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Abstract

Traffic management is being more important than ever, especially in overcrowded big cities
with over-pollution problems and with new unprecedented mobility changes. In this scenario,
road-traffic prediction plays a key role within Intelligent Transportation Systems, allowing traffic
managers to be able to anticipate and take the proper decisions. This paper aims to analyse
the situation in a commercial real-time prediction system with its current problems and
limitations. The analysis unveils the trade-off between simple parsimonious models and more
complex models. Finally, we propose an enriched machine learning framework, Adarules, for
the traffic prediction in real-time facing the problem as continuously incoming data streams
with all the commonly occurring problems in such volatile scenario, namely changes in the
network infrastructure and demand, new detection stations or failure ones, among others. The
framework is also able to infer automatically the most relevant features to our end-task,
including the relationships within the road network. Although the intention with the proposed
framework is to evolve and grow with new incoming big data, however there is no limitation in
starting to use it without any prior knowledge as it can starts learning the structure and
parameters automatically from data. We test this predictive system in different real-work
scenarios, and evaluate its performance integrating a multi-task learning paradigm for the sake
of the traffic prediction task.

1. Introduction

Nowadays the trend for short-term traffic forecasting relies on data-driven empirical
approaches, given the growing data availability, referred to as a big data. This creates the
necessity to handle both structured and non-structured data as well as to take advantage from
contextual information and data coming from multiple sources and observation technologies.
The term short-term traffic forecast in this paper refers to ability of the methods to predict traffic
in 15 up to 60 minutes ahead by handling historical traffic data with real-time traffic streams
continuously. This means that current and future traffic conditions must be estimated and/or
predicted at any point in time, at least 15 minutes ahead, in as short time as possible, based
on the most up-to-date traffic data. Additionally, the short-term traffic forecasting task is
inherently a real-time task that must deal itself with the usual challenges found in this field,
namely high-dimensionality and non-linearity, noisy data from the measurement devices,
missing data from faulty or disabled ones, volatility, and adaptation to change in the traffic
demand and the traffic supply characteristics. For these reasons, it is widely accepted that a
non-parametric approach is usually required to manage the growing complexities as new data
is collected.

To deal with some of these difficulties, shallow neural networks and, more recently, deeper
architectures have been applied extensively in the short-term traffic forecasting field as they
are considered well suited to problems where (i) the input—output data are noisy; (ii) the
relationships between these variables are multivariate and highly nonlinear; and (iii) the
mapping or relationship is poorly understood (van Lint and van Hinsbergen, 2012). In addition,
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they are well suited for online learning with new incoming data as there are very well studied
optimization techniques such as stochastic gradient descent (SGD) which can be applied to
tune the parameters over time (learning), in fact the online optimization field is also an active
research area nowadays. Besides the usual huge time required to train deeper architectures,
the main drawback of this approach is the lack of interpretability and causality in the results,
because often the traffic manager agent does not only care about the final accuracy results,
but also about understanding the factors that mostly influenced such results. This is usually
not possible with neural networks as they work as a black-box approach. In addition, other
works reviewed in the literature simply disregard this kind of problematics and set up
experiments with cleaned, imputed and even sometimes dropping out anomalous samples
(e.g. holidays) from the testing datasets; these scenarios are far away from the expect in a
real-time operating setting.

The paper is organized as follows. In the first part of the paper we will outline the developed
autonomous approach for short-term traffic prediction and explain techniques and their main
properties used in each of the framework components. In the second part of the paper we will
demonstrate traffic forecast framework in two real network examples. First experiment
demonstrates the performance of the proposed autonomous approach versus a more classical
approach where the forecasting models are built with historical data and updated with new
data after an established periodical timescan. The second experiment is designed to
demonstrate the advantage of integrated multi-level learning to speed up the traffic prediction
by reducing the number of rules. The paper closes with a discussion on further application
perspectives of developed autonomous framework and implications for professional practice.

2. Methodology

For the sake of a robust short-term traffic forecasting methodology, we develop a framework
built from different machine learning and data analysis components whose predictive system
is robust to outliers, irrelevant features and missing data. Developed framework is scalable in
terms of network size and can handle growing modelling complexity with new data arrival and
adapt to changes in traffic conditions through concept drift detection. The framework is
inspired by the works of (Gama, 2010) applied to data streaming scenarios, but tailored to the
requirements for this application. In the following sections, the different components of
developed framework are presented.

The framework for traffic prediction, Adarules (Mena-Yedra et al., 2017), works in a supervised
manner, meaning that for each desired prediction target, i.e. different network locations or
forecasting horizons, it is going to discover or unveil a set of rules to gain knowledge about
the supervised task, having past observations with their correct prediction. Then, each rule R
contained within each ruleset R is composed of an antecedent A and a consequent C with the
logical form: A=C. The rule antecedent can be composed of several literals L, where a literal
L is a single condition over a specific attribute with a specific split-point v; with the form
(xj>v),(xj<v) if it is numerical, or (xj=v) if it is categorical. L(xi) returns True if xi satisfies L,
and False otherwise. The antecedent is interpreted as a conjunction. In this way, a rule R is
said to trigger, or to cover, an example xi if all its literals (the antecedent) are evaluated to
True on the example

The consequent of a rule is composed of an adaptive output using the multiple rule predictors
that the rule may hold (e.g. constant, weighted mean, linear model, or any other functional
form). The individual outputs are built at prediction time from the examples gathered in the
scope of that rule, then the adaptive output is generated from that population of individual
outputs (also could be called experts, following an expert advice schema) weighted by their
respective online errors. In addition to the prediction point estimate, an uncertainty interval is
given based on the error seen which approximates the real one as the uncertainty associated
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with covariates is neglected. Finally, each rule R has an associated data structure £ which
contains updated statistics from the observed streams (attributes, targets and errors) for those
observations gathered by the rule. These statistics are later used for multiple aspects: making
predictions, detecting distributional changes and anomalies, evaluating the expansion of a
rule, etc. The framework has been designed and implemented based on a modular
architecture as presented in Figure 1 such that each unit can be separately replaced or
improved. Each component of this framework is described in this section.
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Figure 1: Framework units’ graphical schema. Units in green are implemented and in production.
Units in yellow are considered for future integration.

The traffic prediction framework consists of the following components: the variable selector
(E), the anomaly (outlier) detection (C), the change detection (D), and the handling of missing
data and winsorizing which take place inside the data summary structure (A).

Component E: Variable selector to manage prior knowledge about the road-network

The variable selector is the unit aimed to handle the prior information usually put as expert
knowledge. In our case, it just set a normalized attractiveness value to each feature separated
in different categories (e.g. count, occupancy, speed, time, weather...). Thus, they have an
associated probability, that could be updated with new gathered evidence, that is used to
select features stochastically as will be explained later in the rule expansion process and in
the online learning procedure. Therefore, features associated with detectors in the road
network have a normalized attractiveness based on their distance to the point to be predicted.
More specifically, the attractiveness is set by the function 1d/ where d is the orthodromic
distance which could be easily replaced by using travel times coming from a transport network
model. On the other hand, discrete attributes (e.g. time, weekday, weather...) have a uniform
probability in the scope of its own category to reduce the computation time stochastically.
Anyway, all this kind of prior knowledge can be adjusted manually beforehand, or a function
can be set to adjust these probabilities in runtime.

Component C: Anomaly detection

Detection of outliers or anomalous examples is very important in on-line learning because of
its potential negative impact in the performance of the learning process. For this reason,
incoming samples are analysed to detect anomalous samples and to avoid its learning. The
current approach is based on the Cantelli's inequality (Bhattacharyya, 1987).
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Component D: Change detection

Change detection, also known as concept drift detection in the machine learning community
(Gama et al., 2014), is a critical component for modelling non-stationary processes as it is our
case. For this purpose, each rule has associated a change detector which monitors their error.
The idea is that, after a rule has been expanded and, thus, two new rules are created: their
individual rule predictors are trained in their respective ‘batch’ mode with their corresponding
gathered observations. From this moment, their residual mean error should be located at zero
and it is started to be monitored for changes. When a change is detected (i.e. a significant
increase in the error), a signal is sent to the concept drift handler and the rule is removed from
the ruleset. The current implemented approach for detecting a change is based on the Page-
Hinkley (PH) test (Page, 1954), although other approaches are being considered (Bifet and
Gavalda, 2009, 2007).

Component Al: Handling missing data

The framework gathers online statistics for each attribute in the context of each rule which
corresponds to specific road conditions. So, in the long term, with enough sample size each
rule has a good view of their data distribution for each recognized road condition. Thus, for
each missing attribute, the framework reconstructs a normal distribution with the gathered
mean and dispersion, but limiting the probability density at zero at the current minimum and
maximum values in order to avoid extrapolation in the covariates. Finally, missing values can
be replaced with samples gathered from this distribution.

Component A2: Winsorizing for extreme values

Winsorizing is a statistical technique to filter extreme values. When extreme values (outliers)
in traffic data from sensors are received, i.e. those whose probability is extremely low in the
scope of a specific rule, it is often better to filter them or else replace them using the handler
for missing data described above. In result, if we assume traffic variables are modelled as
Gaussian distributions. In this method, we have assumed Gaussian distribution of traffic
variables, such that those values beyond or above approximately 3 standard deviations from
the mean value are treated as a spurious outlier.

2.1 Rule expansion

Rules could be viewed as high-level features, i.e. patterns of traffic parameters, discovered in
the road network with the aim of reducing the uncertainty around the prediction target using a
specific goodness of fit function. For this purpose, existing rules have a chance to run a rule
expansion evaluation process (component B in Figure 1). If the evaluation process is
favourable, the current rule disappears and it is specialized into two new rules with their
respective observations and statistics. The frequency of this evaluation, which takes place for
each rule separately, is crucial as a low frequency can lead to a slow learning of the high-level
features while a high frequency can make the process too sensitive to transient noise. The
parameter Nmin dictates the minimum amount of observations which must be seen,
separately on each rule scope, to proceed with a rule expansion evaluation. This threshold
Nmin is pre-set to an initial value NminO, that is later dynamically adjusted, but never
increasing, based on the dispersion of the rule error in a logarithmic scale. This dynamic
adjustment aims at relaxing the trade-off between prompt but expensive checks and slow but
inefficient checks. A high initial value can be set because, afterwards, it is going to be adjusted
automatically based on the dispersion of the error rule, which means that if the rule is having
a narrow error then it is not necessary to try to specialize it so often. In the end, if the rule
expansion evaluation process is successful, expanding a rule R consists of creating two new
separate rules (Rleft, Rright) with their respective observations by adding the new literal
created with the corresponding attribute and split-point to the sets of antecedents.
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There are two steps in the rule expansion evaluation process, namely: (1) the searching step
to find which attributes along with their corresponding split points are going to be evaluated,
and (2) the scoring process to rank those selected combinations.

1. Reducing the search for rule expansion

When it is time to run the rule expansion evaluation process, it is needed to decide which
attributes and split points are going to be measured. Perhaps the intuitive idea is simply to
evaluate all the existing features, but in the current high-dimensional problem this can lead to
time-consumption problems especially if the threshold Nmin is low. Not only that, overfitting
may occur if, for instance, detectors that are very far away are selected as antecedents.
Therefore, the candidates to be evaluated are selected probabilistically based on their
distance using the variable selector.

The split points to be evaluated for each selected continuous attribute, are selected using the
cumulative probabilities, or quantile functions, to represent the whole distribution of the
gathered observations. While in the case of discrete attributes the selection is based on the
generation of multiple continuous intervals.

Continuous attributes considered include the traffic count, occupancy and speed from the
whole road network. Discrete attributes considered include the time of the day, weekday and
weather information.

2. Scoring the candidates for rules’ literals

The goodness of fit used to evaluate the different combinations of features and split-points is
based on entropy minimization, process which is also known as information gain. From an
information theory perspective, entropy H(X) measure the randomness of the information in
the random variable X. The entropy is maximized if the distribution is vague (i.e. uniform with
equal probability in the whole space), this is the situation of maximum uncertainty as it is most
difficult to predict the outcome. When there is less uncertainty, i.e. when the outcome is
peaked around certain location values, there is a lower entropy quantity. At the extreme case,
when there is no uncertainty because we are sure about the outcome the entropy is zero
(MacKay, 2003).

When scoring a proposed splitting, entropy is used as information gain score. This means that
we score the entropy of the current rule before splitting versus the entropy of the proposed
new rules weighted by their respective new sample sizes. If entropy is reduced with the new
splits, that means we have gained certainty about the outcome.

In addition, the goodness of fit function considers the missing data ratios of the feature
candidates, penalizing those whose missing data ratio is higher considering these as
untrustworthy candidates.

2.2. Rule prediction

Currently, there are two proposed strategies to forecast within the rules’ scope, and a strategy
to combine these forecasts into a single point-estimate prediction.

1. Weighted mean

This forecaster is simply the weighted historical mean of the true target of the past examples
covered by the rule. This is equivalent to a naive predictor, which is good to maintain among
the forecasters population as it has no direct dependencies on external states.

2. Penalized linear regression

A linear regression model is built using the examples covered by the rule. Although short-term
traffic prediction is a highly non-linear problem, we use the rules to discover the nonlinearities
and combine a population of lower-level, specialized linear models.
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3. Adaptive strategy

Finally, an adaptive strategy combines the forecasters population derived from the previous
two strategies that exist within a rule, namely: the weighted mean and the different penalized
linear regressions. This adaptive strategy is based on the on-line estimation of the mean
absolute error (MAE), where the contribution from each forecaster to the final point-estimate
prediction is determined inversely proportional to their current online estimation of the error.

3. Experiment design and results

3.1 Experiment 1: Forecasting comparison against a classical blind
adaptation approach

In this experiment, we want to assess the performance of the proposed autonomous approach
versus a more classical approach where the forecasting models are built with historical data
and updated with new data after an established periodical time.

The data used in this paper comes from the Caltrans Performance Measurement System
(PeMS) maintained by the California Department of Transportation (California Department of
Transportation, n.d.). More specifically, the current work has focused the attention into the
Caltrans District 11 with over 1,500 detection stations corresponding to the City of San Diego
(US), Figure 2. Collected data for experiments spans for three years ranging from 2013/01 to
2015/12 with an initial 5-min resolution with has been aggregated to 15-min for three reasons:
(a) mitigating the inherent noise in road network measuring devices, (b) reducing the running
time for the experiments in the current research work without compromising the validity of the
results, and (c) convenience for commercial purposes from TSS-Transport Simulation
Systems and its product Aimsun Online. As the final intention is that the resulting output from
this research can be used in an online prediction system, we have focused on predicting traffic
volume because of its use in the matrix estimation process which consists in estimating, from
individual link flows (and turning proportions), an aggregated demand matrix (OD flows) which
serves as input for the simulation step.
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Figure 2: Induction loop detectors (+1500) in the network of San Diego.

For the experiments, a subset of detection stations from the road network has been chosen to
focus on a small set of locations which are far apart from each other, but exhibit high temporal
variability. These can be observed in Figure 3, where an exploratory analysis shows the
distributional changes over time for the six selected detection stations. Data (y-axis)
corresponds to traffic volume [vehicles / 15 minutes] with distributions (x-axis) corresponding
to monthly aggregates (2013/01 to 2015/12). The coloured boxes represent the interquartile
range (25 to 75% of data within), black thicker line stands for the mean and black thinner lines
stands for minimum and maximum during the period.
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Figure 3: Exploratory analysis showing the distributional changes over time for the six selected
detection stations. The y-axis represents the monthly traffic volume [vehicles / 15min]
distribution. The x-axis represents the time, with each bin corresponding to a month.

In addition, the goal of our experiments is to compare the performance of our real-time learning
framework with the alternative modelling approaches:

1. classical approach of training a model in batch mode.
2. classical approach of training a model in batch mode with blind model’'s parameter
adaptation schedule.

Classic approach of batch training is using only real traffic data to predict traffic flow but not to
update the model parameters. The batch approach is based on the same linear regression
penalized with L1 (LASSO) as adopted in the developed real-time learning framework. The
best A penalty value is selected using cross-validation on the training dataset, and the input
information is composed from the traffic volumes existing in the whole road network at the
same time. Although the short-term traffic prediction task is non-linear problem, we have
defined it as a liner model, such that non-linear behaviour is modelled by discretising the task
according to the data resolution (15 minutes) and training a separate set of coefficients for
each time point. Second approach is based on the blind adaptation model's parameter
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adaptation schedule. Blind adaptation approach is retraining the whole models set every 1
week or 1 month using the last 1 month or 6 months for the training dataset.

Finally, a 60-min forecasting horizon has been chosen to evaluate the different approaches
because it is a challenging and interesting horizon for commercial purposes. The performance
metric considered to compare results is the mean absolute percentage error (MAPE) because
it gives an intuitive measure of the performance independent of the unit and scale, and a time
interval of one month has been used to aggregate the MAPE values over.

The results of the experiments are shown in Figure 4. As can be seen, the MAPE for the
adaptive approach is initially high in all the stations because the framework starts with no
knowledge and then it starts to learn and adapt its parameters as in real-time. On other hand,
the approaches based on batch training start with a low error because it is just the data which
has been used for their training (the first 6 or 12 months from the 3 years). Obviously, it is not
a fair comparison, but the aim is just to show how Adarules lower its error as more data is
seen and more knowledge is acquired. It can be seen also that the batch approach trained
with more data (1 year) has a lower error than the batch approach trained with less data (6
months) but the difference is slight. Another interesting point is observing how the adaptive
approach deals better when sudden changes happen, while the performance for the batch
approaches deteriorates and does not seem to recover. It can be seen also that the
performance using the adaptive approach is improving until the end of the experiments. This
can be easily observed in the figures, because it is when the MAPE value increases. Finally,
when it is compared to the blind adaptation approaches; the accuracy performance is similar
on the long term, however a crucial difference is the Adarules autonomy to decide the training
times avoiding unnecessary training costs every 1 week or 1 month. Besides collateral benefits
from Adarules explained in previous section, another crucial difference not noticeable in the
picture because of the results aggregation, is that Adarules is giving responses even with
missing data.

1100553 1108521

50 -
40 -
20- PRI, A Ef - o
0- Framework
1116415 1116508 Adarules
—*— Batch
—*— Blind Adapt - monthly
3'? Blind Adapt - weekly
m #r
w
T T TrainSize
= A L
ll' -_ﬂ?u_ it il -
T b bt ot B ik i
4 1month
" Ayear
1117909 1122685 +
0. Gmonth
90 -
80-
70-
60 -
50 -
40 -
30- r
20 - W # BirgRt ¥
10-4.,.."}.-'&,, .-—.ﬁﬂ;/:‘:é'"' J%JMX--?“ Rk 2 Oy s g .::.f-"lf B e ST
Wwﬂh,_uunu-n—-
0-

2013101 2013/07 2014/01 201407 2015/01 2015/07 22083/01 2012/07 2014/01 201407 2015/01 2015/07 2016



ATRF 2017 Proceedings

Figure 4: Experiments results for six detection stations and 60-minute forecasting horizon,
showing the monthly aggregated MAPE for the three approaches and its evolution over time
during the three years.

3.2. Experiment 2: Checking the ability of the system to identify the
best spatiotemporal correlations in the network over time

In this case, data from the City of Santander (Spain) is used, an urban network with more than
300 individual inductive loop detectors collecting data in real-time on traffic vehicle counts,
occupancies and speeds (). The network has been chosen as the sensors span the entire
City, there is a rich information, and given that it is an urban network it makes a challenging
scenario with more than 4000 links. Collected data for experiments spans an entire year
ranging from January to December 2016 with a 15-min aggregation resolution.
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Figure 5: Induction loop detectors (+300) in the network of Santander.

Traffic prediction at local detector is performed by using data collected from local detector and
other sensors in the network. The amount of data used from different sensors in the network
can have a strong impact on prediction results due to their correlations. For this reason, the
performance of the local traffic prediction method is evaluated for various settings of spatial
distribution of sensors from the local one. The following eight experiments are defined to
evaluate impact of spatial distribution of sensors from the local one (in km) on local traffic
predictions: 0.25, 0.5, 1, 2, 3, 4, 5, and the whole network scope. This experiment would test
mainly the components B and E in the Figure 1.

Figure 6 shows sensitivity analysis results of the local traffic prediction method on spatial
distribution of sensors from the local one, where bars within each monthly slot represent
experiments in consecutive order. Sensitivity results are presented as the error interquartile-
range [25% to 75%] and the mean for monthly error aggregates depicted by black line, as
shown in Figure 6. Results show that relative prediction error decreases with the spatial
increase of detectors involved in local traffic prediction. Although prediction relative error
decreases over time and reaches a steady state, keeping narrow detection of traffic dynamics
to local detector will have a higher impact on the prediction error.

10
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Figure 6: 60-min traffic volume prediction error for the main corridor in Santander.

The performance of the traffic prediction over the one year period in 2016, and for each defined
experiment is quantified and summarized for key statistical performance indicators in Table 1.
Results show that the best performance of the developed local traffic prediction method will
be achieved when method is set to automatically decide which spatial points are more relevant
for the predictive task instead of manually limiting the spatial visibility.

Experiment Min (104 1st Qu. Median Mean 3rd Qu. Max.
KmO0.25 2.22045 7.73991 17.85171 30.00118 40.794 100
Km0.50 2.22045 7.297 16.8683 28.8923 38.66504 100
Km1l 2.22045 6.88416  15.92317 27.86802 36.79545 100
Km2 2.22045 6.51369 15.03571 26.6294 34.42114 100
Km3 2.22045 6.31492  14.59055 26.11157 33.36413 100
Km4 2.22045 6.19712  14.35497 25.82217 32.92857 100
Kmb5 2.22045 6.32554  14.63455 26.25434 33.6181 100
Whole 2.22045 6.22601  14.37244 25.77954 32.73567 100

Table 1: Traffic prediction reliability for the main corridor in Santander: statistical performance

indicators.

Experiment 3: Integrating a multi-task learning approach for traffic
prediction

Multi-task learning (MTL) is a paradigm in the realm of machine learning itself. The core idea,

as was defined by (Caruana, 1997), is to act as an inductive bias causing a model to prefer

the hypotheses best explaining the set of related tasks simultaneously. By doing this, the main
goal is to improve generalization performance by leveraging the domain-specific information

11
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contained in the training signals of these related tasks. In the end, this approach aims to make
the framework more efficient by reducing the number of learnt rules, while regularizing the
learning procedure when multiple related tasks are learnt at the same time. This experiment
would test mainly the components B and F in the Figure 1.

In our experiments, the used approach tries to leverage the fundamental relations in traffic
expressed in the well-known fundamental diagram of traffic flow (Transportation Research
Board, 2011) for each specific detector or spatial point in the network. The basic idea is that
the proposed predictive system enhanced with the MTL paradigm unveils spatiotemporal
correlations in the road network or associated with qualitative variables such as the time to
better perform in the current predictive task, while giving an interpretable reasoning of the
most influential factors. In the end, the system leverages this jointly learning for each detector
to identify traffic conditions, i.e. free-flow, bound flow or congestion.

For the validation of the proposed experiments, data used comes from the City of Santander.
For this experiment, a subset of detection stations from the road network has been chosen to
focus on a small set of locations. We chose eight detection stations which are far apart with
the purpose of achieving a representative picture over the entire road network instead of
focusing on a small area; and having two of them (1021, 1023) in one of the main entrance/exit
to the City, two of them (3078, 3079) in another main entrance/City, two of them (2016, 2019)
in one of the main arterials, and finally another two (2057, 2070) in the City centre, with the
purpose of capturing sufficiently different dynamics from the network.

The goal of this experiment is to check if jointly learning both traffic variables that have a well
understood relation defined in the fundamental diagram of traffic flow helps to the predictive
task by letting the system identifying these situations (free flow, bound flow, congestion)
through rules discovery in the data. To this aim, we have learnt different rulesets for each
detector. On one hand, we have learnt a ruleset to predict the traffic flows on each location
and another ruleset to predict the respective occupancies, which means 16 rulesets overall.
On the other hand, we have learnt a ruleset for each detector for both variables at the same
time, which means 8 rulesets.

Results for 60-min traffic flow prediction can be seen in Figure 7. In this figure, a more
aggregated view of all the detectors performance is shown, but it is easier to check if there is
a significative difference in the cumulative percentage of the MAPE below a certain value. It
can be observed that it is evident that the prediction performance is practically the same during
the four periods. The Empirical cumulative distribution function (ECDF) plots show the same
curve which means there is no significant difference in the traffic flow prediction performance
between learning solely traffic flows or jointly learning both variables together. This is
confirmed in Table 2, where more disaggregated results for each detector corroborate that
almost identical MAPE values are obtained for both approaches. More specifically, the
averaged MAPE for both approaches are around the 15% for all the detectors and periods
excluding the off-peak period that obviously has a higher averaged MAPE, around 40%, due
to the low traffic volume and its impact on this relative metric. However, it is interesting to note
that one of the detector with highest error using the single-task approach (2019) obtains a
slight reduction of almost a 2% using the MTL approach for the morning, noon and evening
periods.

12
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Figure 7: ECDF showing the cumulative distribution of the MAPE predicting traffic flow and
occupancy for each period.

Predicting occupancies is clearly a harder task due to the small scale, the high non-linearity
and the presence of noisy data or even binned data. For that reason, higher MAPE values are
obtained compared to predicting traffic flows. In this case, there is a tiny improvement in all
the periods, but especially in the morning period with a decrement of around 3% in the
averaged MAPE.

Flow Off-peak Morning Noon Evening No. of rules
Source Single MTL Single MTL Single MTL Single MTL Single MTL
1021 22.36 2237 10.73 1184 6.99 6.94  7.43 7.39 22 23
1023 4125 4150 20.81 21.83 1104 9.97 11.06 12.47 14 23
2016 32.65 32.83 12.62 13.03 10.07 10.72 1158 12.04 24 23
2019 56.61 57.22 2520 24.04 2329 2172 26.15 24.28 28 27
2057 39.23 3958 1860 19.11 14.76 1568 17.20 17.91 25 23
2070 3798 36.67 16.42 16.10 1188 11.83 1259 13.04 21 23
3078 4465 4570 1575 1532 1258 12.61 1430 1457 18 21
3079 52.43 5274 17.75 16.12 13.88 13.66 17.05 16.58 17 19

Mean 40.67 40.79 17.21 17.13 13.08 1291 14.67 14.79 —
Occupancy Off-peak Morning Noon Evening No. of rules
Source Single MTL Single MTL Single MTL Single MTL Single MTL
1021 2486 2044 1549 1531 1193 11.31 13.21 11.47 9 —
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1023 4245 3834 2604 2405 1538 1587 20.80 19.12 3

2016 4953 46.48 41.72 36.44 3810 3531 41.18 3800 9

2019 56.08 57.04 2620 23.89 2143 21.74 2472 2194 8

2057 6327 64.75 4059 30.64 32.77 3280 2998 30.73 11

2070 55.11 5521 2573 2575 21.70 21.94 2588 27.87 14

3078 68.37 67.80 1094 17.67 19.05 1823 21.27 1964 6

3079 70.11 68.94 3856 27.41 28.77 26.83 2443 2789 7

Mean 52.83 51.43 29.35 26.33 23.65 2301 2518 2458 —

Total — 236 163
| Median 32 23

Table 2: Statistics showing the averaged MAPE predicting traffic flow and occupancy for each
period. Results are shown for each detector and aggregate.

Besides the comparison of the prediction performance, which is a critical aspect of any
predictive system, there is another key factor regarding the interpretability and efficiency of
the system. Interpretability was one of the aim this traffic prediction system was built for, thus
any factor that can improve this aspect is especially important for traffic engineers and
managers that use this tool. As can be observed in Table 2, the number of rules is reduced
noticeably in the case of using the MTL paradigm, going from a total of 236 to 163 rules, and
going from an average of 32 rules per ruleset to an average of 23. This is done without
sacrificing performance, or even improving it at some points.

A final remark is that Santander is not a City with a high presence of congested links so
probably this kind of study should deserve another analysis in a kind of network with a higher
presence of congestion events.

4. Conclusions and Implications for Professional Practice

The experimental results have confirmed the expectations about the proposed Adarules,
which are a good tolerance and fast adaption to change, especially sudden changes and long-
term changes associated with seasonality or traffic demand growth. Second, that as it sees
more data, the framework learns and maintains its predictive accuracy. Third, it is valuable
that the framewaork unveils the inherent dependencies in the road network (which can be seen
as high-level features in the machine learning argot) and, also importantly, these can be easily
interpreted and evaluated by traffic managers. The use of contextual information (e.g. date,
time and weather) and the measurement of its impact is especially attractive for traffic
managers. Another interesting advantage of Adarules is that it can give responses for the
predictive point even if it is temporally malfunctioning if there is enough knowledge acquired
and thus reconstructing its typical behaviour. Finally, Adarules is an autonomous framework
and can manage the trade-off for deciding the proper training times to adapt quickly to changes
while keeping a good prediction accuracy. Another kind of experiment tested the integration
of a multi-task learning approach for the sake of forecasting both traffic flow and occupancy.
More specifically, the first experiment tested a single-task learning for traffic flow and
occupancy prediction separately and a multi-task learning approach that jointly learns both.
The results showed that there was no significant improvement in the traffic flow prediction
performance, and only a slight improvement in the occupancy prediction task. Efficiency and
interpretability were improved by reducing 40% of the rules created in the single-task learning
approach. However, this requires more testing in other networks with more congestion events.

Finally, an important remark about road network traffic prediction is that prediction accuracy
is very important, but it cannot be the only criterion when choosing the appropriate modelling
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methodology (Kirby et al., 1997). Given that this task is a non-stationary stochastic process
tackled in real-time, other matters concerning the adaptability to changing behaviours and
traffic demand changes, transferability to new locations with scarce data or information about
the traffic supply characteristics, causality and interpretability about the process, and cost in
time and effort for model development and, more importantly, maintenance must be
considered. Some of these challenges are pointed out in (Vlahogianni et al., 2014), which can
be summarized in the following points that we believe that the proposed predictive framework
Adarules in the current research work aims to deal with them: (1) responsive forecasting
schemes for non-recurrent conditions, (2) developing prediction systems with increased
algorithmic complexity, (3) attempting to understand data coming from novel technologies and
fuse multi-source traffic data to improve predictions, (4) the applicability of artificial intelligence
(Al) methodologies to the short-term traffic prediction problem.
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