
this type of data is enriching our knowledge of how cities function and is becoming a fuel
that drives predictive related traffic application such as traffic flow prediction and informed
decision making.

Traffic flow data are considered as time series data, which can be either stationary or
non-stationary. Roughly speaking, a time series is considered as stationary if its statistical
properties remain the same every time. The stationarity assumption is especially appealing
in time series analysis due to the widely available models, prediction methods, and well-
established theory. However, applying this assumption to real-world data such as traffic
flow data, which mostly are non-stationary, might lead to inappropriate forecasts. The non-
stationarity problem in traffic flow arises from the fact that when given the historical traffic
information there are irregular traffic flows due to scheduled events such as constructions
or unexpected traffic events such as accidents. In principle, due to unusual disruptions,
long-term predictions may not be accurate enough for reliable practical use if we simplify
the data to stationary. Non-stationarity, however, has been relatively scarcely studied and
it is usually more challenging to handle.

Accurate and timely traffic flow prediction is essential for traffic management and al-
lows travelers to make better-informed travel decisions. In some applications, it is often
necessary to predict traffic flow not only accurately but also several steps ahead in the
future. For example, in order for the traffic patch to manage a congested road and de-
velop contingency plans, traffic dispatch may need to estimate traffic conditions at least 30
minutes in advance. However, most traffic flow prediction approaches were developed with
single-step prediction methods. The multi-step prediction problem is significantly more
difficult than its single-step variant and is known to suffer from degradation in predictions
the farther we go in future time-steps. Therefore, it is essential to develop multi-step
prediction approaches to achieve accurate multi-step traffic flow prediction.
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Although the generation of huge, varied, dynamic, real-time, and interconnected data,
which is known as big data, creates some challenges, it should be used to our advantage.
The advantage for having access to big data comes with a number of issues that need to
be dealt with:

i. How can these data be used to enhance the quality of traffic flow predictions?

ii. How can the inherent problem of big data be tackled during the predictions? This
question can be elaborated as follows:

– How to use the huge volume of data properly?

– How to handle high velocity of data, which are being created in or near real-
time?

– How to fuse different type of data, hard and soft data, streams and event-based
data?

– How to select pertinent features or information for the prediction?

iii. How to tackle the non-stationarity aspect of traffic flow to maintain accurate predic-
tion?

iv. How to achieve accurate multi-step traffic flow prediction horizon to have better-
informed travel decisions?

1.2 Scope

Before narrowing the research scope, it is necessary to clarify the distinction between the
definitions of several terms used in this research. Hard data are data that are generated
by physical sensors, e.g., traffic flow, and weather data such as temperature, humidity,
etc, whereas soft data encloses data that are generated by human operators, e.g., tweets
and other social media posts. Based on how the data are generated, two types of data
generation are distinguished: streams of data and event-based data. Streams of data are
data that are generated continuously in sequence and are assumed to be available at each
sampling time, whereas event-based data are data that correspond to relevant events and
are not available at all sampling instances. Another important definitions are short-term
and long-term traffic flow predictions. Short-term prediction is related to prediction tasks
that involve short range of data from a few days to several months of data. Long-term

4



traffic flow prediction requires longer range data from several months to several years of
data.

In general, time series can be categorized into two types: stationary and non-stationary.
Roughly speaking, a time series is considered as stationary if its statistical properties remain
the same every time. Formally, given a sequenceXt1, · · ·Xtk and a sequenceXt1+τ , · · ·Xtk+τ

in a time series, if the joint statistical distribution of the first sequence is identical as that
of the second sequence for all τ , then the time series is strictly stationary [116]. This means
that the moments, e.g., expectations, variance, third-order, and higher, are identical at all
times. This definition is extremely strict for real-world applications. Therefore, a weaker
definition, namely second-order or weak stationarity, is usually used to analyze time-series
for practical applications. Second-order stationary time-series is a time series that has
constant mean and variance over time. From this point, when a stationarity is mentioned,
it means second-order stationarity.

This research mainly proposes a holistic framework that aims to address the traffic fore-
casting issues within the smart city context. Since a smart city environment is composed
of data and information with big data properties, we tackle this problem from an artificial
intelligence perspective. In the soft data part, the Twitter data annotation and extraction
are not part of the current research since it is another big research area and requires inten-
sive efforts. In this research, the area of interest is a specific area in California, i.e., Bay
Area, District 4, San Francisco. This is due to the fact that we have easy access to this
data, and the infrastructure is among the most complex a smart city could have.

1.3 Contributions

Although the smart city environment and IoC concept benefits from a variety of sources
generating data and information, there has not been any well-defined and concrete ap-
proaches that take advantage of this diversity in a way to assist the travelers and traffic
authorities. The main reason for this scarcity is most likely related to the fundamental
challenges of the big data problem that needs thorough consideration. Mainly, the issues
of types of data and uncertainty analysis in the predictions are indicated as the most chal-
lenging areas of study that have not been tackled in the past. Based on this observation,
a traffic flow prediction model using big data is proposed to enhance the quality of the
traffic flow prediction, which can be used to assist travelers and traffic authorities in the
decision-making process. Our work is centered around coming up with adequate tools to
deal with the huge amount of data available to us, which comes from different sources,
under different bandwidth and under different formats.

5



1.3.1 Large-scale Traffic Flow Prediction Using Hard Data

This work proposes a model that is capable of tackling the inherent big data problems and
dealing with the uncertainty in the predictions. It relies on Deep Belief Networks (DBNs)
introduced by Hinton in [67], as the main approach underpinning the traffic flow prediction
process. The main reason for choosing DBN is its capability in handling huge amounts
of data generated by a large-scale and complex transportation system with limited prior
knowledge. DBNs have been found to be powerful in learning the representative features
from the data. Furthermore, a decision-level data fusion scheme is introduced in this work.
This scheme fuses streams of data coming from the road sensors and weather stations.

1.3.2 Large-scale Traffic Flow Prediction Using Soft Data

The second scheme fuses the streams of data and event-based data using Dempster Shafer
Evidence Theory (DSET) [135]. One of the main features of DSET is its ability to capture
the uncertainty in the probability. The second scheme of fusion is done at the decision level
after the prediction values are transformed into hard clusters. Since the predictions contain
prediction errors, the DSET is able to capture this error as uncertainty in the conditional
probability of the clusters. Moreover, since the data coming from the social media may not
be completely reliable, an extension to classical DSET, namely conditional updating rule
of DSET, is used. In conclusion, since the proposed model is developed within the context
of the smart city, it is capable of exploiting various technologies and data available in this
environment to offer efficient mobility within limited infrastructure capacity.

1.3.3 Non-Stationary Traffic Flow Prediction

In the long-term traffic flow prediction, the stationarity assumption may not reflect real-
ities and may lead to incorrect predictions. A method to detect nonstationarities in the
traffic flow and update the predictor accordingly is proposed. The proposed detection
mechanism is developed by monitoring the evolution of the spectral contents of time se-
ries through a distance function. This method is designed to work in combination with
state-of-the-art machine learning methods in real time by informing the online predictors
to perform necessary adaptation when a non-stationarity presents. Furthermore, an algo-
rithm to proportionally include some past data in the adaption process to overcome the
Catastrophic Forgetting1 problem is also proposed. The proposed method is suitable for big

1The problem of forgetting the previously learned data when learning new data [49]
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data environment since it minimizes the computational resources needed when updating
the predictor.

1.3.4 Multi-step Traffic Flow Prediction

Multi-step time series prediction is known to suffer from increasing performance degrada-
tion the farther in the future the predictions are made. In this work, two approaches to
address this weakness in recursive and multi-output prediction models are introduced. In
particular, a model that allows recursive prediction approaches to take into account the
time-step index when making predictions is developed. In addition, a conditional generative
adversarial network-based data augmentation model to improve prediction performance in
multi-output models is proposed. In order to evaluate the proposed approach, several
experiments involving previous strategies to handle multi-step time series prediction are
conducted.

1.4 Thesis Outline

This thesis is composed of the following chapters:
Chapter 1 is an introduction that presents the motivation behind the research work as
well as contributions made in the area.

Chapter 2 provides a literature review of various work related to the research.

Chapter 3 presents methods to predict traffic flow using hard and soft data. It dis-
cusses the details of the proposed approach and the benefits of using the combination of
hard and soft data

Chapter 4 presents an approach to handle nonstationarity in traffic flow prediction. A
nonstationarity detection module and a mechanism to embed the detection module into
predictors are introduced in this chapter.

Chapter 5 presents approaches to improve multi-step traffic flow prediction. A modified
recursive method and a data augmentation method using Generative Adversarial Networks
(GANs) are presented in this chapter.
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Chapter 6 provides a summary of the contributions of this research work and discusses
possible areas for future research.
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Chapter 2

Background and Related Work

This chapter provides technical background used in this thesis and reviews the related
work in the literature by first emphasizing the importance of the concept of smart mobility
in smart city, and then introducing recent and state of the art modeling approaches for
traffic flow prediction. Accordingly, section 2.1 presents the concept of smart mobility
in smart cities perspective. Section 2.2 provides an overview on traffic flow prediction,
which is followed by the review on research work tackling the traffic flow prediction major
issues in section 2.3. Section 2.4 presents technical concepts on deep learning as the main
predictor used in this work. Section 2.5 presents the technical background of Dempster
Shafer Evidence Theory (DSET) data fusion and its extension as well as literature review
of DSET data fusion.

2.1 Smart Mobility in Smart City

In this section, the concept of smart city is briefly highlighted in terms of its features and
application domains. A smart city needs an integrated system to collect data from various
heterogeneous sources such as road sensors, weather stations, security cameras, internet,
etc [117]. Furthermore, many smart cities are designed and developed on the basis of
sophisticated and intelligent systems that can sense, learn, understand, and act towards
their environment [23, 104]. In this type of system, a considerable number of real-time
information is processed and analyzed to enhance and/or optimize the performance of the
systems and assist authorities in the planning, decision-making, and control activities. In
the specific case of traffic flow prediction, a combination of the right data and of the right
policies can make traffic flow run much more smoothly.
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Figure 2.1: Taxonomy of Smart City.

The domains in which smart city concept is developed can be categorized as hard and
soft domains [117]. Hard domains consist of eight sub-domains: energy grids, natural re-
sources, environment, transportation, buildings, waste management, healthcare and public
security, whereas soft domains consist of education, social inclusion, e-government, and
economy. In the hard domain settings, the deployment of Information and Communica-
tion Technology (ICT) is crucial; the use of sensors, wireless technologies, and software
solutions to handle big data and assist a city to sense and act can be most applicable in
this domain. According to [51], the two domains of applications can be further grouped
into six characteristics of smart city. The complete taxonomy of smart city is depicted in
Fig. 2.1

The transportation domain, also known as the smart-mobility aspect of smart city, has
several main objectives: to optimize logistics and transportation based on traffic conditions
and energy consumption [14, 110, 51]; to provide travelers and authorities with dynamic
and multi-modal information for transport efficiency [35, 156]; and to assure sustainable
public transportation [25, 87, 114, 145]. Furthermore, the smart mobility aspect can be
classified into three sub-aspects [117]:

• City logistics–Improving logistics flows in cities by effectively integrating business
needs with traffic conditions, geographical, and environmental issues.
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• Info-mobility–Distributing and using selected dynamic and multi-modal information,
both pre-trip and, more importantly, on-trip, with the aim of improving traffic and
transport efficiency as well as assuring a high quality travel experience.

• People-mobility–Innovating the mobility of people in cities, such as the development
of public transport modes and vehicles that are supported by advanced technologies
and proactive citizens’ behaviors.

From the mentioned sub-aspects, it can be concluded that multi-modal traffic flow
predictions play an important role in realizing smart mobility. The necessity of using road
traffic monitoring technology that links data coming from people, cars, and sensors to
provide predictive tools for a smarter motorized society is increasing. Specifically, data-
driven prediction techniques are among those methods that due to the characteristic of
smart city and Internet of Car (IoC). However, designing a generic model that utilizes
a significant portion of such broad selection of data resources, and automatically fuses
the information of interest while handling the big data problem, is still an open problem
that requires more in-depth investigation. The next section of this chapter reviews the
contemporary research on traffic flow prediction.

2.2 Traffic Flow Prediction: An Overview

Traffic flow prediction has been long considered as an important problem for intelligent
transportation systems. There are three parameters representing traffic flow: rates of flow,
speed, and density [146]. These elements can be used to infer road conditions such as traffic
breakdown, types of congestion, and the capacity drop after a breakdown. The traffic flow
is usually represented in the form of time series of the aggregated quantities, where the
time scale ranges from minutes to a few hours. However, to maintain the sustainability of
the measured volume, the Highway Capacity Manual 2010 (HCM 2010) recommends using
15-minute intervals [101].

Two sources of data are usually used in traffic flow prediction: road sensors and entrance
and exit detectors. The road sensors are inductive loop detectors located on each road.
These detectors provide a direct measurement of volume as well as of speed when they are
used in pairs. Furthermore, the measured volume can be used for traffic flow prediction
task. In the second source, the data can be used to monitor when a car is entering and
exiting a road. This data can be used to forecast the traffic flow in exit station. In
addition to the two common sources of data, a various data sources such as those obtained
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from surveillance cameras, radar, and LiDAR, have been used in traffic flow prediction
research [167, 62, 153].

In this thesis, the data are collected from the California Freeway Performance Measure-
ment System (PeMS) using inductive loop detectors1. To illustrate the traffic prediction
data arrangements, consider the traffic flow of the i-th observation point, i.e., a road or a
station, at the t-th time point denoted by fi(t). At instant time T , the main task is to
predict traffic flow in k1-step time in the future fi(T + k1) using the traffic flow sequence
F = {fi(t)|i ∈ O, t = T, T − 1, T − 2, ..., T − k2}, where k2 is the time step in the past, and
O is the complete set of all observation points. In other words, the traffic flow prediction
at point i is performed based on present and historical data from all observation points.

2.3 Traffic Flow Prediction in the Literature

In this section, a taxonomy of traffic flow prediction approaches is introduced. This taxon-
omy is developed based on the types of information and models used for predictions and
is depicted in Figure 2.2. Generally, traffic flow prediction models are developed using two
approaches: analytical and data-driven approaches. In the analytical approach, traffic flow
prediction models are developed using known accurate physical laws and can be categorized
into three types according to the granularity of the information used: microscopic, macro-
scopic, and mesoscopic. In the data-driven approach, prediction models are developed
using available input-output data from real systems that are used to fit specific mathemat-
ical structures. Furthermore, this approach can be further classified into three types based
on the types of models: parametric, non-parametric, and hybrid models. Additionally,
non-stationary and multi-step traffic flow predictions are discussed in the non-parametric
approach since these topics are also major parts of the thesis. Subsequently, the follow-
ing subsections present the literature review of analytical and data-driven approaches for
traffic flow predictions.

2.3.1 Analytical Approach of Traffic Flow Modelling

The analytical approaches can be further classified into three levels of perspectives: micro-
scopic, mesoscopic, and macroscopic perspectives. The microscopic perspective illustrates
the most basic behavior of individual vehicles such as the position and velocity. In con-
trast, the macroscopic perspective describes the traffic flow as a stream of vehicles that has

1http://pems.dot.ca.gov
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Figure 2.2: Taxonomy of traffic flow prediction.

characteristics like flow, density, speed, etc. Lastly, the mesoscopic perspective combines
the individual behavior of the vehicles and macroscopic properties of the traffic flow. In
this subsection, the three perspectives of analytical modeling approaches are investigated.

Microscopic perspective

In the microscopic perspective, the behaviour of each individual vehicle is modeled either
using commonly used car-following models or most recently developed cellular-automata
models. There are three major types of car-following models in the literature: safe-distance,
stimulus-response, and action-point models.

In the earliest safe-distance car-following models, the position of the leader is expressed
as a function of the position of the follower [121]. In [52], safe-distance car-following
models are refined by the assumption that the speed of the vehicles is within the safety
requirements. Later, a simple safe-distance model with delay is introduced in [118, 119].
Using Lagrangian coordinate system, it is shown in [90] that the model in [119] is equivalent
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to a macroscopic model. Finally, an extension to the model in [119] is proposed in [88].

Another type of car-following models is stimulus-response models, which are developed
based on the assumption that drivers accelerate according to three stimuli: own current
velocity, spacing with respect to the leader vehicle, and relative velocity with respect to
the leader vehicle. The most notable model of stimulus-response models is Gazis-Herman-
Rothery model [50]. Later, the optimal velocity model is developed in [18] and extended
by introducing delay in [17]. Recently, an Intelligent Driver Model (IDM) based on accel-
eration and velocity of the vehicles is proposed in [147].

The last type of car-following models is action-point models. The main contribution
of the action point models is that the models include the fact that at the large freeways
the driving behaviour is not affected by the behaviour of other vehicles [24]. The main
difference between cellular-automata and car-following models is that the space in the
cellular-automata models is discretized. The cells, which are partitions of roads, may or
may not have vehicles inside them. The cellular-automata models are introduced in [111,
81].

Macroscopic perspective

There are two majors types of macroscopic models: kinematic wave model and higher-
order model. The kinematic wave model is introduced in [94, 130] and known as Lighthill-
Whitham-Richards (LWR) model. In this model, the dynamics of the traffic is represented
by a partial differential equation that models the conservation of vehicles. The model is
developed based on the assumption that the vehicles reach the new equilibrium velocity
immediately after a change in the traffic state, which implies infinite acceleration. An
extension of the models is proposed in [89, 91]. It involves bounded-acceleration in the
dynamics. In [75], lane changing in a discretized version of the LWR model is included to
eliminate the breakdown problem. The stochastic version of the kinematic wave model is
proposed in [70]. This version uses breakdown probabilities to capture the notion that the
break down takes place in different densities. Recently, a multi-class model based on the
kinematic wave traffic flow model is introduced in [149, 150].

The higher-order models introduce velocity dynamics,i.e., acceleration, described by a
fundamental relation. In the early development of the models, the higher-order models
received a lot of critiques because they are not anisotropic. These critiques have motivated
several researchers to deal with the problem. The most well-known model addressing the
anisotropic issue is introduced in [15], and the multi-class version of the model is proposed
in [16].

14



Mesoscopic perspective

Mesoscopic traffic flow models consider individual vehicles in aggregate terms such as prob-
ability distributions. The most popular kind of mesoscopic models is gas-kinetic models.
These models describe vehicles as the dynamics of velocity distribution functions. An im-
provement of gas-kinetic models is motivated by the development of a multi-lane version of
Paveri-Fontanas model, [65]. In [69], a generic gas-kinetic traffic flow model including the
previously mentioned model[65] is introduced. Finally, a gas-kinetic model that includes a
simple car-following model is introduced in [143].

2.3.2 Data-driven Approach of Traffic Flow Modeling

Significant efforts have been made in recent years to address the problem of data-driven
traffic flow prediction [96]. In general, data-driven traffic flow prediction approaches can
be categorized into three categories: parametric, non-parametric, and hybrid.

Parametric Approach

In the parametric approach, the structure of the model is predetermined; hence, only
parameters of the model are estimated to fit the data. The well-known auto-regressive
model with its extension such as Autoregressive Integrated Moving Average (ARIMA) is
investigated in [157]. To optimize the ARIMA traffic flow model, a heuristic approach
is introduced in [144]. Often time series possess a seasonal component that repeats ev-
ery certain period of time. In order to deal with seasonality in the traffic flow data, a
Seasonal-ARIMA (SARIMA) model is introduced in [31]. To include the transient be-
haviour of the traffic network, a Multivariate Spatial-Temporal Auto-Regressive (MSTAR)
model is introduced in [106]. In [59], an Autoregressive Moving Average (ARMA) model
with generalized auto-regressive conditional heteroscedasticity structure is proposed. This
structured is processed online using layered Kalman Filter. [73]. To overcome the linearity
assumption in the ARMA model, a non-linear kernel-based stochastic time series method
with state space reconstruction capability using Extended Kalman Filter (EKF) is pro-
posed in [19]. A prediction mobile that combines a Kalman Filter and Gaussian Mixture
Model (GMM) is introduced in [74].

Despite the encouraging results reported in the mentioned studies, the linear structured
assumption of the time series approaches presents an inconvenience for traffic prediction.
Traffic flow is stochastic and nonlinear in nature. In addition, roads are inter-connected;
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hence, it is very difficult for the time series approach to capture this behavior. Since
transportation networks are complex and very correlated, it is crucial to predict traffic
flow from a network perspective. Finally, time series based approaches are more prone to
large errors in complex traffic forecasting.

Non-parametric Approach

To overcome the issues encountered in the parametric approaches, researchers have pro-
posed non-parametric solutions. The term non-parametric does not imply without pa-
rameters, but it is indicative of the fact that the number and nature of the parameters
are flexible and not fixed in advance. Several researchers have proposed non-parametric
regression methods to solve traffic prediction problem. In [32], a K-Nearest Neighbour Non-
Parametric Regression (KNN-NPR) method is used to predict traffic flow using real-world
historical data. An online boosting regression technique that is activated when predicting
traffic under abnormal conditions is proposed in [159].

In [161], a Fuzzy-Neural Model (FNM) with two modules is proposed to predict traffic
flows in an urban street network. The first module, i.e., fuzzy module, clusters the input of
the system that is used in the second module, i.e., Artificial Neural Network (ANN) mod-
ule. A novel ANN training method is introduced in [30] to enhance the accuracy of the
previously developed ANN training methods for traffic flow prediction; this novel method
uses the hybrid exponential smoothing method and the Levenberg-Marquardt (LM) algo-
rithm. In [128, 136], ANN algorithms based on niche genetic algorithm and ant colony
optimization are investigated respectively.

Support Vector Machine (SVM) is a powerful classification method and has been proven
to out-perform other classification methods in a number of large dimensional data set.
The regression version of SVM is known as Support Vector Regression (SVR). In [71], an
SVR for traffic flow prediction is proposed. The model uses particle swarm optimization
algorithm to optimize the parameters of the SVR model. One of the limitations of SVR lies
in the choice of the suitable kernel function. In [155], the use of Chaos-Wavelet Analysis-
SVM to construct the kernel function is proposed. Traffic flow prediction in large networks
using SVR is proposed in [13]. The method uses unsupervised-learning methods to mine
spatio-temporal performance trends at the network level. For comparison, table 2.1 depicts
the advantages and challenges associated with the parametric, ANN, and SVR models [134].

Recently, specific attention was given to Deep Learning (DL) [99, 72] to forecast traffic
flow. This is motivated by the fact that other techniques either require a prior knowledge
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Table 2.1: Advantages and challenges of parametric, ANN, and SVR models

Prediction
Method

Advantages Challenges

Auto-regressive
and Kalman
Filter

- Suitable for low order model - Based on linear model as-
sumption

- Guaranteed to converge - High computation for high-
order models

- The model directly measures
the Mean-Squared Error (MSE)

ANN - Not model dependent - Number of parameters is large
- Independent on linear, sta-
tionary process

- Free parameters are selected
experimentally

- Feed forward efficient compu-
tation

- Expensive computation on the
training process
- Not guaranteed to converged
to the global optima

SVR - Not model dependent - Free parameters are selected
experimentally

- Independent on linear, sta-
tionary process

- Expensive computation on the
training process

- Guaranteed to converge to the
optimal solution

- Kernel selection can be diffi-
cult

of specific domains for feature extraction and are shallow in architecture. The existing
neural-based approaches use a limited number of layers, i.e., one layer. For these shallow
structures, it is easy to overfit the data once the number of layers is increased. Deep
learning, on the other hand, could learn features with a less prior knowledge, and also
has been reported to out-perform other learning methods in object, image and speech
recognition tasks [112, 93, 108]. In addition, deep learning is able to handle a large amount
of data and high dimension of features that usually characterize transportation systems in
a smart city.

In [99, 72], the authors did not take into account factors that are affecting the traffic
flow such as weather, which has a significant impact on traffic flow [152, 148]. Although
in [99] the authors mentioned the big data aspects, the paper did not cover all the big data
components. Moreover, this paper considers only traffic flow during the working days,
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while the traffic flow on the weekends has distinctive patterns. The concept of big data is
also covered in [98]; however, the incorporation of the smart city concept, which generates
enormous and different kinds of data, is not presented.

It has been shown that weather has a significant influence on traffic flow prediction [127].
In [41], authors proposed a neuro-wavelet based framework to forecast hourly traffic taking
into account the effect of rainfall. However, the dataset used in this work is limited to
only two traffic junctions in Dublin city. Moreover, only weekdays of the two first weeks
of January were considered for traffic prediction. In [169], authors investigated the impact
of snowy and icy conditions on traffic with data from Buffalo, New York. They modeled
the impact of adverse weather conditions on traffic speed. In this work, the authors used
a simple linear regression method which assumes linearity in the structure of the model
with separate learning. Since transportation networks are complex and very correlated, it
is crucial to predict traffic flow from a network perspective. Thus, parametric approaches
are more prone to large errors in traffic forecasting.

Social media information can enhance traffic prediction accuracy. Relevant informa-
tion about city events that may acutely impact the driver behavior can be extracted from
Twitter or Facebook posts. The study proposed in [63] use Twitter data as an external
data source for improving long-term traffic prediction in San Francisco Bay area. They
also analyzed the correlation between road traffic indicators and tweets counts. Finally,
traffic indicators extracted from tweets are incorporated into the linear regression model
for traffic forecasting beyond one hour. However, their auto-regression model that incor-
porates traffic and social activity intensity is not well adapted to the complexity of high
dimension of features characterizing transportation systems. Moreover, the distinction of
events extracted from Twitter data is neglected. The authors of [95] have improved the
study proposed in [169] by including weather indicator extracted from Twitter data. The
authors apply linear regression model using Twitter-based weather indicators. This study
shares with other mentioned work the limitations of linear regression models. In addi-
tion, the authors extracted only weather-related information from Twitter data. However,
congestion-causing events such roadway construction and maintenance; planned special
event; traffic incident; and emergency road work disrupt the normal flow of traffic and
result in reduction in roadway capacity.

In the long-term traffic flow prediction, the stationarity assumption is not appealing.
Non-stationary time series prediction, in general, is a challenging problem that researchers
have been trying to solve. One of the solutions to handle non-stationarity is to consider
non-stationary time series as a collection of piece-wise, or locally, stationary time-series.
This means the parameters of the time series are changing but remain constant for a
specific period of time. In relation to prediction problems, using the piece-wise stationarity
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assumption, the stationary part of the time series can be learned using stationary methods.
Subsequently, the predictor is updated when the time-series move to a different stationary
state. Therefore, it is imperative to continuously check whether the time series is stationary
or not.

A vast array of tools for detecting non-stationarity has been introduced by researchers.
Most of the detection mechanisms are based on spectral densities [123, 7], covariance struc-
tures comparisons [12, 20], and, more recently, using locally stationary wavelet model [34,
85]. These tests are based on a specific choice of segments of the data, which is sometimes
delicate and highly subjective. In [42], the test is based on the discrete Fourier transform
using the entire length of the data, which is undesirable in online settings.

In the machine learning community, researchers are more interested in concept drift
detection since most of them are dealing with classification problems [46, 131, 54]. However,
in regression problems such as time-series predictions, it is more suitable to consider non-
stationarity. Non-stationarity is a more general concept in a sense that time-series without
concept drift might contain non-stationarity, e.g., a near-unit-root auto-regressive process.
Although the concept is not drifting, i.e., the parameters of the model are static, the time
series evolution might contain changing mean and variance.

In spite of all these efforts, there has been limited amount of work to tackle non-
stationary traffic flow prediction. In [125], the authors developed a two-step approach
based on the stochastic differential equations to improve short-term prediction and used a
first order local polynomial as drift term for each residual in the non-stationary time series.
However, this work used very limited datasets; as an example, the PeMS dataset 2 collected
in the period of October 1, 2009 to November 30, 2009. This dataset is not sufficient to
capture the long-term stationarity of the traffic flow. In order to validate the performance
of a predictor under non-stationary conditions, it is necessary to test the predictor with
long-term traffic flow data. In [154], traffic flow prediction under non-stationary conditions
is modeled based on ensemble real-time sequential extreme learning machine. The proposed
method quickly trains the data and incrementally update the model when the new data
arrive. Indeed, blindly updating the model as time progresses is computationally expensive.

In its simplest form, traffic flow prediction problem is restricted to predicting a single
time-step into the future. Multi-step traffic flow prediction extends this set-up to the case
where predicting multiple time-steps into the future based on some finite history is of inter-
est. This problem is significantly more difficult than its single-step variant and is known to
suffer from degradation in predictions the farther we go in future time-steps. Nonetheless,
we are often interested in forecasting more than a single time-step ahead. In [120], four

2California Performance Measurement System, http://pems.eecs.berkeley.edu
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adaptive Kalman filter approaches for the multi-step ahead forecasting of short-term traffic
flow is proposed, which were developed using recursive strategy. Furthermore, a spatio-
temporal recurrent convolutional network for traffic forecasting is introduced in [164]. The
proposed SRCN exploits the advantages of deep convolutional neural networks and long
short-term memory neural networks. In [163], a short-term traffic prediction model based
on the k-nearest neighbor algorithm is proposed. The approach uses the time-varying and
continuous characteristic of traffic flow and implements the single-time-step model for the
multi-time-step prediction. All of these approaches do not explicitly develop ways to tackle
the multi-step prediction. Therefore, the degradation of the performance in the far future
is still a challenge.

Hybrid Approach

To enhance the performance and to find the suitable parameters of the existing models,
several works have investigated hybrid approaches. In [105], a combination of analytical
approaches, i.e., LWR model, and knowledge-based models, i.e., Bayesian, ARIMA, for
traffic flow prediction is investigated. A linear combination of ANN and Radial Basis
Function (RBF) networks according to a heuristic credit assignment algorithm based on
Bayes’ rule is proposed in [170]. Another hybrid model is presented in [168]. In this model,
the traffic flow is predicted by decomposing the data into three components: a periodic
trend extracted using the spectral analysis technique, a deterministic part introduced by
the ARIMA model, and the volatility estimated by the GJR-GARCH model. By combining
several techniques, these approaches are more adaptive. Although the above mentioned
hybrid models are flexible, they still do not capture the notions of big data and fully take
profit from spatial information collected from the whole road network. Moreover, these
studies rely on only information collected by sensors such as GPS, loop detectors and
smartphones.

2.4 Deep Learning: An Overview

Deep learning refers to models that are constructed by multiple processing layers to learn
data representations with multiple level of abstraction [92]. The learning process can
be done in supervised, semi-supervised, or unsupervised way. Furthermore, deep learn-
ing has been successfully applied and has achieved state-of-the-art performances in dif-
ferent domains such as image recognition [64], speech recognition [66], machine transla-
tions [138], and genomics [8]. Deep learning has been developed with different architectures
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such as deep Convolutional Neural Network (CNN)) [86], deep Recurrent Neural Network
(RNN) [56], Deep Belief Network (DBN) [67], and Deep Neural Network (DNN). This
thesis implements DBN and DNN as the main models for traffic flow predictions. Next,
the technical details of DBN and DNN are presented.

2.4.1 Deep Belief Networks (DBNs)

DBN is suitable for dealing with huge amount of data generated by complex interconnected
systems. It is formed by stacking Restricted Bolztmann Machines (RBMs), which are then
trained greedily using unsupervised algorithms [67]. An RBM is an undirected graphical
model that has no connections within visible (x) or hidden (h) units, as illustrated in
Figure 2.3.

Figure 2.3: Restricted Boltzmann Machines

RBMs are developed based on the inter-layer interaction energy and bias energy of each
layer. Mathematically, the energy function of an RBM is defined as:

E(x,h) = −b>x− c>h− h>Wx (2.1)

where b and c are bias vectors associated with the hidden and visible layers respectively,
and W is the weights between the visible and hidden layers. We denote the set of param-
eters b, c, and W by θ. An RBM defines a distribution, which involves the hidden units,
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over the visible units. The distribution of observing a particular visible and hidden units
configuration based on the energy function is given by:

P (x,h) =
e−E(x,h)

Z
(2.2)

where Z is the partition function. Using Equation 2.2, the distribution of observing a set
of visible units is defined as:

P (x) =
∑
H

P (x,h) = exp
−F (x)

Z
(2.3)

where F (X) is known as the free energy term, and is defined as follows:

F (x) = exp

(
c>x +

H∑
j=1

log(1 + exp(bj + W(j,:)x))

)
/Z (2.4)

To train an RBM, the average negative log-likelihood function of all training points
(t = 1, ..., T ) needs to be minimized. The function is set as follows:

NLL =
1

T

∑
t

l(f(x(t))) =
1

T

∑
t

− logP (x(t)) (2.5)

Then, the function is optimized with respect to θ using stochastic gradient descent algo-
rithm; the result of the optimization is defined as:

∂ − logP (x(t))

∂θ
= Eh

[
∂E(x(t),h)

∂θ

∣∣x(t)

]
− Ex,h

[
∂E(x,h)

∂θ

]
(2.6)

The second term on the right-hand side of the equation is hard to compute since we have
to make an exponential sum over both x and h. To address this problem, the authors of
[26] proposed the contrastive divergence algorithm, which has three main steps:

1. Estimate a point x̃ to replace the expectation.

2. Estimate the point using Gibbs sampling.

3. Start the sampling chain at each observation x(t).
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Figure 2.4: Illustration of Gibbs sampling

As illustrated in Figure 2.4, the conditional independence of intra-layer units in an RBM
allows us to apply the Gibbs sampling iteratively for sampling visible and hidden units.

To perform the Gibbs sampling, the conditional distributions P (h|x) and P (x|h) have
to be computed according to Equation 2.7.

P (h|x) =
∏
i

P (hi|x)

P (x|h) =
∏
k

P (xk|h) (2.7)

If xk and hj are binary units, the following applies

P (hj = 1|x) =
1

1 + exp(−(bj + W(j,:)x))

= sigm(bj + W(j,:)x)

P (xk = 1|h) =
1

1 + exp(−(ck + h>W(:,k)))

= sigm(ck + h>W(:,k)) (2.8)

After the negative sample x(k) = x̃ is estimated, the point estimate of the expectation in
Equation 2.6 is computed as follows:

Eh

[
∂E(x(t),h)

∂θ

∣∣x(t)

]
≈ ∂E(x(t), h̃)

∂θ

Ex,h

[
∂E(x,h)

∂θ

]
≈ ∂E(x̃, h̃)

∂θ
(2.9)
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Even with only one step of sampling, i.e., k = 1, this algorithm has been proven to be
successful for unsupervised training [26]. Using Equation 2.9, the parameters θ of the
RBMs are updated according to the following equation:

θ(t+1) = θ(t) − α
(
∇θ(− logP (x(t)))

)
(2.10)

For each parameter W, b, and c, the update equations are given below:

W(t+1) = W(t) − α
(
h(x(t))x(t)> − h(x̃)x̃>)

)
b(t+1) = b(t) − α

(
h(x(t))− h(x̃)

)
c(t+1) = c(t) − α

(
x(t) − x̃

)
(2.11)

where h(x) , sigm(b + Wx).

Furthermore, having done with the unsupervised training, the parameters are used to
initialize neural networks that will be trained using a supervised back-propagation algo-
rithm. In this work, the neural networks are trained to learn several tasks at the same time,
where each task consists of traffic flow prediction at each road. This type of learning is
known as Multi-Task Learning (MTL) [72]. This learning method allows each task to share
feature representation constructed by the stacked RBMs. Intuitively, MTL is suitable to
be applied in a transportation network, where several freeways and stations are connected
to each other. Thus, a huge amount of information is shared among freeways and stations.
Figure 2.5 depicts a multi task regression stacked on top of the stacked RBMs.

2.4.2 Deep Neural Networks

A DNN is defined as an ANN with two or more hidden layers. It can be considered as
stacked neural networks. The layers are composed of several nodes, which combine in-
put with a set of weights. Furthermore, these combinations are summed before they are
passed through activation functions. This sequence of processing is known as the forward
pass. The subsequent step is to train the DNN with gradient-based learning methods and
backpropagation [132]. In these methods, the weights are updated proportionally to the
gradient of the loss function. There is a major problem when these methods are used for
stacked neural networks; in some cases, the gradient will vanish, which is effectively pre-
venting the weights from changing their values. This problem has been formally identified
as the vanishing gradient problem [68]. One of the main causes is the use of traditional
activation functions.
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Figure 2.5: DBNs architecture for multi-task regression

Traditional activation functions such as the sigmoid function has derivative in the range
of (0, 0.25). The backpropagation algorithm computes the gradients using the chain rule,
which directly translates to the multiplication of small numbers. In the deep network, the
product of derivative will reduce the gradient very fast, which creates the vanishing gradient
problem. One can avoid this problem by carefully selecting the activation functions; for
example, Rectified Linear Units (ReLUs) [113]. These units output zero for negative inputs
and linear positive values otherwise, which mathematically is defined as

output =

{
input, if input ≥ 0

0, otherwise
(2.12)

According to [166], this simple activation function creates several advantages. First,
it eliminates the necessity to pretrain the network [53]. Furthermore, it has been demon-
strated that deep networks can be successfully trained using random initial weights and
converge faster than the classical logistic function with similar configurations. Moreover,
ReLUs are computationally cheaper because of their simple operations.
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2.5 Dempster-Shafer Data Fusion

Data fusion deals with the synergistic combination of data and information from one or
multiple sources to provide improved information with higher quality and reliability [76].
Applications or tasks that require parameters estimation from multiple sources can profit
from data fusions techniques. While data fusion is used to handle raw data obtained from
embedded sensors, information fusion handles data that are already pre-processed.

The state of the art provides several classification taxonomies of data fusion. One of the
the most well-known classification is provided by Dasarathy [27]. Data fusion techniques
are roughly classified into five categories.

• data in-data out (DAI-DAO): is the basic data fusion method. Data fusion is con-
ducted immediately after the data are gathered from sensors. Both inputs and ouputs
are raw data.

• data in-feature out (DAI-FEO): this category uses raw data from sources to extract
features able to better describe an entity.

• feature in-feature out (FEI-FEO): is called also fusion or intermediate level fusion.
Both inputs and outputs are features. The purpose of feature fusion is to improve
existing one or obtain new features.

• feature in-decision out (FEI-DEO): the inputs of this category are features while the
outputs are decisions. Hence, decisions are made based on features fed to the system.

• decision in-decision out (DEI-DEO): is called also decision fusion. Decisions are fused
to obtain enhanced or new decisions.

The architecture proposed in this research will follow the last DEI-DEO model. The
traffic flow provided by DBN using various sources will be fused to provide better decisions
regarding traffic flow prediction accuracy. One of the methods for data fusion is DSET
data fusion. This method was first introduced in [135]. The crucial feature of DSET is the
combination of evidence obtained from several sources by modeling the conflict between
evidence. Unlike Bayesian networks, DSET uses masses instead of probabilities. In the
traffic prediction problem, evidence about traffic comes from two different types of data:
hard data, e.g., traffic, weather, and soft data, e.g., Twitter data. The main decision
about traffic is made from the combination of evidence collected from hard and soft data.
Indeed, social media information presents several challenges such as reliability, uncertainty,
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and unavailability in certain periods of time. Consequently, predicted traffic evidence from
social media should support/update the predicted evidence about traffic from reliable data
without compromising the integrity. Hence, fusing hard evidence with soft evidence is an
issue for traffic prediction decision-making processes. For this purpose, the DSET evidence
updating method for fusing hard evidence and soft evidence is studied.

In DSET, the total set of mutually exclusive and exhaustive propositions of interest
that a decision authority may discern, is called the Frame of Discernment (FoD). It is
the set of possible conclusions to be drawn. Let θ = {θ1 .... θn} be an FoD. A singleton
proposition θi denotes the lowest level of discernible information. The power set of θ is
the set of all possible subsets of θ. Given |θ| = n, the power set denoted by 2θ contains
2n elements that are composed of all the subsets of θ. In the following, Ā denotes all
singletons in θ that are not included in A. The Basic Belief Assignment (BBA) or mass
assignment provides the support for proposition A.

Definition 1 The mapping m: 2θ 7→ [0, 1] is a BBA for the frame θ if

m(Ø) = 0 and
∑
A⊆θ

= 1 (2.13)

The set of propositions in a frame θ that possess nonzero BBAs or masses are called
the focal elements of θ, and is denoted by F = {A ⊆ θ : m(A) > 0}. The triple variables
{θ,F ,m} is called the Body of Evidence (BoE). For any event A, all testimonies in its
favor can be collected and the belief function which corresponds to its can be determined.
By taking into account all the focal elements related to A, its plausibility function can be
determined. Consider the following definition.

Definition 2 Given a BoE {θ,F ,m} and A ⊆ θ, Belief and Plausibility functions can be
defined as:

Bel(A) =
∑
X⊆A

m(X)

Pl(A) =
∑

X∩A 6=Ø

m(X) (2.14)

While m(A) measures the support assigned to proposition A only, the belief assigned to
A measures the supports for all proper subsets of A. The plausibility function can also be
derived from the belief function as follows

Pl(A) = 1−Bel(Ā) (2.15)
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In DSET, the uncertainty interval associated with A is bounded by belief and plausibility,
i.e., Un(A) = [Bel(A) Pl(A)]. This interval can be regarded as framing the poorly known
probability P (A) as the following

Bel(A) ≤ P (A) ≤ Pl(A), ∀A ∈ θ (2.16)

2.5.1 Dempster’s Rule of Combination

In DSET, the Dempster’s Rule of Combination (DRC) is used to find a new BBA that
aggregates the evidence generated by several BoEs spanning the same FoD. It can be seen
as several experts indicating their opinion via the attribution of masses over θ. The DRC
highlights combined masses of belief in the following way:

Definition 3 Given BoEi = {θi,Fi
,m

i
}, where i = 1, 2 and θ = θ1 = θ2, the DRC

generates the following

BBA12 ≡ BoE1

⊕
BoE2 = {θ12,F12,m12(·)} (2.17)

m12(A) =

∑
B,C:B∩C=Am1(B) ·m2(C)

(1−
∑

B,C:B∩C=∅m1(B)m2(C))
, ∀B,C ⊆ θ (2.18)

It is worth noting that
∑

B,C:B∩C=∅m1(B)m2(C) ∈ [0, 1]. The denominator is a coefficient
of normalization. In particular, if it is null, it means that there is a total conflict between
the sources, and aggregation is then impossible. The use of this rule is thus valid only
when the sources are sufficiently in agreement. Moreover, this rule is suitable when two
distinct beliefs are always certain and treated equivalently. When these are not the case,
a method to incorporate this notion has to be investigated; one way is to use Dempster’s
rule of conditioning [135].

2.5.2 Conditioning rules for updating belief

The first and well-known conditioning rule in the theory is Dempster’s rule of condition-
ing [135], which is derived as a special case of Dempster’s rule of combination. When the
BBAs in the DRCs is given as m1(·) = m(·) and m2(C) = 1, the DRCs is transformed into
the following

m(A|C) =

∑
A=B∩Cm(B)

1−
∑

B∩C=Ø m(B)
(2.19)
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In [160], the authors generalize the rule of conditioning by differentiating two cases:
conditioning rule with unreliable condition and conditioning rule with uncertain condition.
The basic conditioning rule assumes the following:

The given condition is exactly true information given temporally after the prior
belief. It puts a strict restriction on focal elements of the posterior belief [160].

First, the an index λ (0 ≤ λ ≤ 1) is introduced to represent reliability of the condition.
When λ < 1, the condition is not completely true. The mass function m(B|A) is given by:

m(B|A) =



∑
A=X∩B

λm(X) + (1− λ)m(A) if B ⊃ A 6= Ø∑
A=B⊆X

λm(X) + (1− λ)m(B) +
∑

X∩B=Ø

λm(X) if A = B

(1− λ)m(A) if A * B,A 6= B,A 6= Ø

0 otherwise

(2.20)

where B 6= Ø. It can be proved that m(A|B) is a BBAs [160].

2.5.3 DSET Data Fusion in the Literature

In smart cities environment, exploiting diversities in data, i.e., data fusion, to improve
decision-making processes is important. A critical issue for this type of decision-making
is the uncertainty of the data, which may propagate to or affect the decision made by the
fusion methods. There are three main theories to handle uncertainty in data: probability,
possibility, and belief theories. In this work, a belief theory, namely DSET [135], is used to
give a formal representation of the inaccurate and uncertain aspect of information provided
by the proposed prediction model. The following paragraphs present a literature review
in the recent application of DSET for data fusion and the variation or extension of the
theory.

There are several applications of DSET application for data fusion in the literature.
In [48], DSET is used to yield a global judgment of several different image forensic tools.
In a different area, vibration and acoustic signals for fault diagnosis and classification
of planetary gears are fused with DSET [78]. An industrial engineering application of a
multiple-criteria decision-making based on fuzzy evidential theory investigated to select
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plant location is presented in [38]. In [100], DSET is proposed as the fusion framework
to combine ultrasonic micro-Doppler and passive infra-red sensors to detect personnel
intrusion. This framework assists surveillance systems to classify between a human and a
horse.

In the Intelligent Transportation System (ITS) area, DSET has been used to enhance
travel time estimations by fusing inductive loop and toll collection data [43]. In another
application, the combination of Hierarchy Process and DSET are used to create a prioritized
performance hierarchy, i.e., the ITS sustainability index [83]. In [129] and [37], multiple
feature analysis and Dempster-Shafer fusion theory is used to detect vehicle and pedestrian
respectively. Finally, DSET-based traffic speed estimation using heterogeneous sources for
first response deployment application is proposed [33]. To the best of our knowledge,
although there are several applications of DSET in ITSs, there is no implementation of
DSET to fuse information coming from transportation big data for traffic flow prediction.

2.6 Summary and Highlights

Planning proactive operations to alleviate road congestion and guiding drivers to better
plan their trip are important requirements for traffic management systems. Therefore, a big
data-based traffic prediction model that utilizes the various information available in IoC,
to enhance the quality of the decision-making is among the main topics of contemporary
research for achieving this goal.

This chapter presents an overview on the concept of smart city and traffic flow predic-
tion. Furthermore, it outlines the need for having a big data-driven computer-based traffic
prediction model. Furthermore, big data-based traffic flow prediction is introduced as a
promising methodology that can be used in an environment characterized by diverse types
of data and information. Moreover, some comprehensive traffic flow prediction methods
that appeared in the literature are briefly introduced, and features are specified. How-
ever, most of these methods face some challenges in transportation systems with big data
framework, among which the assumption made in deriving the physical equations.

The data-driven modeling approaches are mainly addressed in the literature from the
type of model point of view, i.e., parametric, non-parametric, and hybrid approaches.
Most of the approaches either require a prior knowledge of specific domains for feature
extraction and selection or are shallow in architecture. Several state-of-the-art results
have been presented to showcase how far has the traffic prediction technology progressed.
However, the main deficiency of many of these methods is their inability in incorporating
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various sources to increase the accuracy of the prediction. Previous work on non-stationary
traffic flow prediction and multi-step traffic flow prediction has been discussed. It can be
concluded that both of these prediction problems are still a major challenge.

Deep learning methods are selected to be the main predictors in this thesis. Therefore
we provide a concise overview on deep learning, more specifically DBN and DNN. The
technical details on DBN and DNN are discussed, including the modern approach to make
the deep architecture works efficiently. Furthermore, the advantages on using DBN and
DNN are highlighted.

A part of this chapter has been dedicated to the investigation of the common uncer-
tainty handling techniques in data fusion. In particular, DSET to deal with the inherent
uncertainty in the information that ranges from the input data to the output model. In
other words, it is shown that dealing with uncertainty is imperative as it can greatly affect
the quality of the prediction greatly. Therefore, among the different approaches confronting
uncertainty, DSET had been shown to be the reliable method in handling imprecise prob-
ability.

Various studies on traffic flow prediction affirm that there is a missing link in the
complete picture of big-data-driven smart-mobility enabled traffic prediction. Accordingly,
the core of the model presented in this thesis is developed based on deep learning methods.
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Chapter 3

Large-Scale Traffic Flow Prediction1

3.1 Introduction

Traffic flow prediction is a challenging problem. During trips, drivers face several inclement
weather conditions, e.g., rain, storm and snow, and unforeseen events, e.g., accidents, con-
certs, and road closures. These factors impact significantly the travel time of each driver,
which consequently affect the overall traffic flow of transportation networks. Furthermore,
connected cars evolve in a data-rich environment, where they consistently generate and
receive a variety of data. Citizens also produce huge streams of data using social media.
While driving, citizens announce their travel plans and share information regarding current
traffic or road conditions using Twitter, Facebook, or Waze. This information can be used
to enrich our experiences on how cities function and as a fuel that drives predictive related
traffic applications such as traffic flow prediction and informed decision-making.

While the prediction of traffic using streams of data has received a lot of attention, the
technical capacity of social media, as event-based data, to provide insights on traffic flow
is only just now catching up. The present work proposes a Deep Belief Network (DBN)
based approach to predict traffic flow using streams of data, i.e., historical traffic flow

1This chapter contains two published articles. The first article is published in IEEE Transaction on
Vehicular Technology on June 28, 2016, available online: https://doi.org/10.1109/TVT.2016.2585575.
Arief Koesdwiady, Ridha Shoua, and Fakhri Karray, ”Improving Traffic Flow Prediction With Weather
Information in Connected Cars: A Deep Learning Approach” [82]. The second article is published in
the proceeding of International Joint Conference on Neural Networks (IJDNN) 2016, available online:
https://doi.org/10.1109/IJCNN.2016.7727607. Ridha Soua, Arief Koesdwiady, and Fakhri Karray,
”Big-Data-Generated Traffic Flow Prediction Using Deep Learning and Dempster-Shafer Theory” [137].
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and weather data, and event-based data, i.e., tweets. Furthermore, a novel architecture to
model and analyze the traffic prediction in a smart city is presented. First, a generic scheme
to fuse streams of data and event-based data is illustrated. In this part, a novel six-layered
traffic flow prediction for data streams and event-based data is proposed. Subsequently,
an extension of Dempster Shafer Evidence Theory (DSET), namely Dempsters conditional
rules for updating belief, is used to fuse traffic prediction beliefs coming from streams of
data and event-based data modules.

The results of applying the proposed architecture to a big-data-based traffic prediction
problem are also presented. First, the experimental settings that include the data-sets used
in the experiments are provided. Then, the streams of data processing and prediction are
introduced. Normalization of the data, as well as correlation study, are conducted. The
event-based data processing and prediction, which include traffic-related city events ex-
traction, are then assessed. Furthermore, the results regarding the combination of streams
of data and event-based data using Dempsters theory are discussed. Several performance
measures to check on the accuracy of the proposed model are introduced; the results are
analyzed to discover which components of the model need to be optimized or enhanced.

3.2 Proposed Architecture

While the increased availability of a multitude of streaming/stored sensor and data feeds
has made the tasks of coordinated, persistent, and pervasive surveillance and decision mak-
ing easier, it has also been the major contributing factor for the immense burden that traffic
authorities have to deal with. To ease this burden, increased automation of the decision-
making process is warranted. This, in turn, calls for effective, computationally viable,
and analytically tractable models for data representation and schemes for evidence fusion.
There are two main schemes for big-data-based traffic prediction architecture proposed
in this research. The first one is based on the type of data generation. Basically, various
sources of data are categorized into two types: streams of data and event-based data. Data
that are categorized as streams of data are data that are continuously generated by sensors;
for example, traffic flow data and weather data. Event-based data refers to data that are
generated based on events; soft data are generally considered as event-based data. The
enormous challenge one faces is mainly due to the critical issue in fusing streams of data
and event-based data. Another challenge is related to the types of data: How should more
”qualitative” information provided by soft sensors be fused with the more ”quantitative”
information generated from the hard sensors? This is an issue that has recently attracted
considerable attention from the data and evidence fusion community [77].
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Figure 3.1: Streams of data and event-based data fusion.

In this research, a decision level fusion architecture based on Dempster-Shafer Evidence
Theory (DSET) is proposed. The streams of data and event-based data are processed
separately. Each type of data is used to predict traffic flow, and the decisions generated by
each prediction model are fused using DSET. This scheme is depicted in Figure 3.1. The
final decision generated by this system is then used by travelers or authorities to improve
traffic planning and management.

The second scheme describes the details of the processing of each type of data. This
scheme illustrates the six-layered traffic flow prediction model in smart city, and de-
scribes the essential key technologies used which include transportation resource layer,
pre-processing layer, feature selection layer, prediction layer, decision fusion layer, traffic
clustering layer, and mass assignment layer. The technology implementation of this scheme
has to be performed in sequence, as shown in Figure 3.2. The key functions of each layer
are described next:

• Resource layer–This layer is responsible for establishing connection to variety of data
sources or suppliers such as traffic data stations, weather stations, transportation
authorities, and other relevant sources. This layer tackles several key features of big
data: volume, exhaustive, and relational.

• Preprocessing and feature selection layer–This layer first identifies good features for
the prediction and normalizes the data if needed. This layer captures the value notion
of big data.

• Prediction layer–This layer is responsible for exploiting the selected and normalized
features in the traffic flow prediction. If the features are selected and arranged
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properly, it can capture the resolution, velocity, volume, and exhaustive aspects of
big data.

• Decision fusion layer–This layer enables the variety and relational aspects of big data
to be tackled by fusing the decisions coming from the predictors, which use different
data sets and type of data for the traffic flow prediction.

• Traffic clustering layers–This layer is responsible of transforming the multi-valued
traffic flow volume into levels of traffic flow volume. This is done because a finite
number of evidence is needed when fusing the hard and soft data using DSET. This
kind of information is more useful to the travelers or authorities in the decision
making.

• Mass assignment layer–In this layer, the evidence in the form of Basic Belief Assign-
ment (BBA) is constructed. Using the BBA, the Dempster’s Rule of Combination
(DRC) or Dempster’s rule of conditioning can be applied.

The main reasons for proposing such schemes are the modularity and the real-time
implementation aspects. When another source of information is introduced in the sys-
tem, it can be easily integrated into the architecture. These layers also allow for real-time
implementation of the proposed model. The modularity and real-time aspects are in accor-
dance with the fast and flexible nature of big data. In addition, by having the modularity,
each part of the model can be tuned or optimized separately to achieve improved traffic
flow prediction. The following sections elaborate the detailed implementations of the two
schemes.

3.3 Streams of Data

This section presents the development of the traffic prediction modeling using streams of
data. After the sources of information are established in the resource layer, i.e., traffic flow
and weather data, the next step is to pre-process the data and select pertinent features
for the prediction. In this layer, the traffic flow and weather data are normalized to [0,1].
One component of the collected weather data is the weather condition, which is considered
as soft data generated by operators. Although the weather condition is considered as
soft data, it will be treated as streams of data since it is available continuously at every
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Figure 3.2: Layers for data processing.
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Figure 3.3: Feature-Level data fusion for traffic flow prediction using weather data.

sampling time. Weather condition consists of 24 unique values, which are represented by:

weath cond = {clear, cloudy, foggy, rain,
snow, overcast, smoke, ...} (3.1)

In order to incorporate the weather conditions in the prediction, the soft-data represen-
tation is re-defined as an integer number in the range of [1, 10], for instance clear =
1, cloudy = 2.

In the next layer, feature selection is done by auto- and cross-correlation methods.
Correlation is crucial in this study as huge traffic data are collected every fifteen minutes
for 4 months from 47 freeways. In addition, soft and hard weather data are collected from 16
stations scattered in the Bay Area. In the context of smart mobility, computing correlation
involving a huge number of paired time-series (weather and traffic), ensures pertinent
feature selection and best prediction accuracy [41]. The feature selection methods will
select relevant information and discard redundant information. In this work, the auto-
correlation coefficients of traffic flow in freeways in San Francisco, Bay Area is calculated.
Subsequently, the cross-correlation between traffic flow and various weather parameters
time-series (humidity, wind speed, temperature, etc) in the same area are analyzed. After
the pertinent traffic flow and weather features are selected, the features are then fed to the
predictors in the prediction layer.

The predictor used in this research is DBNs [67]. DBNs can be used as a predictor or a
data fusion method; the use of DBNs as a predictor and a data fusion method is investigated
in this work. Indeed, the traffic flow prediction problem is a regression problem. In the
multi-task part of the DBNs, namely the last layer of the DBNs, a linear activation function
is used instead of some nonlinear activation functions. First, the traffic flow and weather
data are used together as features for the DBNs, as depicted in Figure 3.3.
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Figure 3.4: Decision-Level data fusion for traffic flow prediction using weather data.

In this model, the input of the prediction model is the historical traffic flow and weather
data, and the output is the traffic flow data. The historical traffic flow data contain current
traffic flow data and previous traffic flow data up to k1-step in the past. The traffic flow
data are collected from 47 roads and used simultaneously in the prediction. After the
initial weights of the DBNs are learned by the unsupervised stacked Restricted Bolztmann
Machines (RBMs), a supervised back-propagation algorithm is implemented to tune the
weights of the DBNs.

A decision-level data fusion for traffic flow prediction using weather data is also intro-
duced in this research. In this architecture, the traffic flow and weather data are predicted
separately using DBNs, as illustrated in Figure 3.4. In this type of system, the k1-step
in the past traffic flow data are trained using k2-step in the future traffic flow data as
the output. Similarly, the current weather data are trained using k2-step in the future
traffic flow data as the output. Both of the data are trained using DBNs similar to the
feature-level data fusion method. The result of each the predictors is then merged using
data fusion techniques. The techniques fuse a set of decisions produced by each prediction
model to obtain enhanced new traffic flow prediction. This type of fusion scheme follows
the DEI-DEO scheme discussed in Chapter II.

In the data fusion part of the architecture, several methods of data fusion are tested:
weighted average, Artificial Neural Network (ANN), and DBN. In the former technique,
the output of each prediction model is weighted to produce better traffic flow predictions.
These weights are calculated using least-square estimate method according to the following
equations:
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Y = Φ>W

Ŵ = (Φ>Φ)−1Φ>Y (3.2)

where

Y , output of the data fusion

X , input of the data fusion

W , the weights of the data fusion inputs

In the ANN, the decisions coming from both predictors are trained using back-propagation
algorithm with the actual traffic flow at k2-step in the future as the output. Similar to the
DBN, instead of using ANN, the fusion method is replaced by a ANN.

After the predicted traffic flow data are obtained, the next processing layer is the traffic
clustering layer. The aim of using this layer is to cluster the traffic flow based on the level
of intensity. In this research, the traffic flow data are clustered into four clusters: low,
medium, high, and very high traffic. The method used to cluster the data is the well-
known K-Means clustering. The K-Means clustering algorithm aims to partition the data
into K clusters in which each observation belongs to the cluster with the nearest mean or
center. In the training, the algorithm assigns each data point to a cluster and adjusted
the centers of the clusters until they converge. K-means is considered as a hard clustering
technique since the result of the clustering belongs to only one cluster. These clusters then
are used to cluster new data and will be used in the mass assignment layer to compute the
masses of each sample.

In the mass assignment layer, the distance of each data point is calculated. The follow-
ing assumption is used to compute the masses:

Assumption 1 The prediction results of the predictors are assumed to be accurate enough,
such that the misclustering can occur only in the neighboring clusters.

Suppose a test sample belongs to cluster medium traffic. When its predicted sample
is available and clustered, it can either be clustered as low traffic or high traffic. The
misclustering is occurred due to the prediction error that propagates to the clustering
process. Following the assumption, after the distances of a sample to the centers are
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calculated, then the two lowest distances are selected. The selected two distances then are
converted into some confidence values as the following:

C(d) = exp (−αd) (3.3)

where C(d) is the confidence value, d(0 ≤ d ≤ 1) is the distance of a sample to a center,
and α(0 ≤ α ≤ 1) is used to control the weight of the exponential function. This function
translates the distance to confidence value non-linearly. If the distance of a sample to a
center is small, it can be said with high confidence that the sample belongs to the center.
The α can be used to control the significance of the distance. Once the confidence values
of the two smallest distances are computed, the difference of the confidence values is then
calculated. There are two possible cases for the difference values: the difference is within
a specified small tolerance value, i.e., there is a confusion in the cluster assignment, or the
difference is quite large, i.e, the sample belongs to the cluster with the highest confidence.
In the former case, the confusion can be modeled by considering the boundary of the two
neighboring clusters as an evidence. These cases determine the number of focal elements in
the power set. Based on the number of clusters, the number of elements in the power set is
24 = 16. Consider the following example: the confidence of cluster low traffic C(dL) = 0.41,
and the confidence of cluster medium traffic C(dM) = 0.4. If the difference tolerance is
0.2, then the following is computed:

C(dLM) = C(dL) + C(dM)− |C(dL)− C(dM)| = 0.8 (3.4)

The summation term denotes the confidence value assigned to the boundary of the
cluster, and the absolute difference term denotes the uncertainty in the boundary. The
three confidence values then are marginalized to 1; hence the final confidence values are:

C(dL) = 0.2547, C(dM) = 0.2484, C(dLM) = 0.4969 (3.5)

This equation illustrates the adjusted confidence values of the low traffic and medium
traffic clusters, and assigns a confidence value the boundary. The other elements in the
power set are assigned zero masses. Indeed, when a sample is in fact in the boundary, it
has the highest confidence compared to the other clusters. In the second case, only the
two highest confidence values are considered. These values are then marginalized to 1, and
other elements in the power set are assigned zero masses. This method of mass assignment
is illustrated in Algorithm 1.
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Algorithm 1 Mass assignment algorithm

1: Input: two smallest distances
2: Output: set of masses
3: Initialization: difference tolerance, α
4: for all data points do
5: Compute the the distance difference |d1 − d2|
6: for i = 1 : 2 do
7: C(di) = exp(−αdi)
8: end for
9: if |d1 − d2| ≤ difference tolerance then

10: C(d12) = C(d1) + C(d2)− |C(d1)− C(d2)|
11: marginalize C(d12), C(d1), C(d2) into masses m1,m2,m12

12: mothers = 0
13: else
14: marginalize C(d1), C(d2) into masses m1,m2

15: mothers = 0
16: end if
17: return mall

18: end for
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3.4 Event-Based Data

In this section, a detailed implementation of the event-based data processing is presented.
The steps of the implementation still follow the six-layered procedure. The main difference
between the event-based data processing and the streams of data processing lies in layer
one and two, whereas the rest is similar. In the first layer, Twitter data are established
as the source of information. However, based on our experiments, Twitter data can not
stand by themselves without the information from traffic flow data. Therefore, the traffic
flow data are included in the first layer.

In the pre-processing and feature selection layer, the traffic flow data are normalized,
and the pertinent features are selected using auto-correlation. Subsequently, the Twitter
data are pre-processed from soft data to hard data by means of annotation and extraction.
Social media data processing is an emerging and challenging research area, and it requires
intensive research efforts. Furthermore, since the scope of this research does not include
the social media data processing, tools of annotation and extraction provided in [11] are
adapted.

In [11], two-steps traffic city events extraction are presented. In the first step, Twitter
data are annotated by employing a sequence labeling task using Conditional Random
Field (CRF). The objective of this task is to spot event and location terms in tweets. The
main challenge in identifying locations in Twitter data is the presence of non-standard
abbreviations, spellings, and capitalization convention. To overcome this challenge, the
sequence model is trained using the knowledge of locations from Open Street Maps for
a specific city. Another challenge is identifying event terms in Twitter data due to the
open domain nature of city related events. Therefore, background knowledge consisting of
domain vocabulary is obtained from 511.org, which provides a hierarchical classification of
traffic related events. Once the CRF model is trained, the next task is to extract traffic
related city events from the Twitter data.

There are two algorithms used to extract the traffic events. The first algorithm obtains
n, e, t, d, l, which denote the location terms, event terms, time of day, day of week, and
geohash location, of the Twitter data using the trained CRF model. The algorithm for
this task is presented in Algorithm 2.

The second algorithm derives traffic-related city events from the feature vectors, i.e.,
n, e, t, d, l, and returns the extracted feature vectors (êi,type, êi,loc, êi,st, êi,et, êi,impact). êi,type
ranges over all the traffic events extracted from Twitter. êi,loc refers to the location of the
event (lat-long), êi,st and êi,et refers to the start time, and the end time of the event, and
êi,impact refers to a number quantifying the severity of the event.The details of the algorithm
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Algorithm 2 Populating metadata for each tweet

Input: tweets, time stamp, latitude, longitude, CRF model
Output: n, e, t, d, l
n:= spotEntities(tweets, time stamp, latitude, longitude, CRF model)
e:= spotEventTerms(tweets, time stamp, latitude, longitude, CRF model)
t:= getTimeOfDay(tweets, time stamp, latitude, longitude)
d:= getDayOfWeek(tweets, time stamp, latitude, longitude)
l:= getGridNumberFromGeohash(tweets, time stamp, latitude, longitude)
return n, e, t, d, l

are depicted by Algorithm 3.

The extracted feature vectors produced by this algorithm then are used for the predic-
tion. The start and end time features are utilized to align the data with other types of
data. However, one of the main characteristics of event-based data is that they are not con-
tinuously available. In the first stage of this research, the unavailable data at certain time
steps are estimated using Principal Component Analysis with Alternating Least Square
(PCA-ALS) algorithm. Principal Component Analysis (PCA) is a classical data analy-
sis technique that finds linear transformations of data that retain the maximal amount
of variance. PCA with missing values is studied in [57]; the authors propose to use the
faster alternating W-X algorithm, which is known as PCA-ALS. The PCA-ALS algorithm
is developed based on missing data assumption rather than unavailable data assumption.
However, the implementation proposed in this research applies the PCA-ALS to unavail-
able data. The incompatibility of the implementation, as well as the unreliability of the
Twitter data, will be used as unreliability indicators in the streams of data and event-based
data fusion.

In the prediction layer, the traffic flow and extracted Twitter data are concatenated
and used as features for the DBN. The output of the DBN is the traffic flow at k2-step in
the future. The traffic clustering and mass assignment layers follow the same methods in
the streams of data processing.

3.5 Fusion of Streams of and Event-Based Data

This section presents the proposed method used to fuse decisions coming from both streams
of data and event-based data processing units. Dempster’s conditioning rules for updating
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Algorithm 3 Traffic-related city events extraction algorithm

Input: (n, e, t, d, l)N ,∆t, ts, te, where N refers to the number of input points, ∆t repre-
sents the time step, ts represents starting time, and te represents ending time
Output: (êi,type, êi,loc, êi,st, êi,et, êi,impact)E, where E represents the number of events
while ∃(n, e, t, d, l) do

for i = 1 : N do
vi = (n, e, t, d, l)
type = 511.org hierarchy term associated with e
Assign type to vi

end for
for i = 1 : N do

Collect all the feature vectors vi with the same type into an event type bucket
E[typek] where k is the number of event types

end for
for i := 1 : k do

Find location with highest number of occurrence in E[typei] represented by lmax;
remove all the members of the set E[typei] whose location is not lmax ;

end for
for i := 1 : k do
êi,type = type
êi,loc = lmax associate with E[typei]
êi,impact = number of items in the set E[typei]
êi,st = smallest time stamp in the cluster E[typei]
êi,et = smallest time stamp in the cluster E[typei]

end for
end while

belief is employed, and the adaptive version based on the reliability of the data is proposed.
Using equation 2.20, the following algorithm is proposed.

This algorithm computes the mass of an event conditioned by another event. The reli-
ability factor λ(t) determines the contribution of new information to the existing evidence.
In this work, tweets are considered as the new information that conditions the fundamental
evidence provided by the streams of data processing. The fact that the reliability of the
information depends on events occurred implies that λ(t) changes over time. The overall
implementation of the proposed architecture is depicted in Figure 3.5.
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Figure 3.5: Overall proposed architecture.
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Algorithm 4 Adaptive Dempster’s conditioning rules

Input: decisions coming from streams of data and event-based data processing units
Output: m(B|A)
for all roads do

for all each data point at t do
Compute the reliability parameter λ(t) based on the estimated features.
if B ⊃ A 6= Ø then
m(B|A) =

∑
A=X∩B λ(t)m(X) + (1− lambda(t))m(A)

else if A = B then
m(B|A) =

∑
A=B⊆X λ(t)m(X) + (1− λ(t))m(B) +

∑
X∩B=Ø λ(t)m(X)

else if A * B,A 6= B,A 6= Ø then
(m(B|A) = 1− λ(t))m(A)

else
m(B|A) = 0

end if
end for

end for

3.6 Experimental Settings

In this section, the data-sets and settings of the experiments are described. These data-sets
are used to perform the correlation analysis as well as training and testing of the DBNs.
The settings allow us to show the merit of the proposed methods, decision-level data
fusion architecture, and algorithms for big-data-based traffic flow prediction. In addition,
the performance indices used in this experiment are presented at the end of this section.

3.6.1 Datasets

In this study, the collected traffic flow, weather, and Twitter data are specific to an area in
California, i.e., Bay Area, District 4, San Francisco, as shown in Figure 3.6. Traffic flow and
weather datasets in this area are obtained from the Caltrans Performance Measurement
System (PeMS) [1] and MesoWest project respectively [4], where as the Twitter data are
collected from CityPulse data-set collection2.

The traffic flow is measured using inductive-loop sensors deployed throughout the free-
ways. These sensors are connected to the road-side controllers from which the traffic flow

2http://harp.cs.wright.edu/cityevents/
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Figure 3.6: District 4, Bay Area, San Francisco (Image courtesy of dot.gov.ca)
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Table 3.1: Road numbers and directions

Road Number Direction Road Number Direction
1 S 101 N,S
4 E,W 152 E,W
17 N,S 237 E,W
24 E,W 238 N,S
25 N,S 242 N,S
29 N,S 280 N,S
37 E,W 580 E,W
80 E,W 680 N,S
84 E,W 780 E,W
85 N,S 880 N,S
87 N,S 948 N,S
92 E,W 980 E,W

data will be sent to the District Transportation Management Center via modem every 30
seconds. These data then are aggregated into 5-minute duration by PeMS. Furthermore,
based on the recommendation of Highway Capacity Manual 2010 [102], the traffic data are
aggregated further into 15-minute duration. In the collected dataset, there are 47 roads,
where the traffic flow of each road is calculated based on the average of all the loop detec-
tors in that particular road. Table 3.1 presents the numbers and directions of the freeways
in our study.

Figure 3.7 plots the 2-weeks traffic flow patterns in selected freeways with low, medium,
and high traffic flow. These categories are manually clustered based on the mean of the
traffic flow in the 47 freeways. As can be seen in the figure, traffic flow witnesses peak
points during rush hours and reaches its lowest point during the night.

The weather dataset is obtained from 16 National Weather Service network stations
scattered throughout the district, as summarized in Table 3.2. Each station provides data
about the temperature, humidity, visibility, wind speed and gust, dew point, cloud layer
height and general weather condition. The weather stations are located in close proximity
of the chosen freeways. The weather data are generated every one hour and then re-sampled
into 15-minute duration for the purpose of alignment with the traffic flow data. A portion
of temperature data generated by KSQL weather station is depicted in Figure(3.8)

The inputs for the prediction models are the traffic flow of all roads at the previous
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Figure 3.7: A portion of traffic flow data with different traffic volume. Freeway with low
(a), medium (b), and high (c) traffic flow.
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Figure 3.8: A portion of temperature data generated by KSQL weather station.
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Table 3.2: National weather stations in district 4, San Francisco

Station Name Station Name
KAPC KHWD
KMRY KNUQ
KOAK KSFO
KSJC KSNS
KSTS KWVI
KDVO KE16
KHAF KRHV
KSQL KPAO

k-step intervals. and weather data from 16 stations at the previous 1-step intervals. For
the weather data, we select only 1-step interval since the traffic flow prediction will be
mainly based on the past traffic flow data. Moreover, the data coming from the weather
station is a complement. The traffic flow data are represented as the number of vehicles per
15-min at a particular freeway. These data are normalized to real numbers in the range of
[0, 1]. The weather data consist of temperature, humidity, visibility, wind gust and speed,
dew point, cloud layer height, and weather condition. All of these items are normalized to
real numbers in the range of [0, 1], except for the weather condition which is soft-data.

The output of the predictor is the k-step ahead of traffic flow prediction values. In our
proposed architecture, the training outputs of both the predictors are identical. Specifically,
the predictor model 2 predicts the traffic flow using data coming from the weather stations.
In this work, the traffic flow and weather data are collected on the weekdays and weekends
from August 1st, 2013 to November 25th, 2013. The data from August to October are used
for the training and November for the testing.

3.6.2 Scenario Settings

To find the suitable settings of the DBN, decision fusion schemes, and parameters of the
Dempster’s fusion method, several scenarios are proposed. In the streams of data processing
and prediction part, the traffic flow and weather data-sets auto- and cross-correlation are
analyzed to select the pertinent features. Next, the selected features are applied to different
sub-scenarios. These sub-scenarios are defined based on:
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1. Traffic flow prediction model: Autoregressive Integrated Moving Average (ARIMA),
ANN, and DBN.

2. Feature settings: original, de-trended, and weekend/weekday traffic flow data.

3. Data fusion scheme: FEI-DEO and DEI-DEO data fusion levels.

4. DBN parameter settings of the event-based traffic flow prediction.

5. Final decision fusion methods.

For the first scenario, the most appropriate model for traffic flow prediction is obtained
by feeding ARIMA, ANN, DBN with the original traffic flow data. Based on the experiment
results, the prediction model with the lowest performance indices is selected. These indices
are defined in 3.6.3.

In the second scenario, the selected prediction model is tested using different feature
settings to assess the impact of these settings on the prediction performances. Mainly,
the de-trended and the weekend/weekday versions of the traffic flow data are investigated.
The goal of the de-trending is to remove the fluctuation caused by the variation of hours
and days of each week. This can be done by estimating the seasonal variation component
and subtracting this component from the original traffic flow data [63], as follows:

• let fi ∈ RT denotes time-series data of the traffic flow at freeway i for T total number
of time stamps.

• define the hour of day and day of week pair (h, d), where h = 0, 1, ..., 23 and d =
1, ..., 7. From these definitions, the following seasonal variation component is defined
as the following

si(h, d) =

∑
{t|g(t)=(h,d)} fi(t)

|{t|g(t) = (h, d)}|
(3.6)

where

si(h, d) , seasonal variation at hour h and day d

for road i.

fi(t) , traffic flow of road i at instant time t.

g(t) , an indexing operator for h and d

for a given time t.

|A| denotes the cardinality of set A.
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• use the above definitions and equation to calculate the de-trended version δfi(t) of
the traffic flow fi(t) of the freeway i:

δfi(t) = fi(t)− si(h, d), ∀g(t) = (h, d) (3.7)

As can be seen in Figure 3.7, traffic flow shows different patterns during the weekday
and weekend. Therefore, two experiments with two groups of data: weekend and weekday
traffic flow data, are conducted. These groups of data are trained separately using two
different settings of the selected model. The outputs are then concatenated and compared
to the ground truth using the performance indices.

In the third scenario, the traffic flow and weather data fusion at different levels are
investigated. Essentially, the relevant weather data as additional information to the traffic
flow prediction model are included based on the data fusion schemes. In the FEI-DEO
scheme, the data fusion is performed at the feature level. This scheme is compared with
our novel architecture based on the DEI-DEO scheme. In this architecture, the traffic flow
and weather data are predicted separately using DBNs, illustrated in Figure 3.4. In this
type of architecture, the k1-step in the past traffic flow data are trained using k2-step in the
future traffic flow data as the output. Similarly, the current weather data are trained using
k2-step in the future traffic flow data as the output. Both of the data are trained using
DBNs similar to the feature-level data fusion method. The result of each the predictors is
then merged using data fusion techniques. The techniques fuse a set of decisions produced
by each prediction model to obtain enhanced new traffic flow prediction. In the data fusion
part of the architecture, several methods of data fusion are tested: weighted average, ANN,
and DBN.

In the next scenario, the event-based data processing and prediction are investigated.
First, after the traffic-related city events are extracted from the Twitter data, traffic flow
prediction is conducted using DBN. To find the suitable number of hidden units and layers,
10-fold cross validation is performed in the training data. When the prediction results of
both the streaming of data and event-based data processing units are obtained, the traffic
clustering is conducted. Subsequently, the performance of the clustering is analyzed.

In the last scenario, the decision coming from streams of data and event-based data
processing units are fused using DSET. In this scenario, the classical DRC and Dempster’s
rule of conditioning are applied in the decision process. The performances of both the rules
are discussed.
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3.6.3 Performance Indices

The performance of different scenarios is evaluated using two performance indices: Root
Mean Squared Error (RMSE) and Mean Absolute Error (MAE). These indices are defined
as:

RMSE =

(
1

T

T∑
t=1

(yt − ŷt)2

) 1
2

MAE =
1

T

T∑
t=1

|yt − ŷt| (3.8)

where yt and ŷt are the actual and predicted traffic flow at time t respectively. These
indices are used to measure the linear score that averages the error with the same weight
and to measure the residuals by assigning larger weights to larger errors. These measures
are represented by RMSE and MAE respectively. After the traffic flow prediction results
are clustered, classification accuracy, precision, sensitivity, specificity, G-Mean, and F1-
measure are used to analyze the results.

3.7 Analysis and Results

In this section, the capabilities of the proposed prediction architecture compared with other
traffic flow prediction techniques are demonstrated. The results are presented according
to the proposed scenarios.

3.7.1 Correlation Analysis

The following sections provide a detailed analysis to demonstrate the use of auto-correlation
and cross-correlation for feature selection.

Auto-Correlation

To determine the number of previous steps of traffic flow that are incorporated in the input
of the prediction models, the auto-correlation analysis is performed. The purpose of the
analysis is to test if the previous k-step intervals of the traffic flow have any correlation
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with the k-step ahead traffic flow. Figure 3.9 shows the auto-correlation results for both
original (Figure 3.9(a)) and de-trended (Figure 3.9(b)) traffic flow data. For both the
figures, each lag corresponds to 15 minutes time step. The height of the red lines represents
the correlation between traffic flow at (t) and (t− time lag). The two blue lines correspond
to the 95% confidence intervals of the correlation coefficients.

As can be observed in Figure 3.9 (a), even up to 20 lags (five hours) in the past,
the original traffic flow values exhibit significant correlation. For the de-trended version,
traffic flow values have significant correlation up to more than 20 lags, as depicted in
Figure 3.9 (b). However, we limit the lag number to 20 in cross-validation processes
due to computational constraint. In our cross-validation process, we fixed the predictor’s
parameters, and we train the predictor using different lag numbers. The outputs of the
predictors are observed to determine the optimized lag number. The cross-validations are
conducted only on the training set (August-October 2013). The experiment shows that
the suitable lag numbers for both the original and de-trended version are eight.

Cross-Correlation

To properly select the most weather factors that shape traffic flow behavior, it is necessary
to investigate the weather and traffic correlation. The cross-correlation results are depicted
in Figure 3.10. The labels Tr. Flow, Wt. Con, Temp, Hum, Vis, Wind. G, Dew. P,
CHCH, and Wind S. in Figure 3.10 (a) refer to Traffic flow, Weather Condition (cloudy,
sunny, snowy, etc), Temperature, Humidity, Visibility, Wind Gust, Dew Point, Cloud
Height Coverage and Wind Speed respectively.

In table 3.3, the cross-correlation coefficient between each pair of weather variables and
traffic flow is represented by a real number. To select the pertinent feature subsets, the
definition is given in [60] is followed. Dew P, has a small correlation coefficient with respect
to traffic flow. Hence, this variable is discarded. In addition, Hum, CHC, and WindS. are
discarded since they have large correlation coefficients with respect to the highest cross-
correlation coefficient, i.e., Temp. Hum, CHC, and WindS. are considered as redundant
weather variables.

The final feature subset is plotted in Figure 3.10. As illustrated in the figure, Temp,
WindG. and Wt.Con have a positive correlation with respect to traffic flow. Obviously,
traffic volume increases when weather presents high temperatures (daytime) and decrease
during nighttime. Furthermore, it can be noticed that traffic flow is inversely correlated to
V is (-0.12). Indeed, during low visibility condition such as fog, rain, etc, the average speed
is lower than its normal level which yields to lower traffic flow. In addition, these inclement
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(a) Original traffic flow data
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(b) De-trended traffic flow data

Figure 3.9: Auto correlation of the traffic flow data.
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Table 3.3: Traffic flow and weather variables cross-correlation coefficients

Tr. Flow Wt. Con Temp Hum Vis Wind G. Dew P. CHC Wind S.
Tr. Flow 1.00 0.20 0.41 -0.32 -0.12 0.12 0.09 0.31 0.34
Wt. Con 0.20 1.00 0.08 0.21 -0.08 0.08 0.28 0.84 0.23

Temp 0.41 0.08 1.00 -0.52 0.18 0.15 0.46 0.18 0.56
Hum -0.32 0.21 -0.52 1.00 -0.22 -0.14 0.43 0.00 -0.34
Vis -0.12 -0.08 0.18 -0.22 1.00 0.04 -0.02 -0.08 0.10

Wind G. 0.12 0.08 0.15 -0.14 0.04 1.00 0.04 0.12 0.38
Dew P. 0.09 0.28 0.46 0.43 -0.02 0.04 1.00 0.19 0.25
CHC 0.31 0.84 0.18 0.00 -0.08 0.12 0.19 1.00 0.31

Wind S 0.34 0.23 0.56 -0.34 0.10 0.38 0.25 0.31 1.00

weather factors can affect the traffic flow such as traffic congestion. The conclusion made
in this section vindicates the decision to use only pertinent weather data as part of the
inputs in the traffic flow prediction architecture.

3.7.2 Traffic Flow Prediction and Data Fusion Analysis

Here, the proposed architecture are tested. Firstly, the suitable configuration and predic-
tors’ parameters of the streams of data processing unit are investigated. Furthermore, the
settings of the predictor for the event-based data unit are configured. Finally, the final
decision of both the units are fused and analyzed.

DBNs require several parameters that should be defined and tuned. For ARIMA, the
number of regression variables are determined using auto-cross correlation discussed in the
previous section. In the case of ANN, the number of hidden units and epoch are set through
cross-validation on the training data. The hidden units are varied between [50, 300] in the
step of 10. Moreover, the number of epoch is varied between [25, 250] in the step of 25.
The best architecture for ANN is 1-hidden layer with 90 hidden units, and the number of
epoch is equal to 150. In the case of DBN, the layer size from 2 to 5 layers are chosen.
The number of nodes in each layer is chosen from [50, 300] in the step of 50. The number
of epochs is crucial to the learning phase. Therefore, the epochs range from 50 to 500 in
the step of 50 are varied. The best architecture for DBN consists of 3 hidden layers, 250,
200, 100 hidden units in the first, second, and third hidden layers respectively, where the
best number of epoch of the DBN training is found to be 100 epochs.

The DBN are compared to the most relevant state of the art prediction techniques
namely The ARIMA and ANN. Figure 3.11 presents the error values of the DBN, as well
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Figure 3.10: Cross-correlation between traffic flow and weather variables

as the ARIMA and ANN, in terms of RMSE and MAE. The same testing dataset for
the three prediction approaches are used. It can be seen from the figure that for 15-min
traffic flow prediction task, DBN exhibits the best performances. It presents an average
MAE equal to 0.07 and an average RMSE equal to 0.05. Compared to the DBN, the
ANN has lower performance (0.08 for MAE and 0.06 for RMSE) but higher performances
than ARIMA. The results confirm the merit of DBN to predict the actual traffic flow.
Hence, DBN stands out as a promising prediction technique to predict traffic in complex
transportation network. DBN is selected to be the prediction model in our proposed
architecture.

• Effect of de-trended and weekday/weekend version:
Transportation systems exhibit temporal fluctuation (daytime, nighttime), as can be seen
in Figure 3.7. These fluctuations are removed by de-trending the traffic flow data. The
impact of the de-trending on the DBN are explored. Three typical freeways, i.e., 17S, 87N
and 15E, are chosen to represent low, medium, and high traffic flow. Furthermore, Several
experiments are conducted and the performance based on MAE and RMSE are evaluated.
The results are shown in Table 3.4.

The reported results show that using original traffic flow ensures better prediction
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Figure 3.11: Errors comparison of DBN with other approaches

Table 3.4: Performance comparison of DBN using original data with the de-trended version
and weekend-weekday partition

Original De-trended
Weekend/
Weekday

Low Traffic
(17S)

MAE 0.0410 0.0635 0.1904
RMSE 0.0599 0.0848 0.2441

Med Traffic
(87N)

MAE 0.0347 0.0602 0.2166
RMSE 0.0455 0.0916 0.2851

High Traffic
(152E)

MAE 0.0850 0.0541 0.1980
RMSE 0.1161 0.0894 0.2781

Average
MAE 0.0487 0.0677 0.2004
RMSE 0.0701 0.1040 0.2659
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Table 3.5: Performance comparison of DBNs

Tr. Only Weat. Only T+W-DF1 T+W-DF2-LS T+W-DF2-ANN T+W-DF2-DBN
Low Traffic
(17S)

MAE 0.0410 0.2188 0.0480 0.0455 0.0424 0.0352
RMSE 0.0599 0.2722 0.0575 0.605 0.0580 0.0481

Med Traffic
(87N)

MAE 0.0347 0.2282 0.0499 0.0342 0.0262 0.0250
RMSE 0.0455 0.2921 0.0583 0.0444 0.0366 0.0356

High Traffic
(152E)

MAE 0.0850 0.2209 0.0472 0.0853 0.0714 0.0654
RMSE 0.1161 0.2754 0.1038 0.1150 0.1012 0.0954

Average
MAE 0.0487 0.2192 0.0416 0.0491 0.0433 0.0405
RMSE 0.0701 0.2722 0.0656 0.0700 0.0638 0.0603

performances when the traffic flow is low and medium. Indeed, for medium traffic, the
DBNs fed with original data have 0.034 and 0.045 as MAE and RMSE values respectively.
Whereas, de-trended version presents 0.06 and 0.09 as MAE and RMSE values respectively.
This results can be explained by the fact that the majority of the freeways has medium
traffic flow. It is worth noting that feeding prediction model with de-trended traffic data
outperforms when the traffic flow is high. Overall, the original traffic data outperforms
de-trended version. This revelation can be explained by the fact that de-trended traffic
data removes the temporal context of the features. However, with original data, the spatial
and temporal relationship of the features are retained.

Moreover, the results show that the trained DBNs, when the weekday/weekend version
is considered, present higher average error. For example, in the 87N freeway, the DBNs
have an RMSE value equal to 0.0455 considering the whole traffic while weekday/weekend
version shows an RMSE equal to 0.285. This high error value is due to the few quantity
of data during the weekend. Secondly, traffic data is time-series data. Thus, analyzing
weekday and weekend data separately hides the time correlation inside the data between
weekday and weekend.

• Traffic and weather data fusion analysis:
As mentioned in [148], traffic flow is closely related to weather conditions. However, existing
studies ignore these conditions when using DBN to predict traffic flow in transportation
networks. In the following experiment, the performances of data fusion in different levels
are investigated. To this end, two levels are differentiated: at feature level, which is denoted
by T +W −DF1, and at decision level. Furthermore, at decision level, the performance of
three variants of data fusion techniques are examined. Specifically, the traffic predictions
coming from the two predictors are fused using:

• Least Square, which is denoted by T +W −DF2− LS.
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Table 3.6: Final decision statistical measures

Streams of Data Event-Based Data Classical DRC Dempster’s Conditional
Accuracy 86.73% 83.24% 84.44% 88.91%
Precision 82.25% 80.72% 80.31% 85.96%

Sensitivity 86.61% 83.50% 84.38% 89.89%
Specificity 84.01% 81.11% 82.12% 85.63%
G-Mean 84.12% 81.67% 82.61% 86.23%
F1-Meas 83.82% 81.17% 82.95% 86.33%

• ANN, which is denoted by T +W −DF2− ANN .

• DBN, which is denoted by T +W −DF2−DBN .

The results of average values of MAE and RMSE are summarized in Table 3.5. In
this table, the first and second columns show the average error values of the traffic flow
prediction based on only traffic and weather data respectively. The third column depicts
the results of the data fusion at the feature level. In general, fusing the data at feature
level exhibits better prediction performances than using traffic or weather data only as
input for the predictor.

In T +W −DF1 model, the DBN parameters are tuned simultaneously for traffic and
weather data. Thus, the degree of freedom to tune the parameters is limited. Therefore,
this level of data fusion presents inferior performances compared to T +W −DF2− LS,
T +W −DF2−ANN , and T +W −DF2−DBN . From results depicted in Table 3.5, it is
clear that using DBN for decision fusion significantly outperforms Least Square and ANN
for different traffic flow levels (Low, medium and high). The merit of the DBN for decision
fusion is more clear in medium traffic flow (87N freeway). Indeed, T+W−DF2−DBN has
MAE and RMSE equal to 0.0250 and 0.0356 respectively. Meanwhile, T+W−DF2−ANN
has MAE and RMSE equal to 0.0262 and 0.0366 respectively.

For illustration purpose, the profile of predicted traffic flow values using decision-level
data fusion based on DBN versus the ground truth for the three representative freeways
(17S, 87N and 15E) are plotted in Figure 3.12. From this figure, it can be seen that our
proposed architecture enhanced with weather data better tracks the traffic flow pattern in
medium traffic flow (87N freeway).

In the case of DBNs using traffic flow and Twitter data, the layer size from 2 to 5 layers
are chosen. The number of nodes in each layer is chosen from [50, 300] in the step of 50.
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Figure 3.12: Traffic flow prediction of freeway with various traffic volume. Freeway with
low (a), medium (b), and high (c) traffic flow.
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The number of epochs is crucial to the learning phase. Therefore, the epochs range from
50 to 500 in the step of 50 are varied. The best architecture for DBNs consists of 3 hidden
layers, 250, 225, 150 hidden units in the first, second, and third hidden layers respectively,
where the best number of epoch of the DBNs training is found to be 150 epochs. After
the prediction results of both the streams of data and event-based units are obtained, the
next step is to cluster the traffic into four levels of intensity: Low, Medium, High, and Very
High. From here, the masses of each level including the boundaries are calculated using
the method proposed in Chapter 4. Finally, DSET is used to perform the final fusion of
the decisions. Note that the Dempster’s conditional updating is implemented with a static
reliability parameter; the λ(t) = λ is tuned using cross-validation until the best result is
acquired. The results of the predictions individually and final decisions are presented in
Table 3.6.

The table shows that when the classical DRC is used, the combination of both units is
worse than those of the individual units. The DRC acts as an averaging method for both
units. However, when the Dempster’s conditional updating is employed, higher accuracy
is achieved. This result is achieved when the parameter 1 − λ is very small. Although
the improvement is not significant, the Dempster’s conditional updating shows promising
results.

3.8 Summary

This chapter presented the details of the big-data-based traffic flow prediction architecture.
The main goal of the proposed architecture is to handle streams of data and event-based
data in a given smart city. A novel six-layered traffic flow prediction for both the data is
presented. Each layer contributes significantly to handling big-data-based traffic prediction
problem. The details of for data preprocessing, feature selection, Twitter traffic-related city
events extraction, as well as traffic clustering and mass assignment methods, are presented.

The experimental results of the proposed architecture are presented. The experiments
start with the auto- and cross-correlation studies to find the pertinent features that affect
most the traffic flow prediction. Next, the different settings for traffic flow data are inves-
tigated. Furthermore, the details of the parameters selection and model configuration are
provided. The performance of each component in the proposed architecture is presented
and used as a comparison to the overall prediction accuracy. Lastly, unreliable data han-
dling using DSET is another capability that is added to the architecture, and help the
overall proposed architecture to improve the prediction accuracy.
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Chapter 4

Non-Stationary Traffic Flow
Prediction1

4.1 Introduction

The stationarity assumption is especially appealing in time series analysis due to the widely
available models, prediction methods, and well-established theory. However, applying this
assumption to real-world data, which are mostly non-stationary, might lead to inappro-
priate forecasts. Traffic flow time series can be either stationary or non-stationary. The
non-stationarity problem in traffic flow arises when irregular traffic flows due to scheduled
or unexpected events such as accidents or constructions occur. In principle, long-term
traffic flow predictions may not be accurate enough for reliable practical use if the data
are assumed to be stationary. One of the solutions to handle non-stationary traffic flow is
to consider the data as a collection of piece-wise, or locally, stationary data. This means
the statistical properties of the time series are changing but remain constant for a specific
period of time. In relation to prediction problems, using the piece-wise stationarity as-
sumption, the stationary part of the time series can be learned using stationary methods.
Subsequently, the predictor is updated when the time-series move to a different stationary

1This chapter contains an article published in 2017 IEEE 20th International Conference on Intelli-
gent Transportation Systems (ITSC), Arief Koesdwiady, Safaa Bedawi, Chaojie Ou, and Fakhri Karray,
”Non-Stationary Traffic Flow Prediction Using Deep Learning”. The contents of this chapter have been
incorporated within a paper that has been uploaded to ArXiv and is going to be submitted for publi-
cation. Arief Koesdwiady, Fakhri Karray, ”SAFE: Spectral Evolution Analysis Feature Extraction for
Non-Stationary Time Series Prediction”.
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state. It is therefore imperative to continuously check whether the time series is stationary
or not.

In this work, a non-stationarity detection method, which can be used in real-time and
combined with powerful predictors such as state-of-the-art machine learning techniques, is
developed. Generally, there are two ways to update predictors: passive and active meth-
ods [40]. In the passive method, predictors adaptation is done regularly, independent of the
occurrence of non-stationarity [84, 58, 44]. These methods are quite effective for prediction
with gradual changes in the data. However, the main issues are the huge computational
requirements and the potential for over-fitting. On the other hand, the active detection
methods monitor the data to detect changes and perform adaptation only when it is needed.
These can be done either by monitoring the error of the predictor [109] or monitoring the
features of the data [28, 9, 97, 10]. The main issue of the first approach is that the error
might not reflect the non-stationarity of the data and it heavily relies on the prediction
accuracy of the predictor, which can be misleading if a poor training process is used to
build the predictor. Therefore, an active detection mechanism based on the features of the
data is considered in this work.

The proposed detection approach is developed by monitoring the evolution of the spec-
tral contents of a time series. The main hypothesis is that frequency domain features con-
tain more information than time domain ones do. Furthermore, the method is specifically
developed to work in combination with state-of-the-art machine learning methods such as
Deep Neural Networks (DNN). By combining the power of frequency domain features and
the known generalization capability and scalability of DNN in handling real-world data, it
is expected that high prediction performances can be achieved.

However, it is known that connectionist models are subjected to a serious problem
known as Catastrophic Forgetting, i.e., forgetting the previously learned data when learn-
ing new data [49]. Researchers have been trying to deal with this problem by using ensemble
learning methods [133, 122], evolutionary computing [47], and focusing on the regulariza-
tion aspects of the models [61, 80]. These methods are mainly tested on classification
problems. In a regression problem, more specifically real-world time series problem, it is
highly possible that the patterns in the past might not appear again in the future, and the
future data is highly affected by the past data that are close to the future only. Therefore,
an approach to include some previous data in the past, which size is variable with respect
to the degree of non-stationarity, is proposed.

The main contributions here are summarized as follows:

• The development of an algorithm to detect non-stationarity based on the evolution
of the spectral contents of the traffic flow time series.
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• The development of an online learning framework that combines the detection method
with online machine learning methods efficiently.

• The development of an algorithm to proportionally include some data in the past to
handle Catastrophic Forgetting.

• Comprehensive experiments to validate the main hypothesis and show the effec-
tiveness of the proposed approach. Rigorous experiments to test different distance
functions to monitor the evolution of spectral contents are performed.

The combination of the detection algorithm, online learning framework, and propor-
tional algorithm is called Spectral Analysis Feature Extraction (SAFE). The rest of the
chapter is organized as follows. Section 4.2 describes the main approach developed in this
work. Section 4.3 explains the mechanism for embedding predictors with SAFE. Section 4.4
elaborates on the datasets, experimental settings, and performance metrics used to validate
the hypothesis and show the effectiveness of the proposed framework. Section 4.5 presents
the experimental results and discussions. Finally, section 4.6 concludes the chapter.

4.2 The SAFE Approach

In this section, the proposed SAFE approach is presented. SAFE is a technique for ex-
plicitly detecting non-stationarity in time series. This technique monitors the evolution of
the local spectral energy of a time series and computes the discrepancy between the en-
ergy at present and previous time instances. The discrepancy then is used to test whether
non-stationarity presents or not.

SAFE consists of two main modules: feature extraction, and non-stationarity detection
modules. In the first module, Short-Time Fourier Transform (STFT) is applied to extract
frequency contents of the time series at each instant time. The results of STFT are fre-
quency values in the complex form. Therefore, the spectral energy of each frequency is
computed to simplify the calculations.

The second module uses Simple Moving Average (SMA) and Exponentially-Weighted
Moving Average (EWMA) [131] methods to estimate the long-term and immediate re-
sponses of the evolution of the spectral energy through a distance function. In other
words, the difference of the spectral energy at every instant time is considered rather than
the spectral energy itself. In an online learning setting, an incoming observation together
with its past values are concatenated to form a window in which the STFT is performed.
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The result of the transformation then compared with the previous window using a distance
function. This way, changes can be detected as soon as a new observation arrives.

4.2.1 Frequency-Domain Feature Extraction

In the literature, several time-domain statistical features are used to characterize a time
series [28, 9]. In this work, a frequency domain approach is presented. There are two main
hypothesis in this work:

• In stationary conditions, the extracted features are expected to be stationary, or at
least fluctuating around a stationary value. Therefore, whenever this is not the case,
it can be deduced that a non-stationarity presents.

• More information can be gained in frequency domain than that in its counterpart.
Therefore, it is expected that the non-stationary detection is more accurate, in terms
of true positive and detection delay.

In the previous section, it is assumed that non-stationary time-series can be split into
chunks of stationary parts. Therefore, a sliding window with a sufficient width can be
applied to obtain local stationarity status of a signal. Therefore, it is intuitively suitable
to apply STFT to extract the frequency contents of the signal. The discrete STFT can be
expressed as

STFT(m,ω) =
∞∑

k=−∞

x[k]w[k −m]e2πjωk/L (4.1)

where the x[k] is the time series of interest, m, and ω represent the indicators of time and
frequency, respectively; while L is the length of the window function w. In this work, a
hamming window function is used. The choice of the sliding window width determines
the time-frequency resolution. A wide window provides better frequency and blurred time
resolutions while a narrow window works in an inverse way. Once the the complex values
of each frequency of interest are computed, their spectral energies are then computed.
Figure 4.1 illustrates the process of STFT for every sliding window. Take STFT(t+ 3, ω)
as an example. When a new observation x(t+ 3) arrives, the STFT is computed using this
values and its several values in the past. It is expected that STFT(t+ 3, ω) and (t+ 2, ω)
will be similar if the series is stationary and diverged if it is not the case.
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Figure 4.1: An illustration of the STFT process.

To show the effectiveness of the frequency-domain feature extraction on capturing the
non-stationarity, a small experiment is conducted and the results are shown in Figure 4.2.
In this experiment, four modes of non-stationarity are injected to the time series:

• The first point, which is denoted by (1) at t = 300, illustrates a gradual non-
stationarity in term of variance.

• The second point, which is denoted by (2) at t = 600, shows an abrupt non-
stationarity in term of the mean of the series. After this point, the mean is constant,
which introduces a bias in the series.

• The third point, which is denoted by (3) at t = 900, depicts an abrupt non-stationarity
in term of the mean of the series. However, the mean keeps increasing after this point.
At this interval, the non-stationarity is in continuous mode.

• In the last point, the series goes back to the original stationary form.

Indeed, there are many modes of non-stationarity that are not included in the ex-
periment. However, these modes are sufficient to illustrate necessary behavior of non-
stationarity for time series prediction. The figure also shows that the spectral energies
represent the behavior of the process, which in this case is concentrated in the lower fre-
quency bin. The energy behavior after point (2) looks similar to the one before point(1)
although they have different means. This should not be considered as a problem since the
important part is the changes at the point of interest, which will be reflected when the
distance between points is calculated. It should also be noted that the last point, when
the system goes back to the original form, is important to consider since in connectionist
modeling the predictor tends to forget the past when a new concept is learned. This creates
problem called Catastrophic Forgetting. By keep monitoring the changes, the predictor can
be trained to learn previous concept when necessary.
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Figure 4.2: An example time series (top) with its spectral energy contents (the rest).

4.2.2 Non-stationarity Detection Module

The next step after extracting features is to detect whether a non-stationarity occurs or not
using the non-stationarity detection module. There are two sub-modules in this module:
the distance module, which computes the similarity between two consecutive extracted fea-
tures, and the non-stationarity test module, which decides whether the observed distances
translate to non-stationarity or not. Furthermore, to find the most compatible distance
function that can capture the non-stationarity better, three distance functions are tested,
namely the Euclidean, absolute Cosine, and absolute Pearson distances. The absolute
term is needed since we are interested only in the magnitude of similarity, and not in the
direction.

The subsequent step is detecting non-stationarity based on the computed distances,
which is developed based on SMA and EWMA. EWMA method estimates the moving
mean of a random sequence by giving more importance to recent data. For a set of values
of a variable given as X = {x1, x2, · · · , xn}, which has mean µ0, the EWMA estimates the
following

Z(t) = (1− λ)Z(t− 1) + λx(t), t > 0 (4.2)

where Z0 = µ0. The parameter λ weighs the importance of the recent data compared
to the older ones. This is suitable to the proposed feature extraction method, where a
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new observation is appended to the sliding window and, in the same time, should provide
immediate insight that a non-stationarity occurs. In addition, this capability is especially
important for detecting gradual non-stationarity. Furthermore, the standard deviation of
Z(t) is given as

σz(t) =

√
λ

2− λ
(1− (1− λ)2t)σx (4.3)

The output of EWMA represents the immediate estimated mean of the distance while
SMA represents the long-term evolution of the mean. Based on this output, a decision
about nonstationarity has to be made. To do this, an algorithm called SAFE is proposed.
This algorithm is illustrated in Algorithm 5. The input of the algorithm is a sequence of
data or time series, and initialization is required for some parameters such as λ for the
weight of EWMA; w = 0 for the warning counter; T for the trigger detection threshold;
W for the warning detection threshold; and γ for the warning duration.

The first step in the algorithm after initialization is to append new incoming data to the
window of previous data to form xtemp, as depicted in line 2 of the algorithm. Next, STFT
is applied to xtemp, which results in f(t). Subsequently, the distance d(t of f(t) with its
previous f(t− 1) is computed. In the initial stage of the algorithm, [x(t− k), · · · , x(t− 1)]
and f(t−1) are not available. It is safe to assume that [x(t−k), · · · , x(t−1)] = [0, 0, · · · , 0]
and f(t− 1) = f(t) since it is not going to significantly affect the rest of the computation.

The next step is to apply both EWMA and SMA to d(t), which results in Z(t) and
µ̄(t). The µ̄(t) is necessary since it represents the long-term states of d(t), in particular
when a non-stationarity is continuously occurring, as depicted Figure 4.2 point 3 to 4.
Furthermore, the standard deviation of Z(t) is calculated using Equation 4.3. This stan-
dard deviation is used together with the control limits W and T as moving thresholds to
determine whether Z(t) is still inside a particular stationary mode or not. This idea is
illustrated in Figure 4.3. Line 8 and 11 of Algorithm 5 impose the moving thresholds to
Z(t). If at an instant time Z(t) is greater than µ̄(t) + T ∗ σ(t), then the non-stationary
flag ns(t) is raised. However, when Z(t) is greater than µ̄(t) + W ∗ σ(t), the algorithm
waits until certain duration γ to raise the flag. This is also useful when Z(t) is fluctuating
insignificantly, which might be due to outliers and/or other unpredictable factors in the
data. The flag can be used by predictors to update their parameters when necessary, which
is more efficient compared to the blind adaptation scheme.
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Algorithm 5 SAFE algorithm.

Input: sequence of data
Initialize: λ, w = 0, T , W , γ

1: for every instant t, a new data x(t) arrives do
2: xtemp = [x(t− k), · · · , x(t− 1), x(t)]
3: f(t) = STFT (xtemp)
4: d(t) = distfunc(f(t− 1), f(t))
5: Z(t) = (1− λ)Z(t− 1) + λd(t)
6: compute the SMA of a sufficiently long sliding window of d(t), this is denoted by

µ̄(t).
7: compute σ(t) according to Equation 4.3.
8: if Z(t) ≥ µ̄(t) + T ∗ σ(t) then
9: ns(t) = 1

10: w = 0
11: else if Z(t) ≥ µ̄(t) +W ∗ σ(t) then
12: w = w + 1
13: if w ≥ γ then
14: ns(t) = 1
15: w = 0
16: end if
17: else if Z(t) ≤ µ̄(t) +W ∗ σ(t) then
18: w = max(0, w − 1)
19: end if
20: end for

Figure 4.3: Illustration of the SAFE approach.
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4.3 Embedding SAFE to Online Predictors

An online predictor is applied only when a non-stationarity is detected. Initially, a predictor
is trained using a presumed stationary data set in an off-line manner. The parameters
obtained from this training are used as initial conditions. In a simulation case, a period of
data where the stationary properties hold can be selected; while in a real-world case, an
initial predictor is trained using all data available at hand.

Once the non-stationarity has been detected, the next step is to update the parameters
of the chosen predictor. The predictor should support online learning since some predictors
require training from scratch when new data are available. Some notable online learning
algorithms are online passive-aggressive [36], linear support vector machine (SVM) with
stochastic gradient descent (SGD) [22], and deep neural networks. These learning algo-
rithms are suitable to combine with SAFE. Furthermore, mini-batch SGD also will be
more suitable for SAFE since we can include previous data points to form a mini batch
and update the predictors accordingly.

It is known that updating these predictors leads to catastrophic forgetting. To avoid
this problem we include previous data so that the model also learn the new data using
a portion of the data from the past. The question is, how many data points should we
include in the online adaptation? To answer this question, the proportional deviation
algorithm is introduced. The main idea of this algorithm is to include several numbers of
data points proportional to the absolute deviation of Z(t) from µ̄. Large deviation means
the new data is far from the previous stationary point. Therefore, it is intuitively suitable
to include more data when the deviation is large and vice versa. The size of the mini batch
is computed as follows

u = round(β|Z(t)− µ̄(t)|) (4.4)

where u is the number of data points included in the past or the size of the mini batch,
and β is the proportional gain to scale the mini batch. The choice of β depends on the
applications and affects the speed of the adaptation. The round operation rounds the
calculation to the nearest integer. This operation is necessary since the size of the mini
batch has to be an integer. Algorithm 6 is introduced to illustrate this procedure.

In this algorithm, the predictor is trained using {xtrain, ytrain}, and validated using
{xval, yval}. The validation is used to control the training epoch. When the validation
error converges, then the training is stopped. This algorithm can be considered as the
sub-algorithm of Algorithm 5.
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Algorithm 6 Embedding SAFE to predictors.

Input: ns(t), Z(t), µ̄(t)
Initialize: β

1: for every instant t do
2: if ns(t) == 1 then
3: u = round(β |Z(t)− µ̄(t)|)
4: xtrain = [x(t− u), · · · , x(t− 1)]
5: ytrain = [y(t− u), · · · , y(t− 1)]
6: xval = x(t)
7: yval = y(t)
8: Train/update the chosen predictor using {xtrain, ytrain} and validate the model

using {xval, yval}.
9: end if

10: end for

4.4 Experimental Settings and Datasets

In this section, the datasets and experimental settings that are used to test the hypothesis
and to illustrate the effectiveness of the proposed approach are introduced. The data sets
consist of two types: artificial and real-world data.

The artificial data allow an effective analysis to be performed since the exact locations of
non-stationarity are known, which are not the case in real-world data. However, unless all
possible non-stationary conditions can be captured, approaches to handle non-stationarity,
which are tested using artificial data, might not work well in practice. Therefore, real-world
data to test the effectiveness our approach are used. Since the exact locations and behavior
of the non-stationarity is not known, the real-world data are tested in the prediction stages
only. The goal of the test is to see whether the proposed approach is able to correct the
prediction that is harmed by non-stationarity.

Several experimental settings to test each element in our approach are proposed. The
settings are defined as follows:

1. Experiment to find the most suitable distance function for our approach. Three types
of distance functions are investigated: Euclidean, Pearson, and Cosine distances.
This is done using artificial data.

2. Experiment to test whether extracting features in frequency domain leads to better
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non-stationarity detection results than in time domain. This is done using artificial
data.

3. Experiment to investigate which predictor performs well in the proposed approach.
This is done using linear and nonlinear artificial data.

4. Experiment to test which domain of feature extraction is better for prediction using
real-world data.

At the end of this section, performance metrics used in each experiment are introduced.

4.4.1 Datasets

Here, the datasets used in the experiments are described.

Artificial Datasets

Two sets of artificial data are used in experimental settings 1, 2, and 3. The first set
contains five time-series datasets that illustrate some behavior of stationary and non-
stationary time series. These data sets are inspired, with modifications, by [34] and [85],
and are given by the following processes:

(TS-A) Stationary AR(1) process. This is a stationary process with εt ∼ N (0, 1),
and a range of values of α = {0.7, 0.4, 0.1,−0.1,−0.4,−0.7}.

xt = αxt−1 + εt, ∀1 ≤ t ≤ T (4.5)

(TS-B) Piece-wise stationary AR process with obvious changes. The changes
in this process occur at two known locations t1 = 400, t2 = 700.

xt =


0.9xt−1 + εt, if 1 ≤ t ≤ t1,

1.68xt−1 − 0.81xt−2 + εt, if t1 < t ≤ t2,

1.32xt−1 − 0.91xt−2 + εt, if t2 < t ≤ T

(4.6)

(TS-C) Piece-wise stationary AR process with less obvious changes. The
change in this process is less observable, and occur at t3 = 600.

xt =

{
0.4xt−1 + εt, if 1 ≤ t ≤ t3,

−0.6xt−1 + εt, if t3 < t ≤ T
(4.7)

75



(TS-D) Piece-wise stationary near-unit-root process with changing variance.
This process has changes in variance occur at two points t4 = 400, t5 = 750, where
ε2t ∼ N (0, 1.52), ε3t ∼ N (0, 32).

xt =


0.999xt−1 + εt, if 1 ≤ t ≤ t4

0.999xt−1 + ε2t, if t4 < t ≤ t5

0.999xt−1 + ε3t, if t5 < t ≤ T

(4.8)

(TS-E) Piece-wise stationary ARMA(1, 1) process. This process has three
points of changes t6 = 250, t7 = 500, t8 = 750.

xt =


0.9xt−1 + εt − 0.5εt−1, if 1 ≤ t ≤ t6

0.3xt−1 + εt, if t6 < t ≤ t7

−0.7xt−1 + εt + 0.6εt−1, if t7 < t ≤ t8

0.4xt−1 + εt − 0.1εt−1, if t8 < t ≤ T

(4.9)

The second set of artificial data is inspired by [28]. This set consists of two linear time
series and two non-linear time series; both linear and non-linear time series are known to
have parameter changes at some specified points. The linear datasets have a similar struc-
ture, which is given by AR(p) process. Time series linear-1 and linear-2 are respectively
given by AR(4) and AR(5) processes. AR(p) process is given as follows:

xt = α1xt−1 + α2xt−2 + · · ·+ αpxt−p + et (4.10)

where et ∼ N (0, σ2).

The nonlinear time series are constructed using the following processes:

xt = [α1xt−1 + α2xt−2 + α3xt−3 + α4xt−4]

∗ (1− exp(−10xt−1)−1 + εt) (4.11)

xt =α1xt−1 + α2xt−2 + [α3xt−1 + α4xt−2]

∗ (1− exp(−10xt−1)−1 + εt) (4.12)

where Equation 4.11 and Equation 4.12 represent nonlinear-1 and nonlinear-2 time series,
respectively. Table 4.1 presents the parameters used in all the linear and nonlinear time
series. Column Point provides points where the parameters are implemented.
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Table 4.1: Linear and Nonlinear Time Series Parameters.

Time Series Point α σ2

Linear-1

1-3000 {0.9,−0.2, 0.8,−0.5} 0.5
3001-6000 {−0.3, 1.4, 0.4,−0.5} 1.5
6001-9000 {1.5,−0.4,−0.3, 0.2} 2.5
9001-12000 {−0.1, 1.4, 0.4,−0.7} 3.5

Linear-2

1-3000 {1.1,−0.6, 0.8,−0.5,−0.1, 0.3} 0.5
3001-6000 {−0.1, 1.2, 0.4, 0.3,−0.2,−0.6} 1.5
6001-9000 {1.2,−0.4,−0.3, 0.7,−0.6, 0.4} 2.5
9001-12000 {−0.1, 1.1, 0.5, 0.2,−0.2,−0.5} 3.5

Nonlinear-1

1-3000 {0.9,−0.2, 0.8,−0.5} 0.5
3001-6000 {−0.3, 1.4, 0.4,−0.5} 1.5
6001-9000 {1.5,−0.4,−0.3, 0.2} 2.5
9001-12000 {−0.1, 1.4, 0.4,−0.7} 3.5

Nonlinear-2

1-3000 {−0.5, 0.8,−0.2, 0.9} 0.5
3001-6000 {−0.5, 0.4, 1.4,−0.3} 1.5
6001-9000 {0.2,−0.3,−0.4, 1.5} 2.5
9001-12000 {−0.7, 0.4, 1.4,−0.1} 3.5
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Real-World Datasets

In this work, the traffic flow dataset downloaded from the Caltrans Performance Mea-
surements Systems (PeMS) [1] is used. The original traffic flow was sampled every 30
seconds. These data were aggregated into 5-min duration by PeMS. Highway Capacity
Manual 2010 [102] recommends to aggregate the data further into 15-min duration. We
collected the traffic flow data of a freeway from January 1st 2011 to December 31st 2012.
The dataset is split into three parts: from January 1st 2011-from August 31st 2011 for
training, September 1st 2011-December 31st 2011 for validation, and the rest for testing.

4.4.2 Experimental Settings

The datasets are applied to four different experimental settings. In the first setting, TS-B
and TS-C are used to find which distance function gives the best performance on clearly
and not so clearly observable changes. In this part, the evolution of each distance function
in relation to the time series is observed. Each dataset is tested over 100 trials to account
for the randomness introduced by the noise. To gain insight on the performance, the total
number of detection, false alarm, hit rate, missed detection, specificity, detection delay,
and execution time are recorded.

The second experimental setting is performed to validate the hypothesis that more
information can be gained by extracting the features in the frequency domain than in the
time domain. TS-A is used to measure the false alarm, and TS-B to TS-E to measure
the total number of detection, false alarm, hit rate, missed detection, specificity, detection
delay, and execution time. In the experiment, each dataset is tested over 100 trials.

For the third setting, linear (Linear-1, Linear-2) and nonlinear (Nonlinear-1, Nonlinear-
2) time series with changes are used to test the prediction performance when SAFE is
embedded into three different predictors namely Passive-Aggressive Regressors, Kernel
Linear-SVM, and Deep Neural Networks. In the Kernel Linear-SVM, the original features
are mapped into a randomized low-dimensional feature space, which are then trained using
linear SVM [124]. In this experiment, the mean-squared error (MSE), execution time, and
percentage update required are measured. Furthermore, to account for the randomness,
20 simulations are conducted.

Finally, real-world datasets, namely Traffic Flow dataset, are used to measure the per-
formance of deep neural networks which are combined with time-domain feature extraction
and SAFE. In this experiment, the MSE, execution time, and percentage update required
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are measured. In addition, all the experimental settings performance with graphs showing
their responses over time are used for illustration.

4.4.3 Evaluation metrics

In this section, the performance metrics used in the experiments are described.

Total number of detection. This denotes the number of points detected in a time-
series. The change point is considered true if it within 5% of the sample size. As an
example, number of detection = 1 means there is only 1 change point is detected. This
number is then cumulated over 100 trials. False positive, true positive, true negative, and
false negative are denoted as FP, TP, TN as FN, respectively.

False Alarm Rate. It measures the number of change points detected that when there
is no actual changes occur. Another name for this metric is False Positive Rate, which is
given as FP/(FP + TN).

Hit Rate. It measures the proportion of correctly detected changes over the actual
number of change points, which is given as TP/(TP + FN).

Missed Detection Rate. It is the number of undetected changes when there are
actual change points over the actual number of change points, which is given as 1−Hit Rate.

Specificity. It reflects the number of stationary points classified as stationary points
over the actual number of stationary points. This is calculated as TN/(TN + FP )

Detection Delay. It measures the distance, in term of number of steps, of the detected
changes from the actual points.

Execution Time. It measures the average time, in seconds, required to perform an
experiment over a specific number of trials.

Mean-Squared Error. This metric measures the similarity between predictions and
actual time series. Two types of MSE are used: the trajectory of MSE, which is defined
as the evolution of the MSE at every instant time, and the overall MSE, which measures
the total MSE of the whole test dataset.

Percentage of Update. The number of updates performed over the number of pos-
sible updates. As an example, a time series with 100 data points. The online update
procedure is started from t = 1. If it is assumed that the algorithm updates the predictors
15 times. It means the percentage of the update is 15%. If blind adaptation scheme is
performed, the percentage of the update will be 100%.
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4.5 Results and Discussion

In this section, the experimental results to evaluate the performances of the proposed
approach are discussed. The results are grouped according to the experimental settings
mentioned in the previous section.

4.5.1 Distance Functions

There are various ways to compute the distance between two vectors; the popular ones are
Euclidean, Pearson, and Cosine distances. To decide which distance function gives better
performance on non-stationary detection, we conducted experiments using TS-B and TS-C
datasets. These datasets illustrate the obvious and non-obvious changes that may occur
in a time series.

First, it is important to show that these three distance functions can capture changes
occur in a time series. Therefore, a simulation result showing the responses of the distances
to the time series are presented. In this simulation, the SAFE approach is applied to the
TS-C dataset with a sliding window of 5 samples. The TS-C dataset is chosen because it
contains non-obvious changes. Intuitively, when more obvious changes occur, the response
of the distance will be more distinguishable. Furthermore, the distances are calculated
using the three distance functions mentioned in the previous paragraph. The result of this
experiment is shown in Figure 4.4. This figure illustrates that when a non-obvious change
occurs at a breakpoint t = 600, the three distances respond to the change immediately.
It should be noted that the responses of these three distances are different, especially
when using the Euclidean distance. Although Pearson and Cosine distances yield similar
responses, they are still distinguishable. The response of the Pearson distance is a little
bit smoother than that of the Cosine distance.

Next, the detection performances of the SAFE when it is combined with three distance
functions are investigated. The size of the sliding window is kept at 5 samples. Other
parameters that have to be set is λ, T,W and γ. It is suggested in [131] that λ ∈ [0.1, 0.3].
Since the detection performances highly depend on the thresholds T,W , these thresholds
have to be set so that three distances have equal performance in one of the evaluation
metrics. To achieve this, the thresholds are set such that the three distances have similar
false alarm rate on TS-B, which is ≈ 0.05. From here, the other performance metrics can
be judged given the false alarm rate.

To achieve the targeted false alarm rate, several trials of experiments are needed. Sev-
eral values of λ are tested, and it is found that λ = 0.3 works best for all the three distances.
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Figure 4.4: Response of distances to the TS-C breakpoint.

The warning thresholds for Euclidean, Pearson, and Cosine distances are 2.85, 0.75 and
1.4, respectively, and the trigger thresholds are 3.35, 1,25 and 1.9, respectively. The size
of the sliding window for the SMA is 20; this value is able to capture the long-term evo-
lution of the distances. It is expected that these parameters work for different types of
non-stationarity. Therefore, these parameters are fixed for all experiments using TS-A to
TS-E.

Table 4.2 shows the detection performances of the three distances over 100 simulations.
It can be seen that in TS-B and TS-C datasets, Euclidean distance provides superior results
in terms of the number of detection, hit rate, missed detection, and execution time. The
highest average detection delay on TS-B is produced by Euclidean distance, but this is not
the case on TS-C. Overall, Euclidean distance produces better performances than other
distances do. Therefore, Euclidean distance is chosen as the distance function for the rest
of the experiments.

4.5.2 SAFE Vs Time-domain Feature Extraction

In the second setting, the performances of SAFE and those of time-domain feature ex-
traction (FE) are compared. The time-domain FE is inspired from the work in [28]. Four
linear (auto-correlation, variance, skewness coefficient, kurtosis coefficient) and 1 nonlin-
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Table 4.2: Summary of Non-stationary detection performance using TS-B and TS-C: Eu-
clidean Vs Pearson Vs Cosine distance. Results over 100 simulations.

Perf.
dataset TS-B

euclidean pearson cosine
# detection:

0 0 3 0
1 4 30 5
2 96 67 95

False Alarm 0.049 0.050 0.050
Hit rate 0.98 0.82 0.97
Missed detection 0.02 0.18 0.03
Specificity 0.95 0.95 0.95
Det. delay (samples) 11.48± 11.62 8.59± 8.31 8.23± 7.45
Exec. time (s) 0.19± 0.004 0.26± 0.008 0.21± 0.003

Perf.
dataset TS-C

euclidean pearson cosine
# detection:

0 0 18 4
1 100 82 96
2 - - -

False Alarm 0.051 0.044 0.063
Hit rate 1.00 0.82 0.96
Missed detection 0.00 0.12 0.04
Specificity 0.95 0.96 0.95
Det. delay (samples) 6.9± 6.48 8.73± 9.46 7.83± 9.08
Exec. time (s) 0.19± 0.003 0.24± 0.007 0.19± 0.005
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Table 4.3: Summary of false detection using TS-A. Results over 100 simulations.

α
False alarms

SAFE time-domain FE
0.7 0.001 0.008
0.4 0.004 0.015
0.1 0.011 0.023
-0.1 0.019 0.030
-0.4 0.035 0.041
-0.7 0.052 0.053

Average 0.020±0.018 0.028±0.015

ear (bi-correlation) are extracted as the time domain features. The detection method after
computing the distance is similar to the one used by SAFE in Algorithm 5.

The parameters of the SAFE approach is kept the same as the previous experimental
setting, and the parameters of the time-domain FE are set to achieve around 0.05 false
alarm rate on TS-B. To achieve this false alarm rate, the forgetting factor λ is set to 0.3
while T and W are set to 3 and 3.5, respectively. The sliding window size of the SMA is
set to 20. Both SAFE and time-domain FE are experimented using TS-(A-E).

The first experiment on this setting is performed on TS-A. Since TS-A is a stationary
time series, it is expected that low false alarm rates are found on both SAFE and time-
domain FE. Table 4.3 shows that acceptable false alarm rates are found in both cases. It
is evident that using different α SAFE produces lower false alarm rates than time-domain
FE does. Indeed, the false alarm rate on stationary time series ideally should be 0. This
can be achieved if both the thresholds are set to higher values. However, setting higher
thresholds may lead to poor detection performances. This is up to the designer to decide
which performances are important in their applications.

The second set of the experiments is done to test the non-stationarity detection per-
formances using TS-(B-E). The results are summarized in Table 4.4. This table shows
that the overall performance of SAFE on the datasets a better in terms of number detec-
tion, false alarm rate, hit rate, missed detection, specificity, detection delay, and execution
time. It should be noted that although in some aspects time-domain FE has almost similar
performances than SAFE does, time-domain FE has significantly higher average time to
execute the experiments. In conclusion, time-domain FE executes the experiments more
than 3 times slower than SAFE does.

To illustrate the performance of SAFE in more details, several graphs showing the
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Table 4.4: Summary of Non-stationary detection performance using TS-(B-E): Frequency
Vs Time domain. Results over 100 simulations.

Perf.
dataset TS-B TS-C

SAFE time-domain FE SAFE time-domain FE
# detection:

0 0 0 0 0
1 4 14 100 100
2 96 86 - -
3 - - - -

False Alarm 0.049 0.049 0.051 0.050
Hit rate 0.98 0.96 1.00 1.00
Missed detection 0.02 0.04 0.00 0.00
Specificity 0.95 0.95 0.95 0.95
Det. delay (samples) 11.48± 11.62 12.08± 11.50 6.9± 6.48 7.17± 6.54
Exec. time (s) 0.19± 0.004 0.72± 0.013 0.19± 0.003 0.73± 0.011

Perf.
dataset TS-D TS-E

SAFE time-domain FE SAFE time-domain FE
# detection:

0 0 0 0 0
1 8 15 3 1
2 92 85 23 30
3 - - 74 69

False Alarm 0.039 0.041 0.042 0.047
Hit rate 0.96 0.94 0.94 0.88
Missed detection 0.04 0.06 0.06 0.12
Specificity 0.96 0.96 0.96 0.95
Det. delay (samples) 11.45± 11.66 12.38± 10.78 15.13± 13.61 15.18± 14.09
Exec. time (s) 0.18± 0.005 0.72± 0.012 0.19± 0.004 0.72± 0.010
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Figure 4.5: Breakpoints detection on TS-B

predicted change points versus the ground truth are presented. Figure 4.5 shows the
detection on TS-B. From the previous section, it is known that TS-B has two change points.
However, the figure shows that the proposed algorithm detects three change points, where
the third detected point is considered as a false positive. This is acceptable since it can
be seen by inspection from the first row of the graph that the time series looks actually
non-stationary in term of the variance. The second row of the graphs shows the evolution
of Z and the warning and trigger thresholds. In Figure 4.6, it can be seen that similar
behavior, where few false alarms present, is also shown in the experiment on TS-C.

Furthermore, different behavior is observable in an experiment using TS-D. Figure 4.7
shows that the false alarm rate is somewhat higher than the other experiments using
different time series. If the behavior of the time series is inspected closely, it certainly
depicts a non-stationary behavior. This behavior is due to the fact that TS-D is a piece-wise
stationary near-unit-root process with changing variance. Near-unit-root process means
the process dynamic is close to unstable behavior. Therefore, it is expected that the
SAFE approach considers some parts of the time-series as non-stationary, especially in
the last part of the series. It is logical to consider that the process contains continuous
non-stationarity, rather than just a change in the breakpoint. This way, the chosen online
predictor can be continuously updated to adapt to the non-stationary process.
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Figure 4.6: Breakpoints detection on TS-C

0 200 400 600 800 1000
−50

0

50

100

150

200 TS-D

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

Z
t-threshold
w-threshold

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

breakpoint-estimated 
breakpoint-ground truth

time(s)

m
ag

ni
tu
de

Figure 4.7: Breakpoints detection on TS-D
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4.5.3 Choice of Predictors

The third setting of the experiments is employed to test which predictor gives better
prediction performances. We use Linear-1, Linear-2, Nonlinear-1, and Nonlinear-2 datasets
and test them with three different predictors namely Passive-Aggressive Regressors (PAR),
Kernel Linear-SVR (KSVR), and Deep Neural Networks (DNN). Before the experiments
are carried out, both parameters in Algorithm 5 and 6 have to be set. The parameters
λ, T,W, β are set to be 0.3, 10, 20, and 0.1 respectively.

Furthermore, the parameters of the predictors also need initialization. For PAR, the
aggressiveness parameter is set to 0.05. For KSVR, epsilon insensitive is used as the
loss function, a L2 regularizer with a constant equals to 1e−3. Finally, for the DNN, the
number of hidden layers is set to 2, where each hidden layer contains 200 neurons, and use
Rectified Linear Unit (ReLU) as the activation function. To avoid over-fitting, drop out
regularizers with rate equals to 0.1 are implemented. All of the parameters were tuned
using a similar off-line training scheme. The predictors are trained using the first 2000
samples and validated using the next 1000 samples. Since, in time series, it is not logically
correct to train using data that come after the validation data, K-fold cross-validation is
not suitable to implement. Basically, the predictors are trained until the validation errors
stop decreasing. The trained predictors are then used as initial models that will be updated
when they are triggered by the SAFE algorithm.

Finally, the rest of the data are used to test the predictors. The experimental results
of these experiments are summarized in Table 4.5. The results show that the smallest
prediction errors on all datasets are achieved using DNN as the predictor. However, the
average execution time of this predictor is also shown to be the highest among all. In some
applications, it might be crucial to have slow execution time. Accordingly, if we concern
more about execution time than the prediction errors, then DNN might not be the best
choice as a predictor. However, in an application such as traffic flow prediction, where the
sampling time is 15 minutes, DNN is suitable as a predictor since it produces significantly
lower prediction errors than the rest of the predictors do.

Figure 4.8 depicts the prediction performances on Linear-1 dataset. The first graph
shows that all of the predictors are able to follow the ground truth closely. However, if
we look at the errors on the second graph, the DNN error is fairly lower than those of
other predictors although the off-line error of the DNN is higher than that of PAR. The
next step is to compare the performance of the DNN with the baseline predictor, which is
the predictor that is not updated. It can be seen in Figure 4.9 that while the error of the
DNN stays constant, the error of the baseline predictor is drifting to a larger value. We
can conclude that updating the SAFE approach is reliable for non-stationary time series
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Figure 4.8: Prediction performance on Linear-1 dataset.
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Figure 4.9: Comparison between SAFE-DNN and the baseline predictor on Linear-1
dataset.
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Figure 4.10: Prediction performance on Nonlinear-2 dataset.

prediction.

Lastly, Figure 4.10 and 4.11 shows that similar performances are shown in the nonlinear
datasets. Although the predictor errors start around similar values, the DNN performs
better in the long run. In addition, all of these prediction performances are achieved by
updating the predictors when necessary only. This is reflected by the percentages of the
update for all datasets that are less than 35%.

4.5.4 Real-world Data Experiments

The objective of the last set of experiments is to test the prediction performance of DNN
on a real-world dataset under SAFE and time-domain FE. The dataset used is traffic flow
dataset of San Francisco Bay Area, District 4, California. The data from January 1st 2011
to August 31st 2011 are used for training; September 1st 2011 to December 31st 2011 are
used for validation; and January 1st 2012 to December 31st 2012 are used for testing.

The off-line predictors for both SAFE and time-domain FE in each dataset are identical.
Next, the proposed approach is tested with traffic flow dataset. The baseline DNN is
configured as follows: the number of hidden layers is 3; each hidden layer contains 125
neurons; and the drop-out rate equals to 0.5. The activation function of both the hidden
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Figure 4.11: Comparison between SAFE-DNN and the baseline predictor Nonlinear-1
dataset.
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Figure 4.12: The evolution of errors on TF dataset.
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Table 4.5: Summary of Non-stationary time-series prediction performance on the artificial
datasets (Results over 20 simulations).

Model
SAFE-PAR

% update
mse (×10−3) ex. time (s)

Linear-1 3.70± 1.10 3.15± 0.22 17.72± 3.23
Linear-2 6.22± 1.73 3.44± 0.27 31.03± 4.07
Non-linear-1 4.12± 2.42 2.83± 0.20 20.39± 4.25
Non-linear-2 4.20± 0.92 2.64± 0.07 6.56± 1.68

Model
SAFE-KSVR

% update
mse (×10−3) ex. time (s)

Linear-1 2.40± 1.50 5.30± 0.92 17.72± 3.23
Linear-2 3.20± 1.42 9.25± 3.28 31.03± 4.07
Non-linear-1 1.76± 1.10 5.07± 1.38 20.39± 4.25
Non-linear-2 7.15± 9.90 3.55± 0.24 6.56± 1.68

Model
SAFE-DNN

% update
mse (×10−3) ex. time (s)

Linear-1 1.45± 1.10 35.65± 8.59 17.72± 3.23
Linear-2 2.17± 1.39 72.63± 24.70 31.03± 4.07
Non-linear-1 0.90± 0.91 42.33± 12.69 20.39± 4.25
Non-linear-2 2.17± 1.00 26.56± 5.56 6.56± 1.68

Table 4.6: Summary of Non-stationary time-series prediction performance on the real-world
dataset.

Model mse (×10−3) ex. time (s) % update

DNN
4.06 - -
4.06 - -

Time-DNN
2.24 482.93 5
2.04 1518.53 15

SAFE-DNN
2.07 434.85 5
1.84 1420.29 15
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Figure 4.13: Traffic flow prediction with percentage of update ≈ 5%.

layers and the output layer is Rectified Linear Unit (ReLU) since it is known that the
traffic flow values cannot be negative. Furthermore, five freeways are selected in these
experiments. The results are shown in Table 4.6. In general, the combination of SAFE
and DNN produces superior results in terms of errors and execution time. The evolution
of the errors is shown in Figure 4.12. It can be seen that the errors start at the same
level. However, the baseline error drifts away while the errors of the online predictors keep
decreasing, and the SAFE-DNN error is always the lowest compared to the other errors.

Lastly, Figure 4.13 shows the prediction of traffic flow time-series using baseline predic-
tor, SAFE approach, and time-domain FE approach. A portion of the prediction is selected
to better illustrate the results. It can be seen that the baseline predictor does not produce
acceptable traffic flow prediction while the SAFE-DNN and time-domain FE-DNN do. Al-
though the predictions of both the approaches look similar, they are essentially different,
especially in the valley parts of the traffic flow. It should be noted that this excellent pre-
diction is obtained only by updating the predictor 5% throughout the experiments. This
means we save around 95% of the processor or GPU cycles.
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4.6 Conclusion

This chapter proposed an approach to actively detect non-stationarity for traffic flow pre-
diction. The approach monitors the evolution of the spectral contents of the traffic flow
time series using a distance function. Comprehensive experiments to validate our hypothe-
sis and test the effectiveness of the proposed approach on artificial and real-world datasets
have been successfully conducted.

The experiments show that the approach is able to achieve high long-term traffic flow
prediction performances while significantly saving computational resources in terms of
processor and GPU cycles. Although DNN requires more computational resources than
other predictors do, it is clearly worth considering as an online predictor since its overall
prediction errors are notably lower than those of the other predictors. The implementation
of the proportional algorithm to variably include some data in the past makes the online
adaptation of the predictors more flexible, i.e., there is no need to fix the batch size of the
online training procedure. The proposed method can be used to work with any large-scale
time-series, where distributed neural networks, e.g., DNN with multi-task learning, are
appropriate.
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Chapter 5

Multi-Step Traffic Flow Prediction1

5.1 Introduction

Accurate and timely traffic flow prediction is essential for traffic management and allows
travelers to make better-informed travel decisions. In some applications, it is often neces-
sary to predict traffic flow not only accurately but also several steps ahead in the future.
For example, in order for the traffic patch to manage a congested road and develop con-
tingency plans, traffic dispatch may need to estimate traffic conditions at least 30 minutes
in advance. However, most traffic flow prediction approaches were developed with single-
step prediction methods. The multi-step prediction problem is significantly more difficult
than its single-step variant and is known to suffer from degradation in predictions the far-
ther we go in future time-steps. Therefore, it is essential to develop multi-step prediction
approaches to achieve accurate multi-step traffic flow prediction.

Multi-step time series prediction tasks are defined as tasks for predicting the next k
values [yt, yt+1, . . . , yt+q] given a historical time series [yt, yt−1, . . . , yt−p], where p, q > 1
denote the past and future horizons. Generally, there are three main strategies for multi-
step time series prediction: recursive, direct, and multi output [21]. In the recursive
strategy, a one-step model is first trained to fit the following function:

1The contents of this chapter have been incorporated within a paper that has been submitted for
publication. Arief Koesdwiady, Alaa El Khatib, Fakhri Karray, ”Methods to Improve Multi-Step Time
Series Prediction”. Submitted to the International Joint Conference on Neural Networks (IJDNN) 2018.
Submission date Feb. 1, 2018. The contents of this chapter have also been incorporated within a paper
that has been uploaded to ArXiv and is going to be submitted for publication. Arief Koesdwiady, Fakhri
Karray, ”Improving Multi-Step Traffic Flow Prediction”.
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yt+1 = f(yt, . . . , yt−p) (5.1)

The learned model, f , predicts a multi-step time-series trajectory by repeatedly passing
its predictions at one time step as input to the next time step. In the simple case where
both the history and predictions are length-1 scalars, given x(0), a model f predicts x̂(1)
as f(x(0)), x̂(2) as f(x̂(1)), and so on2. Due to accumulating errors and shifting input
distribution, model predictions farther in the future increasingly drift from ground truth
trajectories [151]. Moreover, there is a mismatch between what the model is optimized for,
i.e., single-step error, and what it is used for, i.e., multi-step prediction, that gives rise to
optimistic error estimates during training [139]. These weaknesses are present when the
true single-step model is not identified during training [140], which is almost always the
case in non-linear problems. Recent work showed that a learned model can be tuned to
learn corrections to the drift patterns seen in the training data [151]. This is an iterative
training process, in which the training set is repeatedly augmented with additional data
points of the form (x̂(t), x(t + 1)), where x̂(t) represents predictions of the model when
applied to the training set. When the model is applied recursively to the training set points,
it generates prediction trajectories of some length. The intuition of this iterative training
process is that by augmenting the training set with samples of these predicted trajectories,
coupled with the next-step ground truth values, the model can learn to correct the drift
patterns in its predicted trajectories.

Alternatively, one can do without the recursive process by learning a separate model
to directly predict each time-step in the future, i.e., the direct strategy, which is given as

yt+h = fh(yt, . . . , yt−p) (5.2)

where h ∈ 1, . . . , H is the predictions horizon. In this strategy, multi-step predictions are
obtained by concatenating the H predictions. Unlike the recursive strategy, the direct
strategy does not suffer from accumulating errors since it does not use any predicted
values for the subsequent predictions. However, there are two major weaknesses possessed
by this strategy. First, since each model is learned independently, dependencies between
two distant horizons are not modeled. Second, this strategy requires a large computational
resources, i.e., time and space, since the number of models depends on the size of the
prediction horizon.

2This simple case in presenting recursive prediction is used in this work, but the ideas discussed apply
to the general case.
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Figure 5.1: Multi-output strategy.

The third strategy is the multi-output strategy. This strategy is defined as the problem
of finding a model f that predicts the future [x(t + 1), x(t + 2), · · · , x(t + q)]> given the
historical data [x(t), x(t − 1), · · · , x(t − p)]>. The strategy requires a model that is able
to produce multi-step predictions simultaneously, as depicted in Figure 5.1. This way,
each prediction uses the actual observations rather than the predicted ones. Therefore,
accumulated errors are not of concern in this strategy. Moreover, this strategy can learn
the dependency between inputs and outputs as well as among outputs. Hence, the strategy
involves more complex models than the recursive one does, which directly translates to a
slower training process and requires more training data to avoid over-fitting. While in
some cases the direct and multi-output strategies can avoid some of the pitfalls of the
recursive strategy, these models still suffer from degrading performance in the farther
time-steps. Intuitively, there is a higher uncertainty associated with the farther future
that makes it more difficult to forecast. Moreover, direct models can suffer from higher
variance [103]. Researchers have attempted to analyze theoretically and empirically the
differences between recursive and direct/multi-output approaches and understand which
would be more appropriate for a given problem [141], but the results of this effort so far
have been inconclusive. In practice, all approaches continue to suffer from increasingly
drifting predictions for farther time-steps.

Recently, an approach to counter the drifts in trajectories of multi-step predictions
called Data as Demonstrator (DaD) is proposed in [151], specifically in the context of
recursive prediction models. The underlying idea in their approach is to use the drift
patterns seen when a trained model is applied to the training data to tune that model such
that it can compensate for these drifts. Another way to look at it is as a data augmentation
technique that alleviates the mismatch between training and testing distributions. Inspired
by this, two approaches to enhance multi-step prediction accuracy are introduced in this
thesis. In the context of recursive models, a time-step-augmented model that implicitly
learns to associate a different corrective action with different future time-steps is proposed.
The model is an extension of the approach proposed in [151]. This is also related to the
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Rectify method proposed in [142], where a direct model is trained to correct the predictions
of a recursive model at each time-step in the prediction trajectory. In the second approach,
a data augmentation method that enhances multi-step prediction accuracy in multi-output
models is proposed. Here, a conditional generative adversarial network (C-GAN) is used
to learn a generator model that can mimic the historical patterns corresponding to the
future patterns seen in the training data. Subsequently, this model is used to generate new
history-future pairs that are aggregated with the original training data.

The main contributions in this work are summarized as follows:

• An extension to the algorithm presented in [151], where information about the current
time-step prediction is augmented in the model. This extension is called Conditional-
DaD (C-DaD).

• A novel approach for generating new history-future pairs of data that are aggregated
with the original training data using C-GAN.

• Comprehensive traffic flow prediction experiments involving recursive, direct, and
multi-output strategies. In the recursive strategy, the vanilla approach, DaD, and C-
DaD are experimented. Furthermore, the vanilla direct strategy and its modification
using recursive strategy, namely Hybrid method, are also presented. Finally, the
proposed method C-GAN is compared with noise-augmented training strategy as
well as the vanilla multi-output strategy.

The rest of this chapter is structured as follows. Section 5.2 introduces the two proposed
approaches. Section 5.3 describes the experimental setup and the data sets used to evaluate
the proposed models. In Section 5.4, the experimental results are presented and discussed.
Finally, the chapter is concluded with some observations in Section 5.5.

5.2 Methodology

In this section, two methods to improve multi-step time-series prediction are introduced.
An approach to improving recursive multi-step prediction, called Conditional-DaD (C-
DaD), followed by a conditional-GAN-based data augmentation approach to improving
multi-output multi-step prediction are introduced.
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5.2.1 Conditional-DaD

One weakness of the approach presented in [151], and recursive prediction generally, is
that it does not take into consideration the number of steps predicted by the model so
far. The amount of correction the model needs to add differs from time-step to another
along a multi-step prediction trajectory, since the deviation from ground truth is less acute
in early steps. Therefore, the model stands to benefit from having information about the
current time-step along the prediction trajectory. In particular, the amount of correction
the model needs to add is affected by the number of time-steps that have passed in which
the model used its prediction as input to the next time-step.

Based on this, an extension to DaD called C-DaD, in which the input is augmented with
a representation of the current time-step, is proposed. For length-1, scalar history, x(t),
the single-step prediction model is modified to accept an augmented vector, [xn(t), vn]>,
where n is the prediction time-step, and vn is a representation of n. In the presentation
and experiments, vn = n is used. An illustration of this is shown in Fig. 5.2.

A C-DaD model learns a single mapping that is function of the number of predicted
values that have been recycled as input (and also function of the time-series history).
This arrangement allows the model to output different x(t + 1) for the same x(t) input,
depending on the current time-step along the prediction trajectory, and, hence, allows
the model to learn different corrections for different time-steps. This setup differs from
the parameterized recursive prediction approach, where a different set of parameters are
learned for each time-step in the future.

Training a C-DaD model follows a similar process to the meta algorithm proposed in
[151], the difference being in the addition of the time-step representation. Algorithm 7
describes this process. In short, the time-step-augmented training data is generated by
forward-passing the original training data through a base model. Next, a C-DaD model
is iteratively trained, and a new augmented training data set is generated every epoch by
passing the original data through the previous C-DaD model. Furthermore, the final model
is selected based on the performances of all models on the validation data set.

5.2.2 Conditional-GAN Data Augmentation

In some applications, recursive models do not perform well compared to other approaches
such as multi-output models [103]. Nonetheless, the performance of multi-output models
suffers degradation as the prediction time-step increases. In this section, a C-GAN-based
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Figure 5.2: C-DaD recursive prediction model.

Algorithm 7 C-DaD training process.

Input:
• X—time-series points, x(t).
• predict recursively—procedure that takes as input a sequence of points, X, an inte-
ger, N , and a single-step prediction model, net, and outputs the length-N recursive
predictions of net applied to the data points in X. The output of this is of the form
x̂n(t), where n indicates the recursion index.
• predict recursively aug—similar procedure to predict recursively, except that the
model is applied to time-step-augmented inputs Xaug of the form [xn(t), n]>.

Initialize:
• N—number of recursive time steps to use.
• epochs—number of iterations to train the C-DaD model.

1: Use X to build a training set D of the form (x(t), x(t+ 1)).
2: Initialize single-step-prediction base model, Mbase, and train it using D.
3: X̂(N) ← predict recursively(X,N,Mbase)
4: Use X and X̂(N) to build a training set Daug of the form ([x̂n(t), n]>, x(t+1)), n ∈ [0, N ]
5: Initialize single-step-prediction augmented model, M0.
6: for n = 1, . . . , K do
7: Build a time-step-augmented inputs Xaug

8: X̂(N) ← predict recursively aug(Xaug, N,Mn−1)

9: Use Xaug and X̂(N) to build a training set Daug

10: Mn = train(Daug)
11: end for
12: return Mn with lowest error on the validation data.
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data augmentation approach to improve multi-output multi-step time series prediction is
introduced.

The multi-output strategy requires a model that is able to produce multi-step predic-
tions simultaneously. This way, each prediction uses the actual observations rather than
the predicted ones. Therefore, accumulated errors are not of concern in this strategy.
Moreover, this strategy can learn the dependency between inputs and outputs as well as
among outputs. Hence, the strategy involves more complex models than the recursive one
does, which directly translates to a slower training process and requires more training data
to avoid over-fitting.

Similar to the recursive strategy, a data augmentation method can be applied to im-
prove the multi-step time series prediction. One simple way to augment the data is to
contaminate the features with noise, and pair them with the actual labels. This method
can increase the multi-step prediction performance if the noise is carefully chosen. Poor
choice of noise, however, may significantly degrade the prediction performance. In this
work, an alternative method, i.e., Generative Adversarial Network (GAN) [55], to aug-
ment the data by learning a distribution over input conditioned on the output is proposed.

GAN is a framework for estimating a distribution in an adversarial manner. It simulta-
neously trains two models, namely a generative model G and discriminative model D. The
discriminative model is trained to maximize the probability of assigning appropriate labels
for both samples coming from the training data and generative model. Simultaneously,
the generative model is trained to minimize log(1−D(G(z)), where z is a random sample
from an input noise distribution. Both D and G are playing a two-player minimax game
with the value function V (G,D) given as follows:

min
G

max
D

V (D,G) =Ex∼pdata(x) [logD(x)]

+ Ez∼pz(z) [log(1−D(G(z)))] (5.3)

An extension of GAN, namely conditional generative adversarial nets (C-GAN), is pro-
posed in [107]. In this extension, both G and D are conditioned on some extra information,
which can be any kind of auxiliary information such as class labels. There have been some
research applying C-GAN to discrete labels [39], text [126], and images [162]. In this
work,C-GAN is trained to generate inputs (historical data) given the actual labels (future
data). In both the generative and discriminative models, the actual labels are concatenated
with noise. This idea is illustrated in Figure 5.3, where x(t+ 1) is the label (future data),
x̂(t) is the generated inputs (past data). The pair of generated inputs and actual labels
then are augmented in the original training data for multi-output time series prediction.
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Figure 5.3: C-GAN for generating time series data.

Using this method, an infinite amount of data to enhance the predictor performance
can be generated. In addition, using the generated data, there is no need any special
treatments in the training process. It can be done in a standard multi-output training
without any iterative training processes.

5.3 Datasets and Experimental Settings

To test the performance of the proposed methods, we conduct experiments using a traffic
flow data set:

• Traffic Flow: the data set was downloaded from the Caltrans Performance Measure-
ments Systems (PeMS) [1]. The original traffic flow was sampled every 30 seconds.
These data were aggregated into 5-min duration by PeMS. Highway Capacity Man-
ual 2010 [102] recommends to aggregate the data further into 15-min duration. We
collected the traffic flow data of a freeway from January 1st 2011 to December 31st

2012. We use data from from January 1st 2011-from August 31st 2011 for training,
September 1st 2011-December 31st 2011 for validation, and the rest for testing.

Three sets of experiments are conducted using the data set. In the first set, the vanilla
recursive strategy, DaD, and C-DaD are implemented on the data set. The main goal
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of these experiments is to investigate which strategy performs better in the recursive set-
ting. Next, the vanilla direct strategy and Hybrid approach are applied to the data set.
Subsequently, the proposed C-GAN data augmentation is applied and compared with the
vanilla multi-output strategy and noise data augmentation model. The number of the time
steps for the multi-step prediction is chosen to be 8. Furthermore, the performances of
the best models from of each strategy are compared and analyzed. The performance of
each of the experiments is evaluated using Mean Squared Error (MSE) and Mean Absolute
Error (MAE). To illustrate the superiority of the proposed methods, the percentages of
improvement of the errors with respect to the baselines are computed.

5.4 Results and Analysis

In the first set of the experiments, three recursive approaches are applied to the data set.
Each approach uses similar base predictor, which is a deep neural network (DNN). To
have fair comparisons, the configurations of the DNN for all of the approaches, in terms of
number of hidden layers, number of hidden units, activation function, and tricks used for
the training, are kept identical. The main difference is that in the C-DaD approach the
input is augmented with the time-step information, which means there are extra weights
associated with this input.

The base DNN is configured to have 2 hidden layers where each layer contains 150
hidden units, and the activation function is selected to be ReLU. Since it is a regression
problem, a linear activation is used in the output layer with MSE as the loss function.
Furthermore, the data are min-max normalized between 0 and 1. Moreover, to avoid
the model from over-fitting too easily, drop-out regularizers with rate equals to 0.1 are
implemented on each layer. In addition, the Adam [79] algorithm is used for the gradient-
based optimization.

The summary of the performance of the recursive approaches can be seen in Table 5.1.
The table shows that, with respect to the vanilla recursive approach, the DaD and C-
DaD approaches have successfully improved the overall MSE and MAE. This shows that
reusing the prediction results as the input data, together with the original training data,
leads to improvement in the performances. Furthermore, augmenting the information of
the time step in the model, i.e., C-DaD approach, can further improve the performances
for more than 2 times in the MSE and almost 1.5 times in the MAE, as can be seen in the
table. These performances are achieved after 25 and 29 iterations in the C-DaD and DaD
approaches, respectively.
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Table 5.1: Summary of recursive multi-step prediction performances.

Models
Perf.

MSE % Improv. MAE % Improv.

Recursive 0.0101 - 0.0781 -
DaD 0.0092 8.16 0.0627 19.64
C-DaD 0.0078 22.92 0.0563 27.89
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Figure 5.4: MSE (top) and MAE (bottom) at each step for the recursive approaches.

Figure 5.4 depicts the error occurs at each time step. It shows that, in the early step,
both the DaD and C-DaD approaches perform significantly better than the vanilla recursive
does. However, at time step equals to 8, the MSE of the DaD approach is worse than that
of the vanilla recursive, while the C-DaD approach is able to maintain its performances all
the way through the last step. This is not the case for the MAE, where both the DaD and
C-DaD approaches are able to maintain its performances at all time steps.

The results of the traffic flow predictions for the recursive approaches can be seen in
Figure 5.5. This figure presents traffic flow predictions at time step 1 and 8. At time step
1, all the approaches produce similar predictions, which are very close to the actual traffic
flow. However, at time 8, only the C-DaD approach is showing an acceptable prediction.
Indeed, the augmentation of the time-step information provides an extra dimension to the
model, which helps the model to understand the state of the prediction and learn better.
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Figure 5.5: Recursive approaches traffic flow prediction results at time step 1 (top) and 8
(bottom).

Table 5.2: Summary of direct multi-step prediction performances.

Models
Perf.

MSE % Improv. MAE % Improv.

Direct 0.0090 - 0.0715 -
Hybrid 0.0082 8.68 0.0674 5.63

It can be concluded that adding this extra dimension is worth the effort.

In the second set of experiments, two direct approaches, namely vanilla direct and
Hybrid approaches, are tested. Similar base predictors as the previous set of experiments
are used. The number of models trained in this approach depends on the size of the future
horizon. Since the number of time steps is 8, then the number of models in each approach
will be 8. The main difference between the vanilla direct and Hybrid approaches is in the
size of the input. The number of input in the Hybrid increases as the time step increases
while the number of input in the vanilla direct is static.

The performance of the direct approaches is summarized in Table 5.2. In this table, it
can be seen that the vanilla direct approach has smaller errors than the vanilla recursive
does. This is expected since in the vanilla direct approach the accumulating error prob-
lem does not exists. Each time-step prediction is handled independently by each model.
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Figure 5.6: MSE (top) and MAE (bottom) at each step for the direct approaches.

Furthermore, the Hybrid approach improves the vanilla direct performance considerably.
However, if it is compared with the best performance in the recursive approach, C-DaD
is still shown its superiority. This may be attributed to the accumulating errors when the
previous predictions are used as inputs in the subsequent models.

From Figure 5.6, it can be seen that the errors in the first step are identical. This
is possible because the models in this step are practically the same since the previous
predictions are not utilized yet. Overall, the Hybrid approach improves the prediction
errors in all time steps. However, a closer look suggests that the Hybrid model performances
degrade as the time step increases. Indeed, at the later steps the accumulating errors
dominate the input of the model. In this type of approach, the performance in the next
step highly depends on the one in the previous model.

Figure 5.7 shows that, initially, the Hybrid approach produces acceptable prediction,
which is not the case in the last step. This is reciprocal with the errors shown in Figure 5.6,
where there is almost no improvement in MSE and MAE achieved in the last step. In
comparison with C-DaD, this method is computationally inefficient since it requires several
models for multi-step predictions. With 8 times less computational efforts, the C-DaD
approaches performs considerably well than the Hybrid method does.

The last set of experiments involves three multi-output approaches: vanilla multi, noise-
augmented, and C-GAN approaches. The base DNN is configured to have 2 hidden layers
where each layer contains 150 hidden units, and the activation function is selected to be
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Figure 5.7: Direct approaches traffic flow prediction results at time step 1 (top) and 8
(bottom).

ReLU. The three approaches use identical models, including the output layer size. In
the noise-augmented approach, the data are contaminated with a Gaussian noise with
mean equals to 0 and variance equals to 0.1. After several trials, this variance is found to
produce the best performance on the validation data set. Meanwhile, the discriminative and
generative models of the C-GAN use DNN with similar configuration as the base DNN. The
important aspect of training the C-GAN is the learning rates of both the discriminative
and generative models. Usually, the discriminative model is configured to learn faster
than the generative model. This way the discriminative loss stays low, which makes it
stays ahead of discriminating new strange representations from the generative model. The
evolution of the losses in the DC-GAN is depicted in Figure 5.8. It can be seen that the
losses of both the discriminative and the generative models converge. Furthermore, the C-
GAN accuracy converges to 50%, which means the discriminator is not able to distinguish
the data generated by the generative model from the actual data. Therefore, it can be
concluded that the generative model acts as a distribution that mimics the training data.

The overall performances of the multi-output traffic flow prediction approaches are
summarized in Table 5.3. So far, the lowest MSE using the vanilla approaches is obtained by
the multi-output approach. It is attributed to the fact that in the multi-output setting, the
accumulating errors problem does not exist and the dependencies between time steps are
modeled. In the noise-augmented approach, a poor choice of noise may significantly degrade
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Figure 5.8: GAN loss and accuracy progressions.

Table 5.3: Summary of multi-output multi-step prediction performances.

Models
Perf.

MSE % Improv. MAE % Improv.

Multi 0.0089 - 0.0718 -
Noise 0.0082 8.13 0.0671 6.57
GAN 0.0072 18.47 0.0576 19.71

the prediction performances. However, in this experiment, the noise has been successfully
chosen as it is evident in the prediction performances improvements. Furthermore, the
best improvement is achieved when the original data is augmented with the one generated
by the generative model. Therefore, C-GAN can be seen as an intelligent way for data
augmentation.

Figure 5.9 depicts the MSE and MAE of the multi-output approaches at all time steps.
Both the noise-augmented and C-GAN approaches are consistently produce improved traf-
fic flow predictions all the way through the all time steps. Furthermore, in Figure 5.10,
it can be seen that the performances of the vanilla multi and noise-augmented approaches
are poor in the first time step. Indeed, learning several time-steps simultaneously is more
difficult than learning 1 step only as it is done in the recursive and direct approaches.
However, the proposed C-GAN approach is able to significantly improve the early time
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Figure 5.9: MSE (top) and MAE (bottom) at each step for the multi approaches.

step predictions and overall performances.

Finally, the comparison of C-DaD, Hybrid, and C-GAN approaches is depicted in Fig-
ure 5.11. This figure shows that the C-GAN approach has shown its superiority in term
of MSE at all time steps. However, in term of MAE, the C-DaD approach is better at
the later steps compared to the C-GAN approach. Indeed, based on the prediction plots
in Figure 5.5 and Figure 5.10, it can be seen that the C-DaD approach produce better
traffic flow prediction than the C-GAN does. In [158], it is suggested that MAE is more
natural and quite often MSE can be misleading and is not a good indicator of average
model performance because it is a function of two characteristics of a set of errors, rather
than of one. In addition, [29] demonstrates that the MSE is more appropriate to represent
model performance when the error distribution is expected to be Gaussian.

5.5 Conclusions

This chapter proposed two methods to improve multi-step traffic flow predictions: C-
DaD and C-GAN approaches. The first approach is developed using recursive strategy
and inspired by previous work [151]. This approach augments the information about the
current time step and follows a similar training process to the meta-algorithm proposed
in [151]. The second model is developed using multi-output strategy and utilizes the ability
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Figure 5.10: Multi approaches traffic flow prediction results at time step 1 (top) and 8
(bottom).
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Figure 5.11: MSE (top) and MAE (bottom) at each step for the C-DaD, Hybrid, and
C-GAN approaches.
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of GAN in mimicking a data set distribution. The C-GAN model is developed to generate
historical data conditioned on the future data. This way, the original data set can be
enriched with an infinite amount of historical-future pairs of data for training purposes.

The experiments show that the proposed approaches are able to improve multi-step
traffic predictions relative to their vanilla approaches. Moreover, in term of MSE the
C-GAN approach performs better than the all of the approaches. However, in the latter
steps, the MAE of the C-DaD is lower than all the experimented approaches. Compared to
the C-DaD, the training of the C-GAN approach is fairly simpler since it does not require
iterative training once the new data are generated. However, there are applications where
it is more efficient to use recursive model, such as for video sequence prediction, and in such
application recursive prediction can benefit from the improvement offered by the C-DaD
approach.
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Chapter 6

Conclusions and Future Directions

Smart mobility arises as a solution to overcome transportation problem in cities. Intelligent
Transportation System (ITS) plays an important role in realizing smart mobility in smart
city. Moreover, the development of smart mobility along with the Internet of Car (IoC)
realization opens several doors for researchers to explore the implementation of Artificial
Intelligence (AI) technology in transportation systems. However, this development is faced
with critical challenges, namely big data. The hype and hope of big data is a transformation
in the knowledge and governance of cities through the creation of a data deluge that seeks to
provide much more sophisticated, wider-scale, finer-grained, and real-time understanding
of city traffic. Nevertheless, there has not been any well-defined and concrete approach
to take advantage of the big data phenomenon to assist the travelers and authorities in
the decision-making process. In fact, the main bottleneck on this path is the fundamental
challenges of traffic prediction methods that need thorough consideration.

The main objective of the research work in this thesis is to develop a traffic flow pre-
diction framework under big data environment. The proposed framework was composed
of four main modules that tackle major data-driven traffic flow prediction problems: the
fusion of hard data for traffic flow prediction; the fusion of soft data for traffic flow predic-
tion; non-stationary traffic flow prediction; and multi-step traffic flow prediction. The first
module is developed to tackle the inherent big data problems and dealing with the uncer-
tainty in the predictions. It relies on the ability of deep learning approaches in handling
huge amounts of data generated by a large-scale and complex transportation system with
limited prior knowledge. The second module fuses the streams of data and event-based
data using Dempster-Shaffer Evidence Theory (DSET). One of the main features of the
DSET is its ability to capture the uncertainty in the probability. Furthermore, the third
module consists of a method to detect nonstationarities in the traffic flow and an algo-
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rithm to perform online adaptations of the prediction model. Finally, the last module is
developed to improve multi-step traffic flow prediction in the recursive and multi-output
settings.

To summarize, we present novel approaches to handle large-scale traffic flow prediction
using hard and soft data. We propose an extension to the classical Dempster’s Rule
of Combination to tackle the reliability issue of the information coming from soft data.
To tackle the non-stationarity aspect of traffic flow data, we develop a novel approach
to detect nonstationarity that is coupled with online learning methods. The developed
method is able to improve traffic flow prediction performances while mitigating the well-
known Catastrophic Forgetting problem. Furthermore, we propose two new approaches to
predicting traffic flow multi-step ahead in the future. One of the approach, i.e., C-GAN
approach, is the first attempt on mimicking a distribution of a time series given its labels
using generative adversarial networks. The proposed approaches are scalable and work for
other time series prediction problems. These whole proposed approaches have not been
done for large-scale traffic flow prediction problem in particular, and time series prediction
problem in general.

The performances of the proposed approaches were evaluated by running them on
various experimental scenarios. The results showed that the proposed methods could
successfully improve the quality of traffic flow predictions in real-world situations. The
rest of this chapter highlights the contributions made in this thesis, discuss the main
contributions, and determines the future directions.

6.1 Contributions Highlights

The main contributions of this thesis are summarized as follows:

• Large-Scale Traffic Flow Prediction using Hard Data: a modular big-data-
based traffic flow prediction architecture is proposed. A Deep Belief Network is used
as the main approach underpinning the traffic flow prediction process. The DBN
has shown its capability in handling huge amounts of data generated by a large-scale
and complex transportation system with limited prior knowledge. Furthermore, the
proposed decision-level data fusion scheme applied to the traffic flow and weather
data is able to improve the quality of the traffic flow prediction.

• Large-Scale Traffic Flow Prediction using Soft Data: an approach capable
of acquiring the various data and information, processing the data for prediction,
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and combining multiple evidences to enhance traffic flow prediction is proposed.
The applicability of the proposed approach is tested using real data obtained from
authorities and social media. Moreover, the proposed approach is able to handle
transportation big data problem as well as unreliable data introduced by soft data
using Dempster-Shafer Evidence Theory (DSET).

• Non-stationary Traffic Flow Prediction: a method to detect non-stationarities
in the traffic flow based on the evolution of the spectral contents of the traffic flow
time series is introduced. Subsequently, an online learning framework that efficiently
combines the detection method with online machine learning methods is proposed.
Furthermore, an algorithm to proportionally include some past data in the adaption
process to overcome the Catastrophic Forgetting problem is also proposed.

• Multi-step Traffic Flow Prediction: approaches to improve multi-step traffic flow
prediction is proposed. In particular, an extension to the algorithm presented in [151],
where information about the current time-step prediction is augmented in the model
is developed. This extension is called Conditional-DaD (C-DaD). Furthermore, a
novel approach of generating new history-future pairs of data that are aggregated with
the original traffic flow training data using Conditional-GAN (C-GAN) is proposed.

6.2 Future Research Directions

In the following, several interesting directions for future work are presented:

• The proposed deep-learning model could be extended to include more data such as
traffic speed. This way, the traffic density can be derived and used to determine the
traffic state of the road. Once the traffic state is known, time-space diagrams can be
created to give travel time, delay, and queue lengths of a road.

• In this work, the categorical data, e.g., weather conditions, traffic events, were en-
coded using integer encoding. This encoding assumes natural ordered relationship
between each other. However, this might not be the correct approach and prevent
the performance from achieving higher results. One of the alternative ways is to use
one-hot encoding.

• Traffic anomaly is defined as deviations of traffic from normal traffic patters. The
results in this work can also be extended for detecting traffic flow anomalies. This is

115



the first step to proactively assess the imminent occurrence of traffic incidents. Fur-
thermore, traffic flow anomaly detection can also be used to monitor the functionality
of traffic sensors for predictive maintenance.

• The traffic flow prediction results produced by the proposed framework can be utilized
to assist authorities in the decision making. Specifically, the accurate and reliable
prediction results might be used to control the traffic flow by means of data-driven
traffic control systems.
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