1,824 research outputs found

    Lightweight Blockchain Framework for Location-aware Peer-to-Peer Energy Trading

    Full text link
    Peer-to-Peer (P2P) energy trading can facilitate integration of a large number of small-scale producers and consumers into energy markets. Decentralized management of these new market participants is challenging in terms of market settlement, participant reputation and consideration of grid constraints. This paper proposes a blockchain-enabled framework for P2P energy trading among producer and consumer agents in a smart grid. A fully decentralized market settlement mechanism is designed, which does not rely on a centralized entity to settle the market and encourages producers and consumers to negotiate on energy trading with their nearby agents truthfully. To this end, the electrical distance of agents is considered in the pricing mechanism to encourage agents to trade with their neighboring agents. In addition, a reputation factor is considered for each agent, reflecting its past performance in delivering the committed energy. Before starting the negotiation, agents select their trading partners based on their preferences over the reputation and proximity of the trading partners. An Anonymous Proof of Location (A-PoL) algorithm is proposed that allows agents to prove their location without revealing their real identity. The practicality of the proposed framework is illustrated through several case studies, and its security and privacy are analyzed in detail

    Trusted community : a novel multiagent organisation for open distributed systems

    Get PDF
    [no abstract

    Dynamic constrained coalition formation among electric vehicles

    Get PDF
    Background: The use of electric vehicles (EVs) and vehicle-to-grid (V2G) technologies have been advocated as an efficient way to reduce the intermittency of renewable energy sources in smart grids. However, operating on V2G sessions in a cost-effective way is not a trivial task for EVs. The formation of coalitions among EVs has been proposed to tackle this problem. Methods: In this paper we introduce Dynamic Constrained Coalition Formation (DCCF), which is a distributed heuristic-based method for constrained coalition structure generation (CSG) in dynamic environments. In our approach, coalitions are formed observing constraints imposed by the grid. To this end, EV agents negotiate the formation of feasible coalitions among themselves. Results: Based on experiments, we show that DCCF is efficient to provide good solutions in a fast way. DCCF provides solutions whose quality approaches 98% of the optimum. In dynamically changing scenarios, DCCF also shows good results, keeping the agents payoff stable along time. Conclusions: Essentially, DCCF’s main advantage over traditional CSG algorithms is that its computational effort is very lower. On the other hand, unlike traditional algorithms, DCCF is suitable only for constraint-based problems
    • 

    corecore