202 research outputs found

    Development and evaluation of low cost 2-d lidar based traffic data collection methods

    Get PDF
    Traffic data collection is one of the essential components of a transportation planning exercise. Granular traffic data such as volume count, vehicle classification, speed measurement, and occupancy, allows managing transportation systems more effectively. For effective traffic operation and management, authorities require deploying many sensors across the network. Moreover, the ascending efforts to achieve smart transportation aspects put immense pressure on planning authorities to deploy more sensors to cover an extensive network. This research focuses on the development and evaluation of inexpensive data collection methodology by using two-dimensional (2-D) Light Detection and Ranging (LiDAR) technology. LiDAR is adopted since it is economical and easily accessible technology. Moreover, its 360-degree visibility and accurate distance information make it more reliable. To collect traffic count data, the proposed method integrates a Continuous Wavelet Transform (CWT), and Support Vector Machine (SVM) into a single framework. Proof-of-Concept (POC) test is conducted in three different places in Newark, New Jersey to examine the performance of the proposed method. The POC test results demonstrate that the proposed method achieves acceptable performances, resulting in 83% ~ 94% accuracy. It is discovered that the proposed method\u27s accuracy is affected by the color of the exterior surface of a vehicle since some colored surfaces do not produce enough reflective rays. It is noticed that the blue and black colors are less reflective, while white-colored surfaces produce high reflective rays. A methodology is proposed that comprises K-means clustering, inverse sensor model, and Kalman filter to obtain trajectories of the vehicles at the intersections. The primary purpose of vehicle detection and tracking is to obtain the turning movement counts at an intersection. A K-means clustering is an unsupervised machine learning technique that clusters the data into different groups by analyzing the smallest mean of a data point from the centroid. The ultimate objective of applying K-mean clustering is to identify the difference between pedestrians and vehicles. An inverse sensor model is a state model of occupancy grid mapping that localizes the detected vehicles on the grid map. A constant velocity model based Kalman filter is defined to track the trajectory of the vehicles. The data are collected from two intersections located in Newark, New Jersey, to study the accuracy of the proposed method. The results show that the proposed method has an average accuracy of 83.75%. Furthermore, the obtained R-squared value for localization of the vehicles on the grid map is ranging between 0.87 to 0.89. Furthermore, a primary cost comparison is made to study the cost efficiency of the developed methodology. The cost comparison shows that the proposed methodology based on 2-D LiDAR technology can achieve acceptable accuracy at a low price and be considered a smart city concept to conduct extensive scale data collection

    Neural Network Based Vehicular Location Prediction Model for Cooperative Active Safety Systems

    Get PDF
    Safety systems detect unsafe conditions and provide warnings for travellers to take action and avoid crashes. Estimation of the geographical location of a moving vehicle as to where it will be positioned next with high precision and short computation time is crucial for identifying dangers. To this end, navigational and dynamic data of a vehicle are processed in connection with the data received from neighbouring vehicles and infrastructure in the same vicinity. In this study, a vehicular location prediction model was developed using an artificial neural network for cooperative active safety systems. The model is intended to have a constant, shorter computation time as well as higher accuracy features. The performance of the proposed model was measured with a real-time testbed developed in this study. The results are compared with the performance of similar studies and the proposed model is shown to deliver a better performance than other models.</p

    Single Transponder Range Only Navigation Geometry (STRONG) applied to REMUS autonomous under water vehicles

    Get PDF
    Submitted in partial fulfillment of the requirements for Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 2005A detailed study was conducted to prove the concept of an iterative approach to single transponder navigation for REMUS Autonomous Underwater Vehicles (AUVs). Although the concept of navigation with one acoustic beacon is not new, the objective was to develop a computer algorithm that could eventually be integrated into the REMUS architecture. This approach uses a least squares fit routine coupled with restrictive geometry and simulated annealing vice Kalman filtering and state vectors. In addition, to provide maximum flexibility, the single transponder was located on a GPS equipped surface ship that was free to move instead of the more common single bottom mounted beacon. Using only a series of spread spectrum ranges logged with time stamp, REMUS standard vehicle data, and reasonable initial conditions, the position at a later time was derived with a figure of merit fit score. Initial investigation was conducted using a noise model developed to simulate the errors suspected with the REMUS sensor suite. Results of this effort were applied to a small at sea test in 3,300 meters with the REMUS 6000 deep water AUV. A more detailed test was executed in Buzzard's Bay, Massachusetts, in 20 meters of water with a REMUS 100 AUV focusing on navigation in a typical search box. While deep water data was too sparse to reveal conclusive results, the Buzzard's Bay work strongly supports the premise that an iterative algorithm can reliably integrate REMUS logged data and an accurate time sequence of ranges to provide position fixes through simple least squares fitting. Ten navigational legs up to1500 meters in length showed that over 90% of the radial position error can be removed from an AUV's position estimate using the STRONG algorithm vice dead reckon navigation with a magnetic compass and Doppler Velocity Log alone (DVL)

    Communication-based UAV Swarm Missions

    Get PDF
    Unmanned aerial vehicles have developed rapidly in recent years due to technological advances. UAV technology can be applied to a wide range of applications in surveillance, rescue, agriculture and transport. The problems that can exist in these areas can be mitigated by combining clusters of drones with several technologies. For example, when a swarm of drones is under attack, it may not be able to obtain the position feedback provided by the Global Positioning System (GPS). This poses a new challenge for the UAV swarm to fulfill a specific mission. This thesis intends to use as few sensors as possible on the UAVs and to design the smallest possible information transfer between the UAVs to maintain the shape of the UAV formation in flight and to follow a predetermined trajectory. This thesis presents Extended Kalman Filter methods to navigate autonomously in a GPS-denied environment. The UAV formation control and distributed communication methods are also discussed and given in detail

    Planning in information space for a quadrotor helicopter in a GPS-denied environment

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2008.Includes bibliographical references (leaves 85-87).Unmanned Air Vehicles (UAVs) have thus far had limited success in flying autonomously indoors, with the exception of specially instrumented locations. In indoor environments, accurate global positioning information is unavailable, and the vehicle has to rely on onboard sensors to detect environmental features and infer its position. Given that a vehicle small enough to fly indoors can only carry a limited sensor payload, the vehicle's ability to localize itself varies across different environments, since different surroundings provide varying degrees of sensor information. Therefore, a vehicle that plans a path without regard to how well it can localize itself along that path runs the risk of becoming lost. My research focuses on how path-planning can be performed to minimize localization uncertainty, and works towards developing a motion-planning algorithm for a quadrotor helicopter. As a starting point, I apply the Belief Roadmap (BRM) algorithm, an information-theoretic extension of the Probabilistic Roadmap algorithm, incorporating sensing during the path-planning process. I make two theoretical contributions in this research. First, I extend the original BRM to use non-linear state inference via the Unscented Kalman Filter, providing better approximation of the non-linearities of laser sensing onboard the UAV. Second, I develop a sampling strategy for the BRM, minimizing the number of samples required to find a good path. Finally, I demonstrate the BRM path-planning algorithm on a quadrotor helicopter, navigating the vehicle autonomously in an indoor environment.by Ruijie He.S.M

    GPS/INS SYSTEM INTEGRATION BASED ON NEURO-WAVELET TECHNIQUES

    Get PDF
    ABSTRACT Global Positioning System (GPS) and Strapdown Inertial Navigation System (SDINS) can be integrated together to provide a reliable navigation system. This paper offers a new method for error estimation in a GPS/INS augmented system based on Artificial Neural Network (ANN) and Wavelet Transform (WT). An ANN was adopted in this paper to model the GPS/INS position and velocity errors in real time to predict the error in the integrated system and provide accurate navigation information for a moving vehicle. It was found that the proposed technique reduces the standard deviation error in the position by about 91% for X, Y, and Z axes, while in velocity it was reduced by about 94% for North, East, and Down directions. K KE EY YW WO OR RD D: : vehicular navigation, inertial navigation, GPS, wavelet multi-resolution analysis, neural networks

    Predicting Trajectory Paths For Collision Avoidance Systems

    Get PDF
    This work was motivated by the idea of developing a more encompassing collision avoidance system that supported vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications. Current systems are mostly based on line of sight sensors that are used to prevent a collision, but these systems would prevent even more accidents if they could detect possible collisions before both vehicles were in line of sight. For this research we concentrated mostly on the aspect of improving the prediction of a vehicle\u27s future trajectory, particularly on non-straight paths. Having an accurate prediction of where the vehicle is heading is crucial for the system to reliably determine possible path intersections of more than one vehicle at the same time. We first evaluated the benefits of merging Global Positioning System (GPS) data with the Geographical Information System (GIS) data to correct improbable predicted positions. We then created a new algorithm called the Dead Reckoning with Dynamic Errors (DRWDE) sensor fusion, which can predict future positions at the rate of its fastest sensor, while improving the handling of accumulated error while some of the sensors are offline for a given period of time. The last part of out research consisted in the evaluation of the use of smartphones\u27 built-in sensors to predict a vehicle\u27s trajectory, as a possible intermediate solution for a vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications, until all vehicles have all the necessary sensors and communication infrastructure to fully populate this new system. For the first part of our research, the actual experimental results validated our proposed system, which reduced the position prediction errors during curves to around half of what it would be without the use of GIS data for prediction corrections. The next improvement we worked on was the ability to handle change in noise, depending on unavailable sensor measurements, permitting a flexibility to use any type of sensor and still have the system run at the fastest frequency available. Compared to a more common KF implementation that run at the rate of its slowest sensor (1Hz in our setup), our experimental results showed that our DRWDE (running at 10Hz) yielded more accurate predictions (25-50% improvement) during abrupt changes in the heading of the vehicle. The last part of our research showed that, comparing to results obtained with the vehicle-mounted sensors, some smartphones yield similar prediction errors and can be used to predict a future position

    Design of autonomous sustainable unmanned aerial vehicle - A novel approach to its dynamic wireless power transfer

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.Electric UAVs are presently being used widely in civilian duties such as security, surveillance, and disaster relief. The use of Unmanned Aerial Vehicle (UAV) has increased dramatically over the past years in different areas/fields such as marines, mountains, wild environments. Nowadays, there are many electric UAVs development with fast computational speed and autonomous flying has been a reality by fusing many sensors such as camera tracking sensor, obstacle avoiding sensor, radar sensor, etc. But there is one main problem still not able to overcome which is power requirement for continuous autonomous operation. When the operation needs more power, but batteries can only give for 20 to 30 mins of flight time. These types of system are not reliable for long term civilian operation because we need to recharge or replace batteries by landing the craft every time when we want to continue the operation. The large batteries also take more loads on the UAV which is also not a reliable system. To eliminate these obstacles, there should a recharging wireless power station in ground which can transmit power to these small UAVs wirelessly for long term operation. There will be camera attached in the drone to detect and hover above the Wireless Power Transfer device which got receiving and transmitting station can be use with deep learning and sensor fusion techniques for more reliable flight operations. This thesis explores the use of dynamic wireless power to transfer energy using novel rotating WPT charging technique to the UAV with improved range, endurance, and average speed by giving extra hours in the air. The hypothesis that was created has a broad application beyond UAVs. The drone autonomous charging was mostly done by detecting a rotating WPT receiver connected to main power outlet that served as a recharging platform using deep neural vision capabilities. It was the purpose of the thesis to provide an alternative to traditional self-charging systems that relies purely on static WPT method and requires little distance between the vehicle and receiver. When the UAV camera detect the WPT receiving station, it will try to align and hover using onboard sensors for best power transfer efficiency. Since this strategy relied on traditional automatic drone landing technique, but the target is rotating all the time which needs smart approaches like deep learning and sensor fusion. The simulation environment was created and tested using robot operating system on a Linux operating system using a model of the custom-made drone. Experiments on the charging of the drone confirmed that the intelligent dynamic wireless power transfer (DWPT) method worked successfully while flying on air
    corecore