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ABSTRACT 

Electric UAVs are presently being used widely in civilian duties such as security, surveillance, 

and disaster relief. The use of Unmanned Aerial Vehicle (UAV) has increased dramatically over 

the past years in different areas/fields such as marines, mountains, wild environments. Nowadays, 

there are many electric UAVs development with fast computational speed and autonomous flying 

has been a reality by fusing many sensors such as camera tracking sensor, obstacle avoiding sensor, 

radar sensor, etc. But there is one main problem still not able to overcome which is power 

requirement for continuous autonomous operation. When the operation needs more power, but 

batteries can only give for 20 to 30 mins of flight time. These types of system are not reliable for 

long term civilian operation because we need to recharge or replace batteries by landing the craft 

every time when we want to continue the operation. The large batteries also take more loads on 

the UAV which is also not a reliable system. To eliminate these obstacles, there should a 

recharging wireless power station in ground which can transmit power to these small UAVs 

wirelessly for long term operation. There will be camera attached in the drone to detect and hover 

above the Wireless Power Transfer device which got receiving and transmitting station can be use 

with deep learning and sensor fusion techniques for more reliable flight operations.  This thesis 

explores the use of dynamic wireless power to transfer energy using novel rotating WPT charging 

technique to the UAV with improved range, endurance, and average speed by giving extra hours 

in the air. 

The hypothesis that was created has a broad application beyond UAVs. The drone autonomous 

charging was mostly done by detecting a rotating WPT receiver connected to main power outlet 

that served as a recharging platform using deep neural vision capabilities. It was the purpose of 

the thesis to provide an alternative to traditional self-charging systems that relies purely on static 
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WPT method and requires little distance between the vehicle and receiver. When the UAV camera 

detect the WPT receiving station, it will try to align and hover using onboard sensors for best 

power transfer efficiency. Since this strategy relied on traditional automatic drone landing 

technique, but the target is rotating all the time which needs smart approaches like deep learning 

and sensor fusion. The simulation environment was created and tested using robot operating 

system on a Linux operating system using a model of the custom-made drone. Experiments on the 

charging of the drone confirmed that the intelligent dynamic wireless power transfer (DWPT) 

method worked successfully while flying on air.  
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1 INTRODUCTION TO THE THESIS 

▪ Chapter 1 shows Introduction, Motivation, Research questions, Methodology, Aims and 

Objectives, of the thesis topic.  

 

Despite attempts from the UAV scientific community, autonomous WPT charging for unmanned 

surface vehicles remains a problem. A major drawback of aerial vehicles is the short amount of 

time they can spend in the air before their batteries die. This thesis's research and findings were 

driven by the need for autonomously charging Deep Learning and Reinforcement Learning (DL-

RL) and Kalman filter-based Wireless Power Transfer (WPT) receivers for unmanned aerial 

vehicles (UAVs) that can handle dynamic rotating WPT transmitters. An unmanned aerial vehicle 

(UAV) flying over a rotating dynamic WPT transmitter can provide navigation and charging data 

for the control system using deep Kalman filter sensor fusion. It's worth noting that this is a 

complex issue that can't be solved with a single study, therefore any information gathered will 

serve a greater good. 

According to the autonomous and flexible qualities of UAV networks, they are widely used in the 

design and execution of the next-generation WPT charging. Search-and-rescue operations that 

require high mobility and the deployment of base stations for wireless power transfer networks 

can be carried out by autonomous UAV systems using deep learning and deep reinforcement 

learning techniques, allowing for scalable, adaptable big data processing based on data collected 

by many UAVs. 

1.1 Aim 

It is the aim of this thesis to research, design and demonstrate in autonomous UAVs charging on 

air using deep reinforcement learning technique as an intelligence and With the Dynamic Wireless 
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Power Transfer (DWPT) charging technique, the distance between the wireless transmitter and 

receiver may be increased while simultaneously increasing the environment's safety and enabling 

autonomous charging.  

1.2 Motivation  

The motive for this research is to address international demand for ongoing scientific breakthrough 

in intelligent. Unmanned Aerial Vehicles (UAVs) charging while it’s in operation.  There is still 

development in dynamic WPT charging of UAV for domestic use.  Current dynamic WPT research 

only discussed about moving vehicle or object while continuing wireless charging while improving 

the efficiency of the coil designs, shapes, materials for electromagnetic shielding and frequency of 

the energy transfer. Using machine and deep learning to enhance and speed up the process of UAV 

flying operation with automatic take off, hovering, trajectory flights, sensor fusion technique, 

landing and improving energy usage which can be used in DWPT with UAVs to charge on air.  

 

 

Figure 1.1 UAV equipped with WPT and object detection algorithm 

 
From this thesis, the goal was to investigate and design the novel techniques of rotational dynamic 
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wireless power transfer of UAV charging by finding solution for the following: 

1. Fusing Dynamic Wireless Power Transfer technique with drone’s sensors using deep visual 

learning, Kalman filter and autonomous control system.   

2. Current DWPT wireless powered UAVs which uses near range WPT energy transferring method 

to charge while the system is moving while RL-POLICY uses the same methodology but with the 

addition of rotating the transmitter and receiver for the purpose of increasing the distance of the 

power transfer operation.  

3. Using deep learning and Robot Operating System (ROS) to simulate the virtual simulation for 

autonomous UAV charging before testing on an actual device.  

 
1.3 Contribution 

Unmanned aerial vehicles (UAVs) and other electronic equipment have never been charged using 

a method that uses an established way to rotational dynamic wireless power transmission 

Reinforcement Learning Policy (RL-POLICY).  The RL-POLICY charging process of a UAV may 

be automated using a unique Deep Learning and Reinforcement Learning based Kalman Filter 

model, which was examined in this study. RL-POLICY UAVs may be charged autonomously 

using the RL model, which is a self-learning system that does not depend on the system's usual 

dynamics. The deep learning method is used to predict the charging position of the RL-POLICY 

system utilizing numerical data from a vision-based object identification research. Multi-agent 

deep reinforcement learning for intelligent charging of UAVs designs were also created, and the 

results show that RL approach provides better trajectory optimization and energy consumption 

compared to other designs. For electric UAV, boat, and automobile designers to analyze potential 

design alterations to improve the operating time in this research can be used in future. 
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1.4 Research Questions 

1. What impact does rotational dynamic wireless power transfer (RDWPT) method have on 

UAV’s flight time? 

2. How do the design of an autonomous deep reinforcement based Kalman filter approach 

can be able to train to fly, hover and charge itself the UAVs autonomously? 

3. What are the most effective design of Vision-based Object detection use of Deep 

Learning be reliable navigation for autonomous charging of UAVs? 

4. What effect does multiagent deep reinforcement learning have on the autonomous 

charging of UAVs? 

 

 

1.5 Methodology 

1. Investigation in autonomous UAV charging using deep learning and sensor fusion 

An investigation on the use of artificial neural networks to recognize objects, Kalman 

filter and WPT techniques are essential for long operation time of UAVs. It is also 

necessary to increase the distance of charging of wireless powered UAVs.  

2. Design and demonstration of an autonomous UAV charging technology for extending 

the charging range in UAV’s WPT architecture 

The design of WPT system by using UAVs in a wider area comparing with the traditional 

designs. When the desired attributes have been identified they should be demonstrated 

into practice through an appropriate drone’s architecture.  

3. Automatic charging of a rotational dynamic wireless powered UAV 
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The main task of this research is concerned with the study of different kinds of path 

planning in an taking off and landing environment, path planning using sensor systems. 

The methods by which a rotational dynamic wireless powered UAV can locate itself 

within its environment self-charging should be covered using deep learning approach. 

4. Simulation and Control 

This involves a study of the control systems, control algorithms, including Deep Kalman 

filter control approach, and a comparison of results for different control algorithms 

obtained by simulation. 

 
1.6 Research Outline 

The thesis consists of the following nine chapters in the following order: 

▪ Chapter 1 shows Introduction, Motivation, Research questions, Methodology, Aims and 

Objectives, of the thesis topic.  

▪ Chapter 2 focus on a literature review and investigation of the autonomous charging of UAV 

and reinforcement learning which related to this thesis. Then, more in depth details about the 

concept of deep learning and sensor fusion with UAVs. Also discuss the literature review of 

static and dynamic WPT of UAVs.   

▪ Chapter 3 focuses on the Hardware and Implementation of the autonomous charging of 

UAVs which consists of Navigation, control system and sensor fusion and reinforcement 

learning.  

▪ In Chapter 4, a wireless power transfer system with rotating dynamic behavior is described 

using significant study.  

▪ Chapter 5 continues with implementing the design of Reinforcement Learning Policy (RL-

POLICY) system into the autonomous UAV.     



23 

▪ Chapter 6 introduces the method of Deep Kalman Filter and Dynamic Wireless Power 

transfer approach for UAVs charging based reinforcement learning techniques.  

▪ Chapter 7 presents vision-based object detection using deep learning for reliable 

autonomous charging of UAVs 

▪ Chapter 8 brings together with using Reinforcement Learning (RL) techniques to train and 

test multi agent self-learning system to automate collaborate flying and charging process.  

▪ Chapter 9 brings the overall discussion of all results and concludes this research with a 

contribution to the science community, limitation, and future research possibilities.   

 
1.7 Publication by the Author 

 1. Naing, K.M. (2020). Wireless Energy transfer to long distance flying Intelligent 

Unmanned Aerial Vehicles (UAVs) using reactive power transfer techniques. 

 2. Naing, K., Zakeri, A., Iliev, O. and Venkateshaiah, N., 2018. Application of Deep 

Learning Technique in UAV’s Search and Rescue Operations. Advances in Intelligent 

Systems and Computing, pp.893-901. 

 3. Naing, K., Zakeri 2020. Deep Kalman Filter and Sensor fusion approach to the 

estimation of UAV’s Attitude. Book of Abstracts: 1st Faculty of Science and Engineering 

(FSE) Research Conference. Theme: United Nations sustainable development goals 

(SDGs) (: University of Wolverhampton) 

 4. Robust Interaction-based reinforcement learning of an Autonomous Driving Agent for 

the Real World with Position Control, Naing Kyaw, University of Wolverhampton - 

Powertrain Modelling and Control, Testing, Mapping and Calibration 2022 – Conference 

Programme 
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 5. Accelerated Real-World Deep Reinforcement Learning for Collision Avoidance of an 

autonomous vehicle in crowded traffic Environments, Naing Kyaw, University of 

Wolverhampton - Powertrain Modelling and Control, Testing, Mapping and Calibration 

2022 – Conference Programme 
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2 Literature Reviews  

▪ Chapter 2 focus on a literature review and investigation of the autonomous charging of UAV 

and reinforcement learning which related to this thesis. Then, more in depth details about the 

concept of deep learning and sensor fusion with UAVs. Also discuss the literature review of 

static and dynamic WPT of UAVs.   

 

2.1 Introductions 

Inspections, distribution, agriculture, surveillance, and many more which uses unmanned aerial 

vehicles (UAVs) for their operations are climbing exponentially (A. Gupta et al., 2021). It is 

predicted that by the year 2040, UAVs/drones would become the primary delivery method for 

parcels to meet the rising demand (Doole et al., 2020). Concerns and unresolved research questions 

about the future of UAV charging remain despite their growing interest in civil applications (Nex 

et al., 2022). It will be difficult and time-consuming to deal with many drones and their batteries 

in the case of mail delivery (Cokyasar, 2021). UAVs can operate more efficiently if they can avoid 

multiple landing to charge or replace battery (Boukoberine et al., 2019a).  

Using Wireless Power Transfer for UAV not only can improve the battery charging capabilities 

but also useful for autonomous multi-drone control in remote areas (Junaid et al., 2017). There 

have been just a few studies on wireless charging for UAVs in the past decade. There was multiple 

concern on drone weight limitation, WPT dynamic charging methods and autonomous flight 

operations has been discussed (Chittoor et al., 2021). Long term flight time of UAV sparked the 

author to write this review autonomous charging of UAVs. It also gives an in-depth look at how 

well different research institutions, universities and businesses have studied the technical elements 

of wireless charging. For a more secure operation, the study also covers the history of drones, WPT 

technology, Reinforcement Machine Learning. 
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When discussing Unmanned Aerial Vehicles, commercial ones are usually referred to as "drones" 

Due to its high maneuverability, compact design, and light weight, many researchers have focused 

on the advancement of UAVs more than ground vehicles (Ahmed et al., 2022). This means that 

the UAV tech has limitless range of applications, including inspections, agriculture, 3D mapping-

modeling, damage assessment.  

A radio controller or pre-programmed flight routes can be used to remotely operate a drone (Aibin 

et al., 2021). Using semi-autonomous UAVs for photography and recreational flight is becoming 

increasingly common in modern times (Hall & Wahab, 2021). Electric Drones, on the other hand, 

can use the onboard battery within few minutes because of the usage of maximum energy from the 

propeller motors (X. Yang & Pei, 2022). This type of inefficient UAV is unable to cover a large 

region of interest in a single charge. Drones may be recharged by switching out their depleted 

batteries with fully charged ones, which is a frequent method of doing so. Remote or difficult-to-

reach locations cannot use autonomous drones since the manual battery switch procedure 

necessitates the presence of human staff. To enhance the flying time in air of unmanned aerial 

vehicles (UAVs), a few non-electrical magnetic fields (EMF) charging methods have been 

developed in recent years. According to the diagram shown in Figure 2 below, an intelligent 

control system architecture.  
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Figure 2.1 Architecture of an intelligent control system 

There will soon be a slew of drones being used for anything from delivery to surveillance and 

monitoring units (Yaacoub et al., 2020). With so many units, managing them and charging them 

through airgap will become a time-consuming chore. For extended flight periods, a drone must 

minimize its weight because it is an aerial vehicle. Drones are being developed for a variety of 

uses, but there is only a handful of research being done on autonomous drone charging (Grlj et al., 

2022).  A lack of exponential progress in wireless charging for drones in the past decade will make 

it difficult to charge the rapidly increasing number of devices. Real-time case studies from leading 

research institutes and industry will be used to examine the drone wireless charging idea. The 

future of drone wireless charging technology is also discussed in this thesis, as are the problems 

and opportunities that lie ahead. 

 

2.2 Background Information on Electro-magnetic Field based charging method 

The use of Electro-Magnetic Field Based charging systems for small electric items and electric 

vehicles has grown in popularity in recent decades (Sanguesa et al., 2021). For autonomous drone 

charging, the same method may be used. Capacitance charging method is more suited for use 

across small distances, such as a few millimeters, than others. Several scientific investigations 

show that inductive charging is an efficient power transmission method for transmitting electricity 
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to a few centimeters, which is ideal for charging drones (Simic et al., 2015).  

The current review papers on UAVs are mostly focused on their applications in the UAV and 

Internet of Things (IOT) industry (Alsamhi et al., 2021). Few studies have been done on the 

internal structure of UAVs, wireless circuit modelling and the difficulties and future trends of 

UAVs (Elmeseiry et al., 2021). Drones with combustion engines are more efficient, according to 

the authors (Townsend et al., 2020), but they also pollute more. Additionally, solar charging 

provides an environmentally favorable charging circuit that demands a substantial investment and 

ongoing maintenance. UAV categorization, structure, features, and applications were studied by 

(Tahir et al., 2019). The author of this study set out to find out how much the public knew about 

drones and the necessary usage for them. Subjective research was carried out in two nations by 

187 experts from various fields. Among the topics covered in the survey are the use of UAVs, their 

applications, surveillance, and concerns. The authors (Siddiqi et al., 2022) found that 95% of the 

population is aware of unmanned aerial vehicles (UAVs), 23% had used UAVs for various reasons, 

and 60% felt that UAVs are superior surveillance tools. Construction, engineering, and architecture 

researchers (Sulaiman et al., 2023)conducted a comprehensive assessment of the literature on 

unmanned aerial vehicles (UAVs), including a categorization system and examples of UAVs in 

the field. Drones are integrated with a variety of onboard sensors and transducers to keep it in the 

air and serve their purposes, according to the authors (Lagkas et al., 2018). In addition, new 

technologies for UAVs were examined to improve performance and mitigate other technical and 

environmental issues.  

To construct flying cellular networks, (de Silva et al., 2022) investigated the properties of UAVs 

and charging mechanisms. The authors discussed the advantages and disadvantages of current 

charging methods but concluded that further in-depth research is needed to extend flying time. 
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According to (Ucgun et al., 2021)UAVs may be recharged near the ground using a wide variety of 

methods. 

It was concluded that mid-range charging approaches like Information Processes and Technology 

(IPT) might enhance the range of unmanned aerial vehicles (UAVs) by summarizing obstacles and 

possibilities in near-field transmission (NFT). The wireless power transmission method can be 

reliable to extend flying time of UAVs, according to the researchers (Le et al., 2020a). studied the 

market for unmanned aerial vehicles, their structure, classifications, charging methods, and uses. 

They also discussed UAV energy management tactics and concluded that further research is 

needed before it is possible to propose UAV energy consumption predictions based on regular 

flying schedules. There was an extensive literature review conducted by (Zhao et al., 2020)that 

included information on market opportunities, classifications, applications, and predictions for the 

future. Issues described by the author are a threat to the future of UAVs, according to the author. 

The WPT for the UAVs has not been adequately studied in any of the studies that have examined 

the UAVs. Uses, market potential, classifications and structures were all discussed in this overview 

study of the multiple features of drones. WPT methodologies, mathematical modelling, charging 

standards, and future research plans for WPT for UAVs are all covered in this thesis. 

 

2.3 A summary of UAV History 

The term "UAV" has been used from the beginning of the 20th century, according to the author 

(Giordan et al., 2020). In 1910s, the military in US began mass manufacture of Charles Kettering's 

aerial torpedo (Aerial Bug) flying bombs, which were hurled and operated using radio controls 

(García Carrillo et al., 2013). It was invented the name "drone" to refer to these autonomous aerial 

vehicles. Remotely Piloted Vehicle (RPV) was the name given to the drones of the late 1960s and 

early 1970s. There was a lot of focus on drones being used for military purposes such as gathering 
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intelligence, scouting, and dropping bombs. It was possible for unmanned aerial vehicles (drones) 

to fly deep into enemy territory and collect information without putting their operators in risk. The 

propulsion system was heavily reliant on jet propulsion due to the immature nature of the power 

converter technology (B. Zhang et al., 2022). It was able to fly missions over a considerable 

distance, though. Electric components have been reduced in size while power converter technology 

has improved over the previous decade. The technology's price has dropped down as well, making 

it more accessible to the general people. Recently, the technology is used in a variety of ways, 

from seed planting to airport security from birds to disaster control to disinfectant spraying for 

contagious pandemics. UAVs that are autonomous have been developed because of advances in 

drone technology; some of these UAVs employ biomimicry for navigation (Ahmed et al., 2022). 

GPS signals were not necessary because it relied on inertial navigation systems. 

 

2.4 Type of UAVs 

 
Aeronautics advances have led to the development of several flying robot categories. Drones have 

major role in a wide variety of capabilities depending on their intended use (Ducard & Allenspach, 

2021). Gravity (the downward force), lift (the upper force), thrust (the forward force), drag (the 

backward force), and all have a role in the construction of a UAV. There are many types of 

unmanned aerial vehicles (UAVs) include those with fixed-wings aircrafts (wings which won’t 

move), rotary-wings drones (rotor-wings rotate by forcing air pressure downward), Hybrid-VTOL 

(which uses both fixed and rotary wings), Gas-powered airships, and those with birds like flapping-

wings crafts. 

Aerodynamic lift beneath the wing is generated by a stiff construction of the UAV body, thus the 

name "fixed-wings." The tilt control on the wings lifts the UAV into the desired position when 
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subjected to forward airspeed. 

Aerodynamic lift is generated by the revolving propellers of rotary-wing unmanned aerial vehicles 

(UAVs). Conventional fixed-wing UAVs are far heavier than these. These unmanned aerial 

vehicles, on the other hand, have proven helpful for short-range tasks because to their quick 

maneuverability. 

Gas powered airships operate by their large surface area with less weight makes them able to 

achieve flight using various lifting gas.  

Hybrid VTOLs utilize rotary and fixed capabilities for extended flight time. The VTOL propulsion 

start flight operation by taking off vertically using rotary wing, and the fixed wing method can 

keep them in the air for longer periods of time. 

An ornithopter, or flapping wing, imitates the nature of efficient flight method found in flying 

animals. They usually use their wings flap to achieve airborne. 

2.5 UAV Internal Structure 

As a result of its capacity to lift and land precisely vertically and move easily in small places, 

rotary-wing UAVs are the primary focus of this study. Single-rotor and multi-rotor rotary wing 

unmanned aerial vehicles (UAVs) fall under this category. For example, there are four different 

types of quadcopters: tricopter, quadcopter with four blades, and quadcopter with four blades 

(hexacopter), as well as an octocopter with eight blades (having eight rotors). A wireless charging 

system for quadcopters and hexacopters is the focus of this study because of their nature of stability 

and reliability which can be huge advantageous while charging battery midair flights.  Hexacopters 

and quadcopters shall be referred to collectively as "drones" for the purposes of this guide.  

 
The Proportional Integral Derivative (PID) loop control in filters and processes information from 

the radio receiver finding the trajectory of the drone which was experimented briefly from 
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(Kangunde et al., 2021). There are scaling factors for each of the three blocks of flight control: 

Proportional, Integral, and Differential. For the drone to move, the updated signal is supplied to 

the Electronic Speed Controllers (ESCs). However, this is subject to change. While 5.8 GHz offers 

a large coverage area, it is constrained in terms of data transfer speed. 

If a sufficient power supply is available, Brushless DC electric motor (BLDC) motors are small, 

powerful, and can run at high RPM. The flight controller sends control signals to the ESCs, which 

then give the appropriate power to the motor. Drone operators can benefit from these when flying 

outside of their line of sight.  

Lithium-polymer batteries are smaller, lighter, and more flexible in their design. The high power-

to-weight ratio of lithium batteries makes them ideal for use in unmanned aerial vehicles, 

according to a study published (Townsend et al., 2020). There is a comparative examination of 

popular batteries in Table. For lithium batteries, weight is closely correlated with capacity, as 

demonstrated by an investigation conducted by researchers. Increasing UAV weight reduces flying 

duration since the battery drains more quickly. It is demonstrated in Figure that the best battery 

utilization characteristics. When it comes to electric vehicle batteries, manufacturers must choose 

between delivering electricity and storing it. The expended battery of a drone, in contrast to an EV, 

must be physically removed and replaced. The implementation of autonomous applications in 

UAV is constrained because of this action. In the next part, we'll go through the many ways a 

drone may be charged. 

2.6 History of WPT 

History of WPT technology start from 18th century when a Danish physicist named Hans Christian 

Oersted breakthrough that electricity can influence magnetic compass direction which led to the 

creation of groundwork of electricity and magnetism by famous scientist Michael Faraday and 

Andre Marie Ampere (Shinohara, 2014a). From 1831 to 1879, James Clerk Maxwell presented his 
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popular equation named electromagnetic theory which transform world because he connected the 

bridge between light and electromagnetism. In Germany, a physicist named Heinrick Rudolf Hertz 

who experimented and verified the existence of Electro Magnetic (EM) waves in the year 1888.  

These discoveries help Serbian American scientist Nikola Tesla to patent and experiment the first 

ever wireless power transfer (WPT) using low and high frequencies from 1890s. Tesla aim was to 

distribute power wirelessly through globe for everyone, but he lacks investment to finish his 

project. He discovered that by coupling transmitter and receiver coil of WPT device by using 

resonance magnetic field and electric field.  

1890, Tesla first experimented with vacuum bulb to transfer power wirelessly which is known 

today as tesla coils (Shinohara, 2014b). He also patented many applications of wireless power 

transfer technique such as long-distance resonant energy transfer, inductive coupling, capacitive 

coupling, etc. Two French scientists named Maurice Hutlin and Maurice Leblanc who successfully 

patented WPT method to be able to use in Railway stations using wireless inductive resonant 

coupling method in 1892. After researching into wireless electricity using high frequency, tesla 

gave presentation about high frequency current and voltage to many institutes in America, England 

from 1891-1893. An Indian physicist named Jagadish Chandra Bose has conducted research and 

experimented successfully in EM wave to wirelessly send power to a bell less than 100 fts in 1895. 

Dr Tesla’s inventions led to the experimentation of long-distance wireless energy transfer in 

Wardenclyffe tower which “The New York Sun” also reported that there is mysterious plasma like 

electric lightning coming from the tower to unknown land in 1903.  The main coil (TX) and 

secondary coil (RX) of tesla's inductive wireless power transfer (WPT) were employed as primary 

and secondary coils, respectively, in the same manner as an electrical transformer, but the RX and 

TX were not physically connected. This method is one of the first type of WPT technique that 
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transfer energy wirelessly between two separate inductors is called WPT inductive coupling. 

 

Figure 2.2 Tesla’s WPT patent showing wireless transmitter and receiver (System of 
Transmission of Electrical Energy., 1897) 

Dr. Nikola Tesla patented several applications related to long distance WPT techniques and 

applications. He submitted first WPT application “System of transmission of Electrical Energy” 

on September 1897 and approved on March 1900 and serial number is US.645,576  in figure 2.2. 

He also discovered WPT capacitive coupling is to exchange power from one capacitor to another, 

WPT resonant coupling which tune the same frequency between TX and RX to move power 

efficiently. In 1896, Marconi experimented with electromagnetic radio signals from one place to 

another and proved that by transmitting signals when Nikola Tesla was performing wireless power 

transfer experiments in figure 2.2.  
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Figure 2.3 Means for increasing oscillation between WPT transmitter and receiver (Means for 
Increasing the Intensity of Electrical Oscillations., 1900) 

 

There is a British patent (No.685 012) which was approved in Oct 1901 “Mean for increasing 

intensity of electrical oscillations” in figure 2.3 showing the possibilities of sending signals 

between TX and RX with the conjunction of wireless power transfer.   
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Figure 2.4 WPT Transmitter Apparatus (Apparatus for Transmitting Electrical Energy., 1907) 

On Dec 1914, Tesla hold United States patented in figure 2.4 which represents “Art of 

Transmitting Electrical Energy Through the Natural medium”.  This design is further improvement 

of long-distance wireless energy transmission producing and using stationary waves as tesla 

mentioned in this patent which is also possible to have multiple receiving stations.  It seems that 

these devices can convert traditional alternating current into stationary waves to transfer power 

efficiently.  
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Figure 2.5 WPT Transmitting through natural medium patent (Art of Transmitting Electrical 
Energy through the Natural Mediums., 1900) 

Tesla’s last patent “Apparatus for transmitting electrical energy” of WPT was patented in figure 

2.5. He claimed in this invention that the design can avoid high voltage current spark discharge 

leakage because of large round external conducting layer. This breakthrough of tesla also claimed 

that elevated terminal capacitor and ground connected with earth also play a vital role transmitting 

power efficiently. The circuit oscillate with Resonant frequency to increase pressure and voltage 

in the secondary coil of transmitter to transmit power wirelessly.  

Japanese inventor Shintaro Uda and Hidetsugu Yagi further developed and patented 

electromagnetic wave antenna with variable directions in 1926 (Ishiguro et al., 2012). After 26 

years, an American scientist named William C. Brown first proposed the method of transmitting 

power using microwave energy using magnetron. He submitted a paper which was successfully 

published under the name “Microwave Energy for Power Transmission” in 1961 and later proved 
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this method by transferring power directly to the flying electric helicopter using microwave 

energy. Within 7 years after William demonstrated the Microware Wireless Energy Transfer, Dr 

Peter Glaser who first proposed the method of using sun’s solar microwave energy for powering 

electric devices and space shuttles. Peter Glaser also works as a private consultant for space 

missions in 1960s. In 1973, a new way to transmit power to the Radio Frequency Identification 

(RFID) devices small distances for the purpose of monitoring nuclear energies by Los Alamos 

National Laboratory. This project also acts like a security device to track and lock dangerous 

materials storage facilities. A project named “WiTricity” was developed by Massachusetts 

Institute of technology (MIT) physics research team who were transmitted wireless power to a 

light bulb which placed less than three meters successfully using resonant coupling method for 

inductors. This method opened the possibilities of powering mobile phones, laptops and UAVs 

using indictive resonant wireless charging techniques when transmitter and receiver placed nearer 

will coupled by magnetic field produced from TX. Dr Chun Taek Rim demonstrated innovative 

type of wireless diploe antenna coil for Inductive Wireless range reached 5 meters in 2015 

(“WiTricity - The Wireless Power Transfer,” 2007). In January 2016, a group of scientists patented 

“Method and apparatus for adaptive tuning of wireless power transfer” which shows how a 

wireless transfer and receiver resonant power can be tuned with desirable frequencies to receive 

energy efficiently. In May 2016, a US patent (Chargers and Methods for Wireless Power Transfer, 

2013) was published for the inventor Afshin Partovi under the title “Chargers and method of 

wireless power transfer” which shows the systematic approach to design and develop a near-field 

WPT charging batteries for the use of mobile phones and other electric appliances to support with 

WPT. US patent number 9831920B2 presents ultrasonic power amplifier can be transformed to 

wireless power to the receiving station using customized signal generator was published in 28th 
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November 2017. In July 2019, inventor (Sengupta, 2013) proposed and patented the method of 

radio frequency lensing effect to power mobile WPT device efficiently which works in a same 

way as glass lens creates heat from sun’s heat. A US patent “Encloses for high power wireless 

power transfer systems” was published to transfer high energy to vehicles using different types of 

magnetic surfaces by a customized resonant transmitter in 25th of February 2020.  

 

2.7 WPT Technology 

Wireless Power Transfer (WPT) is defined as the techniques of charging or powering electrical 

devices without wires. Traditional wired energy transfer (WET) method is expensive, takes up 

space, when comparing with WPT (Zhu et al., 2022). For example, consumer using power from 

WET lead to disruption if the wire broken or damaged while WPT user don’t need to worry about 

it. WPT charging technique can also be applied to any electronic devices such as mobile phones, 

unmanned aerial vehicles (UAVs), ground vehicles, electric toothbrush, etc (Huda et al., 2022). 

This technology is emerging in the field of autonomous UAVs because of intelligent charging 

without need for human to connect with plugged chargers. So, UAV can continue its operation 

autonomously in remote areas where human interaction is impossible or dangerous. Although this 

technology is promising to solve many problems, still there are many research areas needed to 

accomplish. The main obstacle is that current consumer WPT device transfer distance is short 

enough to charge continuously to the UAV for long term flight operations (Nguyen et al., 2020b). 

To be able to figure out the limited distance between WPT transmitter (TX) and receiver (RX), a 

new approach should be needed to integrate with current scientific knowledge of WPT with UAV. 

The principle of WPT is that power can be taken from main alternating current (AC) power to the 

TX to the RX module which the energy can be use as direct current (DC) or AC in the output 

device such as UAV. There is also other form of WPT transmission which can be used to transport 
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power long distance but it’s not safe for the environment because of radiation problems. 

Theoretically, if autonomous UAV can power wirelessly without interruption from main AC, it 

will fly and continue its operation perpetually. This will be great advancement for the area of 

sustainable intelligent UAVs and other similar electronic devices.  

WPT’s charging method is currently extensively used for objects such as mobile phones, 

headphones, small gadgets. This technology, however, is not being commonly and commercially 

used for charging of the unmanned aerial vehicles (UAVs) or electric vehicles because of the huge 

loss of power involved when the energy is wirelessly transferred from WPT’s device to the UAV’s 

batteries. But since the WPT charging allows the energy can send directly from the ground station 

to a UAV, through the natural air medium, without wires, there should not be any need for the 

UAVs to carry heavy weight batteries anymore. As such the use of WPT systems for Wireless 

Transfer of power to UAVs could create a mass market opportunity. The first WPT system was 

discovered by famous scientist named Nikola Tesla (David Wunsch, 2018) in 1890. He also 

patented many wireless power transmission applications at that time, making him the true founder 

of wireless electricity, but that technology never became a commercially available technology 

because of the lack of sufficient financial support he needed in his time. The use of WPT in UAV 

research is already established for some extent but, due to some technical limitations reported by 

the research, the technology has not yet been proved economically feasible or technically efficient 

for embedding in the Design of intelligent long distance flying UAVs, especially in cases where 

the UAVs required to fly longer that demanded by applications. The various methods of wireless 

power transfer being reported in literature can be categorized based on particular techniques they 

have used, five well known techniques are; (David Wunsch, 2018) Electromagnetic Induction 

(Kerr et al., 2017), (Miller et al., 2015),(Reed & Jr., 2013), (G. Zhang et al., 2013), (Campi et al., 
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2018a) Electromagnetic Resonance (Bécherrawy, 2012), (D. W. Kim et al., 2012), (Toh, n.d.), 

(Huan-Huan et al., 2013), (Griffin & Detweiler, 2012)Electrostatic Induction (W. Han & Kunieda, 

2017), (Jenn, n.d.) Use of Microwave technology  (P. Lu et al., 2017), and (Xu et al., 2018a) use 

of laser wave technology. Some of these used long wave transmission and some covered short-

wave transmission which also provides detailed discussion of the use of Electrostatic Induction 

(category 3), and the combined use of the categories; (1) Electromagnetic Induction, (2) 

Electromagnetic Resonance, and (3) Electrostatic Induction.  

 

Figure 2.6 UAV Altitude platform classification 

Jenn, D (Jenn, n.d.), extensively researched and experimented with short distance wireless power 

transfer for UAVs using electromagnetic induction method with over 90 % efficiency. His work 

established that the near field, short distance wireless power transfer technology has already been 

applied to UAVs successfully but for long distance flying drones this has not been so, and the 

technology is not safe and reliable because the microwave and laser wave transmissions have poor 
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efficiency in extreme weather conditions (Ma et al., 2016), hence dangerous to human beings 

(Dickinson & Grey, 1999). This chapter is focused mainly on VTOL (vertical takes-off and 

landing) type of UAV in figure 2.6 because this craft is currently using battery to operate in Low 

Altitude Platform (LAP) and can easily be integrated with WPT system. LAP category UAVs fly 

below 15km height whereas the High-Altitude Platform (HAP) category UAVs fly 15 km above 

sea levels.  

 

Figure 2.7 Quadcopter with Raspberry Pi 3b and Navio 2 Flight Controller Module used to test 
with (b) a 200 W Wireless Power Transfer Module 

Furthermore, WPT techniques can enable faster communication with UAV, avoiding using 

inefficient radio communication. The project also investigates application of sensor fusion and 

deep learning algorithm on UAVs aiming to fuse WPT sensor with IMU (inertial measurement 

Unit) sensors and deep learning algorithms for long distance flying UAVs, which is an innovative 

novel approach. For our research experiments we use a quadcopter that developed and a 200 watts 

Wireless Power Transfer (WPT) kit (shown in figure 2.7). 
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2.8 Wireless Powered UAVs 

Some of the batteries powered commercially available aircrafts in industry uses the wireless 

powered UAV and links to charge UAV’s battery each time by landing the aircraft to the 

transmitter (TX) coil (Campi et al., 2018b). In some battery powered WPT aircrafts running 

todays, they are still using electromagnetic resonance method for cost effectiveness but the 

transmission power and the location between the TX and the RX are extremely low. (Hua et al., 

2018). The WPT of the aircraft needs with the long-distance wireless power transfer to fly without 

landing for each charge. The microwave and laser powered wireless aerial vehicle which would 

harm humans or birds to fly in air against radiation caused by these extreme frequencies wave 

transfer methods (Junaid et al., 2016). These types of wireless power transfer technology require 

efficient solution of the cost-effectiveness and safety of the environment. 

The primary UAV wireless power transfer system consists of the following. 

❖ Electromagnetic Resonance wireless battery charging of UAVs (J. Jiang et al., 2018). 

❖ Microwave Power Transmission of electricity using high frequency antennas to transmit 

power to aerial vehicles (Wang et al., 2022). 

❖ Laser power transmission of electricity to UAV receiver in the same method solar panels 

method (Carrasco-Casado et al., 2011).  

 

2.8.1 Short Distance Electromagnetic Resonance Wireless Powered UAVs 

Electromagnetic resonance coupling method works at a tuned resonant frequency between TX and 

RX inductive coils which attached to the load (UAV) (Naimushin et al., 2005). Whenever UAV 

battery become low, the UAV which already has installed the receiver coil connected to the battery 

that going down to the exact place where the transmitter resonance coil is located and lands over 
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it to recharge itself. When the full power is taken, the UAV continue its operation by taking off 

from the transmitter coil (Tullu et al., 2018).  

 

2.8.2 Long Distance Microwave Powered Wireless UAVs 

Since all wireless powered aircraft uses same method to power the entire circuit, sensors, and 

actuators of the UAV (Duggal et al., 2009), that is the motors are powered by energy storage and 

controlled by speed controller devices and micro-controllers. For long distance and space UAV 

operation, microwave wireless power transfer method is can reach longest range because of 

electromagnetic wave transfer which travel at light speed in vacuum (K. Li et al., 2019).  

The principle of microwave WPT UAV technology is that electricity is first converted into high 

frequency using tradition microwave magnetron transformer. Using same antenna design as radio 

techniques to transfer microwaves to the receiver antenna located in UAV with same resonance 

microwave frequency. Figure-3 is a block diagram illustration of the basic microwave electric 

powered UAV propulsion system. The UAV system starts by powering the motor and throttling 

the motor speed by controlling voltage input of the motor which make the propeller rotate and 

cause thrust and airspeed using energy from microwave wireless power. Although system looks 

simply but there are several different power configurations mode and safety issues (K. R. Li et al., 

2017) according to the application and difficulty in flying in extreme weather conditions (Ludeno 

et al., 2018). 

 

2.8.3 Long Distance Laser Powered UAVs 

The working principle of laser powered WPT system for UAV is that high power laser pointer acts 

as the transmitter which surface which receive laser power as heat energy which can be converted 

into electric current (Cui et al., 2017) transmitted into load which itself is UAV. Figure shows that 
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multiple UAV is powered using laser WPT transfer which discussed in paper (Boukoberine et al., 

2019b). Advantage of using this method is high power can be transmitted using laser power which 

is lower than microwave UAV wireless power transmission system (Ouyang et al., 2018). 

Drawbacks are laser radiation is highly dangerous living beings and transmitter and receiver should 

be always in sight for efficient power operations (J. Yang et al., 2011).  

 

2.8.4 Autonomous UAV charging 

The one of the most difficult aspects to operate. As a starting point for comparison, a brief history 

of previously employed methodologies is provided. There are three things to keep in mind before 

landing: control, position assessment, and navigation. Keeping a vehicle's speed and position 

within a predetermined range is the primary function of the lower layer of control (GPS, Inertial 

Measurement Unit (IMU), altimeter, etc.). Using sensors and visual feedback, the posture 

estimation is used to determine the UAV's location. Once the vehicle's position has been 

determined, it's time to build and adapt a route to the destination location. This section focuses 

primarily on the literature on posture estimation and navigation for this thesis. 

Sensor-fusion, device-assisted, and vision-based approaches are grouped. A popular method for 

improving performance is to combine data from many sensors. Sensor-fusion systems typically 

employ this approach. IMU and camera sensor were used to create a three-dimensional 

reconstruction of the ground in a recent study (Aliakbarpour et al., 2011). Vision and differential 

GPS were used by (Kumar & Moore, 2002) to estimate the UAV's relative posture in relation to 

the heli-pad. Geometric invariant extraction is employed in this study to locate a landing pad with 

a H shape. Kalman Filter is an technique used to combine multiple sensor output into one to 

simplify the process of UAV navigations.  Kalman filtering was used to land the UAV on a moving 

target in a subsequent study (Saripalli & Sukhatme, 2006). Optical flow, gyroscopes, and 
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accelerometer readings were coupled in (Bassolillo et al., 2022) to improve the resilience of a 

vision system for hovering and landing a drone. 

It has been proposed by (Zhou et al., 2010) that a ground-based multisensory fusion system be 

implemented. Sensor Fusion is another term for Kalman Filtering which was mentioned above 

paragraph.  Sensor-fusion techniques have two key issues. Noise from sensors in an unstructured 

environment can be exceedingly high. Second, the lack of access to navigational data or inaccurate 

sensor readings. For example, if you're at a remote location, you can't change the trajectory with 

GPS. 

The use of on-board and ground-based equipment to improve marker recognition has been widely 

used. Infrared lights have been employed in a system in (T. Yang et al., 2016). Infrared lights set 

in a runway in a succession were used by the writers. Optically filtered infrared light was captured 

by the vehicle's camera, which was then sent to a control system for pose assessment. For ground 

stereo-vision detection(D. Tang et al., 2016) developed a technique complemented by an extended 

Kalman filter. Omni-directional cameras were utilized in (J. Kim et al., 2014) to increase the 

UAV's field of vision and recognize a red marker. On-board infrared cameras were utilized in 

(Kubota et al., 2021). Another tool utilized to aid in the marker's discovery is infrared ground 

spots. There is a plethora of ways in which these techniques fall short. Second, some of these 

gadgets are too costly and cannot be justified in commercial goods. 

Pose estimation and planning are generally accomplished using camera pictures in vision-based 

systems. They recognize the ground marker and extract characteristics that can be used to 

determine the vehicle's position. To go closer to the pad, this data is sent into a control loop. Lange 

et al. proposed a system that relies solely on a monocular camera (X. Liu et al., 2019). Using a 

well-defined pattern of targets, the system was able to distinguish itself from a variety of distances. 
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The landmark could be located even when partially obscured thanks to a system of concentric 

rings. Lin et al. employed a reworked version of the standard international landing pattern. 

Feasibility studies on the usage Quick Response (QR) markers have been conducted by (Fiala, 

2005). An onboard camera was all that was used in both situations to get an accurate pose 

assessment. For example, in (Kälin et al., 2021), on vision-based control system. It is proposed 

that the vision problem can be approached as an estimation of ego-motion, in which the vehicle's 

height in reference to a fixed planar surface is estimated. As a result, the landing controller may 

employ vision as a state observer in the feedback loop. Control and planning for commercial 

vehicles can be simplified by relying on vision-based systems, which employ little technology. 

When the pad is far away, partially obscured, or fuzzy, these ways might be problematic. 

The limits of the methodologies that have been outlined thus far being addressed. Sensors fusion 

approaches focus on costly sensors that can’t always exist on cheap UAVs, making them difficult 

to implement. The position of the UAV may be accurately determined using device-aided 

techniques. The industry-based sensors aren't ideal for many situations. Finally, vision-based 

techniques rely on pictures taken by onboard sensors, such as cameras, to operate the vehicle. This 

has a distinct benefit over other methods, although it may not be able to detect low-level details in 

distorted pictures. The issues raised above are addressed in this chapter. 
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2.9 Deep Learning Approach 

2.9.1 Artificial Intelligence 

As a cutting-edge technology, artificial intelligence (AI) is described here as a method of 

simulating/reverse engineering and enhancing biological intelligence to develop intelligent 

systems and processes that can operate autonomously in a variety of situations (Cockburn et al., 

2018). Cognitive reasoning, knowledge representation, machine learning, big data analysis, and 

problem solving are just a few of the numerous subfields that make up artificial intelligence. This 

cutting-edge technology has its origins in ancient philosophers' attempts to explain human thinking 

as a set of symbols that resulted in "association" as a cognitive process. There are two methods to 

artificial intelligence: a top-down approach and a bottom-up approach. A bottom-up deductive 

method is used by traditional AI approaches to formulate broad, abstract assumptions about the 

world based on pre-existing knowledge and a small number of instances. According to their 

hypotheses, they construct predictions about what the data should look like if those hypotheses are 

correct, then change those hypotheses based on the findings of these forecasts. Computational 

intelligence and current artificial intelligence (AI) approaches are described as bottom-up methods 

that work with numerical data to infer symbols and seek to discover patterns from the raw data 

they are fed into the system. Many businesses and services have been enabled by these cutting-

edge AI technologies, which allow them to identify patterns, trends, and data anomalies in 

archived, streaming, or live data. Learning from examples and observations at various levels of 

abstraction is used to predict future values and states. Several novel features, including as mapping, 

intelligent control, autonomous driving, active safety, and forecasts, have been developed using 

sophisticated statistical machine learning approaches. Every part of a vehicle's lifetime, from 

design to production to operation, may be influenced by AI. 
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2.9.2 Machine Learning (ML) 

In ML, computers can learn without being explicitly instructed in this field of artificial intelligence. 

A bottom-up inductive reasoning approach is used in modern statistical machine learning 

algorithms to uncover patterns from a large quantity of data (Woolf, 2009). Simple models trained 

on a big data set outperform complicated models learned on smaller data sets based on empirical 

evidence. In statistical machine learning, general principles are inferred from a collection of 

instances, which is an inductive reasoning process that uncovers rules that are valid for most 

samples in the given data set. Traditionally, ML system have been divided into 3 types: reinforced, 

unsupervised, and supervised. Data and labels/categories may be approximated using supervised 

learning, which employs inductive reasoning. The training data used to learn this mapping has 

already been categorized. In supervised learning, it is typical to perform classification and 

regression tasks. The rating, for example, is looking for the scoring function: 

Equation 2.1 Supervised Learning Classifications 

f:X×C→R (1) 

Training data space (X) and label/class space (C) are defined above. This basic equation was 

necessary to be use in my research for deep learning with UAVs.  

2.9.3 Deep Learning 

When it comes to machine learning, one of the most often used techniques is deep learning (DL) 

(Najafabadi et al., 2015). The term "representation learning" may also be used to describe DL 

(RL). There will continue to be new research in the disciplines of deep and distributed learning if 

data collection methods, such as High-Performance Computing, can increase as rapidly as they 

have (HPC). Deep learning, even though it is based on the standard neural network, is much 
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superior. In addition, DL employs transformations and graph technologies to simultaneously 

construct multi-layer learning models. Natural language processing, audio and speech processing, 

and visual data processing have all been greatly improved by the most recent DL algorithms (NLP). 

The performance of an ML algorithm is typically dependent on the quality of the input data. An 

adequate data representation has been shown to boost performance when compared to a poor one. 

This has resulted in a long history of feature engineering as a significant ML research area. Create 

features from raw data is the purpose of this method. Due of its specificity, it's a one-size-fits-all 

solution and typically requires a lot of physical effort. When a new feature is deployed and shown 

to be beneficial, it establishes a new research route that will be explored for many decades to come. 

An algorithmic approach is used to extract features from the data. The least amount of human 

effort and field knowledge possible may be used to identify distinguishing traits. It is possible to 

extract the low-level properties of a data structure first, and then the high-level ones in successive 

layers. It's worth noting that this design was initially inspired by AI, which simulates the process 

that occurs in the brain's major sensory centers. Data representations may be automatically 

generated by the human brain from a wide range of visual settings. Scene data is the input for this 

technique, while the classified items are the output. This approach is based on how the human 

brain functions. As a result, DL's primary benefit is brought to light. 

While unsupervised learning reignited interest in deep learning, exclusively supervised learning 

has now overtaken it. Even though we didn't give it much emphasis in our evaluation, it's feasible 

that unsupervised learning may become more important in the future. People, unlike animals, learn 

most of their abilities via observation rather than by being taught the names of items. Humans and 

the majority of animals. A high-resolution fovea surrounded by a low-resolution, task-independent 

peripheral vision is used in active, task-specific vision. In the future, vision research will benefit 
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greatly from systems that are taught end-to-end using a combination of ConvNets and RNNs that 

use reinforcement learning to select where to look. When it comes to video game categorization, 

systems that mix deep learning with reinforcement learning beat passive vision systems by a 

considerable margin. Future developments in deep learning will have a substantial impact on the 

area of natural language processing. As a result, we predict that RNNs will become considerably 

more accurate if they are taught to concentrate on a single part of either a phrase or the whole text. 

In the field of artificial intelligence, systems that combine representation learning with complex 

reasoning will be the ones that develop the field. We need new approaches for speech and 

handwriting recognition that don't rely on rules-based manipulations of symbolic expressions, 

which have been around for a long time. 

 

2.10 Deep Learning Based Reinforcement Learning 

Deep Learning based Reinforcement (DL-RL) is first step of human evolution to create thinking 

robot within many areas of research including drones. DL-RL is growing more powerful because 

of the current use of Deep Learning (DL) which uses neural network to train the multi-dimensional 

inputs. By using vision DL method, DL-RL robot can learn environment more reliably due to the 

development of advance polices and customized algorithms. The literature also mainly targeted on 

the agent, state, action, environment, reward system of the DL-RL. Later, we discuss about what 

are the advantages and disadvantages of current DL-RL and how to improve them. In conclusion, 

why DL-RL has been chosen for the research of autonomous UAVs.   

Value functions and dynamic programming, as well as animal psychology, were the driving forces 

behind the development of RL. Controlling a dynamical system in such a way as to minimize the 

loss function over time was initially described as an optimum control problem (Busoniu et al., 

2020). During the mid-1950s, Richard Bellman proposed a method to solving the optimum control 
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issue based on studies by (Chow et al., 2017). Therefore, as outcome of the existing status of the 

system's data, a value function is used to optimize the input trajectory (Walter, 1976). A discount 

factor is included in the Bellman equation to account for uncertainty in future rewards. 

RL uses an Adaptive Dynamic Programming (ADP) technique to find the best offline policy. If 

the agent has certain goals, the ADP can be designed to meet those goals in any number of ways. 

When it comes to difficulties involving process control. First, the agent uses self-error learning to 

identify which actions produce the best results, and then it only repeats those actions that yielded 

positive results.  

Reward learning for UAV control is still in its infancy, though. (Tovarnov & Bykov, 2022) 

employed the policy search approach to control the heli-copter, for example. Another comparable 

example is (Z. Jiang & Lynch, 2021), who demonstrated the ability to fly in reverse by teaching a 

tiny aircraft how to do so. (Cimurs et al., 2020) integrate model predictive control with 

reinforcement learning to develop an obstacle avoidance strategy that only has access to sensor 

data and not the complete system state. Rather than a high-level navigator, the policy in each of 

these circumstances. 

Reinforcement learning was able to be applied to a new set of issues thanks to the usage of DNNs 

as Q-function approximators. For activities like tightening a cap on a bottle that need close 

synchronization between vision and control, (Buşoniu et al., 2018) employed a guided policy 

search technique. The author also employed a deep network to teach a robotic manipulator's 

gripping hand-eye coordination. Using an asynchronous variation of the actor critic system, (Mnih 

et al., 2016) developed a novel task for navigating random 3D mazes, which was the best-scoring 

job in the Atari domain. 
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The reason for using DL-RL is to eliminate the use of traditional complicated theories and 

dynamics by using self-learning approach to create environment for the agent (for example: UAVs) 

which learn from previous actions and reward itself to create autonomous robots. The main 

obstacle with this DL-RL method is that the algorithm needs modification for each new 

environment or agent to work better. There is heavy research going with the use of one algorithm 

to work all types of environments and robot’s requirements (Zeng et al., 2019). Traditional 

approaches use conventional physics dynamic of the pre-programmed equation to solve the real-

world problems, but the DL-RL create its own equation from the event-driven technique. Although 

DL-RL breakthrough many areas such as the science and technology but it’s still need so much 

computational power and newer algorithms due to the requirement of multiple dimensions which 

leads to limitation. The other issue is that the lack of inadequate samples of the environment and 

the agent of the robot because complex DL and DL-RL method demand numerous data to work 

efficiently. The recent development of DL such as function approximation create more 

opportunities for DL-RL.   

There is a significant improvement of DL in the areas such as object-recognition, natural language 

processing (NLP), sensor error predictions which open the door for much other research such as 

deep reinforcement learning (Fink et al., 2020). The working principle of DL is that it can train 

using minute pixels of the data such as image, sound, or text to detect them in bigger scale. Neural 

Networks (NN) are the base foundation of the successful DL that uses weight and biases to control 

the output of the system. This method will become more and more complicated when there are 

multiple dimensions of data. For making a successful autonomous robot, the raw sensors data need 

to be trained by multiple NN from DL which enhance the operation of DL-RL method. The 

objective of this review is to research of deep reinforcement recent developments and the use of 
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DL with it which in terms making the intelligent robots or UAVs. The extensive survey of deep 

reinforcement learning applications breakthroughs such as RL agent outperforming best game 

player which is presented in the paper.  

The use of DL in Reinforcement Learning solves the problem the multi-dimensional of the 

parameters of action and state in environment by predicting or combining numerous data into 

single output. There are several advances in DL-RL which will be discussed in the followings.  

Both theoretical and practical advances in the field of reinforcement learning have been achieved 

recently. Reinforcement learning, on the other hand, has several challenges when applied to a real-

world system. Most real-world systems are massive and riddled with a slew of thorny issues. 

Matrix focuses on the behavior-based multirobot models and discusses the method of learning 

behavior policies using behavior space (Dulac-Arnold et al., 2019); Recent years have seen an 

explosion of interest in the application of reinforcement learning as a foundation for the 

construction of numerous intelligent models, including artificial intelligence and robots. Reward-

based learning can adapt to its surroundings. With its ability to tackle a variety of complicated 

optimization problems, many different tasks can be achieved with it. RL algorithms have emerged 

and are being used to enhance the development of artificial intelligence. 

Reinforcement learning is defined by (Andreae & Cashin, 1969) as the study of how to get the 

most out of a reward signal by mapping situations to actions. Reinforcement learning is best 

described by the aspects listed below: Agents move and interact with other entities in the world, 

which has laws that are either visible to or invisible to the agent. 
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Figure 2.8 

Status is a representation of the current state of an environment at a specific point in time. 

movement or interaction in the world is defined by the action taken by the agent. 

• Policy: the function that the agent learns to translate state to action is called policy. 

input from the world that the agent receives 

It's common for agents to get the current state at each time step t, execute an action from the action 

space A sampled at that time step t, and receive a reward at that time step supplied by a R function 

(st, at). T (st+1|st, at) is the environmental transition model for st+1, and the action gets the agent 

to this new state. An action performed in state st+1 moves the agent to the next state. Model-based 

algorithms are those in which the transition model is provided.  

Equation 2.2 

𝐸𝐸 ��  
ℎ

𝑡𝑡=0

𝑟𝑟𝑡𝑡� 

𝐸𝐸 ��  
∞

𝑡𝑡=0

𝛾𝛾𝑡𝑡𝑟𝑟𝑡𝑡� 

𝑙𝑙𝑙𝑙𝑙𝑙
ℎ→∞

 𝐸𝐸 �
1
ℎ
�  
ℎ

𝑡𝑡=0

𝑟𝑟𝑡𝑡� 

The proposed agent in RDWPT UAV research considers the future while deciding how to act in 

the here and now. Most of the research in this area has focused on three specific models. At every 

given time, an agent should focus on optimizing. This is the simplest model to understand. 
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Received t steps into the future, the vector reward is referred to as rt in this and following 

formulations. This model may be utilized in two different ways: non-stationary policies are those 

that change with time, and this is what the agent will have in the beginning. It will do an h-step 

optimum action as its first step. This is considered the ideal course of action because it has just h 

actions left to do and earn support. Step optimum action will be taken on the following step and 

so on until it reaches the end of the process. Using receding-horizon control, the agent always does 

the h-step optimum action, is the second option. As long as the value of h is equal to or greater 

than zero, the agent will always operate in accordance with its stated policy. The nite-horizon 

concept is not always applicable. Many times, we have no idea how long an agent will last.  

Discount reward strategy is known as a improve optimum policy (Bertsekas, 1995). This criterion 

has the drawback of making it impossible to tell the difference between two policies, one of which 

reaps huge rewards early on while the other does not. The long-term average performance of the 

agent overshadows any reward received on the early pre x. Taking into consideration the long-

term average as well as the quantity of early reward is conceivable in this approach. Bias-optimal 

policies are those that maximize the long-run average while also breaking ties in the short term. 

When comparing various models of optimality, we can see that the optimal policy differs 

depending on which one is used. In this illustration, the environment is represented by circles, and 

the arrows show the changes from one condition to another. Only one option is available in every 

condition except the start state, which is represented with an oncoming arrow in the top left. Except 

where noted, all awards are zero. According to this model, we should do action number two since 

it's better than action number one. However, if we modify it to 1000 and 0.2 it's better than action 

number one because it's better than any other option. It is critical to pick the optimality model and 

parameters carefully in every application since they have such a large impact. This model is useful 
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when we know the agent's expected lifespan. This is the best technique to represent a system with 

a strict deadline. Even today, experts disagree on the relative merits of bias-optimal versus in nite-

horizon discounted models. A discount parameter is not necessary for bias-optimal policies. 

 

2.10.1 Rewards 

Real-world settings with huge state-action spaces are being examined for use in Reinforcement 

Learning (RL), but even in the presence of accurate simulators, knowing how best to explore the 

environment remains a significant difficulty. In many cases, the problem is so complex that the 

obvious reward functions are few and few between (van Seijen et al., 2017). These kinds of 

incentives are often tied to the completion of a specific objective, such as a robot reaching specific 

waypoints, and provide no feedback on the actions taken along the route to accomplish these goals. 

Existing reinforcement learning (RL) systems generally fail to learn viable policies unless they are 

supplied with finely calibrated reward feedback by a domain expert who is knowledgeable in the 

subject matter(Rengarajan et al., 2022). 

 

2.10.2 Challenges in DL-RL 

Vehicle edge computing (i.e., machine learning on MEC-enabled networks) is still in its infancy, 

though. Some researchers are using deep learning and convolutional neural networks to forecast 

traffic patterns. It is unusual, however, for DL-RL to be considered (Sánchez et al., 2022). There 

are three key hurdles to building an intelligent offloading system for vehicle edge computing that 

works well: 

Despite its effectiveness in Atari games and Go, the use of DL-RL in vehicular networks is almost 

nonexistent. Unlike chess, the constraints of offloading systems are more implicit, adaptable, and 

diversified than chess's explicit rules. 
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A series of captured photos is used to examine both DL-RL and regular vehicular networks. 

However, our intelligent offloading system does not have any sequential photos. DL-RL to vehicle 

networks without visuals is a difficult task. 

When playing chess or Atari games, there is always one "agent" in a DL-RL model, regardless of 

the type of game. For intelligent offloading systems, constructing a suitable environment and 

building the matching DL-RL model is quite tough which was mentioned in (Ning et al., 2019). 

 

 

 

 

 

2.10.3 Value Based RL 

Reinforcement learning based on the maximization of value functions optimizes strategy. 

Estimation may be used to determine the value function for each robot state. Q-learning is the most 

extensively utilized of these algorithms. A technique called Q-learning constantly improves a 

robot's approach based on data it gathers while exploring its surroundings (Sun et al., 2021). 

Gracious approach is one of the most successful ways to pick actions for reinforcement learning, 

and it can assure algorithm convergence even if the model isn't known up front. 

Equation 2.3 

𝑄𝑄∗(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) = 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) + 𝛼𝛼 �𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎
 𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎) − 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎)� 

The equation 2.3 is used to evaluate actions and states and the -greedy approach to pick actions. 

The algorithm's convergence can be assured even if the model isn't.  
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To get the correct Q value, the neural network uses a dynamic wave expansion. Integrating existing 

knowledge into a learning system helps students learn faster and more effectively. 

 

2.10.4 Multi-Agent RL 

Real-world interactions with the environment are conducted through a process of trial and error, 

in which they are rewarded (reinforced) for their behaviors. Direct application of single-agent real-

time optimization (SAEO) to many agents has not been demonstrated in empirical studies since 

the environment no longer remains fixed from each agent's point of view. However, depending on 

other agents' behaviors, a single agent's acts might generate different rewards. To design an 

effective multi-agent RL (MARL) method (Canese et al., 2021), the non-stationarity of the 

environment must be addressed. 

The quality of the policies generated and the pace at which convergence is achieved can only be 

maintained if only a small number of agents are involved, even if convergence is achieved. When 

formulating algorithms for use in the real world, it is critical to keep in mind that they must be able 

to handle many agents. 

Multi-agent reinforcement learning (MARL) is introduced in this survey. Our research focuses on 

the framework environment and how to use suitable single-agent reinforcement learning 

techniques in multi-agent contexts. 

MARL algorithms that handle non-stationarity and scalability that, we focus on environments that 

are just partially visible. Partially seen events are more prevalent than in single-agent systems, 

hence they are critical to the development of real-world algorithms. An examination of the most 

frequent benchmarking settings for evaluating RL algorithm performance concludes this section. 

This study is meant to serve as an introduction to multi-agent reinforcement learning, highlighting 

the key challenges and solutions that have been implemented in the literature. Finally, we'll go 
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through some of the more common uses for MARL. Even though MARL research is still in its 

infancy, it has showed promising development in terms of its practical use. Systems capable of 

aiding humans in complicated activities, such as working in dangerous areas, and exhibiting 

general artificial intelligence might be deemed a revolutionary method. 

 

2.11 Chapter Summary 

This chapter presents a review on the design of UAV, wireless power transfer and deep learning-

based reinforcement learning, which may be found. According to the research that was conducted, 

even though utilizing the dynamic WPT technique is a very common but by using RL can improve 

the performance. There are still several challenges to re-design them for the purpose of improving 

the UAV dynamic WPT efficiency and reliability.  

There isn't enough study to determine the reliability of these novel designs, thus the market hasn't 

used them in new DWPT devices. Therefore, the UAV electric market hasn't used them 

commercial purposes. Before applying these novel ideas on a large scale, it is important to examine 

their reliability and investigate their failure. 

In conclusion, the research on dynamic wireless power transfer system for UAV revealed that there 

are several significant voids and problems that need to be researched and solved using deep 

learning and reinforcement learning. Next chapter will be focus on hardware and implementation 

of the proposed RL-POLICY UAV system in this thesis.  
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3 HARDWAR AND IMPLEMENTATION  

▪ Chapter 3 focuses on the Hardware and Implementation of the autonomous charging of 

UAVs which consists of Navigation, control system and sensor fusion and reinforcement 

learning.  

 

3.1 UNMANNED AERIAL VEHICLE 

Using a Custom-made quadcopter, this research uses a variety of sensors, including cameras, an 

onboard processor, gyroscopes, accelerometers, magnetometers, altimeters, and pressure sensors. 

Here are the details of the drone: 

• Dimensions: 62cm x 43cm.  

• Weight in grams: 530g; • IMUs including gyroscopes, accelerometers, magnetometers, 

altimeters, and pressure sensors.  

To accurately measure horizontal velocity, the quadcopter's height and ground texture must be 

taken into consideration. It is only possible to broadcast one of the one video at a time. Data from 

sensors is generated at a rate of 180 Hz. To regulate the platform's roll and pitch, yaw, and altitude, 

the onboard controller (closed source) is employed (z). Quadcopter directives u = [-1,1] are given 

to the quadcopter at the rate of 60Hz to control it. 

 

3.2 NAVIGATION SYSTEM 

An angle sequence known as the Euler angle sequence or quaternion can be used to characterize a 

person's attitude. To represent three sequential rotations about the z, y, and x axes of a body, and 

Euler angle sequence includes three angles: yaw (ψ), pitch (θ), and roll( φ). Even though it has a 

physical interpretation, this depiction is unique at 90o. The following relationship may be used to 

link the roll, pitch, and yaw angles to a quaternion. 
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Equation 3.1 

𝜙𝜙 = arctan �
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Transformation from local one location to another is represented by [q0 q1 q2 q3]. Despite its lack 

of singularity, it might be difficult to visualize the aircraft's orientation in its entirety. Equation 

below presents alternatively for cases where only trajectory navigation moves are expected. 

Equation 3.2 
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With the use of gyro output, one may determine one's position by integrating one's angular velocity 

into one's current position. Because of this, they may be ignored for the most part in practice. 

Equations for Euler angle and quaternion attitude representations can be used to calculate attitude 

at the IMU sample rate: 

Equation 3.3 
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The quaternion multiplication operator is referred to as the operator in this context.  
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3.3 CONTROL SYSTEM OF RDWPT OF THE UAV  

The UAV hovering platform likewise follows the same concept, with the landing platform's frame 

centered in the middle of the traditional UAVs. The landing system's coordinate frame. When it 

comes to the UAV and USV, their positions are represented by Xlv (the local frame) and Xls (the 

global frame). Down-facing camera Xc1v and frontal camera Xc2v are the two conversions 

between the vehicle's body frame and these cameras.  

A PID controller, such as the one included in the tum ardrone package (Open-Source UAV control 

library), can be used to guide the drone. A proportional, integral, and derivate term are all included 

in the adjustment. The following is a mathematical representation of the overall control function: 

In a global coordinate system, p = (x, y, z,) – R4 is a desirable objective location for the quadcopter. 

At 100Hz, the UAV receives a robotic-centric coordinate frame containing the created commands. 

 

Figure 3.1 UAV pitch, roll and yaw movement 

 
Quadrotors feature four fixed-pitch propellers in a cross arrangement with no tail rotor. If two 

propellers on either side of each other are rotating in the same direction, the other two propellers 

should be rotating in the opposite direction. Four propellers at the same time increase or decrease 
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the body's speed, and it may go in any direction by retaining the rotation of one pair of propellers 

at a constant speed and creating angular speed differences between the other opposing propellers. 

Thus, the pitch movement (theta direction in figure 3.1 is achieved by raising or lowering a gradual 

increase or decrease in speed of either of the two motors, shown below. To roll, you must increase 

(decrease) the rear motor's speed while reducing (raising) the speed of the front motor. 

Equation 3.4 

𝑋𝑋 = [𝜑𝜑 𝜑𝜑 ̇ 𝜃𝜃 𝜃𝜃 ̇ 𝜓𝜓 𝜓𝜓 ̇ 𝑧𝑧 𝑧̇𝑧 𝑥𝑥 𝑥𝑥 ̇ 𝑦𝑦 𝑦̇𝑦]𝑇𝑇

𝐵𝐵 = [B1B2B3B4]𝑇𝑇

B1 = 𝑏𝑏(omega12 + omega22 + omega32 + omega42)
B2 = 𝑏𝑏(−omega22 + omega)
B3 = 𝑏𝑏(omega12 − omega32)
B4 = 𝑑𝑑(−omega12 + omega22 − omega32 + omega42)
𝑋̇𝑋 = 𝑓𝑓(𝑋𝑋,𝑈𝑈)

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒̇ 2

𝑥𝑥1̇ = 𝑥𝑥2 = 𝜑̇𝜑
𝑥𝑥2̇ = 𝑎𝑎1𝜃̇𝜃𝜓̇𝜓 + 𝑎𝑎2𝜃̇𝜃omega𝑟𝑟 + 𝑏𝑏1B2

𝑥𝑥3̇ = 𝑥𝑥4 = 𝜃̇𝜃
𝑥𝑥4 = 𝑎𝑎3𝜑̇𝜑𝜃̇𝜃 − 𝑎𝑎4𝜑̇𝜑omega𝑟𝑟 + 𝑏𝑏2B3

𝑥𝑥5̇ = 𝑥𝑥6 = 𝜓̇𝜓
𝑥𝑥6̇ = 𝑎𝑎5𝜑̇𝜑𝜃̇𝜃 + 𝑏𝑏3B4

 

𝑥̇𝑥7 = 𝑥𝑥8 = 𝑧̇𝑧

𝑥̇𝑥8 = 𝑔𝑔 −
𝐵𝐵1
𝑚𝑚

cos 𝜑𝜑cos 𝜃𝜃

𝑥̇𝑥9 = 𝑥𝑥10 = 𝑥̇𝑥

𝑥̇𝑥10 =
𝑢𝑢𝑥𝑥
𝑚𝑚
𝐵𝐵1

𝑥̇𝑥11 = 𝑥𝑥12 = 𝑦̇𝑦

𝑥̇𝑥12 =
𝑢𝑢𝑦𝑦
𝑚𝑚
𝐵𝐵1

 

 

Increase (decrease) the speed of the front and rear motors together while simultaneously reducing 

(raising) the speed of lateral motors from equation 3.4. Keeping the overall thrust constant is the 

only way to do everything. Despite having four actuators, Quadrotor is a dynamically unstable and 
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under-actuated machine. When Newton-Euler formalism is used to represent a system, equations 

of motion can be obtained. A state-space form allows us to construct twelve state variables and 

four inputs, each of which is mapped by the angular rate (i=1,2,3,4) of the four propellers, as well 

as the thrust (b) and drag (d) components (i=1,2,3,4). Finally, the complete system is summarized 

by the following description: 

Equation 3.5 The total residual angular speed of the propeller formula 

omega𝑟𝑟 = omega1 − omega2 + omega3 − omega4 
𝑎𝑎1 = �𝐼𝐼𝑦𝑦𝑦𝑦 − 𝐼𝐼𝑧𝑧𝑧𝑧�/𝐼𝐼𝑥𝑥𝑥𝑥
𝑎𝑎2 = 𝐽𝐽𝑟𝑟/𝐼𝐼𝑥𝑥𝑥𝑥
𝑎𝑎3 = (𝐼𝐼𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑥𝑥𝑥𝑥)/𝐼𝐼𝑦𝑦𝑦𝑦
𝑎𝑎4 = 𝐽𝐽𝑟𝑟/𝐼𝐼𝑦𝑦𝑦𝑦
𝑎𝑎5 = �𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑦𝑦𝑦𝑦�/𝐼𝐼𝑧𝑧𝑧𝑧
𝑏𝑏1 = 𝑙𝑙/𝐼𝐼𝑥𝑥𝑥𝑥
𝑏𝑏2 = 𝑙𝑙/𝐼𝐼𝑦𝑦𝑦𝑦
𝑏𝑏3 = 𝑙𝑙/𝐼𝐼𝑧𝑧𝑧𝑧
𝑢𝑢𝑥𝑥 = cos(𝑝𝑝ℎ𝑖𝑖)sin (𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒)cos (𝑝𝑝ℎ𝑖𝑖) + sin (𝑝𝑝ℎ𝑖𝑖)sin (𝑝𝑝ℎ𝑖𝑖)
𝑢𝑢𝑦𝑦 = cos (𝑝𝑝ℎ𝑖𝑖)sin (𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒)sin (𝑝𝑝ℎ𝑖𝑖) − sin (𝑝𝑝ℎ𝑖𝑖)cos (𝑝𝑝ℎ𝑖𝑖)

 

 
Equation 3.5 explain it's the horizontal distance from the propeller's center to its center of gravity 

that's being measured here. A two-section model may be derived from angle section is used to 

assess the first six state variables because their evaluation is independent of the other variables. 

The findings of the first part are utilized to establish the coordinates of the UAV in the second 

portion, which is a translation section. 
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3.4 STATE ESTIMATE FILTERING BASED ON DATA FUSION 

State estimate filtering-based sensor fusion is defined for estimating unknown variables, the 

Kalman filter (Yuan et al., 2021) employs a collection of imprecise measurements made during a 

certain time. The combined probability distribution of the variables at each time step is used to get 

this outcome. As a result of this attribute, it is frequently employed to ascertain the internal state 

of systems with linear dynamic behavior.  

For most algorithms, prediction and update are considered separate functions. Predictions are 

based on the KF's best guesses of the present situation, together with their associated levels of 

uncertainty. The estimations are updated using a weighted average whenever a new measurement 

is observed. According to the sensor measurements, the following equations are satisfied: 

According to Gene et al. (2000), the random process that has to be approximated using the Kalman 

filter (KF) has the following structure: 

Equation 3.5 

𝑥̇𝑥 = 𝐹𝐹𝐹𝐹 + 𝐵𝐵𝐵𝐵 + 𝐺𝐺𝐺𝐺 

White noise with known covariance is used as an example of a state value. At discrete points in 

time, measurements of the process occur in accordance with this relationship: 

Equation 3.6 

𝑧𝑧 = 𝐻𝐻𝐻𝐻 + 𝐷𝐷𝐷𝐷 + 𝑣𝑣 

This equation expresses what happens when you have a noisy sample, an ideal (noise-free) link 

between the measurement and the state, as well as an inaccuracy in your measurements. Assuming 

no system control inputs u, the discrete model for this process looks like this: 
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Equation 3.7 

𝑥𝑥𝐾𝐾+1 = Φ𝐾𝐾𝑥𝑥𝐾𝐾 + 𝑤𝑤𝐾𝐾
𝑧𝑧𝐾𝐾 = 𝐻𝐻𝐾𝐾𝑥𝑥𝐾𝐾 + 𝑣𝑣𝐾𝐾

 

There are several components to this model, each representing a discrete point in time. 

 

3.5 DISCUSSIONS 

In the upcoming introduction to this chapter, a comparison of several sensors used to gather data 

about the environment was offered. Sophisticated UAV sensors have been tested to see how 

effectively they can detect stationary and moving objects. These sensors have also been put to land 

vehicles, such as GPS, IMU and cameras. They have been studied and their pros and disadvantages 

have been documented. When trying to detect things at close range, the radar has a poor degree of 

accuracy, even though it was the most employed sensor for this purpose in the past. Cameras that 

use infrared light can partially solve the issues, although they have been used in just a few of 

projects. However, despite progress in resolving calibration concerns for on board sensors from 

autonomous aerial vehicles, the same challenges with vision sensors persist.  

There have been several path planners, both global and local, documented. The so-called 

'intelligent' approaches, which are based on soft computing principles, have been given their own 

area. Because of its non-linear mapping, learning capabilities, and parallel processing, deep 

reinforcement learning has been used to solve this problem. Instead, knowledge-based conditional 

rules in RL-policy can mimic human reasoning. There is a great deal of complexity in handling 

situations that demand human-like expertise to pick the appropriate course of action.  

One of the biggest issues with most of the proposed solutions is that they have only been evaluated 

in a computer simulation; they have yet to be proven true in the real world. The results are also 

restricted in their dependability since they may be incomplete because only a small number of 
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situations were investigated. 

The UAV's actuators may be damaged by a trajectory that features excessive turn rates when wrong 

path planning algorithms used. A cost function that incorporates the dynamics of the vessel.  There 

must be intelligent behavior in all sorts of drones for them to learn and follow the normal laws of 

search and rescue (SAR) navigation. There is no widely accepted approach. There are a few 

instances in which this is the case. 

Their inclusion in the solution space does not imply that they are optimum. That's why it has been 

agreed that an autonomous vessel always must give up when it meets a manned vehicle, to simplify 

the decision-making process. 

Future work must deal with environmental disruptions and uncertainty. Heavy wind currents are 

critical to drone course design, whereas wind and wave effects on bigger boats may be ignored. 

The vehicle may be deviated off its intended direction by high-speed currents. An increase in 

computing complexity for optimum path planners comes from the addition of such environmental 

factors into planning processes. Real-time vision-based perception is still hampered by changeable 

ambient circumstances (e.g., fog; illumination; rain; wave occlusions; complex backdrop). 

This thesis can play a significant function in this regard. Researchers from around the world are 

growing increasingly interested in UAVs as they become more affordable. Because of UAV's 

ability to view far ahead, impediments that are moving away from the drone may be spotted and a 

new course can be plotted a second or many times while the drone is still in motion. 

To put it simply if the drone is incapable to complete its operation. Additionally, the data collected 

by these sensors isn't just a backup plan; it's also used during all phases of navigation, including in 

foggy situations. However, these flaws present exciting problems that must be solved in the future. 

When flying a UAV in the Search And Rescue (SAR) environment is more challenging than flying 
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it on land. The use of unmanned aerial vehicles (UAVs) presents several additional difficulties 

aside from those listed above. For example, the magnetometers are influenced by electro-magnetic 

radiation created by the drone actuators and are affected by the error of cheap GPS devices fitted 

with UAVs. Due to natural disruptions, it is impossible to estimate the movement of the USV. An 

unmanned aerial vehicle may have a tough time landing on a moving maritime vessel because of 

the low quality of its posture data. 

The multi-agent system described above will benefit greatly from this thesis. Two new approaches 

to autonomous UAV landing, will be discussed in the following chapters. It is suggested that the 

use of fiducial markings on the ship's deck will enhance the accuracy of future estimates. 

 

3.6 Chapter Summary 

Hardware and implementation of the proposed customized UAV design and dependability, 

wireless power transmission, and deep learning-based reinforcement learning are all discussed in 

this chapter's section. Examine their dependability and study their failure before using these new 

concepts on a broad basis. 

In conclusion, we'll go into the specifics of building the design of rotational wireless power transfer 

system in this thesis's next chapter. 
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4 DESIGN OF ROTATIONAL DYNAMIC WIRELESS POWER TRANSFER 
SYSTEM RDWPT 

▪ In Chapter 4, a wireless power transfer system with rotating dynamic behavior is described 

using significant study.  

 

4.1 ABSTRACT 

Making electric vehicles (EVs) widely available requires a solution to the problem of low range 

and long charging times.  Solving the limitation of commercially available short wireless charging 

distance is indispensable in making battery powered UAVs. One of the most efficient alternatives 

is a dynamic wireless power transfer (WPT) system, which can supply electric power to moving 

electric vehicles. In this chapter, multiple motor powered (primary) coils and a moving load 

(secondary) coil are proposed for a rotational dynamic WPT system. The common load coil is used 

in both dynamic and stationary WPT scenarios in the traditional system, but this chapter focus on 

the rotational dynamic WPT platform proposed.  According to theoretical study, the dynamic WPT 

system that results from a stationary WPT system is identical to the stationary system in equivalent 

circuit but in this chapter, the use of novel approach of RDWPT can increase the distance of the 

charging of UAVs gradually.  

4.2 Introductions 

Since pollution increases all over the world, Electric Unmanned Aerial Vehicles (EUAVs) 

have attracted interest across a wide range of industries due to the promise they hold for 

environmental conservation and the eventual replacement of conventional gasoline-powered 

drones (Stolaroff et al., 2018). WPT has been explored extensively to enhance pricing and address 

the issues outlined in this article. It has been recommended that DWPT be used as an example of 
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WPT to accomplish continuous charging in EUAVs to increase their flying range and reduce the 

weight of their heavy batteries. 

 

 

 

Figure 4.1 Comparison between static and rotational dynamic WPT 

In this study, a rotational dynamic WPT system is described in figure 4.1. First, the dynamic 

system's configuration is explained in depth. On the input side, a slew of solenoid coils is linked 

in series. The parallel series (PS) serves as the foundation for the topology. Another comparison 

was made between the results of a theoretical model based on PS topology and those of a practical 

model based on an analogous transformer. On the robotic lab, the experimentation was set up with 
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200 watts WPT modified by adding motors and sliprings to the primary and secondary coil, which 

was used to show how the system works with an actual EUAVs in the next chapter. Finally, based 

on the results of the trials described here, a set of performance indices was provided for comparing 

dynamic DWPT systems (Toshiyuki et al., 2019).  

4.3 Wireless Power Transfer  

 

Figure 4.2 Coupled Magnetic between static and dynamic WPT 

Figure 4.2 shows a rotational intensified magnetic field pulsating at a predetermined frequency 

powers the entire operation. A transmitter coil is attached to each (receiver coil). As soon as a 

reception coil is positioned near the transmitter coil supplied by AC, a voltage is induced in the 

receiver coil, resulting in an AC in figure 8. Then Raspberry Pi controlled motor is activated to 

move the transmitter and receiver coil. The sensor device is powered by a steady DC supply that 
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is generated by power supply. The power converter's internal circuitry loses some power when 

there is energy transform from alternating current to direct current.  

 

 

4.4 Related Work 

WPT has been discussed in the chapter to help power Internet of Things (IoT) devices. Wireless 

harvesting approaches, for example, have been demonstrated to significantly improve the 

longevity (Kamalinejad et al., 2015). Technology and methods to allow DWPT for IoT systems 

were discussed in this paper. A DWPT approach was utilized to develop the energy management 

policies. Using a dynamic WPT system, the author came up with a method that is in the form of 

transferring energy while moving. The behavior of the system was examined considering the 

current condition of the system. IoT devices may request power on demand from an energy 

transmitter capable of delivering power through guided RF signals, according to the author 

(Lhazmir et al., 2020). An energy harvesting in figure 9 and queuing model for the nodes was 

constructed using a discrete time Markov chain. Packet loss probability, average packet latency 

and network performance were all included in the design assessment. IoT devices with energy 

collecting capability have their offloading policies optimized. As an Markov-Decision Process 

(MDP), the author developed strategies for reinforcement learning to arrive at the best offloading 

strategy.  

The author (Johnson et al., 2013) studied two charging methodologies and evaluated the energy 

consumption of UAVs. Remaining stationary, the UAV charges sensors in its area of coverage. 

Each sensor node may be recharged by a UAV that flies above it, replenishing the sensors' depleted 

energy. The unmanned aerial vehicle (UAV) has been employed as a transportable power source. 

A regression approach was used to improve the energy efficiency of the flying path. A weighed 
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harvest and transmit technique were also devised to maximize the combined throughput of all 

nodes.  

However, unmanned aerial vehicles (UAVs) have been employed for data gathering as well as 

WPT. Among other things, the authors (X. Lu et al., 2021) looked at the trade-off between power 

transfer time and data gathering time. The scheduling approach of low battery first is proved to 

provide better advantages. Additional to this, the author (Wei et al., 2022)proposed a solution to 

the travelling issue using time windows: the lowest journey time trajectory for the UAV. UAV-

assisted wireless-powered IoT network resource allocation was addressed through a dynamic 

system. Attaining a Nash equilibrium is the best way to distribute resources according to Bellman's 

dynamic programming. As a result, the unmanned aerial vehicle (UAV) manages its wireless 

power transfer resources optimally.  

4.5 SYSTEM MODEL 

A Rotational Dynamic Wireless power transfer (RDWPT) system in which a random distribution 

of N and wireless devices is analyzed is shown. WPT-enabled UAVs can be denoted by =... 1, 2, 

M. Unmanned aerial vehicles (UAVs) gather data and transmit wireless energy to RDWPT devices 

via the air. A UAV j's altitude is indicated by the coordinates (xi, yi), whereas device i's position 

is given by (xj, yj, h). then one UAVj may service multiple devices. Devices connected to the 

RDWPT send power and data packets to the most appropriate unmanned aerial vehicle (UAV), 

hoping for a stable connection and high performance. Device I and UAV j must decide whether to 

send data at time t based on the current system state. We're looking at the feasibility of wireless 

energy transmission in this network as well. As a result, any device that lacks the power to send 

data may ask the UAVs for help transferring energy. We only consider one of the two options 

when configuring an RDWPT device for any energy-limited device, the downlink is used to gather 

and transmit energy, while the uplink is used to send information. However, UAV j is aware of the 
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current state Qj of its data queue and the current state Pj of its energy storage device. A list of data 

is shared each time an association is made. For example, an IoT device can show the size of the 

packet to broadcast, or the amount of energy required. The buffer and energy units used by UAVs 

are a way of describing their available resources. Each IoT device is assumed to be LOS-

dominated, hence a route loss model like that used is used for the wireless channel.  

Equation 4.1 

𝐿𝐿�𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿
𝑖𝑖𝑖𝑖 𝜇𝜇1 �

4𝜋𝜋𝑓𝑓𝑐𝑐𝑑𝑑𝑖𝑖𝑖𝑖
𝑐𝑐

�
𝛽𝛽

+ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖 𝜇𝜇2 �

4𝜋𝜋𝑓𝑓𝑐𝑐𝑑𝑑𝑖𝑖𝑖𝑖
𝑐𝑐

�
𝛽𝛽

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗 =
𝑒𝑒𝑡𝑡𝑖𝑖

𝑔𝑔𝑖𝑖𝑖𝑖
 

 

4.6 METHODOLOGY AND IMPLEMENTATION 

The input power can be used to increase the load power, as shown in equation 4.2. Only the 

transmitter's input power can provide feedback for optimizing the efficiency of the power 

transmission. As a result, the extremum seeking controller's (ESC's) objective function is as 

follows: 

Equation 4.2 

𝑓𝑓(𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒) = 𝑅𝑅𝐼𝐼2 + (𝑅𝑅3 + 𝑅𝑅𝐿𝐿)
𝑤𝑤2𝐼𝐼2

(𝑅𝑅3 + 𝑅𝑅𝐿𝐿)2 + 𝑋𝑋32
× 

(𝑀𝑀13(𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎)cos (𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒) + 𝑀𝑀23(𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎)sin (𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒))2 

 

The equation 4.3 which is about f of theta differential equation explained below. 



76 

Equation 4.3 

𝑓𝑓(𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒) = 𝑓𝑓∗ +
𝑓𝑓′′

2
(𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒∗(𝑡𝑡))2 

 

Where, theta is the system input and theta prime are the optimal input value which is equal to the 

differential equation f prime.  

RDWPT system begins to identify optimal differential input value which enhance the self-reliant 

function of WPT receiving station. The charging station is controlled by rotating magnetic 

resonance field since the power transmission is omnidirectional.  As a result, it will also cover the 

two that are left. 2nd differential order integrator s12 included with respect to the optimal input 

power varies with time owing to movement of the receiving station.  

After all the ESC settings have been established, the independent frequency of the input system 

and output system are utilized for better adjustment. Using MATLAB Simulink model to show the 

proposed RDWPT method, reveals that the maximum is accurately tracked near real time 

movement of the transmitter and receiver. Using a reaction time of 8 seconds, the controller can 

keep track of the receiver's angle and achieve its maximum power transmission. 

 

4.7 SYSTEM SPECIFICATIONS 

If the UAV is within the charging lane's range, the dynamic charging mechanism should be able 

to take up steady electricity. The genuine system is three times smaller because of the restricted 

space. A three-fold reduction in the permissible misalignment and a decrease in the diameter of 

the coil result. The circular coil's corresponding radius is approximately 14 cm. 23 centimeters of 

space is sufficient for charging electric unmanned aerial vehicles. 8 cm is the estimated airgap. It 

is possible to simulate and test the coupling factor for misalignment. As a rule of thumb, 14.2, 14.5 
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V are the most common operating voltages.  

 

 

Figure 4.3 WPT MISALIGNMENT 

The misalignment of the RDWPT was simulated using ANSYS software in figure 4.3. At first, 

transmitter and receiver coils 3d model were developed using the Maxwell electronic suite and 

then simulate the RDWPT airgap misalignments.  

 

4.8 WPT MOTOR 

The UAV is propelled by an AC electric motor with electronic speed controller. The RDWPT-

POLICY system is controlled by DC motor attached with slip ring to rotate the transceiver in 

opposite directions. Traditional dynamic WPT system works by moving aerial vehicle wirelessly 

charge by static multiple transmitting stations in the ground. The proposed system in this chapter 

focuses on the novel method of rotating transmitter and receiver in the reverse direction to increase 

the charging distance of the RDWPT-POLICY system.  
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Equation 4.4 

[𝑣𝑣𝑠𝑠] = [𝑅𝑅𝑠𝑠][𝑖𝑖𝑠𝑠] +
𝑑𝑑
𝑑𝑑𝑑𝑑

[𝜑𝜑𝑠𝑠].

[𝜑𝜑𝑠𝑠] = [𝐿𝐿𝑠𝑠𝑠𝑠][𝑖𝑖𝑠𝑠] + �𝜑𝜑𝑓𝑓�.

�𝜑𝜑𝑓𝑓� = 𝜑𝜑𝑠𝑠𝑠𝑠

⎣
⎢
⎢
⎢
⎡

cos (𝜃𝜃)

cos �𝜃𝜃 −
2𝜋𝜋
3 �

cos �𝜃𝜃 −
4𝜋𝜋
3 �⎦

⎥
⎥
⎥
⎤ 

 

We need to identify and model this system to understand it. What's left in this section consists of 

a modelling exercise. A series of assumptions were made during this phase, as outlined in the 

following four points: the permeability of magnets is near to atmosphere and iron losses are 

omitted. Permanent magnet synchronous machines are shown in schematic and composition. 

Voltage and flow equations and sf denotes the magnet's peak (constant) value as it passes through 

the stator windings, and Equation 4.4 expresses this flux expression in that form. Because of the 

nonlinearity and coupling in Equation 4.5, we must adjust the variables and convert the system to 

make it simpler.  

Equation 4.5 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑖𝑖𝑑𝑑 =

1
𝐿𝐿𝑑𝑑
�𝑣𝑣𝑑𝑑 − 𝑅𝑅𝑖𝑖𝑑𝑑 + 𝐿𝐿𝑞𝑞𝜔𝜔𝑒𝑒𝑖𝑖𝑞𝑞�.

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑖𝑖𝑞𝑞 =

1
𝐿𝐿𝑞𝑞
�𝑣𝑣𝑞𝑞 − 𝑅𝑅𝑖𝑖𝑞𝑞 − 𝐿𝐿𝑑𝑑𝜔𝜔𝑒𝑒𝑖𝑖𝑑𝑑 − 𝜑𝜑𝑓𝑓𝑝𝑝Ω�.

 

Electromagnetic Torque Equation: 

𝐶𝐶𝑒𝑒 = 𝑝𝑝 ��𝐿𝐿𝑑𝑑 − 𝐿𝐿𝑞𝑞�𝑖𝑖𝑑𝑑𝑖𝑖𝑞𝑞 + 𝜑𝜑𝑓𝑓𝑖𝑖𝑞𝑞�. 

Mechanical Equations: 
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𝑑𝑑
𝑑𝑑𝑑𝑑
Ω =

1
𝐽𝐽

(𝐶𝐶𝑒𝑒 − 𝑓𝑓Ω − 𝐶𝐶𝑟𝑟)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑝𝑝Ω
 

 
 

4.9 SIMULATION OF THE RDWPT-POLICY 

The RDWPT-POLICY SPICE model from Efficient Power Conversion (EPC) is used to simulate 

the inverter architecture in this section of LTSpice. An inverter's first harmonic is exactly 

proportional to its dc voltage, VD D, hence this parameter serves as external radio frequency power 

control.  

Equation 4.6 

𝐷𝐷𝐷𝐷 = (2𝐶𝐶off)
𝑉𝑉𝐷𝐷𝐷𝐷
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

 

 

Figure 4.4 Simulation Results of RDWPT-POLICY 
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Table 4.1 Drain Voltage 

 
 
The simulation uses DT with a range of 8 to 10 nano seconds. Simulated dc input voltage is linearly 

modulated from 14 to 5.7 volts, while the DT value is dynamically modified. Figures 4.4 depict 

the simulation's outcomes. 

4.10 COIL DESIGN CONSIDERATIONS 

Magnets are used to transport high-frequency AC impulses over an air gap. The system's capacity 

to transfer electricity and the distance it can travel are determined by the design of these coils. A 

wide variety of planar coils have been studied because of WPT technology advancements 

throughout the years. Non-Polarized Pads often come in the following shapes: round, rectangular, 

and hexagonal.  

The magnetic flux distribution is directly influenced by the diameter change. It has been shown 

that the effective flux distribution area of rectangular coils is greater than that of circular coils. 

However, the system weight is increased due to the need for additional materials in these designs 

than in conventional systems. To minimize misalignment when working as a secondary 

component, the flexible design has been implemented. Copper coils have been replaced by High-

Temperature Superconductors (HTS) that have proven a 92.34 percent efficiency.  
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Figure 4.5 RDWPT ANSYS SIMULATIONS 

 
Magnetization losses were found to rise as the frequency and density of the magnetic field 

increased. There were less losses of magnetization in the spiral and solenoid coils, respectively. 

Aside from the fact that skin effect causes excessive cooling power consumption, HTS coils are 

inefficient for high-power applications because of this. However, the small size of the UAV's 

frame restricts the use of numerous coils. As a result, the transmitter and receiver circuits use a 

basic circular coil construction. Electronic circuits can be damaged by the electromagnetic 

radiation (EMF) emitted by the coils. Internal circuit damage occurs when rogue currents are 

generated in the PE circuit because of being exposed to EM radiation. When working with high-

frequency electromagnetic waves, precautions must be taken (Prithvi Krishna et al., 2021). The 

coil design from ANSYS is shown below in figure 4.5 with above configurations.  

 

4.11 MATHEMATICAL ANALYSIS 

An orthogonal transmission-end coil (Tx, Ty) and a centrally aligned receiving-end coil (Rx) make 

up the system that moves in the (x, y) plane at a variable speed. To boost the WPT's efficiency, the 

coils are linked to serial capacitors and resistors. AC sources are used to supply power to the 

transmission side and a resistive load is attached to the receiving side of the coil. 
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Figure 4.6 Magnetism and Electricity of WPT 

The magnetic fields BxBy in figure 4.6 are produced by the currents ixiy passing through the 

transmitting coils.  

Equation 4.7 

𝐵𝐵 =
𝜇𝜇0𝐼𝐼

4𝜋𝜋𝑟𝑟2
∮𝑑𝑑𝑑𝑑 ⋅ (𝚤𝚤̂ × 𝑟̂𝑟) =

𝜇𝜇0𝐼𝐼
2𝑟𝑟

⋅ (𝚤𝚤̂ × 𝑟̂𝑟) 
There are two ways to look at Equation 4.7: one is to look at it in terms of the Cartesian plane, 

which has the same directionality for each of these components. As a result, even if the transmitter 

isn't moved, the magnetic field may be steered. It is possible to change the amplitude of the 

magnetic field to any desired location in the Cartesian plane by altering this feature. WPT's 

transmitting-end coils create a theta vector (magnetic field).  

Equation 4.8 

𝐵𝐵 = 𝐵𝐵𝑥𝑥 + 𝐵𝐵𝑦𝑦 =
𝜇𝜇0
2𝑟𝑟

⋅ �𝑖𝑖𝑥𝑥𝚤𝚤̂ + 𝑖𝑖𝑦𝑦𝚥𝚥̂� 
Magnetostatic and electrostatic fields are seen in the (x, y) plane in Figure 4.8. To target any load 

in the plane, we can simply move the resultant theta vector.  

Equation 4.9 

�
𝑖𝑖𝑥𝑥 = 𝐼𝐼 × cos 𝜃𝜃
𝑖𝑖𝑦𝑦 = 𝐼𝐼 × sin 𝜃𝜃  
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4.12 Results 

The simulation trajectory with maximum power may be achieved by a receiver that turns at an 

angle of 90 degrees. As a result, the 2D orthogonal coils system achieves maximum power 

transmission in both rapid mobility and static load instances. However, even with 612 rad/s of 

receiver rotation, controller can drive system to maximum power transmission.  

Table 4.2 Control Parameters 

 
Table 4.2 shows the control parameters of the RDWPT system. Once installed, the controller will 

just monitor and optimize the input power signal and will not require any other information from 

the receiver. The power provided to the load may be increased by altering the coil design 

parameters, and the benchmarking chapter's parameters were utilized to model the system in this 

study. There is more detail on the reciprocal coupling relationship and receiver's angle of rotation 

in this work, though. This chapter focuses input power calculation matches the experimental results 

thanks to the Ansys software simulation. This research uses an efficient control approach based on 

adaptive control theory. As previously published work has shown, ideas for charging batteries and 

supplying electricity to moving loads may be extended and improved upon. Under high 

transmitter-receiver misalignment circumstances, omnidirectional techniques are shown in the 

study that has just been developed in this chapter.  
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Figure 4.7 Number of coils and speed of RDWPT 

 

Table 4.3 Number of coils and speed of RDWPT 
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4.13 Stationary System Analysis  

Variation of input voltage VIN topology was employed by the nominal airgap of 120 mm was 

maintained without misalignment for the aerial vehicle-side coil. An 88 kHz inverter working 

frequency was maintained throughout the entire experiment. The efficiency was 92.2 percent with 

a power load of 200W at 48.6 VDC. A theoretical output voltage V'L of 24 volts. Voltage L was 

measured at 401 volts, though.  

4.14 Dynamic System Analysis 

The rotational dynamic WPT system photographed in the subsequent bench tests. Each ground-

side coil was separated by 120 mm. The aerial vehicle-side coil was moving at 32 mm/s. Constant 

values of 240 VDC and 90 kHz were used to manage the input voltage VDC and frequency. This 

system has no additional feedback loops built. 

For an aerial vehicle-side coil in motion, the changes in input and output power with time. 

Maximum values in Figure were obtained by aligning the coils on the UAV with the coils on the 

ground. PS features and a resistive load were the outcome of this event. Furthermore, the amount 

of energy conveyed quadrupled when the coil on the vehicle side's side was slowed by half. 

Throughout the test, electricity was continuously transferred from the experimental road to the 

UAV. 

4.15 Applications 

A rotational dynamic WPT system is shielded using the shielding approach provided in the method 

under consideration utilizes numerous successive short-track main pads positioned on the lab. 

Coils in the primary ignition switch are turned on one at a time for security and efficiency, and 

only when an underbody-mounted secondary coil is recognized. Because the secondary coil may 

be placed anywhere along the electrified road, this system can be studied in the same way as a 
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normal static WPT system. The main coil's exterior dimensions are 150 cm long and 50 cm wide. 

Because the long side of the secondary coil is oriented to compensate for any conceivable 

misalignment, this coil is rectangular in form. There are two secondary coils: one that has a 

diameter of 50 cm and the other that has a diameter of 60 cm. A reduction in reluctance in the 

magnetic field allows for improved electrical performance via improving magnetic field behavior. 

A UAV has been used in our simulations. Its length is 423 cm, its height is 144 cm, and its breadth 

is 180cm in the metallic bodyshell seen in Figure 26. For the body, thin 2-mm aluminum alloy 

panels with 30-MS/m electrical conductivity are used. 

Table 4.4 Coupling Factor of Secondary Coil 

 

 

Figure 4.8 Coupling Factor of Secondary Coil 
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4.16 Efficiency of WPT 

The efficiency of the RDWPT-POLICY under investigation in this section. In this case study, the 

suggested mutual inductance analytical behavioral model is validated using a series–series 

compensation architecture. This work does not include the optimal design of both power 

conversion stages and resonant compensation systems. 

Additionally, R2 contains the resistances of both rectifier diodes and the L2-C2 series of resistors. 

LTX, LRX, RTX, RRX, and R1 and R2 are all used respectively. This allows the receiver's diode-

bridge rectifier to be linked to the load (battery). Using phase-shift control, the transmitter rms 

current I1rms may be set to a certain value, ref. The investigated DWPT had the following 

operational parameters and component values. Additional information on dynamic power control 

and demand regulation may be found in the reference section. 

The equation below presents the phasors of voltage and current at the transmitting and receiving 

coils, respectively.  

Equation 4.10 

𝑃𝑃1 =
1
2 �
𝑅𝑅1 +

(𝜔𝜔0𝑀𝑀)2

𝑅𝑅2 + 𝑅𝑅𝑎𝑎𝑎𝑎
� 𝐼𝐼12,𝑃𝑃2 =

1
2
𝑅𝑅𝑎𝑎𝑎𝑎(𝜔𝜔0𝑀𝑀)2

(𝑅𝑅2 + 𝑅𝑅𝑎𝑎𝑎𝑎)2 𝐼𝐼1
2

𝜂𝜂 =
(𝜔𝜔0𝑀𝑀)2𝑅𝑅𝑎𝑎𝑎𝑎

[(𝜔𝜔0𝑀𝑀)2 + 𝑅𝑅1(𝑅𝑅2 + 𝑅𝑅𝑎𝑎𝑎𝑎)](𝑅𝑅2 + 𝑅𝑅𝑎𝑎𝑎𝑎)

 

 
the inverter phase-shift control sets the TX coil current magnitude I1 to p2 I1rms, ref. I1 = p2 

I1rms The WPTS efficiency is affected by the mutual inductance M, as shown in Equation 4.10. 

Furthermore, the efficiency rises with increasing mutual inductance indicates.  
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4.17 Experimental Verifications 

Single rotating motor-powered transmitters and a receiver make up this prototype. Segmented 

switches can be ignored since the movement speed is believed to be low enough ref. Three parallel 

inverters are powered by a single DC power supply.  

According to the position of the receiver, segmented wireless charging can be accomplished. The 

experimental prototype's complete set of parameters may be seen in the table below. Immediately 

following the switchover point, U45 is activated, whereas U12 is shut off. U3 is always active 

during this experimental validation since both G1 and G2 require it. There is currently some 

distortion, and this will be rectified in future work. While in motion, the secondary side may have 

induced a tiny shift in resonant state. Overall, a 220 V output voltage with oscillation waves of 

less than 18 V is attained (8 percent of the nominal voltage). 

4.18 Performance Comparison 

The intended dynamic WPT system's performance to that of prior systems (see ref) and lists the 

differences. This design has an unusually high tolerated offset ratio of 1.4. According to the prior 

research, there are two ways for calculating efficiency. Efficiency is measured from a direct current 

(DC) source to a direct current (DC) load. A typical dc–dc efficiency is 90 percent or higher ref 

due to the inclusion of Tx and Rx power converter efficiency. Consequently, the system's 

efficiency is satisfactory. A steady, efficient, and restricted coupling flux is used in this article's 

misalignment-tolerant coils. In addition, the landing and charging are more stable due to the coils 

and accompanying landing basins. The four-channel prototype has a maximum output power of 

200 Watts.  
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4.19 Electrical Performance  

The initial tests were carried out to verify the electrical performance numbers reported in 
the preceding section. Consideration was consequently given to a more streamlined 
electrical system design.  
 

Table 4.4 Experimental results 

 
 
When comparing actual measurements to findings from a finite element model, the numerical 

results are displayed in Table 4.4. Then, with the output power set at PL = 166 W, a comparison 

of efficiency was made between three distinct Rx coil alignments. A flawless alignment was 

achieved in the first example, however the secondary coil was laterally misaligned by 100 mm and 

200 mm about the main coil, as well as by 35 and 70 millimeters in y-axis direction. 

The output power was maintained at PL = 166 W in all the studied scenarios by altering the input 

voltage V1. A variety of x- and y-axis misalignment circumstances are investigated, and the 

resulting electrical performances are analyzed and compared. Table 2 shows that computations 

and observations are in good agreement. 

All the true electronic components of the system are considered and applied to the drone in the 

second test. It has been replaced with a rectifier and a battery on the Rx side of the drone. The 

rectifier, which is made up of four Schottky diodes with extremely low forward voltage, mounted 

on the landing gear with compensating capacitors.  

Charging this type of battery requires a constant-current/constant-voltage method. The suggested 
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solution has been tested in several operational scenarios. After the drone is automatically landed, 

the battery is charged for roughly an hour. Additionally, the drone's ECU and communication 

components are unaffected by the magnetic field emissions. 

4.20 Discussions  

According to our findings, the following issues must be addressed to enhance the dynamic WPT 

system under consideration in this work. A way of switching might be devised to lessen the impact 

of this. As a comparison, look at the RDWPT-POLICY and WPT systems. A rotational dynamic 

WPT system was the subject of this work. But we also evaluated a dynamic WPT system based 

on a series-series model. The two systems should be compared. (d) Strengthen the ground-side 

coils' ability to receive electricity. There were power dips between the coils in the system studied 

in this research.  

 

Figure 4.9 Experimental Results 
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As seen in figure-4.9, this chapter's experiments are summarized with the experimental results. 

Drone power energy conversion efficiencies are challenging to measure because of the 

inconsistencies in the timing of vehicle passings over ground-side coils. According to our 

calculations, the total energy received is a reliable indicator of vehicle speed and input power. 

 

4.21 Conclusions and chapter summary 

Fast evolving technologies has led to the innovation of powerful wireless powered unmanned 

aerial vehicles (UAV), also known as WPT drones, for the purpose of working in dangerous 

environments which human won’t be able to travel. To begin, the study's theoretical analysis 

indicated that the system under consideration might make use of a circuit equal to that found in 

test in a variety of scenarios to verify the theoretical analysis. In this chapter, we designed and 

experimented the RL-POLICY, the working Principe of the proposed methods including short- 

and long-range methods. As a final step, two new factors were also introduced to help us gauge 

how well rotational dynamic WPT systems function in a variety of settings. Finally, the future of 

WPT transfer using electrostatic resonant coupling method using earth as a return wire. In the next 

chapter, we will be experimentation of this method to power the UAVs efficiently, the safely and 

reliability of sending power to longer distances. 
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5 DESIGN AND Implementation of autonomous rotational dynamic wireless charging 
for UAVs 

▪ Chapter 5 continues with implementing the design of Reinforcement Learning Policy (RL-

POLICY) system into the autonomous UAV.     

5.1 Introductions 

Studies on WPT with UAVs have covered a wide range of topics including far-field and near-field 

transmissions, operating frequencies and frequencies with misaligned coils and mismatched 

capacitance values, as well as target loads in various environments and operating situations. Many 

critical concerns, including weight limits, comparability of existing charging methods, shielding 

approaches, and many more, are not addressed in this chapter. Rotational Dynamic WPT must 

determine whether to request data transmission, request wireless energy transfer using a drone. 

Charging stability is improved by the structure's many, null-cross-coupled transmission pathways. 

Using the input voltages of the active coils to ensure a constant charging power and the best 

transmission efficiency of UAV battery. Due to its low battery capacity, a UAV’s flight time is 

generally constrained by these opportunities. As a result, the UAV’s payload is restricted. There 

are several advantages to using an autonomous drone that can recharge its batteries wirelessly and 

autonomously without the need for human involvement, such as increasing the overall mission 

duration. In comparison to a proposed search methodology, simulation results demonstrate the 

superiority of the offered strategies. 

Control of both location and attitude (inner loop) is handled by the UAV's flight controller. The 

UAV's on-board CPU typically handles the inner-loop control, while the base station's processor 

handles the outer-loop control. To implement their own control algorithms, multiple UAV research 

groups all around the world frequently create a control algorithm. By using a precise position-

feedback mechanism, such as that proposed by (Xia et al., 2017), a UAV may do even the most 
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daring maneuvers, such as multi-flips. 

The device which was used to experimented in this chapter consists of raspberry pi camera at high 

frame rates (30 fps) to detect even the tiniest motions of the drone. The wireless powered drone 

with cameras seen in (Hoseini et al., 2021) are conceivable in a properly calibrated setting. Using 

this pi motion capture technology with Nvidia Jetson AI powered controller and flight control 

electronics, this research achieves the exact outer-loop or position control it sets out to achieve. 

Using a wireless charging station, this study presents an inexpensive way for drones to extend their 

flight life for long-term missions without the need for human interaction. Also, if a UAV's battery 

is low, it will be automatically sent to a charging station presented in chapter 4 which made of 

novel techniques called rotational dynamic wireless power transfer. As a result, a UAV will be 

able to begin landing on the station for recharging as soon as it notices that its battery is becoming 

low. Recharging has been completed, and the drone is ready to begin its mission.  

 

 

Figure 5.1 Custom Made Quadcopter 

 

UAVs, like traditional helicopters, may hover, but they also offer significant benefits, such as 

piloting ease and mechanical simplicity, which make them a viable alternative to helicopters. 
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UAV’s' flight time is severely constrained by the high current demands of their motors, making 

them unsuitable for extended use. Even with a completely charged battery, the UAV can only fly 

for a few minutes in a controlled setting. It will take longer to fly if it has additional weight, such 

as a camera or a measuring gadget. Thus, it is evident that the battery of the UAV must be 

recharged. This chapter’s proposed method was developed using custom made quadcopter shown 

in figure 5.1.   

As it is, a direct human interaction is required for this charging operation; hence, an automatic 

technique is needed to land and recharge a UAV without the continual requirement for human 

participation. An effort to build a battery exchange station for tiny coaxial helicopters (Gómez & 

Green, 2017) has also been underway by the researchers. There are a few other ground robots with 

comparable self-recharging capabilities, but UAVs have yet to be effectively deployed in a 

mainstream application. Contact-based charging stations are both more expensive to produce and 

more difficult to design due to their complicated mechanical implementation. 

 

Figure 5.2 Comparison between traditional approach right Static and proposed method left 
Dynamic Wireless Power transfer for UAV concept 

An efficient and high-power transmission of up to 2 meters may be achieved using the strongly 

coupled magnetic resonant induction (WPT) which the radiation would be dangerous to the person 
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who stay near to the field. Due to the low interference and disruption caused by magnetic resonant 

induction based WPT, UAVs can take use of this technology (Jia & Yan, 2020) for its advantage. 

UAVs have also been used to power sensor networks wirelessly using the WPT principle (Le et 

al., 2020b). All these papers demonstrate the usefulness of WPT in a variety of (mostly low power) 

contexts. These research' findings about the effectiveness of WPT technology in extending UAV 

flight periods have led to the current proposal to use relatively high-power WPT technology to 

achieve this goal. It is the originality of the proposed research that WPT integration in UAVs 

would enable the capability of autonomous recharge and extended flight periods without human 

involvement. 

Even though this is a complex and time-consuming process, this study proposes a low-cost and 

easy to install solution for any commercially available UAV, as well as a ground station enabling 

WPT and UAV. Figure 5.2 shows that the comparison between traditional approach right Static 

and proposed method left Dynamic Wireless Power transfer for UAV concept which was proposed 

in this chapter. 
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Figure 5.3 UAV’s WPT Block diagram 

5.2 System Model 

There are three different shielding models, and their corresponding evaluations are explored in this 

section for the DWPT of the UAV. When utilizing a constant operating frequency for the series–

series (SS) compensation topology, a FEM software solver is utilized to examine the impacts of 

shielding strategies on the WPT system power transfer efficiency (based on the coupling 

coefficient) and system inductances of the UAV. The ferrite shielding is shielded using the lumped 

circuit model from Reference (Mohamed et al., 2017), while the resonant reactive current shield 

is shielded using the circuit model described in this section. The internal resistance of the power 

supply and the resistance of the load are set to 150 W and 200 W, respectively, as the default 

values. 

Ferromagnetic material might complicate the analysis because of the nonlinear behavior, which is 

caused by both hysteresis and eddy current losses in Tx and/or Rx coils. The magnetic dipole 

moment Pm of a material change because of an applied magnetic field H. Because of this, the 
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macroscopic magnetic dipole density or simply, a magnetization M shown below. 

Equation 5.1 

𝑀𝑀 = 𝜒𝜒𝑚𝑚𝐻𝐻 
 
The magnetic susceptibility is a constant that measures the amount of magnetization a 

material has in reaction to an external field. Relative permeability is defined as the ratio 

of material permeability to free space permeability, and the relationship between B, H and 

M may be summarized as follows: 

Equation 5.2 

𝐵𝐵 = 𝜇𝜇∘(𝐻𝐻 + 𝑀𝑀) = 𝜇𝜇∘(𝐻𝐻 + 𝜒𝜒𝑚𝑚𝐻𝐻) = 𝜇𝜇∘𝐻𝐻(1 + 𝜒𝜒𝑚𝑚)
= 𝜇𝜇∘𝜇𝜇𝑟𝑟𝐻𝐻 = 𝜇𝜇𝜇𝜇  

 
As a result, the magnetic flux density comprises both the external field mH and the material 

reaction m–M. It is therefore possible to use the WPT model outlined in the presence of 

ferromagnetic material. The FEM software solver is utilized to implement the effects of 

ferromagnetic materials on WPT system design in the analysis. Two iron cores are added to the 

same circular coils to make them more powerful. 

 

Figure 5.4 Coil comparisons for current, self-inductance and coupling coefficient 

When ferrite cores are added to the Tx and Rx coils of the SS design with a 22 W load resistance, 

the efficiency of power transmission is shown in Figure 5.4 for different frequencies solely for the 
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two coils. The resonant frequency is altered because the compensating capacitors are the same as 

in the version without cores. According to this diagram, the WPT system is vulnerable to 

ferromagnetic materials. Therefore, the system must automatically alter the capacitors or the 

operating frequency to compensate for this.  

 

Figure 5.5 Coil comparisons for self-inductance and mutual inductance 

The system's efficiency increases from 59 to 81 percent with the addition of ferrite cores. Increased 

system performance and resonance may be achieved by changing the compensating capacitors 

following the addition of ferrite cores as indicated in Figure 5.5. The magnetic coupling will 

improve because of the reduction in leaky magnetic flux. As the XY measurement plane 40cm 

positioned 8 cm above the secondary coil can provide more information than the shielding efficacy 

alone when comparing the magnetic field strength (A/m) of the coil’s alone vs the shielded coils. 

Because the magnetic plates channel the magnetic flux along and inside the plates, it is obvious 

that the magnetic shield has strong shield efficiency. The magnetic shield is a very effective shield. 

Table 5.1 Coil Comparison 
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Two coils with ferrite cores with their self and mutual inductances, as well as additional simulation 

data. Ferrite cores can increase the self- and mutual inductance, which will lead to a rise in coupling 

coefficient. For the same amount of power transmission, adding a magnetic core can reduce the 

current stress on the primary coils. 

The excited coil B1(T) produces the following magnetic flux density. Eddy current (mirror loop) 

B2(T) generates a magnetic flux density. The overall density of magnetic flux is Coil and shielding 

plate eddy current mutual inductance is represented by M. The eddy current circuit's self-

inductance and total resistance are denoted by the notation La, Ra. There, r is the wire diameter. If 

the eddy current's breadth and d is its skin depth, and these values are provided as follows: 

Equation 5.3 

𝐵𝐵1 =
𝜇𝜇∘𝑎𝑎2

2(𝑎𝑎2 + 𝑧𝑧2)
3
2
𝐼𝐼1. 

𝐵𝐵2 = −
𝜇𝜇∘𝑎𝑎2

2(𝑎𝑎2 + (𝑧𝑧 − 𝑑𝑑)2)
3
2

𝑗𝑗𝑗𝑗𝑗𝑗
𝑅𝑅𝑎𝑎 + 𝑗𝑗𝑗𝑗𝐿𝐿𝑎𝑎
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5.3 Simulations 

Simulink's simulation output waveform is depicted in Figure 36 based on the coil parameters 

computed in 1st model. Rather than using resonant coils and their mutual inductance, we utilize a 

transformer to replace them. We employ AC power to create the high-frequency AC power needed 
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by the system. The series inductance and capacitor architecture are used in both the double 

transmitting and single receiving circuits. The output voltage waveform is shown in other figures 

37 as Uout. Uin is the active coil's input voltage. Iin is the active coil's input current waveform. 

The output current waveform is denoted by Iout. The system's output active power is represented 

by output power, while the system's input active power is represented by input power1 and input 

power2. The system's transmission efficiency, which is 89%, may be determined using the 

simulated voltage and current. The output power inaccuracy is less than 8% when the simulation 

results are compared to the theoretical values. 

A variable power output may be accomplished by varying the input voltage. The theoretically 

derived theoretical output power is quite close to the simulated output power. There will be less 

inductance between the receiving and transmitting coils due to radial misalignment, which in turn 

reduces power. For example, when both active coils are powered by 480 V peak input voltage, the 

output power is reduced by radial misalignment. 

Table 5.2 Outcome of the verifications 
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Figure 5.6 Outcome of the verifications 

Finally, the simulation between the output power and the input voltage of the second active coil 

proves the validity of the control strategy when the radial misalignment is constant with the input 

voltage of one active coil. Table 5.2 and Figure 5.6 depicts the outcome of the verification. 

Currently, the system has a radial misalignment of 6 cm and a voltage input of 480 V to an active 

coil. Increases in active coil voltage led to an increase in system output power. 

5.4 UAV Experimentations 

The UAV’s flight controller design effort, time, and expense may be considerably reduced by 

utilizing a commercial inner-loop control system. RDWPT-POLICY experiment prototypes have 

been built to test the design process proposed in this chapter. In the prototype, there are four 

RDWPT-POLICY channels with four Tx coils, four Rx coils, four inverters, and one rectifier. The 

established motor powered dynamic WPT coils are attached to the UAV's landing gear. The 

transmitter pad size is 17 cm x 17 cm, which includes the charging zone in the middle (8 cm x 8 

cm) and the edge sliding region.  
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Table 5.3 The measured values for the established coils and compensations 

 
 

 

Figure 5.7 The measured values for the established coils and compensations 

The source's dc voltage is 12 V. 220 kHz is the system's operational frequency, which is within 

the power matters alliance standard's acceptable frequency range. The airgap is 8 millimeters wide. 

Table 5.3 and Figure 5.7 shows the measured values for the established coils and compensations.  
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Figure 5.8 The measured values for compensations 

 
Details of the main converters, such as full-bridge inverters, LPFs, phase comparators, sampling 

circuits, sensors, etc. are depicted in Fig 5.8. A phase comparator circuit is used to obtain the phase 

difference between voltage and current, which minimizes the cost of the processor and simplifies 

control. The controller uses a high-speed analog-to-digital converter to transform the phase and 

current signals. After that, using the estimated voltage and sampled current amplitudes, the desired 

gain may be readily attained. Primary and auxiliary controllers are configured with output current 

estimate controls. Onboard Rx switches SN are activated upon startup and during malfunctions. 

Cables and printed circuit boards intended to protect against electromagnetic interference (EMI) 

are used for signal transmission. The primary converters can also be shielded from electromagnetic 

interference (EMI) by adding exterior shielding metal shells. 

The electronics prototyping UAV’s platform Nvidia Jetson Nano serves as the foundation for this 

project. To avoid interfering with the onboard device's inner-loop control mechanism, this 
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interface provides the ability to manage the location and navigation. The ground station sends 

orders to the APM through the alternative micro-controller, which interprets them for the APM 

controlled by the Windows 10 laptop. 200 Watts WPT module with Jetson Nano embedded 

computer is the alternative micro-controller offered in this research. It's a Raspberry Pi and Jetson 

nano-based variation.  

 

Figure 5.9 Jetson nano with camera 

The Artificial Intelligence (AI) integrated arm processor is used in Jetson Nano module. Jetson 

Nano 's usage of the AI arm processor as its only micro-controller makes it more affordable and 

easier to use than previous Raspberry Pi controllers. The Jetson Nano socket and three sensor 

extension pins on the 200 Watts WPT module are equipped with this APM flight controller. One 

of the most often used AI prototyping devices is the Jetson Nano in figure 5.9. 

With the socket, RDWPT-POLICY device may be directly connected to Wi-Fi and Bluetooth 

modules, as well as RF modules, such as the Jetson Nano. The 200 Watts WPT module board has 

a Jetson Nano connector. The APM is responsible for UAV inner-loop control. Different signals 

can be recognized by varying the pulse width modulation (PWM) pulses of the drone motor shown 
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in figure-42. In this example, the RC remote control sends a normal RC signal to the APM input. 

Using the wireless Jetson Nano link, the alternative controller installed on the UAV now generates 

this RC control signal, which the APM uses for self-flying flight operations.  

 

Figure 5.10 Drone PWM signals 

The UAV is activated after receiving input from an alternate controller. Since the APM's extremely 

dependable inner-loop control cannot be disrupted in this scenario (Fig. 5.10), the construction of 

the UAV's flight controller may be streamlined, which saves money and time. A drone with four 

motors with a payload capacity of one kilogram was developed in the current study of this chapter.  

PI CAMERA's motion capture technology, as previously indicated, provides exact input on the 

location of a defined item (in this case, the hex copter) in a predetermined environment, all of 

which is captured by PI CAMERA cameras. The ground station can see the object's X, Y, Z, roll, 

pitch, and yaw position and angular data (PC). Once MATLAB/Simulink has been installed on the 

ground station, it manipulates the positional and angular data to generate a sequence of outer-loop 

inputs. 
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Figure 5.11 Experiment Setup of UAV 

DC power manipulation is the primary focus of WPT. DC power must be converted into magnetic 

induction at a certain frequency. A resonator, inductor coupling, and rectification are involved in 

this process. Because of the magnetic field, secondary wires generate current when they are put in 

the field that a magnetic field may be used to drive a load. 

Using non-resonant induction coupling over long distances is exceedingly inefficient since the 

main coil's resistive losses squander most of the power that would otherwise be delivered. 
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Resonant connection of the coils improves the overall efficiency of the device. Resonant coupling 

and power transmission are accomplished with the help of an AC source.Power may be transferred 

between the coils across an area many times larger than the diameter of the coils at a tolerable 

efficiency. Input power should be converted as efficiently as possible while minimising conversion 

losses in this inverter. Setting up the experiment and running the simulation. 

 

5.5 Development of a UAV testbench 

Four propellers were used in the experimental configuration of the suggested method above. Pi 

Camera motion capture is being used in this study with the drone equipped with reflective markers 

on the transmitter pad.  

 

Figure 5.12 Transmitter and Receiver with 200 watts wireless power transfer Circuit Board 

Using infrared cameras, the PI CAMERA motion capture system can identify moving objects in 

real time with a high frame and sampling rate. Drone’s reflective markings are used to create an 

object that can be tracked with PI CAMERA. The three-dimensional (3D) environment created by 

cameras for the purpose of tracking a moving RDWPT-POLICY device. Using a Simulink block 

diagram, location data from the PI CAMERA environment may be received. The drone control 

algorithm uses these data to process and maintain the location and navigation of the UAV. 
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The inductors are connected by tuning them to a certain resonance frequency. To provide a usable 

DC power supply, the coupled magnetic resonant phenomena induce an AC voltage at the receiver 

end, which is rectified and filtered before being used. The ZVS inverter is seen in Figs. 5.12. To 

ensure that the circuit design described above could be implemented, simulation was performed 

prior to implementation. The results of the simulation demonstrate that a certain resonant 

frequency may be achieved in the conversion of DC power to AC power using the ZVS inverter. 

When the simulation was verified, the relevant circuit was built.  

The size of the UAV dictates the form, size, and number of turns on the coil that will be utilized 

for inductive coupling. With the usual tiny UAV in mind, the coil's total size was selected between 

12 and 20 cm. High-frequency Structural Simulator (HFSS) was used to simulate the construction 

of the transmitter and receiving coils. This program was also used to simulate the efficiency of the 

power transfer. Between the coils, the distance was designed to be ZVS inverter simulation 

scheme.  

The geometry and spacing between the transmitter and receiver coils. One of the most efficient 

WPT configurations as a rectangular coil with a hole in the center. The resonant frequency of about 

220kHz is achieved with this shape. To increase WPT efficiency, a higher resonance frequency 

might be employed. Further (manual and discrete) optimization was performed about the number 

of turns 3-8 and the size of the coil 12-20 cm. Eight coil turns with a 22-centimeter coil size had 

the highest efficiency (6.15 dB) among the combinations evaluated.  

 

 

5.6 Autonomous charging and long-term mission control 

Upon Autonomous UAV started the process of landing, the drone generates a signal to begin 

charging and a current sensor monitors the charging status. To determine when the charging has 
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been completed, the current sensor reads zero. The drone is armed and ready to fly after the 

charging process is completed.  

The drone's real-time reaction to a Vertical-axis instruction. The drone retains its set Vertical 

position quite precisely, with a median value of Receiver coils are shown in 0.6 mm. The measured 

values are up to 0.17 m off from the mean. The drone's response to a Horizontal axis instruction 

while it is being provided in real time. Up to 0.193 m of deviation from the mean was found in the 

measured values. The drone can be seen in the figure staying within 0.4 m by 0.5 m of the required 

spot (0, 0). As a result of the suggested remedy, the computational cost is minimal, and the 

performance is enough for use in self-charging wireless devices.  

 

5.7 Analysis of wireless energy transfer 

In this section, the WPT and analysis findings are presented in terms of efficiency. There was a 

12.2 V (volts) input voltage and a 14 V output voltage regulation. It took 38 minutes to recharge 

the drone's battery from an 8% starting charge. To compute both the input and output energy 

utilized throughout the process. The charging procedure uses a total of 0.98 kJ of input energy and 

produces an output energy consumption of 0.610 kJ. Wireless energy transmission efficiency thus 

comes to 62%. 

Accordingly, the greater distance one must cover, the less efficient one will be when the inter-coil 

distance exceeds a particular threshold, the WPT efficiency is zero. In addition to the draw load, 

input power limits the distance at which this threshold may be crossed, causing this distance to 

vary. The efficiency of WPT as a function of distance as it moves horizontally. Again, if the applied 

load is lower or the available input power is greater, the threshold distance might be increased at 

the expense of efficiency. Furthermore, it has been discovered that the WPT's efficiency increases 

with increasing distance. 
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The RDWPT-POLICY efficiency reported in this study is realistic and attainable for the intended 

uses. According to previous studies, the suggested solution has a maximum efficiency of 71% and 

lowest efficiency of 31%, which is significantly better than the 41% and 58% stated in the previous 

studies. Note: In addition, the suggested RDWPT-POLICY solution's maximum efficiency may 

be raised even further by raising the resonant frequency and using an impedance matching 

approach (Nguyen et al., 2020a). RDWPT-POLICY findings provided here are thought to be 

sufficient evidence that the proposed approach is successful. The evident novelty of this research 

is in its application to actual unmanned aerial vehicles (UAVs). The drone might fly for 

considerably longer than an hour thanks to this self-charging. 

5.8 Results 

An electric UAV with VTOL capability utilizes a RDWPT-POLICY technology developed in this 

chapter. For the sake of reducing weight and size, all the on-board components have been 

developed using lightweight and compact materials in mind. In the design process, a two-turn 

secondary coil was designed and mounted on a drone landing gear. The RDWPT-POLICY system 

is more efficient when the primary and secondary coils have a tiny air gap between them. The 

ground station of a RDWPT-POLICY charging system may also be improved using a process to 

create an array of separate main coils. This method helps to minimize the problems that may arise 

from a drone landing that isn't flawless, such as coil misalignment.  

The suggested RDWPT-POLICY application's validity has been demonstrated mathematically and 

experimentally in terms of electrical performances. It is possible to obtain strong electrical 

performance and excellent tolerance to coil misalignment by using the recommended technique. 

This is critical for the drone's battery to be automatically recharged.  
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Table 5.4 Electrical Performance 

 

 

Figure 5.13 Electrical Performance Comparisons 

The electrical performance shown in table 5.4 and figure 5.13 depicts the relationship 

between series 1,2 and 3 of the variation of the RDWPT-POLICY transceivers. 

 

5.9  Conclusion and chapter summary 

Small customized electric powered UAVs was tested on a bench proposed in this study, which can 

be used for a variety of UAV and ground vehicles research applications. This type of interface 

frequently necessitates a significant investment of time and money. The drone's addition of 

rotational dynamic wireless charging paves the way for long-duration missions free of human 

interference. The battery capacity of today's UAVs severely restricts their flight duration. Using 

wireless charging, the drone can recharge itself when its battery is low, allowing it to continue its 

task without interruption. This enables missions requiring extensive flight periods to be completed 

without the need for human interaction. Many drones with the capacity to wirelessly charge may 
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be examined, and missions can be organized such that the multiple copters fly in synchronization, 

resulting in a shortened flight duration. Rotational Dynamic Wireless charging, on the other hand, 

is more efficient if the design of its linked components can be improved. Resonant frequency and 

coil characteristics are the focus of this design. Reduced conversion losses, because of improved 

inverter design, will boost overall efficiency. Increasing the resonance frequency of the inductive 

connection can also enhance the wireless power transmission distance. Increase the resonance 

frequency of the system to improve its performance. Increasing productivity is one way to allow 

for a reduction in charging time by raising the charge rate. Next chapter, deep learning-based 

reinforcement learning Kalman Filter with RL-POLICY method will be explored to improve the 

flight autonomy.  
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6 Deep Kalman Filter and Dynamic Wireless Power Transfer for UAVs 

▪ Chapter 6 introduces the method of Deep Kalman Filter and Dynamic Wireless Power 

transfer approach for UAVs charging based reinforcement learning techniques.  

 

6.1 Abstract 

Unmanned Aerial Vehicle (UAV) needs to continuously estimate its position for carrying out a 

safe and successful autonomous indoor flight operation. The estimation of UAV’s Attitude 

obtained through using Global Positioning Unit (GPS) may often be unreliable due to the 

possibility of surrounding high-rise buildings blocking the satellite signals transmitted from earth 

orbits. This chapter establishes that a more reliable estimation of the UAV’s attitude can be 

achieved through using the UAV’s on-board sensors, such as the Inertial Measurement Unit (IMU) 

sensor and the obstacle avoiding sensors. The approach developed by the author that localizes the 

UAV position through fusing the UAV’s on-board (IMU) sensor and the obstacle avoiding sensors 

to eliminate sensor noise to obtain better estimate of the UAV’s attitude from the raw data unstable 

outputs. The methodology involves use of deep Kalman filter with sensor fusion algorithm and 

sensor noise cancellation algorithm. Deep Kalman filter is an improved version of Kalman filter 

and Extended Kalman filter which uses deep learning techniques for faster prediction. The results 

achieved from testing on various indoor flight trajectories proved the approach presented in this 

paper is better in localization and the estimation of the attitude of UAV than the approaches that 

use GPS.  

Keywords:  Attitude estimation, Kalman Filter, UAV Localization, Indoor Localization, Sensor 

Fusion 
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6.2 INTRODUCTION 

 
Unmanned Aerial Vehicle has found widespread use in practically every part of life today; with 

many applications increasingly requiring its autonomous flight operation. Henceforth, it is 

important to be enabling UAV to fly and hover stably in air and to continuously estimate its 

attitude. UAVs which normally has more than two rotor propellers, has the benefits of taking off 

and landing vertically with high portability with basic structure and simple support. In such cases, 

to enhance the vehicle's security and irreconcilability, to make it fly independently or be guided 

physically, is exceptionally valuable. Attitude estimation is a critical piece of the control 

framework in UAVs and the accuracy of the attitude estimation impacts control execution 

altogether (W. Li & Wang, 2013). Application of Deep Kalman filter for estimation of UAV 

attitude using IMU sensors has been proven as an effective approach. 
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Figure 6.1 Architecture of Inertial Navigation System of an UAV 

Unmanned Aerial Vehicle’s indoor flight attitude estimation is a technique wherein the position 

and direction of the versatile robot is resolved regarding the indoor condition and is a significant 

piece of any autonomous self-ruling portable robot. Self-governing robot frameworks are generally 

being utilized during catastrophe reaction ventures as assistive UAV robots and so on. To help the 

compelling working of robots in such situations there is a requirement for precise and productive 

estimation of the attitude of indoor flight UAV and the mapping of its trajectories. One of the 

central difficulties in indoor flight situations is when the GPS signals are out of range. In this 

chapter our essential objective is to eliminate the need for UAV to rely on GPS signals for 
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estimation of its attitude.  

Equation 6.1 General Navigation Equation 
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Attitude estimation is essential for any types of unmanned aerial vehicles (Jing et al., 2017). On 

the other hand, it is complicated to estimate aerial vehicle’s position due to issues related with the 

minimal effort locally available sensors. These minimal effort sensors are yet favored in UAVs 

because of their reduced size, little weight, and low power utilization.  
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Equation 6.2 Nonlinear model using Euler angles 

The main approaches for attitude estimation are for efficient flying experience by combining the 

estimations of various small sensors, are right now used to make up for the sensors' course 

precision.  
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Equation 6.3 

Distinctive methodologies have been used for estimation of UAV’s attitude. However, when the 

UAV’s flight time increases, the precise estimation of the UAV attitude may be difficult due to 

the influence of heavy wind or other natural conditions in the air. This may result in an erroneous 

attitude estimation. Additionally, the vibration of the UAV rotors also influences the estimation of 

the accelerometers. These challenges prompt the need for a more reliable and robust methodology 

for estimation of the UAV’s attitude. 
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Figure 6.2 Deep Kalman filter-based UAV flight control 

The main issue in relying on using any algorithm for control of small UAV, however, is the 

restricted precision of the raw sensors data (A. Gupta & Fernando, 2022). Furthermore, these 

vehicles require a greatly improved precision in the navigational estimations, only because of their 

little sizes. The most regular case of this issue is GPS (Global Positioning system) that is generally 

connected to UAVs. The precision of accessible little GPS beneficiaries is insufficient for such 

vehicles, whose range is limited underground areas. Consequently, the coordination of GPS with 

IMU through the Kalman channel is very anticipated. Along these lines, numerous scientists have 

attempted to build up a proper Kalman filter to address this issue (Hide et al., 2003). However, the 

nearness of deficiencies of sensors or actuators, which destabilizes the vehicle elements and what 

for all intents and purposes makes it hard to control. Along these lines, a deep Kalman filter ought 

to be produced separately to the issue. 

IMU commercial devices reported in (S. Han et al., 2020) utilize controlled situations, for example, 

turntable, to gauge and eliminate precise errors. The sensor adjustment methods related with 

controlled condition are expensive and it can't eliminate for all environments. The methodical and 

irregular calibration of IMU can be assessed if the connection between these mistakes and the 
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perceptions are known. At the point when IMU calibrated, they are expelled from IMU perceptions 

and IMU situating turns out to be progressively precise. Shockingly, the previous models of IMU 

errors are not exact and they depend on some measurable suppositions that may not hold. For 

example, the traditional Kalman filters, have a few impediments that may present some issues in 

eliminating IMU errors. For example, the regular Kalman filter is direct and can't deal with non-

linear model. As of now, researchers recommend displaying IMU's errors independently. In this 

chapter, we acquaint the deep learning based Kalman filter with at the same time experimented 

with IMU sensors errors. As opposed to recently proposed methodologies, our methodology uses 

learn from its mistake method. As opposed to recently proposed approaches, we can precisely 

show non-straight, time-variation, exceedingly related IMU mistake sources. 

6.3 Contributions 

The following is a summary of the chapter's key contributions: 

1. The proposed reward function is based on a sensor error in location estimation. Using this 

method, the gradient computation is simplified. 

2. Experiment the proposed method using a wide range of real-world data. Under a wide range of 

conditions, the experimental findings show that the suggested UAV WPT system achieve great 

performance in terms of location, velocity, and course angle. 

The proposed method also provides several existing adaptive navigation algorithms in the 

discussion of this topic. Our experimental assessment and comparison with other traditional 

Kalman filter approaches. 
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Table 6.1 Deep Kalman Filter 

 
6.4 SYSTEM OVERVIEW 

Before discussions of the methodology of this chapter, UAV robot parts are initially presented 

with its framework, and its sensors. The UAV’s type is a quadcopter and independent light weight 

robot. And its using Raspberry Pi, Navio 2 flight control unit and ultrasonic sensor. To estimate 

the position of the UAV, IMU sensors are installed in the center of the UAV for best estimation. 

It must be noticed this is a motor driven drone and motors speed is controlled by Electronic Speed 

Control unit (ESC). The IMU sensors furthermore give us an estimate of the UAV’s direction. 

Ultrasonic and IR sensors are inserted on either feature in front of the UAV. Each sensor returns 

the separation between the obstruction and robot. This record serves to offer us with an additional 

control in indoor flight operation.  

Among navigation options, odometry and inertial navigation are cheap and don't need any 

infrastructure. IMU sensors' error characteristics are complex. They vary to a different varieties 

maker’s technology, and sensor. The less noise IMU (Y. Liu et al., 2022), however it is pricey and 

not appropriate such as mapping. The procedures connected with surroundings are pricey and 

errors cannot be completely removed by it. In the association between also the observations and 
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these mistakes are understood IMU's random and systematic errors could be estimated. These 

mistakes are approximated using this procedure and IMU error versions is named IMU calibration 

when GNSS positioning can be obtained. They're eliminated from IMU observations when IMU 

mistakes are estimated and IMU positioning becomes even more precise.  

Additionally, Bayes filters, like particle filters and the Kalman, have some constraints which could 

introduce error. As an example, the Kalman filter can't handle error resources that are non-linear 

and is linear. Compared to previously proposed strategies, the proposed strategy doesn't have any 

IMU error version that is pre-defined, and it are heard from observations. The system doesn’t have 

to presume some deterministic or stochastic behavior of IMU mistakes. Compared to previously 

proposed strategies, it could be simulated, time variant IMU error resources that are non-linear. 

Then, it will be united with the detectors using Sensor fusion algorithms to use the position of 

UAV. 

6.5 Sensor Fusion Filters 

6.5.1 Kalman Filter 

Using Kalman filter for object detections, sensor fusion, and attitude estimation in unmanned aerial 

vehicle. The filter can also make prediction with past performance of the inputs. There are two 

types of tracking method which are continuous estimation and discrete estimation. Discrete 

estimation is multi-model and continuous estimation is uni-model and the comparison is shown in 

figure 6.3. Kalman filter estimate the state using continuous estimation method.   
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Figure 6.3 Uni-model and multi-model comparison 

There are two parameters of Gaussian characteristics such as Mean ( ) and Variance ( ) which 

represents height and width. The one dimensional for Gaussian Kalman filter in figure 6.4 is 

defined by below equation. 

Equation 6.4 

𝑓𝑓(𝑥𝑥) =
𝑒𝑒−(𝑥𝑥−𝜇𝜇)2/2𝜎𝜎2

√2𝜋𝜋𝜎𝜎2
 

 

 

Figure 6.4 One dimensional Gaussian Kalman Filter 

In figure 6.5, variable Gaussian transformed into predicted Gaussian which is closer to 

measurement position and peak is a little above measurement position Gaussian to get real time 

data.  
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Figure 6.5 Predicted Gaussian 

To find the predicted value, we can use below equation to find new mean and new variance 

Equation 6.5 

𝜇𝜇3 =
𝜎𝜎22𝜇𝜇1 + 𝜎𝜎12𝜇𝜇2
𝜎𝜎22 + 𝜎𝜎12

,𝜎𝜎32 =
1

1
𝜎𝜎22

+ 1
𝜎𝜎12

 

Where,  

 = original variable mean 

 = Measurement position mean 

 = Predicted mean 

 = original variable width 

 = Measurement position width 

 = Predicted width 

 

6.5.2 Deep Kalman Filter 

Our goal is to predict and update sensors for indoor UAV flight estimation using Deep 



123 

Reinforcement Learning based Kalman Filter. The use of Deep Kalman Filter (DPF) shows 

significant increase in the process of sensor fusion method by eliminating most of sensor noises. 

For nonlinear indoor UAV flight operation, the system needs to estimate its position by fusing 

IMU sensors and ultrasonic sensors were GPS signal weak or unavailable. In tradition Kalman 

filter system, UAV’s inertial measurement unit noises influence on other different environment 

conditions such as extreme hot or cold, but these conditions cannot be detected automatically. For 

the type of estimations presented in this chapter, the latent state vectors of measured raw sensor 

data from IMU and Ultrasonic depends on each other state vectors to estimate UAV’s positions. 

So, these vectors work in opposite way with a stochastic process (future states influence upon 

present states) which was used with other tradition Kalman filters methods. The first modelling 

process of this chapter presents that the state estimation of indoor UAV’s estimation by sensor 

fusion algorithms and the second process be training and testing of this tuned sensor data in deep 

learning frameworks for better estimation without using GPS sensor data. The difference between 

machine learning and deep learning is that the machine learning used for linear operation where 

input data is known when modeling the networks, but deep learning completely based on nonlinear 

operations. Our approach simplifies the Kalman filter approach with better estimation over time 

with deep learning frameworks.  

6.6 Materials and Methods 

The proposed system included Dynamic Self-Learning Kalman Filter (DSLKF) for UAV 

navigation using reinforcement learning techniques shown in figure 6.6 below. The system 

estimates the sensor Noise Covariance Matrix (NCM) based on self-adaptation method.   
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Figure 6.6 Dynamic Self-Learning Kalman Filter (DSLKF) for UAV navigation using 

reinforcement learning techniques 

The DSLKF method is based on the notion of adaptively changing the NCM to achieve high-

accuracy placement of the integrated wayfinding system. The inputs included gyroscope, 

magnetometer and an acceleration which is usually called Inertial Measurement Unit (IMU) are 

obtained at each sensor data update time by the procedure. In the DSLKF module, based on the 

starting state and the initial state covariance matrix (SCM), the prediction error state is calculated. 

To acquire the final error state estimate result, the DSLKF will perform a measurement update if 

GPS data are currently present. In this case, the current location approximation result is obtained 

after compensating from the inaccuracy of the sensor data. The initiations of the proposed 

algorithm, the NCM details are sent using tuned sensor data of the previous output of DSLKF.  

The proposed algorithm that regularly observing if the GPS positioning state is available which is 

necessary since the wayfinding results have high accuracy but require multiple details about UAV 

flying territory. This system can determine the wayfinding inaccuracy of the present Kalman-filter 
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system if NCM error is observed. Different variance in NCM leads to incorrect Kalman-filter 

values if the estimated error is higher than the threshold. It next gathers gyroscope, accelerometer, 

magnetometer, and GPS sensor data near the present instant, does self-learning of the NCM 

process, and ultimately returns the learnt data into the preceding sensor-fusion method for UAV. 

The system also updates online using dynamic self-learning Kalman filter, the goal is to reduce 

the location error of gathered data by learning the NCM process. The necessary components of 

reinforcement-learning consist of agent (UAV model), environment (flying environment), state 

(UAV’s position), action (flying from one state to another) and reward (each action gave better 

reward if fly properly otherwise bad rewards).  

The initial state is represented by the value R0. There are several qualities that make it possible to 

characterize the system as an MDP where operator actions affect the value of rewards. Finding 

good strategies for ramping-up observable states, from which we can also derive the learnt ideal 

state, is made possible by machine learning by capturing relationships between actions and 

reactions. 

6.6.1 Environment Definition 

As a projection and integral operation, inertial navigation may be described as such. Over time, its 

navigational errors mount up. Due of accuracy divergence, Inertial Navigation System (INS) must 

be used in conjunction with other navigation and positioning systems. It is possible to increase 

navigation accuracy and redundancy by utilizing the complimentary information offered by several 

sensors. The selection of a suitable optimum estimate technique necessitates the successful 

integration of data from many sensors. 

6.6.2 Forwarding INS mechanization 

The alignments of the location (r0), velocity (v0), and attitude (0) must be completed to initialize 
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the INS system. An orientation alignment is done using either stationary or in-motion approaches, 

and the first two may be derived straight from the GNSS measurement. The forward INS 

mechanization algorithm has been thoroughly examined (Chiang et al., 2013). Using time tk1, 

gyro meter, it is possible to determine the attitude, velocity, and location of the inertial 

measurement unit (IMU) at time tk using these inputs. 

6.6.3 Error Model based on Kalman Filter  

The link between the prediction and measurement, i.e., rRTK k, is described by an error model in 

our navigation system. At this point in the prediction process, the error state vector is specified 

as: 

Equation 6.6 

𝛿𝛿𝛿𝛿 = �𝛿𝛿𝑟𝑟𝑇𝑇     𝛿𝛿𝑣𝑣𝑇𝑇    𝜙𝜙𝑇𝑇    𝑏𝑏𝑔𝑔𝑇𝑇    𝑏𝑏𝑎𝑎𝑇𝑇    𝑠𝑠𝑔𝑔𝑇𝑇     𝑠𝑠𝑎𝑎𝑇𝑇�
𝑇𝑇
 

This may be stated as follows: where the error in location, velocity, and attitude is represented 

by: 

Equation 6.7 

𝛿𝛿𝛿𝛿 = [𝛿𝛿𝑟𝑟𝑁𝑁 𝛿𝛿𝑟𝑟𝐸𝐸 𝛿𝛿𝑟𝑟𝐷𝐷]
𝛿𝛿𝛿𝛿 = [𝛿𝛿𝑣𝑣𝑁𝑁 𝛿𝛿𝑣𝑣𝐸𝐸 𝛿𝛿𝑣𝑣𝐷𝐷]

𝜙𝜙 = [𝜙𝜙roll 𝜙𝜙pitch 𝜙𝜙course ]
 

6.6.4 Feedback Correction 

Navigating at low latitudes is straightforward because of the error compensation: 

Equation 6.8 

𝑟𝑟𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑟̂𝑟𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼 + 𝛿𝛿𝑟𝑟𝑘𝑘 
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6.7 State System 

For example, Wk is a 21x1-dimentional process noise vector and Q is its covariance vector. Using 

the manufacturer's calibration data, State system shows the meaning and beginning value of each 

noise component. 

6.7.1 Positive for NCM 

This criterion cannot be satisfied with the existing mechanism of state transition. We rewrite the 

computation procedure of Q to ensure that the new state always meets this requirement. 

The current Wk is used to define the state will be stated as follows when a new action is taken: 

Equation 6.9 

𝑄𝑄′ = 𝐸𝐸[𝑒𝑒𝑊𝑊𝑘𝑘+𝑎𝑎𝑘𝑘(𝑒𝑒𝑊𝑊𝑘𝑘+𝑎𝑎𝑘𝑘)𝑇𝑇] 

Agent System  

Instead of relying on a Q(s, a) table, we want an algorithm that can select the best course of 

action from a continuous space. 

6.7.2 Action generation with DDPG 

 

Figure 6.7 Agent generation with actor and critic 
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Equation 6.10 

(𝑠𝑠𝑖𝑖 ,𝛼𝛼𝑖𝑖 , 𝑠𝑠𝑖𝑖+1, 𝑟𝑟𝑖𝑖), 𝑖𝑖 = 1,2,3, … , 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

The DDPG performs a certain time step for each episode. When the ACTOR module selects ai at 

each time step. Next, the weight of the network is revised in preparation for the following round 

of computations.  

Low-dimensional observations have been used to demonstrate the method's ability to develop 

effective policies for a variety of activities. The upcoming section will examine the deep learning 

for actor and critics. 

6.8 Deep Learning for actor and critics 

Two completely interconnected networks are the actor assessment and target networks. The input 

layer has a size of 19 and the hidden layer has a dimension of 41, after which a ReLU activation 

function is used. Finally, we can get the desired response by activating the output layer neurons 

with a tanh activation function. A dimension of 31 is the input dimension. Hidden layers h1 and 

h2 are learned by state and action inputs, respectively, over time. An activation function called 

ReLU is then employed to extract the value of the buried layer.  

6.9 Results 

6.9.1 Evaluation Metrics and Compared Methods 

In this chapter, the application did an error computation in comparison with the integrated 

navigation results. The evaluation may be achieved at any moment, meeting the accuracy 

requirements of this method. 

Position error is calculated in two separate modules in the RL-AKF technique. The calculation 

here is the difference in latitude and longitude between two points. After calculating each Q 
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matrix's anticipated positioning error, the reward is the negative number of the positioning error.  

Position error calculation methods are unified in the references. For example, 8 seconds, 18 

seconds, and 58 seconds are all examples of time-based statistics. For distance-based statistics, 

such as 80 metres, 180 metres, and 280 metres could be used. 

The formula for calculating position error uses latitude and longitude as inputs, with the subscripts 

true and pred serving as placeholders for the actual value and expected value, respectively. 

Equation 6.11 

𝑒𝑒 = 2 × 𝑎𝑎 × asin 

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�

sin2 �
𝑙𝑙𝑎𝑎pred − 𝑙𝑙𝑎𝑎true 

2
� +

cos �𝑙𝑙𝑎𝑎pred � × cos (𝑙𝑙𝑎𝑎true ) × sin2 �
𝑙𝑙𝑎𝑎pred − 𝑙𝑙𝑎𝑎true 

2
�

 

Finally, the proposed system come up with the following testing strategy. 

1. Use the Kalman filter with the current NCM. 

2. The GNSS measurement update is skipped for 10 seconds between 80 and 90 seconds to 

mimic a lost GNSS signal.  

3. Step 3 must be repeated until the IMU or GNSS signal is limited. 

6.9.2 Data collection and Training 

We used sensor raw input data from the UAV as well as data from the open-source flying drone 

data to create training data.  

6.9.3 Experiment Setup 

Our suggested approach is described in depth in this part, which includes information on the 

context in which it will be used and how it will be put into practice. We use the TensorFlow module 

in Python3.5 to implement the whole procedure noise covariance matrix adaptive estimation. 
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Equation 6.12 contains the default Q matrix value for the current condition. There are two upper 

and lower bounds for current actions, which are created by the state through an action assessment 

network. In addition, the algorithm will tack on zero-mean, two-variance Gaussian noise to the 

projected outcome. Configuration of these parameters is done in the following manner: 

Equation 6.12 

𝑈𝑈𝑝𝑝 = [0, 10−7, 10−9, 10−13, 10−9, 10−10]
𝐿𝐿𝑝𝑝 = [0,−10−8,−10−10,−10−14,−10−10,−10−11]

𝜎𝜎2 = [5 × 10−8, 5 × 10−8, ,5 × 10−10, 5 × 10−14, 5 × 10−10, 5 × 10−11]
 

The testing platform is built on a Windows 11 64-bit Intel Core i7-11800H processor with 

computer. 4.6 GHz is the primary frequency of the CPU. GPU is GeForce RTX 3070 8 GB GDDR 

VRAM.  The memory is DDR4 and has a capacity of 16 GB. 

 

Figure 6.8 M39 Performance 

Author
Axes label?
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Figure 6.9 CPT performance 

This RL-AKF algorithm's final Q matrix value, with training time indicated in the last column. It 

takes roughly twice as long to train M39 compared to CPT equipment because of its high sampling 

frequency.  

Training time rose by 28.52 percent when the duration was raised to 280 seconds, however the 

placement error decreased by just 0.85 percent throughout this time span. SPAN-CPT yields a 

similar outcome in this case as well. 

Training sequence duration has a direct influence on memory needs for embedded platforms. 

IMU's data collecting frequency, for example, is 60 Hz when using SPAN-CPT equipment. There 

are three types of data in each collection: time, acceleration, and gyroscope.  

A 180-sequence-long Q matrix was used to train our current inertial sensor device's calibration 

model, which was then compared to the positioning accuracy and training time/storage 
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requirements.  

To evaluate the results, this chapter focused on different approaches which is estimation of Kalman 

filter and deep learning based on Kalman filtered sensor data. The UAV equipped with cloud 

internet to send data into the computer system where deep learning operations can only be done 

because of the usage of processing data for deep learning operation is extremely high.  The results 

concluded that the proposed system is the best optimized the system with improved accuracy of 

indoor UAV estimation without the need of GPS signals.  

6.9.4 Accuracy 

Latest UAV sensor data were collected using M39 to see if the training results will hold up over 

the course of time. This path is very level and has less turns than the data route on July 10, which 

is quite a contrast. The GNSS antenna is unplugged three times during the data gathering 

procedure, which is more consistent with the real-world positioning situation. 

 

Figure 6.10 RL-AKF has the best overall performance 
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There is still a sub-meter degree of positioning inaccuracy, according to testing data. Both the 

forward and rightward position faults appear to be flat. To see the positioning findings beneath 

one stretch of the route, go no further than the figures 6.10. The lack of a GNSS measurement 

update is used to mimic GNSS signal loss during the blue triangle periods.  

Our suggested RL-AKF has the best overall performance, as shown by the results of the 

experiments. To put it simply, the default process noise covariance matrix is as good or better than 

any of the NN-feedback algorithms tested.  Even though algorithm's estimated course error is 

slightly lower than the RL-AKF algorithm's, the latter still surpasses the former when it comes to 

estimating location and velocity. 

6.10 Discussions 

It's clear from the proposed research that the used algorithm's primary benefits include the three 

points listed below. A more precise location, velocity, and course estimation may be achieved by 

using the RL-AKF approach compared to other current methods. An adaptive covariance matrix 

for Kalman Filter (RL-AKF) may be generated using various data, making it appropriate in a 

variety of applications. 

When no additional measuring aids are present, pure inertial navigation has a 10-second 

inaccuracy of 0.475 m. To put it another way: if you use the average air speed of 22 kilometers per 

hour, as a benchmark, it can be determined that the overall location inaccuracy. The UAV 

displacement after 2800 m of flying cannot exceed 8 m, as measured by the odometer. The high-

accuracy and continuous location requirements in challenging environments like lengthy tunnels 

and dense forests can already be met through integrated navigation. 

Temperature affects the process noise covariance matrix. However, for a brief amount of time, the 
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temperature won't vary that much. The sensor's intrinsic performance will be reflected in the 

covariance matrix, thus there will be little change there either. On the ground in the real placement 

scene there is also an odometer, empirical measurements, and opportunistic measures like zero 

restrictions. 

Kalman filters can benefit from velocity detection. This algorithm's process NCM accurately 

anticipate the navigation state during inertial navigation phase. In the Kalman filter, the RL-AKF 

method may be used to increase or reduce the number of distinct measurements. 

However, the RL-AKF algorithm has certain drawbacks. Even though its robustness decreases the 

RL part's training frequency. In addition, the technique necessitates the storing of 180 s of IMU 

and GNSS data on the integrated navigation device, which increases the device's storage 

requirements. Our future effort will focus on optimizing and improving these two features. 

6.11 Conclusions and chapter summary 

It is possible to greatly increase the integrated navigation's positioning performance when the IMU 

signal is unavailable in this chapter. Experiment findings show that employing the NCM process 

using reinforcement learning computed from presented technique may provide reliable location 

prediction, regardless of time, IMU outage time periods, or navigation fusion approaches. 

Orientation quotes from obstacle avoidance methods are fused using the orientation quotes of the 

gyroscope. Our experiments have demonstrated that using gyroscopes as and if needed and using 

the data the place accuracy enhanced. It's seen that because surroundings have challenges, and 

UAV must navigate them around. Next chapter will be focus on the design of vision-based object 

detection using deep learning for reliable autonomous charging technique. 
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7 Design of vision-based object detection using Deep Learning for reliable autonomous 
charging of UAV 

▪ Chapter 7 presents vision-based object detection using deep learning for reliable 

autonomous charging of UAVs 

7.1 Abstract 

This chapter is concerned with the application of Deep Learning techniques for analyzing image 

data for operations such as search and rescue, 3-D mapping of Unmanned Aerial Vehicles (UAVs). 

For intelligent charging of UAVs in air, vision-based object tracking system is needed to find the 

transmitter using deep learning techniques and hover above it charge efficiently. Using deep vision 

method to localize the charging station whenever there is low percentage in the usage of battery 

while UAV in operation and automatically execute the process of powering it.  With the 

advancement in inexpensive hardware such as Jetson nano, Raspberry pi which connected with a 

camera, it is plausible to use pretrained deep learning techniques on board with UAV sensors and 

actuators. The proposed system uses Keras and its TensorFlow backend to model a deep 

Convolutional Neural Network (CNN) Learning technique and train the model with input image 

dataset of transmitter to predict the WPT device from the image data received from the ground 

level. This chapter also explains the stages involved in the implementation of LeNet method of 

Deep Learning techniques for developing a classifier for long distance recognition of wireless 

transceiver. It is shown in the present investigation that drone path planning controller are used 

with the connection with autonomous object detection methods. An experimental test was 

conducted on a custom-made quadcopter and identify the ground charging station to confirm the 

effectiveness of the designed system. Multiple tests were implemented under a variety of 

conditions. Using the suggested approach, the drone was able to locate the charging station and 
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charge safely.  

Keywords—Deep neural network; deep learning; convolutional neural network; MNIST; Lenet; 

image processing; unmanned aerial vehicle; Tensorflow; Keras 

7.2 Introduction 

The use of unmanned aerial vehicles (UAVs) for non-military purposes is on the rise (S. G. Gupta 

et al., 2013) like catastrophe recovery and security measures. A tremendous growth in the usage 

of unmanned aerial vehicles in search and rescue efforts has occurred during the last three years, 

particularly in the maritime and mountainous regions (Howard, n.d.), (Klemas, 2015), (H. Li et 

al., 2014), (Nonami et al., n.d.), and (Pereira et al., 2009). To maximize the odds of the victims' 

survival, the primary goal of a search and rescue (SAR) operation is to locate and rescue the 

intended victim as quickly as feasible (Szegedy et al., n.d.). For effective and quick identification, 

and, for long distance recognition of images, UAVs need to be equipped with intelligent devices 

and systems that can help them quickly recognize the images from long distances (Colomina & 

Molina, 2014). 
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Figure 7.1 Block diagram of the proposed system 

Many fields of engineering have investigated how to recognize objects and features in digital 

images, a process known as image recognition or object recognition, with many types of 

algorithms being developed to facilitate these processes, for example, images may be recognized 

by using image recognition algorithms When it comes to OCR (optical character recognition), 

matching, learning, or pattern recognition algorithms that depend on appearance or feature-based 

approaches are often used. 
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Figure 7.2 Drone thrust force under in-ground effect 

 

Figure 7.3 Drone thrust force under out of ground effect 

Current development in image recognition or processing involves object detection with trained 

data set. It is called machine learning (ML), It makes it possible for AI systems to gain knowledge 

from data. ML can now be part of image processing (Simonyan & Zisserman, 2014). The currently 

available Machine Learning algorithms can facilitate the three types of learning are super-vised, 

unsuper-vised, and reinforcement-based. Algorithms in supervised learning are given a dataset that 

includes a set of features. Each sample is also given a label or target value. The information is 
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contained in this feature-to-label mapping of goal values. Once the algorithm has trained, it should 

be able to identify the proper labels or target values for unseen samples based on their attributes. 

It is a subclass of machine learning techniques known as deep learning, which is used to generate 

complex notions out of smaller ones. 

 

Figure 7.4 Deep learning vs Machine learning 

Robotic challenges ranging from perception, planning, localization, and control may be solved 

using deep learning, which has lately shown impressive results (Schmidhuber, 2014). Image 

processing applications benefit greatly from its outstanding learning capabilities from complicated 

data obtained in actual scenarios. Fig. 7.4 compares the working of Deep Learning vs Machine 

Learning. 



140 

 

Figure 7.5 Block diagram of a deep Kalman filter based controller 

As shown in Fig. 7.5, the deep Kalman filter approaches worked in a way that required the first 

attempt at a feature extraction method, and it was hampered by a lack of precision and required a 

lot of complicated arithmetic (complex design). After that, you'll need to create a comprehensive 

classification model to categorize your input based on the characteristics you've retrieved.  

 

Figure 7.6 Performance comparing of two models. 

 

Feature extraction and classification may be done in one step using deep networks, reducing the 

number of models to be built. Fig. 7.6 compares the efficiency of Deep Learning vs ML. When 

the amount of training data increases in machine learning, the performance of ML decreases but 

the Deep learning get the maximum performance with huge amount of data with the same situation 
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7.2.1 Deep Convolutional Neural Networks (CNNs) and the Training (Learning) Process 

There are several deep learning technologies available in supervised learning; the most relevant 

algorithms nowadays in supervised learning are: 

Convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term 

memory (LSTM) models are prominent variations of feedforward neural networks. 

In supervised learning, feedforward neural networks, also known as multilayer perceptrons 

(MLPs), are the most often used models. A trained algorithm is anticipated to provide an output 

value or classification category consistent with the mapping between inputs and outputs supplied 

in the training set when given a sample vector containing features. Many hidden layers are 

triggered sequentially to provide the desired output in an estimated function. The phrase "deep 

learning" comes from the word "depth of the model," which refers to the number of hidden layers. 

This paper uses Keras and Tensorflow backend platform in python to design and train a designated 

deep Convolutional Neural Network architecture with the given sample image data set, and then 

applies the trained network to new image data taken by UAV camera for identification and 

recognition of the image. 

7.2.2 Modelling Deep Learning with TensorFlow 

TensorFlow software library help tackle implementation of machine learning and deep learning 

methods.  These libraries are very broad enough to implement many types of methods and 

algorithms which are included seeding, loading data, designing neural network architecture, 

compiling and training of the machine learning or deep learning model. The technique has been 

used in areas such as robotics, voice recognition devices, map extracting, object detection 

(Tompson et al., 2014), etc. (Cireşan et al., 2012).  

In addition, the Tensorflow backend called Keras (Deng, 2014) is also used for detecting hand 
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written digits or MNIST data. The Convolutional neural network (CNN) (Ren & Xu, 2015) is used 

to determine MNIST image into words by transforming multi-Dimensional images into characters.  

Open source Tensorflow made by Google team to model CNN with MNIST digits. The reason of 

using MNIST digits for modelling deep learning is because a person called Yann LeCunn already 

released hand written datasets in 1998 which then main source for data scientists and researchers 

for classifying objects in Deep Learning. Modelling and Simulating Deep Convolutional Neural 

Network using Tensorflow and Keras. A deep convolutional neural network is built in this paper 

using Keras with TensorFlow backend library tool for modelling and simulating of handwritten 

digits by training with MNIST dataset sample image data of handwritten images.   

 

 

Figure 7.7 Model system approach flow diagram 

The flow diagram for the proposed model system is shown in Fig. 7.7. The modelling process for 

testing and training include 7 stages described as fellows. 

Stage-1 

In the first stage, Neural network may not be predicted precisely because of instability of the 
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algorithms being trained with same dataset with unusual results. To overcome this complexity, 

random seeding to start the system with random weights applied on the neurons respectively.  This 

causes the system to automatically learn each time if the identical neural network train with 

identical result. 

Stage-2 

Importing Keras library to use all the necessary libraries from that framework to model and 

simulate the MNIST datasets. Given dataset can be loaded into the system to classify handwritten 

images already uploaded in the Keras. After that, a sequential model needed to perform and design 

neurons by stacking layers of that neurons using Dense layer which implement the operation of 

the neural network. The system can cause overfitting by using complicated neurons in the model. 

To avoid that, overfitting neural layer was used using with the Dropout layer which set a fraction 

rate of input to 0 at each update during training and flatten the input using Flatten layers. To create 

successful deep convolution neural network for 2-Dimensional images, Maxpooling2D layer was 

used to operate spatial data of each pixel of the image which presents same pixel detection to get 

accurate output. 

Stage-3 & 4 

In this stage, loading the hand-written images from the dataset stored. For testing and training the 

data, it included in the dataset are images with its respective labels. When training the input data, 

the total of digits is 60000 and only 10000 are being tested for training and testing the data. The 

value of each pixel is 255 pixels in processing the MNIST images. 

Stage-5 

Using Sequential model to initialize and stack all the neural layers. 

2-Demensional convolutional layer uses lenet-5 have 32 neurons which is the first convolutional 
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layers. The size of the pool size is 3 by 3 kernel size pixels. As with the Dense layer, a 

recommended neuron called Relu should be activated. MNIST digits input is (28 by 28) pixels 

with 1 depth black and white image. 

Second 2-D Convolutional layer, on the other hand uses 64 layers and remaining values are same 

as first layer. 

Third layer is 2-D MaxPooling, for every 4 pixels reduce them to one with 2 by 2 pool size. 

Dropout layers produce results from training apply well to the validation data, going to dropout 

0.25 of the neuron. 

We have to flatten everything, so we have more than one dimension at this point, dense fully 

connected layer is going to able recombine all these possible representations stored by 

convolutional neuron, represent 3 by 3 corner, feed that into dense layer with any kind of 

configuration. Multi dimension to one dimension by flattening. 

 

Figure 7.8 Convolutional neural network model summary 

Dense layer with 130 neurons and activation of RELU configured. This layer will be cut in half 

for us. Softmax activation on Dense layer of 12 neurons. It's common for users of machine learning 

models to be curious in the state of the model and how it evolves over time. A variety of summary 

operations may be added to the graph in the final output using TensorFlow and Keras. Figure 7.8 
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summarizes the model of a convolutional neural network. 

Stage-6 & 7 

In this stage included compiling and training on 10000 from 60000 sample MNIST images with 

validation. 

7.3 Results 

This model is testing with only 1 epoch and the validation accuracy is 98.36 % (see Fig. 7.9). 

 

Figure 7.9 Trained data results 

 

Figure 7.10 Accuracy Results 
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Figure 7.11 Loss values to the training data decreases 

 

Figure 7.12 Validated accuracy and loss after feedback from output 

The results from Fig. 7.12 verify that when predicting accuracy increases, the amount of loss data 
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on the trained data decreases over the result. The validation accuracy and loss get from feedback 

received from fully connected deep neural network enhance the system performance. 

The system's classification accuracy was tested using Relu Activation functions, which yielded a 

classification accuracy of 98.36 percent on the test data. 

7.4 Conclusion and chapter summary 

When it comes to retrieving information or high-quality photos from risky settings, unmanned 

aerial vehicles (UAVs), often known as drones, have emerged because of rapidly expanding 

technology. To help with picture recognition for Unmanned Aerial Vehicles (UAVs) in search and 

rescue (SAR) operations, we showed in this work a unique solution using deep learning technology 

(as part of Machine Learning –ML). The deep Convolutional Neural Network (NN) architecture 

was designed and trained using TensorFlow (an Open-Source software library) and Keras (a 

Python backend platform). Using a pre-trained NN and new picture data from an unmanned aerial 

vehicle camera, the researchers were able to demonstrate that the newly trained system is capable 

of accurately recognizing images. In the next chapter, multi agent deep reinforcement learning 

method was introduced to tackle the problem of controlling multiple UAV charging process.  
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8 Multi-Agent Deep Reinforcement Learning for UAVs Charging 

▪ Chapter 8 brings together with using Reinforcement Learning (RL) techniques to train and 

test multi agent self-learning system to automate collaborate flying and charging process.  

8.1 Abstract 

This chapter research findings emphasis has focused on multi-agent unmanned aerial vehicles 

(UAVs) using RL techniques, which are finding usage in a variety of WPT fields. Despite this, the 

amount of time that they can spend in the sky is still limited by their energy supply. This is 

especially true when UAVs are used to supplement the wireless network as transceiver stations 

(TS). Simulated findings reveal that, compared to baseline techniques, the suggested RL-POLICY-

MA approach has significantly improved the trajectory optimization and energy consumption of 

TS. 

8.2 Introduction 

A wide range of applications and services based on Unmanned Aerial Vehicles (UAVs) have 

emerged, from parcel delivery and public safety to disaster management and monitoring (Rejeb et 

al., 2021). The UAV WPT charging network's lifespan which uses the methods of energy-efficient 

techniques is only slightly extended by these enhancements, which needs major improvement 

(Townsend et al., 2020). Furthermore, this limitation necessitates that the onboard batteries be 

changed or recharged on a regular basis, which has a significant impact overall multi agent UAV 

collaborative network performance. 

Although RF-based far-field WPT is a potential way to powering UAVs, it is not the only option. 

A wide range of mobile networks, including 4G onwards, are likely to make use of WPT 

technology with the conjunction with UAVs in the future (see (H. Zhang et al., 2021). However, 
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lengthy distances between transmitter Tx and receivers Rx severely reduce the performance of 

WPT systems because of the problem of restricted power transfer, resulting in substantial RF signal 

propagation loss.  

There are two possible solutions to this problem for UAVs equipped with Tx and RX which are 

the drone should land whenever battery low and charge in the ground station or it automatically 

hover above transmitter and charge while on operation. A significant number of Multi agent WPT 

UAVs may be mass-deployed (Shakhatreh et al., 2019) on the ground charging station. There are 

several ways in which WPT might potentially be used, however this rotational dynamic WPT 

option discussed and experimented in chapter 3 would be flexible and require the use of low 

altitude flying by unmanned aircraft (UAV) to load RL-POLICY with power.  

There are key problems that must be addressed for controlling multiple UAVs using RL method 

to carry out their duties, and this research is aimed at solving them. Firstly, remote-area multiple 

UAVs need to be constantly recharged or replaced with new batteries to minimize the need for 

human involvement, which necessitates a vast deployment of DWPT charging stations (DWPT-

CSs). Installing and maintaining DWPT-CSs will be expensive, and there may be other issues, 

especially if the deployment area is limited. As a result, operations take longer to complete, and 

the network suffers, especially when UAVs are used to service ground customers. As a result, the 

DWPT efficiency is reduced, and the quantity of energy captured by UAVs is reduced accordingly.  

A viable solution should solve all the above identified difficulties and improve the WPT's 

performance. Air-to-air refueling of military aero planes by aerial tankers is the inspiration for our 

solution (Yan et al., 2020). A series of intelligent DWPT-CSs working independently with the 

express purpose of effectively recharging UAVs is proposed in this approach (see Fig. 8.1). To 

transmit energy from a WPT RL-POLICY-equipped transmitter to an RL-POLICY-equipped 
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UAV’s receiver, DWPT-CSs must have a larger energy capacity than conventional UAVs. Ground 

RL-POLICY charging station powered by either main AC supply directly or with the use of 

renewable energies such as solar powered or wind, which are UAVs in and of themselves.  

 

 

Figure 8.1 Purpose of effectively recharging multi-agent UAVs 

When it comes to charging the UAVs, rotational dynamic wireless energy beamforming allows 

the DWPT-CSs to keep RF connections in good state of service while also shortening their lengths. 

The implementation of DWPT-CSs, on the other hand, presents significant obstacles. Because 

low-energy unmanned aerial vehicles (UAVs) might come at any time, DWPT-CSs must 

constantly hover and supply the UAVs with the energy they need. Since all multi-agent UAVs fly 

in the same area, they are at risk of colliding with one other and with other flying. When all drones 

must constantly move around and communicate with others, that will be going to use a lot of 

electricity. RL-POLICY Energy sources are forced to modify its own flight paths to minimize the 

distance between them and UAVs to carry out the energy transfer successfully.  

Our approach is based on RL-POLICY-DL-RL approaches, which have proved their ability to 
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analyses vast state spaces and dynamic contexts, such as multi-agent systems.  

 Achieving a reasonable amount of efficiency in the charging of UAVs while also 

optimizing the trajectory of DWPT-CSs and keeping them from colliding with one another. 

 Taking into consideration the energy requirements of RL-POLICY while optimizing the 

loading procedure from the ground charging station. 

 Analytical and numerical support for the evaluation of the suggested strategy and the 

evaluation of its efficiency is provided in this study. 

A new wireless powered UAV network architecture is introduced in this chapter, along with a 

problem description. Also discusses the multi-agent RL-POLICY-DL-RL based methodology and 

gives a collection of DL-RL preliminaries.  

8.3 Related Work 

8.3.1 Global WPT charging station deployment research on UAVs 

DWPT charging station position, and energy resource allocation is all tuned together to enhance 

the system's downlink sum rate. (Ding et al., 2018) optimized the deployment of UAVs, as well as 

the scheduling of energy recharging procedures for UAVs, to maximize the coverage of UAVs. 

Dynamic wireless charging via unmanned aerial vehicles (UAVs) is the focus of (T. Yang et al., 

2021), where a ground-based mobile control system provides critical assistance. Before being 

deployed to air operations, each unmanned aerial vehicle (UAV) must be fully charged and 

location of the transmitter should be stored inside the drone control system (Haque et al., 2017). 

Study (Ghazzai et al., 2019) investigated how many DWPT charging stations are needed and how 

to best deploy them collaboratively so that multiple UAVs may recharge their batteries and take 
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to the skies once more. (Q. Tang et al., 2020) investigates the impact of dynamic wireless charging 

station on overall UAVs network performance. Optimal coverage may be achieved by minimizing 

charging time and installing lower density dynamic WPT stations, according to the latter study. 

To date, existing DWPT-based techniques on the ground have shown to be effective in extending 

the operating time of deployed UAVs. To complete the given air operations, unmanned aerial 

vehicles (UAVs) must stop and return to a Control Stations whenever there will be low on power. 

This prohibits them from completing their responsibilities over a longer charging period. When it 

comes to emergency situations or time-sensitive applications, this might be an inflexibility issue. 

8.3.2 UAVs enabled flight path planner aware WPT 

Many studies have been done to improve the WPT energy transfer mechanism of UAV flight path 

planner. The two scenarios were designed to maximize the power efficiency of UAVs that could 

be processed at any one time with an effort was made by (Xu et al., 2018b) to create a flight path 

planner that would enhance energy use efficiency and hence extend sensors and WPT network 

lifespans. UAV-aided wireless power transfer networks have been suggested in (Masroor et al., 

2021). The flight path planner of the UAV was optimized using a heuristic technique that 

considered several channel characteristics. 

However, in UAVs enabled flight path planner aware WPT techniques, several restrictions are 

overlooked. When it comes to transferring energy, for example, multiple UAVs working together 

may be all that's needed. There are several methods that use more than one unmanned aerial vehicle 

(UAV); however, they don't consider concerns like as collisions, energy transfer, or completion 

time. As a result, the proposed methodologies are necessary because of the lack of consideration 

for the energy consumption of UAVs. 
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8.3.3 Reinforcement Learning enabled WPT’s UAVs 

Reinforcement Learning approaches have recently re-emerged, and this is of special significance. 

A stationary WPT method was used by the authors of (Azar et al., 2021) to charge UAV electric 

batteries. As a result, a UAV uses a Deep learning-based RL approach with resource management 

strategy to optimize data collecting, power transfer, and the accompanying modulation scheme for 

robotic IoT nodes. The Deep learning-based RL approach is used to optimize by (van Huynh et 

al., 2022) proposes the use of a UAV to gather data from a target device while simultaneously 

charging additional covered devices. In a particular mission duration, this strategy maximisers 

aggregate data rate, maximisers total collected energy, and minimizes the UAV's energy 

consumption by using an appropriate Deep learning-based RL version. Drawbacks include a 

reliance on a single UAV to serve as the WPT devices in all but the simplest of cases. 

8.4 Performance Comparison 

As a cooperative UAV’s RL-POLICY charging task, the beginning position of the pursuers is 

critical. Using a K-means clustering technique, the system was able to identify three centroids 

among the first 953 points of successful episodes. Using this initial position as a starting point, 

pursuing multiple UAVs agent may be sent to specified places for improved pursuit charging 

performance. With the beginning of the DL training point set, the multi-agent RL model is 

implemented, and rewards system connection is disrupted by a huge difference resulting in a 

collision between UAV agent 3 and UAV agent 5. This error demonstrates that when the evader 

makes an abrupt turn and escapes successfully, his UAV agent lose track of another agent.  

UAV agent 1 and 2 work together closely to locate the other agents even when the agents make an 

unexpected turn in RAD2. UAV agent 4 waits for the other agents to be intercepted while it hovers 

below the communication coverage. RAD2's intended communication-awareness reward makes it 
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possible for the other UAV agents to leverage the cellular network to establish high-quality 

communication, reducing the need for individual agents to do partial observational tasks. 

Simulates UAV RL-POLICY charging with randomly generated starting positions. Unauthorized 

Unmanned Aerial Vehicles (UAVs) invade no-fly zones more frequently when master UAV agent 

1 catch them. On the other hand, the UAV agents form small groups to focus on a single charging 

one by one. So, their collaboration is less successful because they cannot use their numerical 

advantages to enclose and capture the charging agents are clear.  

For the Multi-agent collaboration part, the UAV agents work in unison to surround each other and 

prevent it from collision while they move closer to capture it. This is mostly due to the RAD2 

curriculum, which teaches the agents to first encircle the other agents to meet the Besieged Status 

requirement, and subsequently to reduce the encirclement until the agent is apprehended and 

started the process of WPT charging simulations.  

There are 900 episodes gathered with the fixed beginning location for general comparison tests 

and the results are shown in fig 8.2. Based on the results, the proposed RAD2 and its variations 

outperform all other techniques in terms of both capture probability and average time cost. The 

results show that the proposed RAD2 creates more efficient cooperative wireless charging methods 

in urban airspace than the state-of-the-art techniques. A low battery UAV agent may be captured 

by three cellular-connected master UAV agent in 14.2s, where the current system is 2.1 times 

quicker than the agent, using the cooperative pursuit tactics discovered.  

The study demonstrates that master and slave agent’s accidents are far less common than those 

between pursuer and flying environment model. In the case of UAV agents, learning the collision 

avoidance approach is substantially more difficult than for stationary objects.  

RAD2 without WDAT has a bigger reward variance than RAD2, which can be seen when 



155 

comparing RAD2 and its variations. From the comparison, it appears that WDAT is a more reliable 

tool for simple 2-dimensional environment but for complex 3-D environment RAD2 outperform 

it. As a result, WDAT can decrease environmental uncertainty by emulating the behaviors and 

observations of unconnected UAV agents.  As a result of the experiments, WDAT's performance 

is also evaluated. In the experiment, 95-episode vectors with the conjunction of deep learning-

based training data are used to represent a sequence of observations and actions. 

 

Figure 8.2 Result comparison 

WDAT efficiently reflects the spatiotemporal dependency of the following's observations and 

actions, as demonstrated by the findings in other dimensions, the prediction error is minuscule or 

nonexistent. As a result, the cumulative prediction error does not grow exponentially as the 
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prediction step rises. When communication is disrupted for an extended period, WDAT has the 

capacity to forecast the actions and observations of other pursuers within a given range of 

prediction steps. Two factors account for the proposed RAD2's enhanced performance: Partial 

observation and nonstationary are reduced because of cellular-enabled parameter exchange, which 

streamlines the investigation process. Curriculum learning, which aims to overcome the issue of 

scant rewards and teaches the UAV agents how to work together more effectively in pursuit.  

8.5 Simulations 

Decentralized FARCA and DWPT-DL-RLFAS both recorded three performance metrics for each 

episode in accordance with previous research. As for success, it refers to the number of times an 

episode ends without a deadlock or a collision. After that, the average time it takes each agent on 

a particular mission. Observations were made both experimentally and virtually in two different 

settings. On the outside corners of a 3-dimensional environment with a radius of 3.2m, 1.27m-

radius UAV agents begin the episode.  

The agents must avoid colliding with one other to achieve their antipodal objectives as rapidly as 

feasible. At a 3.2m with 2 different environment with UAV agents with a radius of 1.27m begin 

the episode in an unknown position. The environment inside is filled with random targets that do 

not overlap. All the simulated testing demonstrates that DWPT-DL-RLFAS is superior to 

DFARCA in terms of performance.  

Using 900 simulated episodes and varied numbers of agents, the performance metrics in 

experiments are summarized in the following. Two controllers, FARCA and DWPT-DL-RLFAS, 

represent situations where a random number of UAV agents were assigned a non-colliding velocity 

toward their objective in the simulation. DWPT-DL-RLFAS had a success rate of 86% in 

homogenous settings with 19 agents, but the DFARCA success rate was just 69%. Routes are up 
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to five seconds quicker on average because to this technology. As a result, in busy areas, DWPT-

DL-RLFAS provides UAV with faster and safer charging options. As a result, DWPT-DL-RLFAS 

can be seen to travel longer distances in sparse surroundings. As a result, the average time to reach 

the objective is on par with DFARCA in both circumstances, despite the greater distance travelled 

When there are fewer agents around, the DWPT-DL-RLFAS policy causes the agents to travel at 

a faster rate.  

Individual short-term reward is sacrificed in favor of the objective of maximizing speed and 

episodic reward in DWPT-DL-RLFAS. The above policy obtains a success rate of 91% and varies 

from 96% to 98.87% in 2-dimensions in settings with similar density to the 15-agent randomized 

simulations both, but DWPT-DL-RLFAS is the winner. In addition, DWPT-DL-RLFAS has a 

97.7% success rate when evaluated in situations with constant-velocity agents. Adding non-policy 

actors has no effect on DWPT-DL-RLFAS's success.  While FARCA has a 62% success rate in 

the same situation, other leading techniques have not been created for this kind of situation. Using 

DWPT-DL-RLFAS' training methodology instead of other ways shows the advantages of this 

approach. 
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Figure 8.3 Simulation result 

As it is difficult to convey 3-dimensional flight path planner through a textual medium, 2-

dimenional simulations were also done. For example, DFARCA produces more direct parallel 

lines whereas DWPT-DL-RLFAS provides asymmetric paths in which the blue UAV agents move 

more directly but the green UAV agents which do not. When the population density is higher, 

DFARCA is more likely to direct UAV agents to a center roundabout, where they all slow down 

since the computed velocity obstacle offers fewer possibilities for their flight path planner. Figure 

8.3 shows how DWPT-DL-RLFAS, on the other hand, uses cooperative behavior to keep agents 

moving at a faster pace.  

According to documented performance metrics, DWPT-DL-RLFAS travels shorter distances in 

less time than its competitors. Despite the huge number of UAV agents, stalemate is not observed 

with DWPT-DL-RLFAS, and the success rate remains high. If an UAV agent can travel straight 

to its objective under DWPT-DL-RLFAS, it will do so. Gradients-inspired attractive forces are 

responsible for this. Since this route was extremely unlikely to be sampled during training, other 
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deep reinforcement learning algorithms couldn't achieve the outcome. 

 As a result, the hybrid policy adopted is no longer necessary thanks to DWPT-DL-RLFAS. 

DWPT-DL-RLFAS, on the other hand, ensures that all agents remain inside the confines of the 

cuboid habitat, thereby minimizing the footprint. Instead, DFARCA takes agents on courses that 

take them far from other UAV agents' itineraries, especially in real-world experiments, thereby 

increasing travel time. As a result of the negative penalty applied in the reward function, DWPT-

DL-RLFAS avoids this. 

8.6 Evaluation Results 

Proposed method is compared to Random Scheduling and Random Sharing in this section. Figure 

8.4 shows the scheduling and energy sharing aspects of this simulation-based evaluation are 

examined and summarizes this simulation-based performance evaluation. 

 

Figure 8.4 variance proposed and random 
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Figure 8.5 average propose and random 

In this section, the suggestion was made for a time for balancing the energy resources of charging 

towers of UAVs. Thus, the performance review is carried out in this way. Unmanned aerial 

vehicles (UAVs) start with batteries whose mAh values are randomly chosen accordingly. The 

Proposed method outperforms the Random Scheduling algorithm in terms of energy-awareness. 

UAVs' remaining battery/energy quantities are summed for both proposed and random scheduling, 

with averages and variances shown for both cases. In figure 8.5, we see that the average residual 

energies for the whole time are larger in the proposed approach. As a result, the Proposed method 

has a greater number of charge UAVs ratio than the Random Scheduling algorithm does. As an 

advantage, the proposed method has a lower standard deviation meaning the proposed algorithm 

is capable of charging services that consider load balancing and fairness in wireless energy 

charging. 

Charging tower energy consumption for the proposed and random scheduling algorithms. 

Proposed and Random Scheduling algorithms with their differences in terms of energy 

consumption compared to each other. Comparing the proposed and random scheduling algorithms 

with traditional system, it can be shown that the proposed approach has a much better long-term 
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energy usage. The Proposed algorithm and the Random Scheduling algorithm, the charged WPT 

energy from the local energy is noticeably less than that because of the uniqueness of the Proposed 

algorithm. This suggests that the recommended timing is efficient in terms of charging tower load-

balancing. 

8.7 Performance Results 

Figure 8.6 shows the tradeoff between task failure rate (Rf) and search time (Ta) vs constraint 

scaling parameter (m) in relation to these two variables. The following conclusions may be drawn 

from this figure. 

 

Figure 8.6 multiple method time taken 

The amount of time it takes to conduct a search gets shorter as the number of UAVs increases. 

Increasing the constraint scaling parameter m further demonstrates this impact. We can see that a 

higher m places a tighter cap on the anticipated cost. In this situation, the UAV will choose 

activities based on the immediate benefit to avoid the expense (negative reward) of superfluous 

actions. To put it another way, the UAV is more likely to ignore the ground server's instructions 

and not take the desired action. CA-search CGL's time performance is comparable to CGL's with 

a big m (example., m = 8).  With CA-CGL, when m drops, even with a small number of UAVs, 

there is a considerable reduction in searching time.  
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Task failure rates rise as the number of unmanned aerial vehicles (UAVs) rises. As a result of the 

coordination mechanism, erroneous reference points and reward information may be transferred 

between UAVs. As m lowers, the rate of task failure increases. Excessive restrictions on the UAV 

operation might have resulted in an under-exploration. It is possible for the UAV to surpass its 

maximum search duration if the reference point estimation is not good enough. It is more likely to 

fail a task with a big m than with a small m, because of its faith in its own observation rather than 

the inference based on prior experience. The task failure rate vs. search time tradeoff is an 

intriguing one, as can be seen from the previous two data. Thus, our design of the constraint scaling 

parameter allows UAV tracking to be more adaptable to diverse performance needs.  

8.8 Proof of theorem 

Steps to prove to pay off at s+1 is no smaller are summarized in this section. As can be shown, the 

limited reward-system is equivalent to the instantaneous reward-system. There is a correlation 

between (s) and (a) in equation 8.1. As a result, we are left with the following: 

Equation 8.1 
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8.9 Conclusion and chapter summary 

Multi-agent unmanned aerial vehicles (UAVs) utilizing RL approaches have been the focus 

of this chapter's research discoveries, which have been employed in a range of WPT applications. 

As a result, their stay in the sky is limited by their energy source. Even more so when UAVs are 

deployed as transceiver stations in the wireless network (TS). Based on the results of the 

simulations, the RL-POLICY-MA strategy proposed here has greatly improved TS's trajectory 

optimization and energy usage over baseline solutions. 
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9 Conclusion and Future Works 

▪ Chapter 9 brings the overall discussion of all results and concludes this research with a 

contribution to the science community, limitation, and future research possibilities.   

 

The conclusions and subjects discussed in this thesis are summarized in this chapter. Section 9 

gives an overview of the problem and the solution offered in the thesis. We'll go through the major 

contribution of this research, which is the use of novel techniques of rotational dynamics of WPT 

with deep reinforcement learning, deep neural networks to train a control strategy for an unmanned 

aerial vehicle's autonomous charging, along with all the advantages it has over human agents and 

existing WPT solutions. The thesis' primary objectives are also summarized in this Section. Lastly, 

additional research directions are also proposed. 

9.1 Overview 

Unmanned surface vehicles' autonomous WPT charging remains a challenge despite the efforts of 

the scientific community for UAVs. The aerial vehicles are particularly vulnerable to limited 

battery with limited flying time while it’s on operation, where they represent a major disadvantage. 

That is why the work done and reported in this thesis was motivated by the requirement for an 

unmanned aerial vehicle (UAV) WPT receivers that can cope with dynamic rotational WPT 

transmitters and charging whenever there is a low charge autonomously using DL-RL and DL 

Kalman filter. The control system can use deep Kalman filter sensor fusion data from an unmanned 

aerial vehicle (UAV) flying over the rotational dynamic WPT transmitter to navigate and charge 

autonomously. As a reminder, this is a multi-faceted problem that was never meant to be solved 

in single research; hence, the data acquired are of great value to the larger purpose. 

UAV networks are extensively and actively employed in the design and implementation of the 
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next-generation WPT charging according to the autonomous and flexible properties of UAV 

networks. Possibility of search and rescue operation with high mobility and dynamic wireless 

power transfer network base station deployment may be performed using autonomous UAV 

systems using deep learning and deep reinforcement learning techniques, enabling large-scale 

adaptable big-data processing based on data collected by many UAVs.  

9.1.1 Design Rotational dynamic Wireless Power Transfer system 

Powerful wirelessly powered unmanned aerial vehicles (UAVs), also known as wireless power 

transfer (WPT) or WPT drones, have been developed to function in hazardous areas where humans 

cannot. An initial theoretical analysis showed that, under several test situations, the system under 

consideration might employ a circuit identical to that discovered in the theoretical analysis. Based 

on the RL-POLICY, the working Principe of all the suggested techniques including short and long-

range approaches, we developed and tested it in this chapter. At the end of the process, we added 

two more variables to assist us determine how effectively rotating dynamic WPT systems work in 

various environments. Finally, the future of WPT transfer employs the earth as a return wire for 

the electrostatic resonant coupling approach. 

 

9.1.2 Design and implementation of autonomous rotational dynamic wireless charging for 

UAVs 

The bench suggested in this paper was used to test small customized electric driven UAVs, which 

may be utilized for a range of research purposes. An enormous amount of effort and money is 

usually required to create this kind of user interface. It is now possible to conduct long-duration 

flights completely unhindered by humans thanks to the drone's new rotating dynamic wireless 

charging capability. Today's unmanned aerial vehicles (UAVs) have a limited flying time because 
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of their battery capacity. When the drone's battery runs low, it can be recharged wirelessly so it 

may continue its mission uninterrupted. With the use of this technology, it is now possible to 

perform long-distance missions without human intervention. Missions may be set up such that 

many drones fly in sync and therefore save flying time if they are equipped with wireless charging 

capabilities. A more efficient charging method would be Rotational Dynamic Wireless Charging, 

provided that the associated components could be improved in design. This design's primary 

considerations are the resonant frequency and the properties of the coil. Improved inverter design 

will lead to a reduction in total efficiency. Wireless power transfer may be improved by increasing 

the inductive connection's resonance frequency. Improve the system's performance by increasing 

its resonance frequency. Raising the charge rate may help reduce charging time by increasing 

productivity. 

 

9.1.3 Deep Kalman filter and Dynamic Wireless Power Transfer for UAVs charging   

In this method, it is feasible to considerably enhance the integrated navigation's positioning 

performance when the IMU signal is missing. Using reinforcement learning calculated from 

experiment results, experimenters found that the NCM process can reliably forecast position, 

independent of time, IMU outage periods, or navigation fusion methodologies. This is because of 

the NCM process' use of reinforcement learning. The gyroscope's orientation quotes are utilized 

to combine the quotes from several obstacle avoidance algorithms. Our research has shown that 

the precision of a system may be improved by employing gyroscopes when required and analyzing 

the data that they provide. For this reason, it has been observed that UAVs must deal with a variety 

of obstacles in their surroundings. 
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9.1.4 Design of Vision-based Object detection using Deep Learning for reliable 

autonomous charging of UAV 

Unmanned aerial vehicles (UAVs), sometimes known as drones, have developed due to fast 

developing technology when it comes to recovering information or high-quality images from 

dangerous locations. This method demonstrated a new method using deep learning technology (as 

part of Machine Learning –ML) to assist with photo identification for Unmanned Aerial Vehicles 

(UAVs) in search and rescue (SAR) missions. Programming libraries TensorFlow and Keras were 

used to develop and train the deep Convolutional Neural Network (NN) architecture' (a Python 

backend platform). The author of this thesis was able to show that the freshly trained system is 

capable of successfully detecting pictures by using a pre-trained NN and new picture data from an 

unmanned aerial vehicle camera. 

9.1.5 Multi-agent Deep Reinforcement Learning for UAVs charging   

This research proposal focuses on multi-agent unmanned aerial vehicles (UAVs) that use RL 

techniques and have been use in a variety of WPT applications. This means that their time in the 

sky is limited by the power they have available to them. Even more so when UAVs are used in the 

wireless network as transceiver stations (TS). In comparison to the baseline solutions, the RL-

POLICY-MA technique provided here has significantly enhanced TS's trajectory optimization and 

energy utilization. 

 

9.2 Contribution to the scientific community 

There has never been an attempt to employ an established approach to identify the dynamic 

wireless power transfer can be used by rotating them in opposite direction to increase the distance 
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of the charging of UAVs or other electronic devices. Using Unique Deep Learning and 

Reinforcement Learning based Kalman Filter model, the UAV’s RL-POLICY charging process 

can be automated efficiently which was studied in this research. The RL model is used as a self-

learning system that can be applied easily to determine the autonomous charging RL-POLICY 

UAVs without relying on traditional dynamics of the system. Research also incorporates numerical 

data from vision-based object detection study to estimate the charging location of RL-POLICY 

system using deep learning method. Multi-agent deep reinforcement learning for intelligent 

charging of UAVs designs were also developed, and the findings demonstrate that RL method 

gives a greater level of trajectory optimization and energy consumption than other designs. It is 

possible for electric UAV, boat, and automotive makers to utilize the findings of this study to 

evaluate prospective design adjustments to enhance operation time of the vehicles.  

 

9.3 Limitation of this PHD thesis 

The following are some of this PhD 's limitations: 

 DL simulation results were compared and found to be in excellent efficiency, although the 

RL simulation of the UAV designs had a restriction in slow processing speed that computer 

which needs expensive artificial intelligence based neural engines to train faster. 

 The limitation of using UAV sensors due to the budget of the PhD such as IMU, GPS 

which got more noise compared to the expensive ones with less sensor noise for better 

testing with accuracy used by military aircrafts or other large organization.  
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9.4 RDWPT UAV of the Future 

Nikola Tesla patented first design of wireless power transfer around 1900s using earth surfaces as 

a ground and high-pressure atmosphere as a conductor to transfer electricity from one distance to 

another. Even this closed-circuit design may work, if we want to apply it practically would be 

impractical and risk of clashing communication with passenger flights because we must raise 

hydrogen balloon to the height above sea level of more than 30 thousand feet. Tesla proposed not 

only that earth atmosphere become conductive like wire when it reaches certain pressure levels 

but also using reactive power transfer method to send electricity using only ground. When Reactive 

power transfer method oscillate between transmitter capacitor and receiver capacitor using 

resonant tuned frequency, there would be standing wave pressure build up between transmitter and 

receiver which helps transfer usable active power to the UAV.  

In the future design, reactive power transfer method works at half of 360 degree between two 

capacitors. When main active power activated, the power converted into reactive power by using 

quarter wave coils between transmitter and receiver. Quarter wave coil’s purpose is that the circuit 

should be in resonance to transfer power efficiently. When the power activated, two capacitors 

exchange reverse charges simultaneously using reactive wireless power transfer method. Then, 

standing wave between transmitter and receiver ground formed and usable power transmitted into 

the UAV or load. Other type method can be used for transmitting power through one wire 

transmission on UAVs for the purpose of showing the working principle of RWPT system. The 

circuit can be tuned in the same way as using electromagnetic resonance. For the efficient power 

transfer method, the UAV frequency also should be in resonance with the RWPT circuit.   

Despite the great deal of research work done in the field of WPT and unmanned aerial vehicles 

and the advancement in its technology many experts agree that one of the major drawbacks of 
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today's WPT UAV is that they tend to use extreme power usage, charging batteries usually takes 

out operation time, low range wireless power transfer and complexity of the resonance transmitter 

and receiver coil designs. An important consideration in connection with the WPT UAV system is 

that the power can be transmitter using same earth ground in which large amounts of electrons 

stored inside and capacitive coupling approach to the UAV which it would act as a return wire 

instead of sending through air. In the practice of building traditional WPT system in UAV, 

structures which tend to cost high and are often used to provide complicated design required for 

different applications. To achieve the required long-distance operation for WPT UAV, an 

electrostatic capacitive coupling method can be made in terms of using earth ground as conductor 

with desired resonant frequency are used for the UAV which would be result in the power travel 

faster and further. 

This capacitive coupling system can be used to transfer energy to not only UAVs but also any 

types of battery powered system can be integrated to use this method. The 'space' between the 

capacitor plates or spheres and air which also as dielectric for charging and discharging 

electrostatic power That is, the region changed into a state against which a mechanical push 

could be applied. This suggested, utilizing this procedure, it ought to be conceivable to create a 

transmitter plant in desired area and receiver can be far away from the transmitter, if the earth 

resonant frequency and TX, RX resonant frequency can be tuned to work in same which could 

be resolved the issues of long-distance power transfer. Further investigations and experiment 

needed to prove these methods wireless power transfer method of UAV.   
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