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ABSTRACT 
 

 
This work was motivated by the idea of developing a more encompassing 

collision avoidance system that supported vehicle to vehicle (V2V) and vehicle to 
infrastructure (V2I) communications. Current systems are mostly based on line of sight 
sensors that are used to prevent a collision, but these systems would prevent even more 
accidents if they could detect possible collisions before both vehicles were in line of 
sight. 

 
For this research we concentrated mostly on the aspect of improving the 

prediction of a vehicle’s future trajectory, particularly on non-straight paths. Having an 
accurate prediction of where the vehicle is heading is crucial for the system to reliably 
determine possible path intersections of more than one vehicle at the same time. We 
first evaluated the benefits of merging Global Positioning System (GPS) data with the 
Geographical Information System (GIS) data to correct improbable predicted positions. 
We then created a new algorithm called the Dead Reckoning with Dynamic Errors 
(DRWDE) sensor fusion, which can predict future positions at the rate of its fastest 
sensor, improving the handling of accumulated error while some of the sensors are 
offline for a given period of time. The last part of our research consisted in the 
evaluation of the use of smartphones’ built-in sensors to predict a vehicle’s trajectory as 
a possible intermediate solution for a V2V and V2I communications, until all vehicles 
have all the necessary sensors and communication infrastructure to fully populate this 
new system.  

 
For the first part of our research, the actual experimental results validated our 

proposed system, which reduced the position prediction errors during curves to around 
half of what it would be without the use of GIS data for prediction corrections. The next 
improvement we worked on was the ability to handle change in noise, depending on 
unavailable sensor measurements, permitting a flexibility to use any type of sensor and 
still have the system run at the fastest frequency available. Compared to a more 
common KF implementation that would run at the rate of its slowest sensor (1Hz in our 
setup), our experimental results showed that our DRWDE (running at 10Hz) yielded 
more accurate predictions (25-50% improvement) during abrupt changes in the heading 
of the vehicle. The last part of our research showed that, comparing to results obtained 
with the vehicle-mounted sensors, some smartphones yield similar prediction errors and 
can be used to predict a future position.  
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PREFACE 

 

Prediction of the trajectory path of a vehicle into the future is a difficult task, 

and even more so during non-straight paths, as observed in some of the research 

studied. Many times the predicted future position of where the vehicle will be 3 

seconds later in time falls outside of a physical road, making this prediction highly 

improbable. For the first part of the research, the assumption is made that the driven 

vehicle will remain on a road at all times, and any prediction that falls outside of a road 

will be considered incorrect. Through the use of a road mapping technique, it will be 

shown that this error correction greatly reduces the prediction errors during non-straight 

paths. 

Another problem observed when predicting a future position of a vehicle is that, 

when using multiple sensors, most of the time they are asynchronous. Some research 

reviewed described a solution of running the system at the rate of its slowest sensor, 

and, therefore, solving the problem of asynchronous data. Other research reviewed used 

previously estimated measurements to fill in the missing data form offline sensors. A 

vehicle is a large object that cannot change its spatial dynamics very quickly, but 

running a prediction system at a slow rate can slow down the detection of these spatial 

changes. For this research the system is run at the rate of its fastest sensor, but, missing 

measurements are calculated based on measurements obtained from online sensors 

suing a dead reckoning approach. A technique was developed to properly handle error 

accumulation from missing data from offline sensors, and that running the system at the 

fastest rate possible greatly reduces the prediction errors during non-straight paths. 
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The last part of this research looked into a possible solution to advance the 

usability of a vehicle-to-vehicle (V2V) system on its initial stages. The National 

Highway Safety Administration announced its decision to begin taking the next steps 

toward implementing V2V technology in all new cars and trucks. After all vehicle 

manufacturers are required to support this technology, it will still take many years until 

the V2V system is fully populated and most vehicles can contribute. Until that point is 

reached, the V2V technology will not be taken advantage of, unless a temporary 

solution is achieved to enable older vehicles to participate in the V2V system as well. 

Smartphones are readily available and already have many built-in sensors and good 

processing power, so in this part of the research the possibility of using smartphones to 

predict the trajectory path of a vehicle will be used. It will be shown that some types of 

smartphones yield similar prediction errors as predictions calculated using vehicle-

mounted sensors. 

 



 3 

 
CHAPTER 1: Improving Estimation of Vehicle’s Trajectory Using Latest Global 

Positioning System with Kalman Filtering 

 

1.1. Introduction 

Accurately predicting the future location of a vehicle is a very important and 

relatively difficult topic in the Intelligent Transportation System (ITS). It can be 

effectively used in obstacle avoidance systems for vehicles or robots. 

Many of the existing obstacle avoidance systems currently being researched are 

limited to line-of-sight sensors, such as those described in [1-9], using sensors around 

the vehicles to detect nearby objects. For a long-range obstacle avoidance system, other 

types of sensors need to be implemented such as those presented in [10, 11]. 

Researches like the one at the Kansai University of Japan [10] or the one by 

Miller and Oingfeng [11] investigate the option of using Global Positioning System 

(GPS) data collected from the different vehicles to predict the future location of each 

vehicle. The methods used to make these predictions are somewhat simple and do not 

give very accurate results in scenarios such as curves [Figure 1 and Figure 2] where the 

estimated future position of the vehicles will not be a straight path. 

 

Figure 1: "C" crossing. 
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Figure 2: "S" crossing. 

 

It is clear from current research that that what is needed is a more accurate way 

to predict the trajectory of the vehicles in all different scenarios. This is where the 

Kalman Filter (KF) comes into play. The KF has a long history of accurately predicting 

future states of a moving object and has been applied to many different fields, which is 

why it has been chosen for this research [12-15]. 

The contribution of this chapter is to investigate the viable idea of using the 

Geographic Information System (GIS) to reduce error in the prediction of the future 

location of an automobile, particularly during curves. The system implemented in this 

chapter consists of an Interacting Multiple Model (IMM) with different Kalman Filters 

(KF) using the Global Positioning System (GPS) to get a vehicle’s spatial information.  

There are a number of existing studies concerning the best methods to take 

spatial coordinates that fall outside of a defined road and to estimate where they would 

fall on an actual road, also known as map-matching. For example, in [16-19] the 

authors go into a lot of detail to explain the different errors that need to be accounted 

for when using a GPS sensor (among others) and data for road maps (GIS), and how the 

GPS bias can be utilized to improve the map-matching accuracy. Other researchers, 

such as [20] and [21], look into the problem of GPS outages, and how the vehicle’s 

position can be estimated during the outage through the use of KF and map-matching 
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techniques. This study compares experimental results of predictions done with and 

without our GIS error correction algorithm, and does not consider the problem of GPS 

outages since other researchers are working solely on this issue. 

This research is based on the use of a GPS receiver to obtain location 

information and to be able to estimate the projected path for a vehicle. There are many 

factors that can degrade the GPS signal and thus affect its accuracy, but there are also 

some innovative ways of correcting these errors. The Holux GR-213 1Hz GPS receiver 

used in this research is Wide Area Augmentation System (WAAS) enabled.  

The WAAS is a system developed for civil aviation by the Federal Aviation 

Administration (FAA) in conjunction with the United States Department of 

Transportation (USDOT). It is a nationwide differential GPS system where base 

stations with fixed receivers calculate and transmit the GPS error to the geostationary 

satellites in its view, which in turn broadcast the corrections that can be used by 

individual WAAS-capable GPS receivers. Its accuracy is less than 3 meters 95% of the 

time, and the GPS receiver used claims to have an accuracy of less than 2.2 meters 

[22]. 

Similar systems designed to predict a vehicle’s trajectory implement the use of 

other types of sensors to be able to get an accurate estimation, but this research looks 

into the possibility of using a commercially available, inexpensive but accurate GPS 

receiver to do a similar task already implemented in some areas [12, 14, 15, 23-25]; and 

it takes advantage of using a location-based system, such as knowing where on a road 

map the vehicle is located. 
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To be able to predict a vehicle’s future location, the Kalman Filter (KF) was 

used. The KF is a set of mathematical equations that provides an efficient 

computational (recursive) method to estimate the future state of a process. The filter is 

very powerful because it supports estimations of past, present and even future states, 

and it can do so even when the precise nature of the modeled system is unknown [25-

36]. 

The multiple KF models approach was chosen over one complex model because 

setting up multiple smaller models for each different scenario would be simpler than 

defining one complex model that can be accurate in many different scenarios. Each 

simple model is good for one specific set of conditions, so several models need to be 

defined to be able to cover most, if not all, possible scenarios in which a vehicle can be 

found. For this setup, four models have been identified to cover most of the vehicles’ 

behaviors: a vehicle not moving; a vehicle traveling at constant velocity; or with 

constant acceleration; or with constant jerk (constant change in acceleration). These 

models provide a mathematical set of equations that can be used to predict the vehicle’s 

future location after a set amount of time (Δk). 

This study researches trajectory estimation at 3 seconds ahead in time, based on 

the average 1.5 second human reaction time to stop a vehicle [37]. The 3 seconds ahead 

in time was chosen as a reference point that is double the reaction time of an average 

human being. In reality, this number will probably vary in relation to the speed and 

type of the vehicle, since a faster or heavier vehicle will need more time to slow down. 

The fastest data rate of the GPS receiver used is one second (Δk =1), so that is the rate 

the system will run at, which is set up to estimate the location of the vehicle one second 
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later in time. To be able to obtain an estimation for the location of a vehicle three 

seconds later in time, the researchers needed to run the prediction steps of the KF 

system with Δk set to 3 seconds, and use the IMM to obtain the prediction. This extra 

step to estimate the 3 seconds ahead location adds very little runtime to the overall 

system, since it is only used to predict the location and no correct steps are needed. 

 

1.2. Kalman Filter 

The Kalman Filter (KF) estimates a process by using a form of feedback control 

loop: the filter estimates the process state at some time, and then obtains feedback in 

the form of (noisy) measurements, and then it repeats (see Figure 3). As such, the 

equations for the KF fall into two groups: what we have called “prediction step” and 

“correction step.” The prediction step equations are responsible for projecting forward 

(in time) the current state and error covariance estimates to obtain the a priori estimates 

for the next time step. The correction step equations are responsible for the feedback—

i.e., for incorporating a new measurement into the a priori estimate to obtain an 

improved a posteriori estimate. 
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Figure 3: Extended Kalman Filter. 

Notation: 

x  state estimate 

z  measurement data 

A Jacobian of the system model with respect to state 

H Jacobian of the measurement model 

Q  process noise covariance 

R  measurement noise covariance 

K  Kalman Gain 

P estimated error covariance 

pσ  prediction noise 

mσ  measurement noise 

Correction Step 
(a) Calculate the Kalman Gain 

T
k

T
k

k

S HP H R

P HK
S

−

−

= +

=

 

(b) Correct the a priori state 
estimate 

))0,(( −− −= kkkk xhzKx   
(c) Correct the a posteriori error 

covariance matrix estimate 
−−= kkk PHKIP )(  

Prediction Step 
(a) Predict the state 

1k kx Ax−
−=     

(b) Predict the error covariance 
matrix 
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For our system the state vector for this system consists of two parameters 

obtained from the GPS sensor, each one decomposed into its x and y components. The 

general form of the state estimate matrix is shown in (1).  

 

v

v

x Position of vehicle
x

v Velocity of vehicle
− −⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦  (1) 

 

The elements of the state vector in (1) were selected to account for all the 

measurements available from the GPS sensor, and from them any other variables 

needed for the KF models were derived. Keep in mind that each of the components of 

the state estimate in (1) has an x and y component to it. So for every xk represented in 

the equations there will be an xkx and an xky.  

The error covariance matrix is a dataset that specifies the correlations in the 

observation errors between all possible pairs of vertical levels. The error covariance for 

each KF was approximated by running the filters on their own, but its value gets 

adjusted every 1 second in our setup. 

The estimated error covariance P is used together with the Jacobian matrix H 

and the measurement noise covariance (R) to calculate the Kalman Gain (K) as shown 

in Figure 3. 

 

v v v v

v v v v

x x x v
P

v x v v
⎡ ⎤

= ⎢ ⎥
⎣ ⎦  (2) 
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( ) ⎥
⎦
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⎢
⎣

⎡

+

+
=

vv
vx

vxh
v

v,
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( )
0

)1(
0,

=
−=⎥⎦

⎤
⎢⎣

⎡
∂

∂
=

v
kxx

xh
x

H
 (4) 

⎥
⎦

⎤
⎢
⎣

⎡
⋅=

I
I

R m 0
02σ

 (5) 

 

Once the Kalman Gain (K) is calculated, the system looks at the measured data 

(Z) to correct the predicted position and also the covariance error. Since this system 

only obtains measurements from a GPS receiver, only location, speed, and heading 

angle can be obtained; therefore, the other two parameters need to be calculated from 

the measured data. The acceleration is calculated from the velocity difference between 

the current and previous reading, and similarly, the jerk is calculated from the 

acceleration difference between the current and previous values. For this experiment, 

instead of using the current speed and heading from the GPS sensor, the average speed 

parameter was also similarly derived from the location difference between the current 

and previous values. 

Another important item to point out is that this research does not look into 

solving the GPS measurement errors that are due to many factors. One of these error 

contributors is the “Signal Multipath” problem, where the signal reflects off large 

objects. In this research, it is assumed these errors are minimal since the experiment is 

done in a very rural area. Also, signal delays (ionosphere and troposphere) can cause 

the location readings from the GPS to bounce around and imply movement when the 
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vehicle is not even moving. There are many error contributors to the GPS receivers, but 

we will assume them negligible in this research to concentrate on the main objective of 

this system. 

After correction of the previously predicted values, the system is ready to 

predict the next position by using the state vector equations. The filter also estimates 

the error covariance of the estimated location by using the Jacobian matrix A together 

with the Process noise covariance (Q). 

 

( )
0

)1(
,

=
−=⎥⎦

⎤
⎢⎣

⎡
∂

∂
=

w
kxx

wxf
x

A
 (6) 

To obtain an accurate prediction of the vehicle’s future location, four adaptive 

prediction algorithms are defined to account for the possible scenarios. The state 

equations are very different between the models. The following four models account 

for most, if not all, possible situations in which a vehicle could be found. 

Constant Location Model (CL) 

 

( ) ( 1)
( ) 0
v v

v

x k x k w k
v k

= − + ⋅Δ

=  (7) 

Constant Velocity Model (CV) 

 

( ) ( 1) ( ( 1) )
( ) ( 1)
v v v

v v

x k x k v k w k
v k v k w

= − + − + Δ

= − +   (8) 

Constant Acceleration Model (CA) 

 

21( ) ( 1) ( 1) ( ( 1) )
2

( ) ( 1) ( ( 1) )

v v v v

v v v

x k x k v k k a k w k

v k v k a k w k

= − + − Δ + − + Δ

= − + − + Δ  (9) 
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Constant Jerk Model (CJ) 

 

2 3

2

1 1( ) ( 1) ( 1) ( 1) ( ( 1) )
2 6
1( ) ( 1) ( 1) ( ( 1) )
2

v v v v v

v v v

x k x k v k k a k k j k w k

v k v k a k k j k w k

= − + − Δ + − Δ + − + Δ

= − + − Δ + − + Δ
 (10) 

 

In equations (7) through (10) Δk represents the period of time passed, so the 

variables at 1k −  represent the data from 1 period of time ago. In this setup, the period of 

time is driven by the data rate of the GPS (1 second). The process noise covariance for 

each of the models (w) is based on the constant term only. For example, for the CV 

model, the process noise covariance is based on the velocity term only, and it can be 

derived from the measured data by applying the CV model to it. 

Equations (7) through (10) represent the four states in which a vehicle can be 

found: at rest; moving at constant velocity; moving at constant acceleration; or moving 

at constant jerk. Each of these models consists of four state equations used to calculate 

each component of the state estimate matrix defined in (1). These models are very 

important as they are the heart of the prediction system. They need to cover most, if not 

all, of the possible scenarios or the predictions will contain more errors. 

For more details on how to setup a KF and a detailed explanation of all required 

mathematical equations, please refer to publications such as [25, 27, 38]. 

 

1.3. Interacting Multiple Models Estimation 

Because the dynamics of automobiles can vary over time, the state equations (7-

10) are already defined to capture the different states in which a vehicle can be found, 
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but these independent state equations need to be merged to produce only one 

prediction. 

There are several algorithms that exist to modify the stochastic information, and 

they are well known for their ability to automatically adapt the filter in real time to 

match any variation of the errors involved. 

The Interacting Multiple Models Estimation (IMM) algorithm calculates the 

probability of occurrence for each of the individual filters and uses that information to 

identify which of the filters will be predominant. This algorithm continues recalculating 

the probability for each iteration throughout the whole run, weighting the new 

probability values against the probability values calculated in the previous iteration. 

The IMM filter calculates the probability of success of each model at every 

filter execution, providing combined solution for the vehicle behavior. These 

probabilities are calculated according to a Markov model for the transition between 

maneuver states, as detailed in [28]. To implement the Markov model, it is assumed 

that at each execution time there is a probability pij that the vehicle will make a 

transition from model state i to state j. Equation (11) shows the transition matrix for the 

four defined KF models defined in section 2.2. 

ij

CL CL CL CV CL CA CL CJ
CV CL CV CV CV CA CV CJ

p
CA CL CA CV CA CA CA CJ
CJ CL CJ CV CJ CA CJ CJ

→ → → →⎡ ⎤
⎢ ⎥→ → → →⎢ ⎥=
⎢ ⎥→ → → →
⎢ ⎥

→ → → →⎣ ⎦  (11) 

 

The IMM can be described as a recursive suboptimal algorithm that consists of 

five core steps: 
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• Step 1) Calculation of the mixing probabilities 

• Step 2) Mixing 

• Step 3) Mode matched filtering 

• Step 4) Mode probability update 

• Step 5) Estimate and covariance combination 

As in any recursive system, the IMM algorithm first needs to be initialized 

before it can start its four-step recursion. The number of filters used is 4. 

 

• Step 1) Calculation of the mixing probabilities 

The probability mixing calculation uses the transition matrix (11) and the 

previous iteration model probabilities (16) to compute the normalized mixing 

probabilities (12). The mixing probabilities are recomputed each time the filter iterates 

before the mixing step. 

 

1

1
1

( )
( | )

( )

ij k
k N

ij k
i

p i
i j

p i

λ
λ

λ

−

−
=

=

∑
  (12) 

• Step 2) Mixing 

The mixing probabilities are used to compute new initial conditions for each of 

the N filters, four in this case.  The initial state vectors are formed as the weighted 

average of all the filter state vectors from the previous iteration (13). The error 

covariance corresponding to each of the new state vectors is computed as the weighted 

average of the previous iteration error covariance’s conditioned with the spread of the 

means (14). 
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1
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N Toj i i j i j

k k k k k k k
i

P i j P x x x xλ− − − − − − −
=

⎡ ⎤ ⎡ ⎤= × + − −⎣ ⎦ ⎣ ⎦∑
 (14) 

 

• Step 3) Mode matched filtering 

Using the calculated 
0
1ˆ
j

kx −  and 
0
1
j

kP −  the bank of 4 Kalman filters produce 

outputs ˆ
j
kx , the covariance matrix

j
kP  and the probability density function ( )n kf z  for 

each filter (n) in equation (16), according to the equations for the KF. The covariance 

for each filter is represented by Sk in (15) and (18). 

 
T

k HPHS ⋅⋅=  (15) 
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k

f z e
Sπ

−⎛ ⎞− ⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠=

 (16) 

 

• Step 4) Mode probability update 

Once the new initial conditions are computed, the filtering step (step 3) 

generates a new state vector, error covariance and likelihood function for each of the 

filter models.  The probability update step then computes the individual filter 

probability as the normalized product of the likelihood function and the corresponding 

mixing probability normalization factor (17).   

 

1
1

1

( )( ) ( )
( )

N
n k

k ij kN
i

n k
i

f zj p i
f z

λ λ −
=

=

= ∑
∑

 (17) 



 16 

 

• Step 5) Estimate and covariance combination 

This step is used for output purposes only; it is not part of the algorithm 

recursions.  

 1

ˆ ˆ
N

j j
k k k

j
x xλ

=

= ⋅∑
 (18) 

 
{ }

1

ˆ ˆ ˆ ˆ
N Tj j j j

k k k k k k k
i

P P x x x xλ
=

⎡ ⎤ ⎡ ⎤= ⋅ + − −⎣ ⎦ ⎣ ⎦∑
 (19) 

 

1.4. Geographical Information System 

A geographic information system (GIS) is a system for capturing, storing, 

analyzing, and managing data and associated attributes which are spatially referenced 

to the earth. It is a tool that allows users to create interactive queries (user created 

searches), analyze the spatial information, edit data and maps, and present the results of 

all these operations. In this research we extracted the road information from the maps 

being used to display the vehicle’s location. It is not a very accurate map, but it is 

enough to demonstrate if the implementation of GIS information with the IMM system 

improves the prediction of the vehicle’s future location or not. 

The idea of using GIS data to correct an invalid estimation came about looking 

at simulations during curves. When the vehicle enters a turn, the prediction of its future 

locations is very erroneous, many times outside of a road. If the system had a way of 

knowing the direction of the road ahead, and whether the estimated future location was 

on an actual road or not, it would be able to correct its estimation and improve its 
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reliability. This is where GIS comes into play, with the assumption that the vehicle will 

always remain on the road. It is also assumed the driver is handling the vehicle properly 

and awake for this GIS correction to be practical. These assumptions, though 

restrictive, still allow the correction to be useful in scenarios such as road intersections. 

When a road is designed, the radius of curvature is known, but this information 

is not available with the GIS data; therefore, a new method is needed to be able to 

project the estimation outside of the road back in the road. 

 

Figure 4: Displaying parameters used in the method to estimate position on the road. 

 

 

Figure 5: Geometry used to map estimated future location outside the road to a location  

inside the road. 
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Because of the limitation of the mapping software used during this research 

(MapPoint), the only available function to interact with GIS data was to check whether 

the specific location was on the road or not. A function that provided the distance from 

the current location to the nearest road would have worked better, but it was not 

available in MapPoint. 

To overcome the limitation described earlier, a method to map the estimated 

future location outside of the road to an accurate location inside a road had to be 

designed. From the current GPS location the distance r and the angle β shown in Figure 

4 are calculated. The angle β varies with the direction of the movement and calculated 

from East being zero degrees. The r is the distance between the current location and the 

estimated location. 

count = circumference
arc

  (20) 

360deg
count

α =
   (21) 

 

The variable arc used in (20) is the predefined distance between points in the 

circumference. The smaller this value is, the smaller the increments between check 

points in the circumference are, and the more accurate the measurement will be. 

Because the smaller the arc value, the more points that need to be checked, it required 

more CPU processing time so for this research arc has a value of 0.6 meters. This value 

was selected because the smallest road, even if only a one-way lane, cannot be less than 

2 meters wide. If we used a value bigger than 2 meters, we could have the possibility of 
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missing a road between checkpoints, so we chose a significantly smaller value. The 

angle α calculated in (21) is the actual angle increment needed to match the predefined 

arc distance on the circumference. 

With the angle β shown in Figure 4 and the angle α calculated in (21), running 

through the checkpoints of the circumference was started. The estimated location is 

found at angle β and since this estimated location cannot be too far from the actual 

road, checking was started from this angle β. The system will check both clockwise and 

counterclockwise increments of α until a point is found on the road. Figure 5 provides a 

graphical view of the GIS error checking implemented. The clockwise and 

counterclockwise increments will continue to occur until either a road is found and a 

correction on the estimated future location is made, or a maximum number of 

increments is reached, and no correction is made. If a correction is made, the new 

estimated future location will still be the same distance away r, the only difference is its 

location coordinates. 

 

Figure 6: GIS error correction in MapPoint. 

 

In Figure 6, in MapPoint, the current location is a green dot, the predicted future 

location is a yellow dot, and the GIS corrected data is a red dot. The smaller red dots 
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are the clockwise and counterclockwise increments described earlier. Visually, in 

Figure 6, the estimated future location is probably incorrect as there is no road in that 

location. Using GIS data to locate the road, the predicted location can be adjusted to be 

on the road at the same distance away, as the velocity will probably not change 

significantly under normal circumstances. The result is a more accurately predicted 

future location. This method seems to work well during curves, but, as stated earlier, it 

requires several restrictive assumptions. Therefore, this system could only be useful as 

a part of a larger and more robust collision avoidance system that took into account 

some of the scenarios not covered by our proposed method. 

 

1.5. Experimental Results 

The experimental setting for testing the models described in section 1.1.2 needs 

a log file of GPS data that contains different scenarios, especially those currently 

causing problems in existing systems (Figure 1 and Figure 2). Figure 7 shows the 

trajectory recorded for this research. It has many turns and contains various changes in 

speed and direction. Because in trying to improve the trajectory estimation during 

curves, Figure 7 also shows the curve selected for our experiment.  
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Figure 7: Trajectory recorded in GPS log file, Essex Jct., VT, USA. 

 

The selected road curve is definitely a nice sharp turn that occurs at medium 

speeds (~60kph). It was felt that this turn would be a good scenario to test the 

improvements on trajectory estimation. 

The code was implemented in Microsoft Visual Basic 6 and Microsoft 

MapPoint 2004, allowing the software display information in real time on the map as 

the vehicle moves. Being able to look at the estimated points on an actual map makes it 

easier to visually inspect and present the system. 

1.5.1. Implementation of Kalman Filters 

To be able to evaluate, the four KF Models, KF-CL (Kalman Filter Constant 

Location), KF-CV (Kalman Filter Constant Velocity), KF-CA (Kalman Filter Constant 

Accelerator), and KF-CJ (Kalman Filter Constant Jerk) had to be coded, tested and 

tuned individually to get as accurate estimations as are possible. It is a given that one of 

these models will not be very accurate all the time on a real time GPS log; therefore, in 

order to calibrate them individually, the GPS log for the full trajectory shown in Figure 
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7 was used to calculate the measurement noise covariance and also each of the process 

noise covariance for the four models to exercise only one model at the time. To find the 

values for the process and measurement noise covariance matrices, the data was 

smoothed out using a moving average window to remove any outlier. The measurement 

noise covariance was obtained for each of the filters by calculating the covariance of 

going frame by frame, and calculating the error of the real data to fit into each of the 

KF models defined in section 1.2. 

Once the filters were tuned, they were individually run through the different 

scenarios and only the results for the data points in the selected curve were recorded in 

Table 1. 

Running the four filters together showed how, when one was very close to the 

real value, the other ones were not that accurate. In some instances more than one filter 

was accurate, probably when speed changes or acceleration changes were very small. In 

other cases none of the four filters was accurate at all, probably because of an abrupt 

change in direction or even in speed. The system reads data from the GPS every one 

second, so it is possible, though not common at higher speeds, to have a big change 

occur during that one second, especially in curves. For the most part one second will 

not allow the speed and direction to change by a big amount (except in some lower 

speed scenarios, such as at intersections when making a sharp turn), allowing the filters 

to estimate the next location somewhat accurately. The error calculated in Table 1, 

Table 2 and Table 3 are based off the actual GPS location. It is the distance between the 

estimated three seconds ahead location and the actual GPS location three seconds later. 
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Actual GPS errors are not accounted for in this research, so both the estimated future 

location and the actual GPS location should be similarly affected by the GPS error. 

 

Table 1: Average 3 sec ahead estimation error 

 CL CV CA CJ 

KF 14.9002 9.8786 7.0812 8.9952 

Units are in meters. Used 21 data points for the selected curve. 

 

 

 

Figure 8: Comparison of estimated 3 sec ahead location and actual GPS reading for all four KF 
models using 21 data points for the selected curve. 
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Figure 9: Calculated error for all KF models between 3 sec ahead estimation and actual GPS location 
3 sec later using 21 data points for selected curve. 

 

From Figure 8 and Figure 9 we can analyze the results of running the KF by 

themselves (each KF is predicting the future location 3 seconds later in time). Figure 8 

shows the predicted location 3 seconds ahead in time on the spatial trajectory (same 

curve as shown in Figure 7), while Figure 9 shows the error for each of the predictions 

of the future vehicle’s location 3 seconds later in time compared to the actual GPS 

measurement. Both graphs are needed because KF-CL seems to be accurate in Figure 8 

because it will always be on a real GPS location since it assumes no movement 

(Constant Location). Actually the KF-CL shows a lot of error in Figure 9 since the 

vehicle was always moving through this curve. The estimated future location for this 

model will be where the current GPS location is (right over the GPS line), but this will 

not be accurate if the vehicle is moving, and this is where Figure 9 displays this error. 
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Because the curve selected in Figure 7 was driven at a somewhat constant 

speed, it can be noted that both the KF-CV and the KF-CA are the most accurate in this 

case until the curve starts. 

1.5.2. Evaluation of Interacting Multiple Models 

To set up the IMM it was necessary to calculate the transition probability matrix 

in equation (11) using the GPS log for the full trajectory shown in Figure 7. From this 

full GPS log that contained multiple scenarios, it was determined which transition was 

occurring frame by frame by comparing the actual measurements from the GPS to the 

smoothed measurements. The smoothing of the data was done with a rolling window 

using a combination of median smoothing, splitting the sequence, and Hann’s 

sequence, which removed any abrupt changes from the data. Each transition was 

determined by the type of change, such as no change, a constant change, and so on. 

Similarly, by calculating the covariance of the differences in the measurements to each 

other, the measurement noise covariance matrix (R) was obtained. And last, by 

calculating the covariance of the differences in the measurements compared to their 

respective x and y components, the process covariance noise (Q) was obtained for each 

KF. From this type of information the transition probability matrix below was obtained. 

 

0.154 0.154 0.385 0.308
0.011 0.470 0.305 0.214
0.014 0.259 0.458 0.269
0.002 0.243 0.508 0.247

ijp

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦  (22) 
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Figure 10: Comparison of 3 sec ahead estimated location between IMM, IMM+GIS and actual GPS 
locations 3 sec later using 21 data points for selected curve. 

 

Table 2: Average Estimation Error for selected curve 

Estimated position 1 sec ahead 3 sec ahead 

IMM 2.9056 8.7880 

IMM with GIS 1.7834 4.8244 

Units are in meters. Used 21 data points for selected curve. 

 

Table 3: Average Estimation Error for whole trajectory 

Estimated position 1 sec ahead 3 sec ahead 

IMM 1.9461 6.5276 

IMM with GIS 1.8872 5.1423 

Units are in meters. Used 800 data points for whole trajectory in Figure 8. 
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Looking at equation (22) some scenarios are clearly identified. For example, 

when in a CL state (first row), it is more probable for it to change to a CA or CJ state 

than to a CV state, and this is understandable because when a vehicle is at a complete 

stop, to start moving it will need to accelerate. 

Also, only the 3 seconds away estimation results will be looked at as this is the 

most important one for this study. Looking at a 1 second ahead estimation allows for 

some very accurate results but this would not be enough warning time for the driver to 

react, so this research will look at 3 second away estimation and how accurate it can be 

obtained. 

The results obtained from the IMM were not good enough to make this system 

very reliable by itself. In Table 2 a 45% improvement was identified when using the 

GIS correction method, but the error is still significant when predicting the vehicle’s 

location 3 seconds ahead of time. Table 3, similarly to Table 2, shows the average 

errors for the estimated future vehicle’s location 1 and 3 seconds ahead in time, but the 

whole trajectory as shown in Figure 8 was used to test this system. The numbers do not 

show as great an improvement as in Table 2 because, when the vehicle is traveling in a 

straight line, the error in the estimated future location is smaller, and therefore adding 

GIS correction is not as beneficial. Overall, even though GIS does show to be very 

helpful, especially during curves, it is still not enough to use it by itself, as it was set up 

for this research. A much needed improvement would be the implementation of more 

sensors that could run at higher frequencies.  

In Figure 10, this study visually compared the estimated 3 second ahead 

positions with the GPS values. It also shows that the IMM had a lot of error at the 
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beginning of the turn and after a few seconds converged more with the actual data. So 

this method used as part of a collision avoidance system would produce many false 

warnings. 

1.5.3. Geographical Information System (GIS) 

The implementation of GIS data with the IMM estimation process showed very 

promising results. 

 

 

Figure 11: Frame shots of simulation during the selected curve. 

 

In Figure 11, the frame shots of the simulation program can be seen. It shows in 

light yellow the three positions corresponding to 1 and 3 second away estimations. In 

red, the images show the corrected predicted location for each of the 1 and 3 second 

away estimations. It is easy to see how much the GIS correction helps with the actual 

estimation of future positions of the vehicle. To look at some numbers, Table 2 can be 

used to confirm this visual conclusion. The table shows the average error for the 

selected turn and we can see a noticeable difference compared to the method without 

any GIS correction, especially when looking at the 3 seconds ahead. This method is a 

lot more reliable and should give a lot less false warnings because the approximate 3 
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meters of error it has is a little more than a compact vehicle’s width and about the same 

as its length. 

 

 

Figure 12: Error measured between the 3 sec ahead IMM estimation (with and without GIS) and the 
actual GPS readings 3 sec later using 21 data points for selected curve. 

 

Figure 12 is a further visual aid to be able to compare it to the previous two 

methods and see how much more accurate this is. 

The GIS error correction method used in this research is somewhat simple and 

straightforward. It can possibly be improved with other existing methods, but it was 

enough to help determine whether using GIS data with the trajectory estimation models 

was an improvement. 

 

1.6. Conclusions 

This chapter implemented four KF to account for the identified possible states 

an automobile can be found in (constant location, constant velocity, constant 
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acceleration, and constant jerk). These four KF were set up to be part of an IMM 

system that provided the predicted future location of the automobile up to 3 seconds 

ahead in time. To improve the prediction error of the IMM setup, this study added an 

iterated geometrical error detection method based on the GIS system. The assumption 

made was that the automobile would remain on the road, so predictions of future 

locations that fall outside of the road were corrected accordingly, making great 

reduction to prediction error, as shown in the experimental results. 

The research observed estimation values at 3 seconds ahead in time to allow for 

enough reaction time if this setup were to be used in some type of driver’s aid system. 

As shown in this research, a 3 seconds ahead estimation has a lot of error, but, with the 

help of GIS data, this error can be reduced drastically, especially during turns, which is 

where research seems to have the most problems with [10]. 

The idea of merging spatial GPS data with GIS road information, given some 

assumptions, has proven to improve the accuracy of predicting a vehicle’s future. And, 

in some scenarios, it could be an interesting addition to a collision avoidance system. 

Despite the improved predictions shown in this chapter, this system can be 

further improved. The implemented GIS method in this study was straightforward and 

could be improved by looking into more detailed GIS data and being able to determine 

the lane the vehicle is driving in to correct with more accuracy a bad estimated future 

location. The spatial data used from the GPS can also be complemented by using other 

types of sensors less error prone and that can run at a frequency higher than 1Hz. 
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CHAPTER 2: Asynchronous Heterogeneous Sensor Fusion using Dead Reckoning 

and Kalman Filters 

 

2.1. Introduction 

Sensor fusion and tracking techniques have potential applications for the vehicle 

and the infrastructure as introduced in [1], something we can appreciate from the 

Intelligent Transport Systems (ITS) area [2]. The overall function of ITS is to improve 

decision making, often in real time, improving the operation of the entire transport 

system. This can range from systems with intelligent route planning implemented to 

avoid some specific type of traffic from certain areas [3], to registering the position of 

vehicle-borne sensors for infrastructure assessment [4], to systems designed to prevent 

collisions between the users [5]. This research could fall under the latter category. 

A collision avoidance system is as good as its accuracy in warning the driver – 

either human or automated. An accurate system will minimize the number of false 

warning so the driver takes them seriously. Designing the architecture of this type of 

system involves using many sensors, and finding the right balance between the number 

of sensors implemented, type and their overall contributions to the system. 

There are mainly two types of designs for a collision avoidance system:  self-

sufficient and interactive systems. Self-sufficient systems are those that can obtain 

enough information by themselves such as those in [6-8] where they placed sensors 

around the vehicle to maintain a safe following distance or to detect vehicles in the 

surroundings. Interactive systems are those that interact with the infrastructure or other 

vehicles to detect a dangerous scenario, such as researched in [9-11] where their 
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systems send spatial information to nearby vehicles to judge the possibility of a 

collision in the future. While self-sufficient systems are limited to line of sight 

detection, the interactive systems account for scenarios farther ahead or even around 

corners or intersections by predicting and communicating the future estimated 

trajectories. With its benefits also comes its complexity. Estimating the future trajectory 

of a vehicle requires multiple sensors that need to be merged together and put through a 

set of prediction models. 

Multi Sensor Data Fusion (MSDF) techniques are used in many diverse fields, 

although most of the literature addresses the fields of military target tracking or 

autonomous robotics [12]. MSDF is required to combine and process data. This has 

been traditionally performed by some form of Kalman [13] or Bayesian filters as shown 

in the examples above; however, in recent years, there has been a trend toward the use 

of soft techniques such as fuzzy logic and artificial neural networks [14]. Furthermore, 

there can be two ways of setting up a MSDF system: centralized or decentralized. 

While a centralized approach suffices for most common scenarios where the sensors are 

synchronous, a decentralized approach is more convenient when the sensors should be 

treated independently [15-19], as with asynchronous sensors. 

In [20], the authors discuss one solution they have developed: the Optimal 

Asynchronous Track Fusion Algorithm (OATFA), which evolved from their earlier 

research on an Asynchronous/Synchronous Track Fusion (ASTF) [21]. They base their 

technique in the Interacting Multiple Model algorithm (IMM), but replaced the 

conventional Kalman filters with their OATFA (which contains several Kalman filters 

of its own). The OATFA treats each sensor separately, passing the output from each to 
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a dedicated Kalman filter, departing from the idea that the best way to fuse data is to 

deliver it all to a central fusion engine. The chapter’s IMM-OATFA results tend to 

show position estimation errors that are about half of those that the conventional IMM 

produces. However, as pointed out by the same authors in [22], all measurement data 

must be processed before the fusion algorithm is executed. With a similar approach as 

the technique described above, the authors of [23] create asynchronous holds, where, 

from a sequence of inputs sampled at a slow sampling rate, it generates a continuous 

signal that may be discretized at a high sampling rate. Despite the benefits of making 

the asynchronous system into a synchronous one by using these methods, restrictions 

arise where, if for some reason a sensor is delayed in providing its data or is off-line for 

a few cycles. The whole system needs to wait, as it is designed to work with certain 

data at specific rates. 

In [24-26], the authors also look into problems of getting measurements from 

multiple sensors, but they focus on measurements being out-of-sequence and not on 

missing measurements. Therefore, while this is a very important topic on some 

scenarios, for the system that was used in this study, having all the sensors being 

processed locally, it will be assumed that all measurements are in the correct sequence, 

and there should not be a reason for some of them getting out-of-sequence. 

Another method to fuse asynchronous sensors is discussed in [27]. In this 

chapter the authors synchronize the output of the sensors by estimating the data of the 

slower sensors for the time stamps where no data was available from them. Even 

though the method used to estimate the unavailable readings is very rudimentary (based 

only on the previous reading), this idea allows the system to run at the fastest frequency 
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of its sensors. This difference, compared to the previously referenced papers, allows the 

system to make any corrections as soon as data are available, making its estimations 

more accurate in some scenarios. 

The goal of this study is to develop a new method that allows the system to 

handle asynchronous sensors but run at the frequency of its fastest sensor, while also 

being able to handle homogeneous and heterogeneous data. A system that can handle 

all of these scenarios should be able to yield superior trajectory predictions than more 

conventional systems that have to run at the frequency of its slowest sensor. 

The contribution of this chapter is a dead-reckoning (DR) system that runs at 

the frequency of its fastest sensor to update its prediction as soon as a change is 

detected. The difference from other DR implementations, subject to cumulative errors, 

is that our DRWDE continually updates the noise covariance matrices when any sensor 

remains offline. This constant modification of the truth weight of each measurements 

helps counteract the cumulative error of the DR when the measurements are estimated 

and not real. We then use the IMM to merge the predictions of the vehicle’s future 

position. We will describe, later in this chapter, how we setup our systems, and how it 

compares to a more conventional implementation of a MSDF using KF and IMM. 

This chapter is organized as follows. First there is a section that provides a 

quick overview of the KF and the IMM framework. Then it goes into describing the 

architecture of the system, the models defined, and how the dynamic noise covariance 

matrices are constructed. Then proceed to define a method to evaluate the results of this 

new system. Lastly a look at the experimental results and end with a conclusion. 
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2.2. Position Estimation Techniques 

Position and attribute estimation are the process of taking the associated 

measurements and calculating the state of the target (vehicle). It is necessary to perform 

Target Motion Analysis (TMA) to calculate an estimate of the range and velocity. In 

this section, we review the methods for position/attribute estimation chosen for this 

research. 

The Kalman Filter (KF) [28] was first proposed in the 1960s and it has been the 

most commonly used technique in target tracking and robot navigation ever since. The 

basic KF has been shown to be a form of Bayesian filter [29], which is an optimal 

estimator for linear Gaussian systems. From a series of noisy measurements, the KF is 

capable of estimating the state of the system in a two-step process: correct and then 

predict [30-32].  

The elements of the state vector (x) are: the position, velocity, and acceleration 

of the vehicle; all available from the different sensors. Keep in mind that the position 

(xv) and velocity (vv) components of the state estimate have an x and y component to 

them (east-west and north-south directions), and the acceleration (av) has an n and t 

component to it (normal and tangential acceleration). So, the state vector matrix will be 

X=( xx, xy, vx, vy, an, at ). 

The estimated error covariance (P) for the state estimate is based on the 

relationships between each of the elements to the others. The error covariance matrix is 

a dataset that specifies the estimated accuracy in the observation errors between all 

possible pairs of vertical levels. 
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The estimated error covariance (P) is used together with the Jacobian matrix of 

the measurement model (H) and the measurement noise covariance (R), together with 

the measurement noise (σ m ) , to calculate the Kalman Gain (K). Once the Kalman Gain 

is calculated, the system looks at the measured data (Z) to identify the error of the 

predicted position and uses it to adjust the estimated error covariance (P). 

The KF has a long history of accurately predicting future states of a moving 

object and has been applied to many different fields [33-36], including transportation, 

which is why it was chosen for this research.  

Static (non-switching) algorithms have been around since the 1960s, though 

practical algorithms have only been available more recently, favored by the 

accessibility to more CPU speeds. The Interacting Multiple Models (IMM) framework 

was used in this system. It can calculate the probability of success of each model at 

every filter execution, providing combined solution for the vehicle behavior [37-39]. 

These probabilities are calculated according to a Markov model for the transition 

between maneuver states, as detailed in [40]. To implement the Markov model, it is 

assumed that at each execution time there is a probability pij that the vehicle will make 

a transition from model state i to state j.  

In Johnson and Krishnamurthy’s paper [41], they describe the IMM as a 

recursive suboptimal algorithm that consists of four core steps interacting with the KF, 

as illustrated in Figure 13. 
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Figure 13: Flow-chart for the three KF in an IMM framework. 

 

The four step IMM process starts with the calculation of the mixing 

probabilities, which uses the transition matrix and the previous iteration mode 

probabilities µk−1(i)  to compute the normalized mixing probabilities µk (i | j) . The mixing 

probabilities are re-computed each time the filter iterates before the mixing step.  

The second step uses the mixing probabilities, which are used to compute new 

initial conditions for each of the n filters.  The initial state vectors are formed as the 

weighted average of all of the filter state vectors from the previous iteration xk−1
oj

.  The 

error covariance corresponding to each of the new state vectors is computed as the 

weighted average of the previous iteration error covariance’s conditioned with the 

spread of the means 
Pk−1
oj( ) . 

The third step calculates mode matched filtering, using the 
0
1ˆ
j

kx −  and 
0
1
j

kP − , the 

bank of n Kalman filters produce outputs ˆ
j
kx , the covariance matrix

j
kP , and the 

probability density function ( )n kf z  for each filter (n). 
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The fourth set of calculations begins once the new initial conditions are 

computed; the filtering step generates a new state vector, error covariance and 

likelihood function for each of the filter models.  The probability update step then 

computes the individual filter probability µk ( j)( ) as the normalized product of the 

likelihood function and the corresponding mixing probability normalization factor.   

The estimate and covariance combination is used for output purposes only: 

x̂k = µk
j

j =1

n

∑ ⋅ x̂k
j

; it is not part of the algorithm recursions. 

 

2.3. Dead Reckoning with Dynamic Error (DRWDE) using Kalman Filters 

For this system to react to change as soon as it occurs, it will need to run at the 

frequency of its fastest sensor (10Hz), and will need the flexibility to be able to use the 

available data from only the online sensors to predict the trajectory of the vehicle.  

This system uses three different sensors: a Garmin 16HVS GPS receiver and 

Fugawi 3 GPS navigation software, an AutoEnginuity OBDII ScanTool (which obtains 

the velocity from the vehicle’s internal system), and a Crossbow 3-axis accelerometer. 

This set of sensors offer data at different rates (asynchronous) and also at the same rates 

(synchronous); one measurement from two of the sensors overlap (homogeneous) but 

most of them do not (heterogeneous). The accelerometer measures normal and 

tangential acceleration every tenth of a second, the ScanTool measures velocity every 1 

second, and the GPS measures position, velocity and heading every 1 second.  

A problem with some of the existing research, as mentioned in section 2.1, is 

that sensors can unexpectedly go offline and not provide data when expected. The 



 44 

system in this study will need to handle this without slowing down the running 

frequency of the overall system and then wait for the sensor to come back online. This 

in turn means that the system can run at the frequency of its fastest sensor. If the system 

can continue to run and handle the missing data, it will allow for a quicker correction of 

the estimation if a change occurs in the spatial movement of the vehicle. For example, a 

GPS outage could occur when going through a tunnel, and waiting for the vehicle to 

exit the tunnel for the system to resume estimating the trajectory of the vehicle would 

not be a good solution. Or, the program used to interact with a sensor could freeze for a 

fraction of a second and not provide the measurement to the system. In this setup, 

because pre-recorded data is being used, the unavailable data also comes from the 

computer not reading and recording the data of the accelerometer fast enough, so even 

though the accelerometer works at 10Hz, the data recorded does not always exist for 

each tenth of a second. 

 

 

 

2.3.1. System Architecture 

For the overall trajectory estimation of a vehicle, modified KF will be used in 

running an Interacting Multiple Models (IMM) framework. The KF and IMM are 

commonly used in the trajectory estimation.  

In this setup, the GPS sensor provides the location (sx ,sy ) , the velocity ( v ) and 

the angle of direction (β ) using north as the zero. Then the ScanTool sensor provides 
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the velocity ( v ), and the accelerometer provides normal acceleration (an ) and tangential 

acceleration ( at ). 

When all the sensors are online, the general state equations can be defined as: 

s(k) = s(k −1)+ v(k −1) ⋅ Δk + 1
2
a(k −1) ⋅ Δk( )

2
+
1
6
j(k −1) ⋅ Δk( )

3

 

v(k) = v(k −1)+ a(k −1) ⋅ Δk + 1
2
j(k −1) ⋅ Δk( )

2

 

a(k) = a(k −1)+ j(k −1) ⋅ Δk  

As shown in the above equations, the jerk j  (acceleration change) in this 

study’s equations are included as the factor responsible for the noise in the 

measurements; therefore, the jerk term is represented as the prediction noise (σ p ) . Also, 

in the equations, Δk  represents the time difference between the current iteration (k)  and 

the previous iteration (k −1)  of the system.    

From the above equations the different models used in this setup are defined as: 

Constant Location Model (CL) 

s(k) = s(k −1)+σ ps

v(k) = 0
a(k) = 0     (1) 

Constant Velocity Model (CV) 

s(k) = s(k −1)+ v(k −1) ⋅ Δk +σ ps

v(k) = v(k −1)+σ pv

a(k) = 0   (2) 

Constant Acceleration Model (CA) 
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s(k) = s(k −1)+ v(k −1) ⋅ Δk + 1
2
a(k −1) ⋅ Δk( )

2
+σ ps

v(k) = v(k −1)+ a(k −1) ⋅ Δk +σ pv

a(k) = a(k −1)+σ pa  (3) 

In the flow of this setup (Figure 14), when a sensor goes offline and the data 

needed for the models are not present, for example velocity, the missing data are 

derived from the data obtained by the remaining online sensors, making this estimation 

more accurate than only using the offline previous reading of the sensor to estimate 

what would be its current value.  This is insufficient, however, as the longer a sensor 

remains offline the more noise is accumulated in the estimation of its value, which in 

turn affects the overall prediction of the future spatial location of the vehicle. To handle 

this properly, we have to dynamically modify the noise covariance matrices. 

 

Figure 14: Flow-chart of our DRWDE system. 

 

2.3.2. The Q Matrix in the Kalman Filter 
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The process noise covariance (Q) of the KF is defined based on the estimated 

prediction noise (σ p ) . A simple approach to estimate this is by using an extensive dataset 

of common scenarios. For this system, because this research wanted to be able to 

handle sensors going offline at any given time and for any given period of time, an 

innovative method was devised that makes the Q matrix dynamic, allowing the noise to 

vary depending on the number of iterations the different variables go through without 

getting an actual measurement from the corresponding sensor. 

But, before going into the details of the dynamic process noise covariance 

matrix, it is useful to understand theoretically the errors introduced into the system 

when one or more sensors are offline and how to improve the estimation. 

 

2.3.2.1. Mathematical Framework for Improvement 

A discrete and dynamic lineal system can be generally expressed as shown 

below, where k  is the current instance and k +1 is the future instant for which the data 

are being estimated.  

xk+1 = φk ⋅ xk +ψk ⋅uk +wk
w 'k+1 = Hk+1 ⋅ xk+1 + vk+1  

Given the intermediate data for the instant tk between the instances where all 

sensors are online ( ti  and ti+1), it is possible to make a prediction for the instant tk+1  

posteriori to tk , which will also be posteriori to ti , which will most probably result in a 

better prediction than if using the instant ti for an estimation farther ahead in time.  Two 

approaches handled the missing data when sensors are offline: 
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The first option is to fill in the missing measurements with those of x̂k+1 , which 

is the prediction to the intermediate instant. The risk for the minimal quadratic error is 

x̂ − E(x)( )
t
⋅M x̂ − E(x)( )+ trace MP#$ %&

 where M is the defined positive matrix of the quadratic 

error, and 
P = E x̂ − E(x)( ) ⋅ x̂ − E(x)( )

t

 [43], with the corresponding reduction of the 

actual measurements when sensors are online. 

The second option is to calculate, with the current data obtained from the online 

sensors, the noise errors for the given small time interval, and obtain a better 

approximation of the missing measurements, with the goal of obtaining a better Q 

covariance matrix. 

In the first option, the error will generally be greater, the greater the interval x̂  

and E(x) . In the second option there may not always be a relationship that will yield a 

good estimation, but experimental runs can help evaluate this approach to determine if 

the estimation is indeed better. 

As proven in A.3, a smaller trace of the Q matrix would suppose a general 

improvement of the covariance matrix of the process, and, therefore, the resulting 

estimation. However, if a sufficiently general condition is required, then there is a need 

to study the matrix E mk+1mk+1
t!

"
#
$  for each specific case. 

To approximate the unknown magnitudes, if x = x0x1...xn( )
t

 verifies that xl+1 = xl  

∀l = 0,1,...,n−1, and xn is the function we have for known measurements in the 

intermediate instances, it is possible to approximate any xp  for p = 0,1,...,n−1through a 

Taylor polynomial as shown in A.4.  
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With the new data obtained from the online sensors, the process can be repeated 

for the next intermediate instances tk+1,tk+2 ,... ; which, in general, the error will continue 

to increase as the time gap increases. The exact value of the errors will be unknown in 

general, so this research will have to be bounded through statistical estimations; even 

though, in reality, the actual implementation, and not the theoretical validation of the 

formulas, will be the one to determine if there is an improvement in the estimations. 

For this, it must be taken into account that, due to the cumulative error accumulated 

with each iteration, the excessive number of iterations will be counterproductive, and 

will make the estimations worse.   

In the case that the function of the more frequent known measurements xq is not 

x0  or xn , it will suffice to consider on one hand x0...xq( ) , and on the other hand 

y0...ym( ) = x0...xm( ) , and proceed with each group accordingly. If there were more functions 

with known measurement data, in general, the remaining would be estimated using the 

closest one, or one of the closest ones. 

2.3.2.2. Dynamic Process Noise Covariance (Q) 

In the case when all the sensors are available, the formulas for the CA models 

will depend on the location, velocity and acceleration measurements in a given instant, 

and also will depend on the prediction noise σ p . In this case σ p  is based on the jerk ( j ), 

which will have a variable and unknown value. Based on the Lagrange form of the 

remainder of Taylor’s formula, there is a value for j  which will yield the exact 

measurements. Therefore, to set an upper bound of the expected value (E ), it suffices to 

identify an upper bound for j , and calculate the corresponding integrals to obtain each 



 50 

E . But, because in a real time execution of the system all the values of j  are not 

known ahead of time, this research made it a moving range so the system can 

dynamically tune itself. 

In summary, to determine Q = E[σ pσ p
T ]  , this research starts by defining jk  

(acceleration change) as the least upper bound (supremum) of the dataset  collected so 

far, i.e. 
max{ jtk , jnk , jtk−1 , jnk−1 ... jtk0

, jnk0
}
. 

If the state vector defined in section 2.2 and the Kalman models defined in 

section 2.3.1 is used, and if jn  is to the right of jt , and for the CA model 

(3), x(k) = F (k) ⋅ x(k −1)+σ p  has: 

x(k) =

1 Δk 1
2
(Δk)2

0 1 Δk
0 0 1

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

⋅ x(k −1)+

1
6
j(Δk)3

1
2
j(Δk)2

j(Δk)

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
 (4) 

Furthermore, in this system it will also take into account the error in the 

estimations for location, velocity and acceleration when the sensor providing the 

corresponding value is offline, and consider for how long it has been offline. 

Now, given Mk '
(x)  as the total measurement error of a variable x  such that in 

the step when all sensors are online m = 0 , and in the following m  step(s) only the 

accelerometer sensor is online.  Because sensors can go offline independently of each 

other, a different m  is needed to identify each sensor: m1  for the GPS sensor, m2  for the 

ScanTool sensor, and m3  for the accelerometer. 

Therefore, this research can now define Q as shown below. 
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QCA =
M (s)2 M (sv) M (sa)
M (vs) M (v)2 M (va)
M (as) M (av) M (a)2

!

"

#
#
#
#

$

%

&
&
&
&
  (5) 

So it can now derive each of the process error elements in the Q matrix.  For the 

position elements (x/y) it is obtained that 
E M 2 s( )!
"

#
$≤
(Δk)6

36
jk−i
2

i=0

m1−1

∑
, with the details shown in 

A.5.  Then, using a similar approach, it was found that for the velocity elements (x/y) 

E M 2 v( )!
"

#
$≤
(Δk)4

4
jk−i

i=0

m2−1

∑
, and, finally, for the acceleration elements (n/t) it was derived 

E M 2 a( )!
"

#
$≤ (Δk)

2 jk−i
2

i=0

m3−1

∑
. Also, for the non-zero elements outside of the diagonal, it was 

calculated that 
E M s ⋅ v( )"
#

$
%= E M v ⋅ s( )"

#
$
%≤
(Δk)5

12
jk−i
2

i=0

m1|2−1

∑
. 

For a given tangential or normal acceleration, the locations and velocities in the 

axis directions can be any; therefore, the location and velocity variables are 

independent from the value of the tangential or normal accelerations. And, similarly, 

the tangential and normal accelerations are independent of each other. Therefore, the 

expected value of those errors are zero; and the final Q matrix that will dynamically 

increase the corresponding measurement error proportionally to how long some sensors 

(mi ) have been offline (Δk ) is defined below.  

QCA =

(Δk)6

36
jk−i
2

i=0

m1−1

∑ (Δk)5

12
jk−i
2

i=0

m1|2−1

∑ 0

(Δk)5

12
jk−i
2

i=0

m1|2−1

∑ (Δk)4

4
jk−i

i=0

m2−1

∑ 0

0 0 (Δk)2 jk−i
2

i=0

m3−1

∑

$

%

&
&
&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)
)
)

  (6) 
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Using a similar approach as shown above, this research can derive the dynamic 

Q matrix for the CV model as shown below. 

QCV =

(Δk)4

4
ak−i
2

i=0

m1−1

∑ (Δk)3

2
ak−i
2

i=0

m1|2−1

∑

(Δk)3

2
ak−i
2

i=0

m1|2−1

∑ (Δk)2 ak−i
2

i=0

m2−1

∑

$

%

&
&
&
&
&
&
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(

)
)
)
)
)
)

   (7) 

And for the CL model  QCL = (Δk)2 vk−i
2

i=0

m1−1

∑
$

%
&
&

'

(
)
)
 

These Q matrices will be used in the KF prediction step to estimate the error 

covariance for each of the models. And, as shown in the Q matrices above, the moment 

a sensor comes back online (mi = 0 ), the corresponding element in the dynamic Q 

matrix can be reset to its minimum value. 

 

2.4. Evaluation Criteria 

To verify the improvements of using the DRWDE we will implement and 

compare the results of the following setups: 

• Synchronous sensors using a common KF+IMM implementation (GPS @1Hz, 

ScanTool @1Hz, and Accelerometer @1Hz) 

• Asynchronous sensors using our dynamic DRWDE implementation (GPS @1Hz, 

ScanTool  @1Hz, and Accelerometer @10Hz) 

The first setup is to get the IMM working at 1Hz, which will only run when all 

sensors are online; therefore, not really using the dynamic part of the Q matrix.  

The DRWDE setup is to increase the frequency of the system to 10Hz to try to 

take advantage of all the readings from the accelerometer, and try to correct the 
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predictions sooner, instead of having to wait for the all sensors to come back online, as 

in the first setup. This second setup uses the dynamic Q matrix technique described in 

section 2.3.2 to account for the error in the estimation of the data when some sensors 

are offline. 

Using the above two setups helps to track improvements to the overall trajectory 

prediction when the frequency of the system increases along with the proper handling 

of the accumulated error in the predictions. If the DRWDE is flexible enough to handle 

all the different synchronous and asynchronous, homogeneous and heterogeneous data 

from the sensors in use, improvements should be seen on the predicted future locations; 

and the system should be able to detect and correct a spatial change in the vehicle much 

sooner than when the system is forced to run at the speed of its slowest sensor. 

The evaluation criteria will be based on comparing the actual prediction errors 

for both the DRWDE and IMM 1Hz systems against the true location data obtained 

from the GPS receiver. Both systems will be run through the same trajectory, and the 

results looked at in several different ways. First, this research will look at the average 

prediction error for whole trajectory, but then also separate the trajectory into straight 

lines, smooth curves and sharp curves, to better evaluate both systems in the different 

scenarios. This research will also select one specific smooth curve and one specific 

sharp curve, and it will look at those results in greater detail, calculating Root Mean 

Square (RMS) values using the actual and predicted position S of both systems. 

 
RMS =

Sk − Sk−3( )
2

k

k '

∑
k '− k( )  
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The goal is to determine quantitatively the improvements in prediction error of 

the DRWDE system in the different types of trajectory. 

 

2.5. Experimental Performance of the DRWDE System 

2.5.1. Dataset Characteristics 

The dataset consists of measurements from the three sensors while driving a 

vehicle for over one hour. The trajectory followed is shown in Figure 15, where the 

vehicle followed the route marked in red. 

For this experiment, the GPS sensor takes measurements of the current 

geographical coordinates in degrees, heading in degrees, and velocity in miles per hour 

every 1 second. These measurements were converted to meters, radians, and meters per 

second respectively. 

The ScanTool reads the measurements of the velocity determined by sensors 

coupled to the wheels of the vehicle in miles per hour every 1 second. This 

measurement is more accurate than the one obtained from the GPS, so it is used instead 

of the one from the GPS (except when it is not available). 

The last sensor used in this experiment is an accelerometer, which takes 

measurements of the normal and tangential accelerations in volts every 0.1 seconds. 

Using a calibration formula provided by the manufacturer of the sensor, the conversion 

is units to meters per second squared. 
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Figure 15: Map of whole trajectory in Mansfield City, CT (Google maps). 

To be able to create a useful dataset of the data recorded from the trajectory 

shown in Figure 15, this research had to create scripts to map the values from the log 

file of each sensor to each other, using the timestamp as the common reference between 

them. In the end a dataset was created with all the desired measurements in columns, 

with all available readings in a row for each timestamp. Because only the accelerometer 

works at 10Hz, many of the rows only contain acceleration measurements, and this is 

where the system comes into action and takes advantage of these extra measurements. 

Table 4 shows the average and standard deviations of the data used, to take a general 

look at the characteristics of the dataset worked with. 

For this experiment the focus was on predicting a trajectory when the vehicle is 

going through curves, which are the more problematic areas. To be able to evaluate this 

better,  the dataset of the whole trajectory was classified into straight lines, smooth 

curves, and sharp curves. To determine whether a set of consecutive points in the 
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trajectory was a curve or a straight line the change in the heading after a period of 2 

seconds was observed; if more than 2°, then it was defined as a curve. And, to 

determine if the curve was a sharp one, the change had to be greater than 10°, otherwise 

it was defined as a smooth curve. 

 

Table 4: Representative Data Set 

 
Distance 

(m)  

Velocity 

(m / s)  

Acc.norm 

(m / s2 )  

Acc.tang 

(m / s2 )  

Whole 

Trajectory 

16.34 

±6.97 

15.20 

±5.86 

-0.44 

±1.10 

0.69 

±0.58 

Smooth 

Curves 

19.04 

±5.58 

17.66 

±4.97 

-1.69 

±1.72 

0.04 

±0.53 

Sharp 

Curves 

10.59 

±6.84 

9.36 

±5.78 

0.37 

±1.34 

1.19 

±0.58 

     Values represent median ± standard deviation of all data points used. 

 

Looking at Table 4 it can be seen that the dataset used for this experiment 

agrees with how a vehicle would be driven under normal conditions. For example, the 

standard deviations are not very different from each other for the distance and velocity 

measured by the sensors, which is expected, as the values do not change much from 

one point to the next for an average vehicle driving on normal roads. The average for 

distance and velocity are smaller for the smooth curves than for the sharp curves, which 

means that the vehicle’s speed is more constant through the smooth curves than the 
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sharp curves. The change in movement for sharp curves agrees with how a vehicle 

would behave in such a scenario, as it will usually have to slow down considerably 

while turning and then accelerate again as the drivers get a handle on the curve.  

Since the main problem with trajectory estimation is during curves based on 

research reviewed in section 2.1, this research selected a specific curved scenario from 

Figure 15 and use that dataset to evaluate the DRWDE system and its performance. 

 

 

Figure 16: Map of selected curve for testing (Google maps). 

 
The section of the trajectory shown in Figure 16 was selected because it has a 

sharp curve and then a smooth constant curve, which should be a good scenario to test 

if the system can correct its prediction when the vehicle enters the curve, and maintain 

it through the whole curve. Sharper curves allow our dynamic system to be tested 

properly as the curve ends up being very short and does not allow a slower system to 

estimate a trajectory during the actual turn if it only lasts a few of seconds. The 

“Selected Smooth Curve” refers to the longer curve in Figure 16 (~30 seconds of data), 

and the “Selected Sharp Curve” represents the small curve (bottom left) shown in 

Figure 16 as well (~10 seconds of data). 
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The DRWDE setup for this experiment, as explained in section 2.3, runs at the 

frequency of its fastest sensor (10Hz), and uses the dynamic matrices accounting for the 

accumulated noise of the missing measurements. Also, as mentioned in section 2.4, this 

data will be running through a common IMM implementation (Synchronous Sensors) 

to be able to compare results to the DRWDE setup.  

Since the common IMM can only run at the frequency of its slowest sensor, this 

research defined Δk  to be 1 second (1Hz), and, because all sensors are available during 

each iteration of the system, this setup does not utilize the dynamic portion of the Q 

matrix defined in section 2.3.2. 

Also, to properly compare this run to the 10Hz run, it cannot be assumed the 

vehicle would move in a straight line between each second, so a 10 intermediate points 

between each second based on the dynamics of the vehicle was defined. This allows to 

more accurately compare both runs visually. 

2.5.2. Evaluation of the Prediction Error 

Following the evaluation criteria defined in section 2.4, the data recorded from 

the trajectory shown in Figure 15 was executed through both systems. The results for 

the Overall Trajectory, All Smooth and Sharp Curves, and the Selected Smooth and 

Sharp Curves were then recorded in Table 5. 

Table 5: Average Prediction Error (3 s ahead) 

 DRWDE IMM 1Hz 

Whole Trajectory 2.719±2.030 3.044±1.800 

All Smooth Curves 2.811±1.925 2.972±1.737 
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All Sharp Curves 3.236±2.844 4.456±3.307 

Selected Smooth Curve 3.051±1.173 3.212±1.205 

Selected Sharp Curve 2.277±2.388 4.090±2.241 

Values represent median prediction error in meters ± standard deviation of all data 

points used. 

 

Table 5 shows the average prediction errors for both the DRWDE and the IMM 

1Hz run for broader scenarios as well as for our selected curves. If the results for the 

Whole Trajectory were observed, only a negligible improvement was seen, as expected, 

since the number of sharp curves in the whole trajectory is very small. Similarly, there 

is almost no improvement if All Smooth Curves were observed in the trajectory when 

compared to the IMM 1Hz. But, since the DRWDE was created to react quickly to 

changes, it was observed that when taken into account All Sharp Curves, improvements 

to the 3 second ahead estimation were seen that are considerably greater for the 

DRWDE system (3.2m vs. 4.5m). 

If now the focus is on the Selected Smooth and Sharp Curves, the result of the 

IMM run at 1Hz is shown in Figure 17. The red dotted line shows the predicted 

location every second (red dots) and the intermediate points derived in between each 

second (dotted line) to simply show visually what may be happening in between each 

second. 

Now, for the DRWDE run, Δk  was defined to be 0.1 seconds, which is the 

period of its fastest sensor (10Hz). Since only the accelerometer runs at 10Hz, there 

will be many system iterations where the other sensors will be offline, and this is where 
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the dynamic Q variance introduced in section 2.3.2 come into play. The result of the 

DRWDE run at 10Hz is also shown in Figure 17, as the blue solid line. 

 

 

Figure 17: Comparison between actual path (GPS) and predicted paths by both systems (DRWDE 
10Hz and IMM 1Hz) for the selected curves. Sharp curve between (1) and (2), Smooth curve between 

(2) and (3). Direction of movement shown by arrow. 

 
Figure 17 displays the actual trajectory of the vehicle represented by the GPS 

line, and then the predicted locations 3 seconds earlier in time by both the IMM 1Hz 

run and the DRWDE 10Hz run (prediction performance is shown later in Figure 19). It 

can be observed that both the 1Hz and the 10Hz runs behave somewhat similarly during 

the smooth curve; this is also represented quantitatively in Table 5.  

The average error in the predicted locations during the Selected Smooth Curve 

is only slightly better for the DRWDE (3.0m vs. 3.2m). The benefits are clearly seen in 

the Selected Sharp Curve, where the average error is much lower for the DRWDE 

(2.3m vs. 4.1m). Looking at Figure 17, it can be seen that, as the vehicle enters the 

sharp curve (bottom left), the slower system (red dotted line) is estimating its location 

to be in more of a straight line, as the vehicle is travelling in a straight line before 
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taking the exit ramp (see Figure 16). It can even be seen that there are three red dots 

(each dot represents 1 second) before the system realizes that the vehicle is turning and 

can adjust its 3-second ahead prediction accordingly. Looking at the blue line 

representing the DRWDE run, it can be seen that its line is a lot closer to where the 

vehicle actually moves through 3 seconds later in time. The DRWDE 10Hz system is 

able to react and correct its future prediction much quicker, using its dynamic 

covariance matrices to take into account how long a measurement has not been 

corrected by an actual sensor. As shown in Table 5, in the Selected Sharp Curve a 

difference of over 1.5 meters in accuracy between the two systems can be seen, which 

is a significant improvement. 

2.5.3. RMS Error Distribution 

A simple visualization of the error distribution for the “Whole Trajectory”, “All 

Smooth Curves” and “All Sharp Curves” prediction errors is shown in Figure 18. The 

charts have the individual prediction errors categorized into groups, where group “0-1” 

in the x axis contains all the prediction errors that fall between 0 and 1 meter, and the y 

axis shows how frequently the errors fall in each of the groups. 
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Figure 18: Frequency of each system's 3 s ahead prediction error. (a) uses data from the whole 
trajectory; (b) represents data for all smooth curves; (c) represents data for all sharp curves. 

Looking at the histograms in Figure 18 it can be observed how the DRWDE 

system tends to be more often in the first groups, which represent less prediction error. 

The taller the bars on a given group means that more often the error falls in that error 

group; therefore, the taller the blue bars on the smaller groups, the more accurate the 

system is. 

In Figure 18-a it can only be seen that the DRWDE outperform the IMM 1Hz 

by a small amount when looking at the Overall Trajectory, and a larger difference when 

looking at the results for All Smooth Curves in Figure 18-b. However, when All Sharp 

Curves in Figure 18-c is observed, a more distinct difference in the prediction accuracy 

between the DRWDE and the IMM 1Hz can be seen. To analyze the results for 

Selected Smooth and Sharp curves specifically, as shown in Figure 17, Figure 19 was 

created.  

Figure 19-a represents the error between the estimated future distance the 

vehicle will travel in the following 3seconds, and the actual distance travelled as 
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recorded by the GPS sensor for the Selected Smooth and Sharp Curves. Time zero in 

the figure is set a few seconds before the vehicle enters the sharp curve shown in Figure 

16. Right at the beginning of the sharp curve, the error in the estimation is quite large 

for both systems, and that is due because the vehicle is moving in a somewhat straight 

path, so the estimated future position assumes the vehicle will continue to move in the 

same direction. As soon as the vehicle enters the sharp curve, the first system to detect 

this change in direction is the DRWDE 10Hz, as expected, as it can detect this change 

using the accelerometer, while the GPS is still offline. Once the GPS sensor is back 

online, the 1Hz system can also detect this change and can correct its prediction. The 

upward trend of the lines in Figure 19 simply indicates that the vehicle is slowly 

increasing its velocity and is covering more distance in the same period of time (3-

seconds). Only dots at each full second are shown to be able to compare between the 

two systems. 

For a different view of the kind of errors the DRWDE 10Hz system has, Figure 

19-b was created, which shows the root mean squared (RMS) error between the 

estimated future location (3-seconds later) and the actual location measured by the 

GPS.  
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Figure 19: Position error for 3 s ahead predictions during our selected curves as shown in Figure 17. 
(a) displays actual vs. predicted distances travelled per s, and (b) displays RMS error in each 

prediction. 

 
Looking at Figure 18 and Table 5, it can be concluded that the DRWDE setup 

really stands out when abrupt changes occur in the movement of the vehicle, and, only 

then, the fast reaction time shows substantial improvements in the prediction. These 

abrupt changes could be a sharp curve, as illustrated in this experiment, but they could 

also be, for example, a quick maneuver of the vehicle to correct its direction to avoid a 

collision. 

2.5.4. Computational Complexity 

For completeness, it was also looked into how much of an extra load it is to run 

the DRWDE system with the dynamic noise matrices compared to the simpler approach 

of the 1Hz IMM system. Because the dataset had already been recorded, only the 

processing time of the system itself was measured. If taking into account the processing 

time of the sensors, especially the accelerometer, the CPU times would be even larger. 
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Table 6: Computational Complexity 

 tic/toc (s) cputime (s) Data points Avg. load 

DRWDE 389.72 382.88 17,525 1.31 

IMM 1Hz 48.53 47.29 2,187 1.30 

Measurements taken on system running through the whole trajectory. 

 

Table 6 shows different Matlab commands used to measure CPU times for each 

of the systems. All two commands (tic/toc and cputime) measure actual CPU time used 

by the Matlab code, but this research is showing both to get a better idea on the 

accuracy of the measurements. The column tic/toc represents actual start/stop time of 

execution, while cputime displays the actual CPU time in that was spent executing the 

code. The system was run on a machine with a dual core 2.0 GHz CPU. 

As expected, Table 6 shows that the DRWDE 10Hz system requires a lot more 

processing power than the simpler IMM 1Hz system. This is as expected, since the 

DRWDE system has to handle close to 10 times more data points, and, therefore, yields 

much longer CPU times. On the same token, if looking at the last column, it can be  

observed that the average load times for every record processed is almost the same for 

both systems, which shows that the extra computational requirements of the DRWDE’s 

dynamic error processing and measurement noise matrices are not significant at all. 

Despite the large amount of CPU time the DEWDE system takes, consider that 

it is processing about half an hour’s worth of data in a little over six minutes. A 

problem is not foreseen with the same computer handling the DRWDE system plus the 
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extra load added by the operating system and also by the sensors themselves as data is 

being recorded during a live run. 

 

2.6. Conclusions 

The key contribution of this research’s DRWDE system is the introduction of 

dynamic noise covariance matrix merged together by an Interacting Multiple Models 

(IMM). The longer a sensor remains offline, the less accurate the overall prediction is, 

so the dynamic Q presented in section 2.3.2 tells the system how true the value being 

used is.  

This DRWDE setup only had three sensors, of which only one of them was 

running at 10Hz. The accelerometer is very sensitive to changes in the road, including 

road bumps; so, relying on this sensor to estimate the values of the other sensors when 

they were offline had its challenges. However, looking at section 5, it can be concluded 

that by properly handling the accumulating error for missing measurements, running 

the system at a higher frequency can yield better predictions, especially when abrupt 

changes occur. The key here was to be able to accurately account for the accumulating 

error when sensors go offline and remain offline for an unknown amount of time. 

An improvement to this system could be to add more sensors running at high 

frequencies, for redundancy and to minimize the times sensors are offline. Also, this 

system could be combined with the previous research [42], where the predicted location 

is compared against geographical information system (GIS) to reduce false predictions. 
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CHAPTER 3: Can Smartphones Fill in the V2V/V2I Implementation Gap? 

 

3.1. Introduction 

The overall function of an Intelligent Transport Systems (ITS) is to improve 

decision-making, often in real time, improving the operation of the entire transport 

system. This can go from systems with intelligent route planning implemented to avoid 

some specific type of traffic in certain areas [1], to keeping track of the position of the 

vehicle for infrastructure assessment [2], to systems designed to aid with the prevention 

of collisions between the vehicles [3]. For this study the research is going to focus on 

the collision avoidance aspect of ITS, and will evaluate the use of smartphones as an 

intermediate step to accelerate the implementation of V2V and vehicle to infrastructure 

(V2I) communications between all vehicles. 

There are two main types of collision avoidance systems:  self-sufficient and 

interactive systems. Self-sufficient systems are those that can obtain enough 

information from their own sensors, such as those in [4-6], where they placed sensors 

around the vehicle to maintain a safe following distance or to detect vehicles in the 

surroundings. Interactive systems are those that, as the name implies, interact with the 

infrastructure and/or other vehicles, such as researched in [7-9], where their systems 

send spatial information to nearby vehicles to estimate the probability of a future 

collision. While self-sufficient systems are limited to line of sight detection, the 

interactive systems account for scenarios farther ahead or even around corners or 

intersections by predicting and communicating the future estimated trajectories. 
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The V2V and V2I areas are being well researched these days [10-16], as 

government is carefully evaluating the implementation of new technologies to make 

our roads safer. In an article published on February 3, 2014 by the United States 

Department of Transportation (USDOT) [17], the National Highway Safety 

Administration announced its decision to begin taking the next steps toward 

implementing V2V technology in all new cars and trucks, after years of research and 

unprecedented coordination between industry and across government. 

 

 

Figure 20: Illustration for V2V and V2I from [17] 

 

When the steps toward implementing V2V technology are defined, car and 

truck manufacturers will be mandated to enable this in their new vehicles.  But, because 

V2V relies on other vehicles nearby also supporting V2V technology, there will be a 

gap of many years when the V2V/V2I will not able to show its true potential in 

improving road safety. In an article published by Forbes on March 14, 2013 [18], they 

calculated that the age of the average vehicle on the road is at a record high of 10.8 

years, which means there are vehicles on the roads that are 20 years old. Keeping this in 

mind, it is a long time to wait to ensure full V2V/V2I reliability. 
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The contribution of this research includes the evaluation of using the 

smartphone as a temporary hook into the V2V/V2I infrastructure for collision 

avoidance warnings. If the evaluation were successful, it would allow for some 

companies to make programs for the different smartphones that could send and receive 

information to the V2V/V2I infrastructure. Allowing drivers of older vehicles the 

possibility of taking advantage of this new technology would not only benefit them, but 

it would also benefit the rest of the V2V/V2I enabled vehicles, as the number of 

vehicles participating in the system would be much greater. Also, since many drivers 

may already own a smartphone, there could be no extra cost to them, which encourages 

even more people to participate. 

Another contribution that helps in the reliable implementation of using the 

smartphone’s internal sensors are the stricter laws being passed in many states and 

countries; drivers are slowly being discouraged from touching their phones while 

driving, which places the phone on a fixed location in the vehicle, usually the 

dashboard. With the phone not being moved from its position while driving, one can 

assume that the internal accelerometer and gyroscope sensor measurements from a 

smartphone are produced by the dynamics of the vehicle itself. 

Since this research wants to evaluate the use of a smartphone’s built-in sensors 

in a setup that could be used in a collision avoidance system, it will focus on the 

prediction of a vehicle’s future trajectory, and compare the results with the use of more 

robust sensors mounted on a vehicle to predict the same future trajectory. Given that 

multiple sensors will be used, some type of sensor fusion will be needed to use the 

different measurements in the prediction. 
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Multi Sensor Data Fusion (MSDF) techniques are used in many diverse fields, 

although most of the literature addresses the fields of military target tracking or 

autonomous robotics [19]. MSDF is required to combine and process data; which has 

been traditionally performed by some form of Kalman [20] or Bayesian filters. 

Furthermore, there can be two ways of setting up a MSDF system: centralized or 

decentralized. While a centralized approach suffices for most common scenarios where 

the sensors are synchronous, a decentralized approach is more convenient when the 

sensors should be treated independently [21-25], as with asynchronous sensors. 

In [26], the authors discuss one solution they have developed: the Optimal 

Asynchronous Track Fusion Algorithm (OATFA), which evolved from their earlier 

research on an Asynchronous/Synchronous Track Fusion (ASTF) [27]. They base their 

technique in the Interacting Multiple Model (IMM) algorithm, but replaced the 

conventional Kalman filters with their OATFA (which contains several Kalman filters 

of its own). The OATFA treats each sensor separately, passing the output from each to 

a dedicated Kalman filter, departing from the idea that the best way to fuse data is to 

deliver it all to a central fusion engine. The results from the IMM-OATFA show 

position estimation errors half of those of what the conventional IMM produces. 

However, as pointed out by the same authors in [28], all measurement data must be 

processed before the fusion algorithm is executed. With a similar approach as the 

technique described above, the authors of [29] create asynchronous holds, where, from 

a sequence of inputs sampled at a slow sampling rate, it generates a continuous signal 

that may be discretized at a high sampling rate. Despite the benefits of making the 

asynchronous system into a synchronous one by using these methods, restrictions arise 
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where, if for some reason a sensor is delayed in providing its data or is off-line for a 

few cycles. The whole system needs to wait, as it is designed to work with certain data 

at specific rates. 

To evaluate whether smartphones can fill in the V2V/V2I implementation gap, a 

system to estimate a future position of a vehicle will be set up to determine where the 

vehicle will be 3 seconds later. A system like this could be used to communicate its 

future location to other vehicles or to the infrastructure and detect if there could be a 

collision, and that is why this research is using it to evaluate the built-in sensors of 

smartphones compared to sensors mounted on a vehicle like a manufacturer will do 

once the USDOT mandates it for new vehicles. This system presents the trajectory 

estimation at 3 seconds ahead of time, which is based on the average human reaction 

time of 1.5 seconds to stop a vehicle [30]. Looking at 3 seconds ahead of time was 

chosen as a reference point that is double the reaction time of an average human being. 

In reality, this number will probably vary in relation to the speed and the type of the 

vehicle since a faster or heavier vehicle will need more time to slow down, but it is 

taken as a reference point. 

The next section will introduce the position estimation framework used in this 

system, and how it is setup. Target Motion Analysis (TMA) is needed to calculate an 

estimate of the range and velocity, for which this research opted to use KF, explained in 

section 3.2. The position and attribute estimation is the process of taking the associated 

measurements and calculating the current state of the target (vehicle), especially when 

some of the associated measurements are unavailable. A Dead-Reckoning (DR) 

approach was selected to complement the KF and be able to run the system at the 
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frequency of its fastest sensor and update its prediction as soon as a change is detected. 

Also used was the IMM to merge the predictions and obtain one future position of the 

vehicle. 

 

3.2. Position Estimation with Kalman Filters 

The KF [31] was first proposed in the 1960s and it has been the most commonly 

used technique in target tracking and robot navigation since. The basic KF has been 

presented as a form of Bayesian filter [32], which is an optimal estimator for linear 

Gaussian systems. From a series of noisy measurements, the KF is capable of 

estimating the state of the system in a two-step process: correct and then predict [33-

35]. 

The elements of this state vector (x) are: position, velocity, and acceleration of 

the vehicle. The position (xv) and velocity (vv) components of the state estimate have an 

x and y component to them (east-west and north-south directions), and the acceleration 

(av) has an n and t component to it (normal and tangential acceleration). So, the full 

state vector matrix will be X=( xx, xy, vx, vy, an, at ). 

The estimated error covariance (P) for the state estimate is based on the 

relationships between each of the elements to the others. The error covariance matrix is 

a dataset that specifies the estimated accuracy in the observation errors between all 

possible pairs of vertical levels. 

Together with P, the Jacobian matrix of the measurement model (H), the 

measurement noise covariance (R), and with the measurement noise (σ m ) , are used to 
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calculate the Kalman Gain (K). Once the K is calculated, the system looks at the 

measured data (Z) to identify the error of the predicted position and uses it to adjust P. 

The KF has a long history of accurately predicting future states of a moving 

target, and has been applied to many different fields [36-39], including transportation, 

which is why it was selected for this research.  

This research also opted for the use of IMM, which can calculate the probability 

of success of each KF model at every filter execution, providing a combined solution 

for the vehicle behavior [40-42]. These probabilities are calculated according to a 

Markov model for the transition between maneuver states, as detailed in [43]. To 

implement the Markov model, it is assumed that at each execution time, there is a 

probability pij that the vehicle will make the transition from model state i to state j.  

In Johnson and Krishnamurthy’s paper [44], they describe the IMM as a 

recursive suboptimal algorithm that consists of four core steps, interacting with the KF 

steps as illustrated in Figure 21. 

 

Figure 21: Flow-chart for three KF in an IMM framework. 
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The four step IMM process starts with the calculation of the mixing 

probabilities, which uses the transition matrix and the previous iteration mode 

probabilities µk−1(i)  to compute the normalized mixing probabilities µk (i | j) . The mixing 

probabilities are re-computed each time the filter iterates before the mixing step.  

The second step uses the mixing probabilities, which are used to compute new 

initial conditions for each of the n filters.  The initial state vectors are formed as the 

weighted average of all of the filter state vectors from the previous iteration xk−1
oj

.  The 

error covariance corresponding to each of the new state vectors is computed as the 

weighted average of the previous iteration error covariance’s conditioned with the 

spread of the means 
Pk−1
oj( ) . 

The third step calculates mode matched filtering, using the 
0
1ˆ
j

kx −  and 
0
1
j

kP − , the 

bank of n Kalman filters produce outputs ˆ
j
kx , the covariance matrix

j
kP , and the 

probability density function ( )n kf z  for each filter (n). 

The fourth set of calculations begins once the new initial conditions are 

computed; the filtering step generates a new state vector, error covariance and 

likelihood function for each of the filter models.  The probability update step then 

computes the individual filter probability µk ( j)( ) as the normalized product of the 

likelihood function and the corresponding mixing probability normalization factor.   

The estimate and covariance combination is used for output purposes only 

x̂k = µk
j

j =1

n

∑ ⋅ x̂k
j

; it is not part of the algorithm recursions. 
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3.3. Position Estimation Framework Using GPS and Accelerometer Sensors 

For the overall trajectory estimation of a vehicle, modified Kalman Filters (KF) 

running in an Interacting Multiple Models (IMM) framework will be used. The KF and 

IMM are commonly used in the trajectory estimation.  

In this setup, the GPS sensor provides the location (sx ,sy ) , the velocity ( v ) and 

the angle of direction (β ) using north as the zero. Then the accelerometer provides 

normal acceleration ( an ) and tangential acceleration (at ). 

When all the sensors are online, the general state equations can be defined as: 

s(k) = s(k −1)+ v(k −1) ⋅ Δk + 1
2
a(k −1) ⋅ Δk 2 + 1

6
j(k −1) ⋅ Δk 3

 

v(k) = v(k −1)+ a(k −1) ⋅ Δk + 1
2
j(k −1) ⋅ Δk 2

 

a(k) = a(k −1)+ j(k −1) ⋅ Δk  

As shown in the above equations, included are the jerk j  (acceleration change) 

in the equations as the factor responsible for the noise in the measurements; therefore, 

the jerk term can be represented as the prediction noise (σ p ) . Also, in the equations, Δk  

represents the time difference between the current iteration (k)  and the previous 

iteration (k −1)  of the system.    

From the above general state equations, the different models to be used in this 

setup are defined, which represents the different spatial states the vehicle can be found 

in: 

Constant Location Model (CL) 
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s(k) = s(k −1)+σ ps

v(k) = 0
a(k) = 0  (1) 

Constant Velocity Model (CV) 

s(k) = s(k −1)+ v(k −1) ⋅ Δk +σ ps

v(k) = v(k −1)+σ pv

a(k) = 0  (2) 

Constant Acceleration Model (CA) 

s(k) = s(k −1)+ v(k −1) ⋅ Δk + 1
2
a(k −1) ⋅ Δk 2 +σ ps

v(k) = v(k −1)+ a(k −1) ⋅ Δk +σ pv

a(k) = a(k −1)+σ pa  (3) 

At any given time a measurement could be missing, either due to the sensor not 

being able to take the measurement (system running at a faster frequency than the 

sensor, malfunction or no satellites in view for the GPS) or due to the processing CPU 

not being able to read/write fast enough. When a measurement is absent and the value 

is needed for the models, the missing values are calculated from the measurements 

obtained by the remaining sensors based on previous real measurements, not 

estimations, when available.  
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Figure 22: Flow-chart of the position estimation framework used by the vehicle-mounted and 

smartphone sensors. 

Using the DR approach outlined in Figure 22 is more accurate than waiting until 

all measurements are available again, or predicting these measurements a second time, 

using only previously estimated values. Only when all measurements are missing, 

which will be very unlikely, the system will use all the previously estimated values to 

feed the models and obtain the new position estimation. 

 

3.4. Car and Smartphone Sensors Setup for a V2V/V2I System 

As described towards the end of section 3.1, this research will estimate the 

future position of the vehicle 3 seconds away using the framework described in section 

3.3, which is something that could be shared with other vehicles or with the 

infrastructure as part of a collision avoidance system. The vehicle-mounted (VM) 

sensors specifically setup for this specific task will be used, like manufacturers will 
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implement in their vehicles, but smartphone (SP) sensors will also need to be evaluated 

when used for position estimation. 

To properly evaluate if smartphones can be used in a V2V/V2I system, this 

research plans to set a baseline by running the VM measurements through the position 

estimation framework defined in section 3.3 and calculate the position errors in the 

estimations by comparing them to the actual GPS data. Once the baseline is established 

and a determination of what are the amounts of prediction errors obtained, the 

individual SP measurements will be fed into the same position estimation framework 

and the error will be calculated in the position estimations, as illustrated in Figure 23. 

This research can then proceed to compare the results between the different sensors 

used and evaluate whether the smartphones’ built-in sensors yield similar prediction 

errors or now. 

 

 

 

Figure 23: VM and SP GPS and accelerometer sensors using the same framework  

to predict future positions. 

 

The setup on the VM sensors consists of a Garmin 16HVS GPS receiver 

running at 1Hz and a Crossbow 3-axis accelerometer running at 10Hz. An 



 85 

AutoEnginuity OBDII ScanTool (which obtains the velocity from the vehicle’s internal 

system at 1Hz) is also available, but it will not be used in this evaluation because the 

smartphones this research is using do not have a way of connecting into the ODBII 

system. The data from the sensors used is post processed from the different log files 

recorded on an earlier date, and matched based on time stamps. Since these were 

mounted on a van from the University of Connecticut, it is labeled as UConn data. 

For the smartphones used in this evaluation, some were selected from different 

manufacturers and at different price ranges, to identify if there is some limitation on 

which ones can be used to fill in the gap in the V2V/V2I implementation. Also 

smartphones are used with different operating systems as well, to improve the 

evaluation experiment and take that into account as well. They were mounted securely 

on the vehicle to ensure the accelerometer readings truly reflect the dynamics of the 

vehicle. Because several smartphones were running at the same time, they were 

mounted in the trunk where they would still have a clear view of the sky, as shown in 

Figure 24, but a more common implementation would be to mount only one of them on 

the dashboard. Figure 24 shows six smartphones, but one of them did not record any 

GPS data so it had to be removed from this experiment. The smartphones used in the 

evaluation of whether they could be used to fill in the V2V/V2I implementation gap are 

listed in Table 7. 
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Figure 24: Smartphones securely mounted in the trunk of a hatchback vehicle. 

 

Table 7: Smartphone specs 

Manufacturer Model OS  Rel. Date  Base Price  

Alcatel OneTouch 908F Android 2.2 6/2011 $130 

HTC Desire C Android 4.0 6/2012 $150 

LG Lucid VS 840 Android 2.3 4/2012 $300 

Apple iPhone 3GS iOS 5.1 6/2009 $199* 

Apple iPhone 5 iOS 7.01 9/2012 $650 

Details about these smartphones obtained from gsmarena.com. 

* Subsidized price; this model could not be purchased without a contract, so real price 

could be two or three times more. 

All smartphones listed above have a built-in accelerometer sensor that can take 

measurements at 10Hz, but no details were found on their model or sensitivity. These 

smartphones also have a built-in GPS sensor, and only very basic information was 

found about them. The iPhone 5 has an A-GPS/GLONASS sensor, while the other four 

smartphones do not have support for GLONASS (Global Navigation Satellite System 
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by the Russians). Also, both Apple smartphones can take measurements from the GPS 

sensor at 10Hz, while the other three smartphones can only take measurements at 1Hz.  

Some smartphones also have a three-axis gyro sensor and a compass, which 

could be used as well to better estimate a position of a vehicle; but to match more 

closely the sensors mounted on the vehicle, and have a more equal comparison, they 

were not used in this experiment. 

The measurements from the internal sensors of the iPhone smartphones are 

recorded by running the SensorLog v1.4 application written by B. Thomas. The 

sensors’ measurements on the Android smartphones are recorded using the Data 

Recording v1.0.2.0 application written by T. Wolf. The data used is labeled by 

smartphone manufacturer, except where more than one device per manufacturer, in 

which case the data was labeled by model name. 

To properly exercise the position estimation framework described in section 3.3, 

the route shown in Figure 25 for this evaluation was selected, which contains several 

curves (smooth and sharp) and straight paths, driven at different speeds in the larger 

and smaller roads. There were also some traffic lights on the way, and even a U-turn, 

providing also some stop and go scenarios. The route driven, shown in Figure 25, is 

approximately 44 km long and takes about 45 minutes to drive all of it. 
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Figure 25: Map of the entire recorded route near the University of Connecticut. 

 

3.5. Evaluation Criteria 

To evaluate whether smartphones can properly fill in the V2V/V2I 

implementation gap, the position estimation error between the VM sensors and the SP 

sensors was selected using the same KF models and IMM framework. To start, the 

position estimation error between both setups will be evaluated for the whole trajectory 

recorded. Also, since position estimation errors tend to increase during non-straight 

paths, this research will also divide the trajectory recorded into smooth and sharp 

curves. To determine whether a set of consecutive points in the trajectory is a curve or a 

straight line, the change in the heading (angle) between the current heading and the 

heading 2 seconds before was looked at; if more than 5° then it was defined as a curve. 

And, to determine if the curve is a sharp one, the change has to be greater than 20°, 

otherwise it was defined as a smooth curve. 
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Figure 26: Automated classification of road segments based on heading angle changes  

every 2 s shown on a small subset of Figure 25. 

 

One singular set of curves extracted from the whole route is shown in Figure 26. 

In it one can see the different markers indicating which positions were assigned as part 

of a straight path, smooth curve, or sharp curve. It is not perfect as can be seen 

sometimes a segment type fluctuates between types for a single or a couple of 

positions. But, for the most part, the classification shown in Figure 26 is logical, and it 

determines it is made of 74% straight paths, 18% smooth curves, and 8% sharp curves. 

This classification is only used to partition the whole dataset and be able to analyze the 

results in groups, as this research expects position estimation errors to increase as going 

from a straight path to a sharp curve. 

To calculate the position estimation error in each step, this research will 

compare the estimated position to the actual position measured by the GPS 3 seconds 

later. This will allow a dataset of calculated errors to be built for the whole trajectory, 

that then it can be divided into the route sections described in the previous paragraph. 
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This research will look at average prediction errors and root mean square (RMS) 

prediction errors to try to evaluate whether the sensors built into smartphones can 

properly fill in the V2V/V2I implementation gap.  

RMS =
errk − errk−1( )

2

k

k '

∑
k '− k( )

 

For this experiment, a tolerance of 10% from the position estimation errors 

obtained from the VM sensors will be used; therefore, if a smartphone yields more than 

10% higher estimation error than the VM sensors, then it will be concluded that such a 

smartphone cannot be used as a temporary solution to fill in the V2V/V2I 

implementation gap. Due to the limitations explained at the end of section 3.4 with not 

being able to record the measurements of the VM and all SP sensors during the same 

drive, the research cannot try to also compare actual measurement differences between 

the VM and SP measurements to help with this evaluation, as it is known they will be 

different because they are recorded on different drives of the same route shown in 

Figure 25. 

 

3.6. Experimental Evaluation 

3.6.1. Dataset Characteristics 

The characteristics of the complete recorded dataset is shown in Table 8, where 

the mean and standard deviation for the position difference between each second, 

velocity, normal acceleration, and tangential acceleration are displayed. 
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Table 8: Representative Datasets 

 Device Distance (m)  Velocity (m / s)  Acc.norm (m / s2 )  Acc.tang (m / s2 )  

 UConn 18.14±8.99 17.95±8.45 -0.17±0.58 0.61±0.60 
W

ho
le

 T
ra

je
ct

or
y Alcatel 16.31±8.40 16.30±7.95 -0.12±0.73 0.66±0.95 

HTC 16.21±8.24 16.29±8.01 -0.09±0.56 0.64±0.68 

LG 16.79±9.13 16.45±7.83 -0.18±0.58 0.61±0.64 

iPhone3GS 16.59±9.37 16.21±7.96 -0.22±0.74 0.51±0.88 

iPhone5 16.25±9.09 16.24±8.18 -0.11±0.79 0.62±0.82 

 UConn 19.43±8.29 19.02±8.14 -0.16±0.48 0.55±0.57 

St
ra

ig
ht

 P
at

hs
 

Alcatel 18.76±6.92 18.72±6.70 -0.12±0.72 0.64±0.95 

HTC 18.40±6.56 18.38±6.51 -0.10±0.54 0.62±0.57 

LG 18.98±7.74 18.42±6.65 -0.18±0.56 0.59±0.50 

iPhone3GS 16.96±9.04 16.63±7.77 -0.20±0.74 0.50±0.88 

iPhone5 16.23±9.24 16.23±8.29 -0.10±0.78 0.60±0.73 

 UConn 16.19±9.26 15.81±8.03 -0.29±0.89 0.74±0.63 

Sm
oo

th
 C

ur
ve

s 

Alcatel 14.66±7.90 14.58±7.36 -0.11±0.75 0.73±0.98 

HTC 12.76±8.32 12.92±7.99 -0.07±0.64 0.78±0.91 

LG 14.01±9.28 13.53±7.65 -0.21±0.64 0.68±0.82 

iPhone3GS 12.47±11.31 11.99±8.49 -0.34±0.70 0.58±0.87 

iPhone5 17.99±6.64 17.86±5.83 -0.16±0.89 0.82±1.29 

S

ha
rp

  

C

ur
ve

s 

UConn 8.52±9.17 9.91±7.65 -0.10±0.89 1.01±0.68 

Alcatel 7.13±9.60 7.49±8.35 -0.16±0.79 0.63±0.88 
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HTC 5.29±9.05 5.97±8.68 -0.07±0.64 0.59±0.94 

LG 5.48±8.86 7.09±8.01 -0.16±0.66 0.59±1.03 

iPhone3GS 16.30±12.13 13.50±9.49 -0.15±1.05 0.70±0.89 

iPhone5 12.00±8.54 12.18±8.54 -0.50±1.04 0.62±1.58 

Values represent median ± standard deviation of all sensor measurements collected by 

each device (~25000 data points). 

Looking at Table 8, it is quickly noticed that the values between the Distance 

and Velocity columns are very similar, as expected, because this research is measuring 

the position change every 1 second. Also, as mentioned in section 3.4, the UConn data 

was obtained on an earlier date, so it can be seen that, overall, the University of 

Connecticut van was driven a little bit faster than the vehicle with the smartphones. 

Also, because all five smartphones were in the same vehicle, their sensor measurements 

should have been very similar, which is not the case in several places. For example, for 

sharp curves, the two iPhones seemed to be moving at a much faster speed than the 

other three devices, while during straight paths they seemed to be moving a little slower 

than the rest. The tangential acceleration for all devices seems to be fairly consistent 

across all devices, while the normal acceleration is not as consistent, especially when 

smooth and sharp curves were observed, which could imply that some sensors are more 

sensitive than others. 

The accelerations shown in Table 8, both normal and tangential, have large 

deviation values compared to their calculated mean values, which is not expected in 

straight lines. This could be caused by bumps on the road or uneven pavement, where 

the sensitive accelerometers record a gravity pull in some direction, but quickly returns 
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back to the "normal" state, not being any real heading change in the vehicle’s 

trajectory. 

3.6.2. Evaluation of Position Estimation Error 

To set up the IMM it is necessary to calculate the transition probability matrix, 

so the GPS position measurements for the whole trajectory shown in Figure 25 was 

used. From this full GPS log that contained multiple scenarios, it was determined which 

transition occurs frame by frame by comparing the actual measurements from the GPS 

to the smoothed measurements. The smoothing of the data was done with a rolling 

window using a combination of median smoothing, split the sequence, and Hann’s 

sequence, which removed any abrupt changes from the data. The type of spatial change, 

such as no change, a constant change, and so on, determines each transition. Similarly, 

by calculating the covariance of the differences in the measurements to each other, the 

measurement noise covariance matrix (R) was obtained. And last, by calculating the 

covariance of the differences in the measurements compared to their respective x and y 

components, the process covariance noise (Q) for each KF was obtained. From this 

type of information, calculating the frequency the vehicle changes from one state to 

another, the transition probability matrix below is derived. 

 

pij =
0.177 0.656 0.167
0.027 0.576 0.397
0.023 0.501 0.478
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#
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Next each of the devices were run through the same IMM system using the KF 

models described in section 3.3, and for each new measurement obtained from any of 

the sensors, the system predicts the position of where the vehicle is going to be 3 

seconds later in time. 

Table 9: RMS prediction error (3 s ahead) 

 UConn Alcatel  HTC  LG iPhone3GS iPhone5 

Whole 

  Trajectory 

1.21 

±2.64 

1.88 

±2.62 

1.00 

±1.03 

1.13 

±1.25 

2.34 

±3.00 

1.41 

±2.08 

Straight 

    Paths 

0.92 

±1.65 

1.77 

±2.56 

0.89 

±1.10 

0.98 

±1.13 

2.21 

±2.81 

1.35 

±2.05 

Smooth 

    Curves 

2.28 

±4.87 

1.89 

±2.14 

0.97 

±0.97 

1.07 

±1.23 

3.49 

±4.02 

1.86 

±2.40 

Sharp 

    Curves 

2.51 

±4.36 

2.11 

±3.83 

1.21 

±1.23 

1.43 

±1.59 

4.78 

±4.70 

2.13 

±2.05 

Whole 

    Trajectory 
0% +55% -17% -7% +93% +17% 

Straight 

    Paths 
0% +92% -3% +7% +140% +47% 

Smooth 

    Curves 
0% -17% -57% -53% +53% -18% 

Sharp 

    Curves 
0% -16% -52% -77% +90% -15% 
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The upper half contains values representing median prediction error in meters ± 

standard deviation by all devices for trajectory shown in Figure 25 (~25000 data 

points). The lower half contains percentage deviation compared to UConn errors. 

Table 9 displays the RMS distance between the predicted and actual positions. 

This prediction error can only be calculated when the time stamps between the 

predicted position and GPS reading match. It is assumed that the GPS reading is correct 

and it calculates the distance vector to the predicted position. Then the mean and 

standard deviation was calculated of all the calculated RMS error vectors for the whole 

trajectory and also for the classified by segment types. 

As expected, the prediction error was less during straight paths, and it increased 

during curves. Based on the values recorded in Table 9, the prediction errors can double 

during curves. Also, the prediction errors for smooth curves were better than during the 

sharp curves, which makes sense because, in a smooth curve, the vehicle is changing its 

heading less abruptly than in a sharp curve, allowing the system more time to 

recalculate and correct its next prediction. 

This research also observed that the prediction error was not the same between 

all devices, and sometimes a device that has a small prediction error in one segment 

type may not be as good on a different segment type, making it hard to draw 

conclusions from Table 9. In spite of these results, if one looks at the percent deviation 

of prediction errors compared to the UConn results, it can be narrowed down to the 

HTC and LG cellphones having the smaller prediction errors overall and meeting the 

tolerance of no more than 10% more error than obtained with the UConn sensors. 
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Figure 27: Prediction errors during (a) straight paths, (b) smooth curves, and (c) sharp curves. 

 

Figure 27 is another way of representing the prediction errors for each of the 

devices in the different segment types. The boxplots display the median value as the 

solid line dividing the box in two, and then the upper and lower half of the boxes 

represent the inter-quartiles, which together represent 50% of the calculated prediction 

errors. The upper whisker indicates that 75% of the errors fall below it, and the lower 

whisker indicates the 25% marker. With this in mind it can be seen that for the straight 

paths, except for the iPhone3GS, the boxes are very short, which means that the 

prediction errors have a high level of agreement. One can also see small boxes in the 

smooth and sharp curves for the HTC and LG, so it can be observed that their 

predictions are fairly consistent most of the time, unlike the boxplot for the iPhone3GS 

where it is a very large box indicating a very low level of agreement between the 

predictions. Also, the lower the boxes to the x-axis, the smaller the prediction errors, so 

a small box close to the x-axis, like the HTC in sharp curves, or the UConn in straight 

lines, represents a very accurate prediction system. Again, looking at the boxplots for 
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the five smartphones, one can visually pick the HTC and LG to be fairly good, then 

maybe Alcatel and iPhone5, though it looks like the iPhone5 is not as reliable as 

Alcatel during sharp curves. 

When looking at the iPhone3GS results, both in Table 9 and Figure 27, it can be 

observed that this device has prediction errors much larger than the other devices. 

Especially when this research looks at the boxplot, it can be seen that the inter-quartiles 

cover a very large range of error values, making this device very unreliable. It seems 

this device has a problem, so this research looked at its GPS readings and it seems that 

it is losing its signal quite often, introducing more errors to what was assumed to be the 

“true” position (see Figure 28). This could be due to a defective GPS unit on the device, 

but no other iPhone3GS was available to confirm if this was the case or if this model 

has a hard time locking onto a GPS signal when trees/buildings are blocking it. 

 

 

Figure 28: GPS recorded positions by each device on a small subset of Figure 25. Trajectory is in a 

counter-clockwise direction. 
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In Figure 28 one can see that most devices recorded very similar position 

measurements from their GPS sensor in this small subset set of curves from the whole 

route, except for the iPhone3GS, which seems to be very different than the others. As 

mentioned earlier, it will be assumed that it had a defective GPS sensor, but this 

research will leave the results in this experiment just in case older smartphones had 

GPS units that cannot easily lock satellite signals and the results from this old device 

are valid. 

To look at a subset of the whole route shown in Figure 25, the couple of curves 

shown in Figure 28 was selected, and represented the results in a similar way, but only 

for this small subset of the dataset. This selected segment of the route represents only 

0.8 km (36% straight path, 44% smooth curve, and 20% sharp curve as displayed in 

Figure 26), which takes around 10 seconds to go through. 

When looking at Table 10, the first difference that might be observed when 

comparing it to the results for the whole route shown in Table 9 is that the average 

prediction error for whole trajectory of the selected subset is different. In this case, 

straight paths are a small percentage of the whole selected subset while smooth curves 

are the most abundant. For this very specific set of curves, the UConn data is better 

than any of the smartphones in all trajectory types. The LG device yields the smallest 

prediction errors of all the smartphones, and still within the selected 10% tolerance 

when comparing to the UConn results. The next best devices seem to be the HTC and 

iPhone5 smartphones where, despite having prediction errors over the 10% tolerance, 

their prediction errors are around 20% worse than the UConn results. 
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Table 10: RMS prediction error (3 s ahead) 

 UConn Alcatel  HTC  LG iPhone3GS iPhone5 

Whole 

    Trajectory 

1.46 

±0.97 

3.22 

±3.64 

1.81 

±1.87 

1.56 

±1.65 

6.34 

±6.95 

1.79 

±2.18 

Straight 

    Paths 

0.69 

±0.53 

2.96 

±4.60 

1.42 

±2.11 

0.77 

±0.58 

4.50 

±5.76 

0.95 

±0.74 

Smooth 

    Curves 

1.69 

±0.54 

3.13 

±2.18 

1.75 

±1.43 

1.84 

±2.13 

11.57 

±6792 

1.57 

±0.85 

Sharp 

    Curves 

1.98 

±0.97 

3.52 

±3.81 

2.67 

±2.03 

2.19 

±1.26 

14.73 

±6.24 

2.69 

±3.12 

Values represent median prediction error in RMS meters ± standard deviation by all 

devices for the selected curve shown in Figure 28 (~550 data points).  

 

Another difference one can observe in Table 10 is that, unlike the results in 

Table 9, the HTC device did not seem to perform as well in this selected set of curves 

than when evaluated over the whole route. Even when looking at the results for Smooth 

and Sharp Curves, the HTC results were always worse than the UConn prediction 

errors, which is not the case when looking at the data in Table 9. In Table 10, it seems 

that most smartphones performed worse than the UConn setup in this set of curves. 

Since this is consistent across all smartphones, it can be concluded that there was 

something on the curves that affected the prediction, like bumps or maybe unleveled 

pavement, especially over the sharp curve section. 
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Figure 29: Prediction errors for the selected route subset shown in Figure 28. 

 

The boxplots shown in Figure 29 also show that the UConn data yields better 

position predictions than the other devices, and one can also see that the LG and 

iPhone5 are the next two devices with the centerline and the inter-quartiles closest to 

the x-axis. For some reason, in this specific set of curves, the HTC did not perform as 

well, with a larger box telling that there was not as much agreement in the prediction 

errors as with the LG and iPhone5 devices which have a smaller box. Again one can 

see that in Figure 29, the iPhone3GS is extremely unreliable, which, as stated earlier, 

could be caused by the poor GPS measurements obtained from this device. 

A visual representation of the prediction errors during the small subset set of 

curves previously mentioned is shown in Figure 30, where each predicted trajectory is 

compared to the actual GPS position measured 3 seconds later. One can observe that 

for some devices there is a smooth trajectory of predicted positions, like for the UConn 

and LG, closely followed by the HTC; but, it can also be observed that some other 

devices are constantly correcting its predicted position drastically, causing all those 

spikes during the curves. One positive thing of looking at the predicted position errors 

as shown in Figure 30 is that, despite conclusions obtained from Table 10 and Figure 

29, that the iPhone5 was predicting a future position better than several of the other 
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devices, this research would not think this is a reliable device after looking at Figure 

30. Therefore, even though Figure 30 cannot be used by itself to draw some final 

conclusions, it is a very useful addition to Table 10 and Figure 29. 

 

 

Figure 30: Dotted lines represent GPS measurements while solid lines represent IMM predicted 

positions 3 s earlier for (a) UConn, (b) Alcatel, (c) HTC, (d) LG, (e) iPhone3GS, and (f) iPhone5. 

 

3.6.3. Computational Complexity 

For completeness, this research also looked into how much of a load it is to run 

this IMM system with the different devices explored in this chapter. Because the 

dataset had already been recorded, only the processing time of the system itself was 

measured. If taking into account the processing time of the reading and recording data 

from the sensors, the CPU times may be larger. 
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Table 11: Computational complexity 

 tic/toc (s) cputime (s) Data points Avg. load 

UConn 992.53 992.60 20081 71.83 

Alcatel 2179.15 2179.23 27141 109.11 

HTC 2079.86 2079.98 27104 104.62 

LG 2135.83 2135.90 27060 108.62 

iPhone3GS 5010.49 5010.61 26976 153.83 

iPhone5 5211.41 5211.47 26878 148.47 

Measurements taken on IMM system running through the whole trajectory. 

 

Table 11 shows different Matlab commands used to measure CPU times for 

each of the devices. All two commands (tic/toc and cputime) measure actual CPU time 

used by the Matlab code, but this research is showing both to get a better idea on the 

accuracy of the measurements. The column tic/toc represents actual start/stop time of 

execution, while cputime displays the actual CPU time in that was spent executing the 

code. The system was run on a machine with a dual core 2.0 GHz CPU. 

As expected, the values for the different devices are very similar in Table 11, as 

most of them had a very similar number of records in their dataset. One can observe 

that the UConn dataset had a smaller number of records, due to the machine reading 

and recording the sensors mounted on the van was not fast enough and kept skipping 

some of the 10Hz measurements, and hence a shorter processing time. Another 

difference that is easily observed in the processing time columns is that it took more 

than twice as long to process the iPhones’ datasets. The reason behind this is that the 
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iPhones recorded the GPS positions at 10Hz, and the Matlab code had to convert each 

latitude/longitude coordinate degrees to spatial distances in meters, and this had to be 

done 10 times more often than for the other devices. 

 

3.7. Conclusions 

Based on the results shown in Table 9 and Table 10, it seems possible to use the 

built-in sensors of some smartphones to predict a future position of a vehicle. It is not 

as clear, however, how to determine the criteria that identifies which smartphone will 

perform well before testing it. For example, though price seemed to play a small role, 

the HTC smartphone is one of the cheaper ones used in this experiment, and it 

performed quite well in some scenarios. The more expensive LG device yielded more 

reliable results in more scenarios, so price could be a factor; but then the iPhone 5, 

being the most expensive one, did not contribute well to this factor. 

This research also learned that the use of the accelerometer sensor from the 

smartphones might not be the most accurate sensor to detect a spatial change in the 

vehicle’s movement. They are meant to measure the tilting of the device and are 

sometimes very sensitive, making the system used to believe there are abrupt changes 

when maybe it was a bump on the road. Also, because they are measuring the 

gravitational pull, when the device is at an angle, it records that gravitational pull on 

that axis, which may not be related to a centrifugal force caused by a curve.  

Future research will include the use of other sensors also found in smartphones. 

A couple of the smartphones used have gyroscope sensors, but this as well could give 

false calculations due to road bumps. A few of the smartphones also have a compass 
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sensor which, with reliable magnetic north measurements, could be a more accurate 

sensor to detect as soon as the vehicle is changing heading at the start of a curve. 
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CHAPTER 4: Conclusions 

 

For this research different KF was implemented to account for the identified 

possible states a vehicle can be found in, and they were set up to be part of an IMM 

system that predicted future locations of the vehicle 3 seconds ahead.  

To improve the prediction error of the IMM setup, in Chapter an iterated 

geometrical error detection method was added based on the GIS system. The 

assumption made was that the automobile would remain on the road, so predictions of 

future locations that fell outside of the road were corrected accordingly, making great 

reduction to prediction error during curves, as shown in the experimental results.  

In Chapter 2 this research looked into running the IMM setup at the rate of its 

fastest sensor to improve the prediction error. The key contribution of the DRWDE 

system is the introduction of dynamic noise covariance matrix (Q). The longer a sensor 

remains offline, the less accurate the predicted value is, so the dynamic Q tells the KF 

how true the value being used really is, by accurately accounting for the accumulating 

error the longer a sensor remains offline. The experiments showed improvements in 

predicted positions between 25%-50%. 

Chapter 3 was not about improving the prediction error, but more of an 

evaluation whether common smartphones could also be used to predict the future 

locations of a vehicle 3 seconds ahead. Based on the results obtained from the 

experiment, it seems possible to use the built-in sensors of some of the smartphones to 

predict a future position, though the use of the accelerometer sensor is easily biased by 

bumps or inclines on the road. 
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In summary, this research demonstrated two methods that yield more accurate 

predictions of future locations of a vehicle: 

1. Correct predicted positions using GIS data to ensure that they always 

fall on a road. 

2. Run system at the rate of its fastest sensor while correctly accounting for 

accumulated error caused by slower sensors. 

This research also proposed a possible temporary solution to the new V2V and 

V2I collision avoidance systems, so that older vehicles can also contribute, making it a 

more useful system from earlier on, without having to wait many years until most cars 

on the road support this since they were manufactured. 
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Appendices 

 

A.0. Preface  

This section contains information supporting or clarifying the research 

described in the previous chapters. It contains acronym and symbol definitions, 

mathematical derivations for formulas introduced, and some representative code used 

in this research. 

Below is a list of the items included in this appendix: 

A.1 ............. Acronym Definitions 

A.2 ............. Symbol Definitions 

A.3 ............. Mathematical limitation for improved estimations 

A.4 ............. Taylor polynomial representation with its respective error 

A.5 ............. Proof of the expected value calculations 

A.6 ............. Representative Visual Basic code 

A.7 ............. Representative Matlab code 

 

A.1. Acronym Definitions  

ASTF Asynchronous/Synchronous Track Fusion  

CA Constant Acceleration  

CJ Constant Jerk  

CL Constant Location  

CPU Central Processing Unit  
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CV Constant Velocity  

USDOT United States Department of Transportation  

DR Dead-Reckoning  

DRWDE Dead-Reckoning with Dynamic Error  

FAA Federal Aviation Administration  

GIS Geographic Information System  

GPS Global Positioning System  

IMM Interacting Multiple Model  

ITS Intelligent Transportation System  

KF Kalman Filter  

MSDF Multi Sensor Data Fusion  

OATFA Optimal Asynchronous Track Fusion Algorithm  

RMS Root Mean Square  

SP Smartphone  

TMA Target Motion Analysis  

V2I Vehicle to infrastructure  

V2V Vehicle to vehicle  

VM Vehicle-Mounted  

WAAS Wide Area Augmentation System  
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A.2. Symbol Definitions 

P Estimated error covariance 

H Jacobian of the measurement model 

A Jacobian of the system model with respect to state 

K  Kalman Gain 

Z Measurement data 

mσ  
Measurement noise 

R  Measurement noise covariance 

N Number of filters 

pσ  
Prediction noise 

λ Probability 

Q  Process noise covariance 

x  State estimate 

Dk Time interval 

pij Transition probability matrix 
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A.3. Mathematical limitation for improved estimations: 

 

Because xi+1 = I + Fk+1(ti+1 − tk+1)!" #$+w 'k+1(ti+1 − tk+1)  

xi+1 = I + Fk+1(ti+1 − tk+1)!" #$xk+1 +w 'k+1(ti+1 − tk+1)− I + Fk+1(ti+1 − tk+1)!" #$uk+1  

the corresponding process covariance matrix will be 

m = w 'k+1(ti+1 − tk+1)− I + Fk+1(ti+1 − tk+1)!" #$uk+1 . If  ϕ l  is the vector formed by the elements 

of row l  from Fk+1 , 
ϕ l ⋅uk+1 ≤ ϕ l ⋅ uk+1 , and if we operate 

at
E mk+1

t mk+1!
"

#
$≤ E w 'i
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$
%&
(ti+1 − tk+1)

2 + E uk+1
2!

"#
$
%&
1+ uk+1∑( )(ti+1 − tk+1)!
"

#
$
2

 we can define 

the trace of the covariance matrix of the process as 

E w 'i
t w 'i!

"
#
$(ti+1 − tk+1)

2 = E w 'i
2!

"#
$
%&
(ti+1 − tk+1)

2

, which will show an improvement when: 

E w 'i
2!

"#
$
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2 + E uk+1
2!

"#
$
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which can be rewritten as:  

E uk+1
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%&
< trace(Qi ) ⋅
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!

"
#

$

%
&
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"
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A.4. Taylor polynomial representation with its respective error:  
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xp (t) = xp (ti )+
xp+1(ti )
1!

Δtk + ...+
xn (ti )
(n− p)!

Δtk( )
n−p

+
1

(n− p)!
!xn (ti − y)

n−p dy
ti

t

∫  

The measurements of the variables will have an error. Given xl  the obtained 

measurement of xl , the corresponding error εl = xl − xl , in this first step, is due to 

w ti( )Δtk . Then we can accordingly modify the Taylor polynomial as shown below: 

xp (t j ) = xp (ti )+
xp+1(ti )
1!

Δtk + ...+
xn (ti )
(n− p)!

Δtk( )
n−p

−
εm(ti )
(m− p)!m=p

n

∑ +
1

(n− p)!
!xn (ti − y)

n−p dy
ti

t

∫  

With this procedure, the measurement 
xp (ti )  of 

xp (ti )  will have an error of: 

ε j =
εm(ti )
(m− p)!m=p

n

∑ +
1

(n− p)!
xn (ti − y)

n−p dy
ti

t

∫
 

If the function of which we have known measurements in 
t j ∈ (ti ,ti+1)  is x0 , then:  

xp+1(c) = !xp (c) =
xp (tk )− xp (ti )

Δtk
=

xp+1(ti )+
xp+2 (ti )
2!

(Δtk )
1 + ...+

xn (ti )
(n− p)!

(Δtk )
n−p−1 −

1
Δtk

ε p (tk )−
εm(ti )
(m− p)!

+
m=p

n

∑ 1
(n− p)!

!xn (ti − y)
n−p dy

ti

t

∫
%

&
'
'

(

)
*
*

 

For a given c ∈ (ti ,tk ) , we can approximate 
xp+1(tk )  as: 

  
xp+1(t j ) = xp+1(ti )+

xp+2 (ti )
2!

(Δtk )
1 + ...+

xn (ti )
(n− p)!

(Δtk )
n−p−1

 

with an error of: 
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ε p+1(t j ) = xp+1(c)− xp+1(tk )+
1
Δtk

ε p (tk )−
εm(ti )
(m− p)!

+
m=p

n

∑ 1
(n− p)!

!xn (ti − y)
n−p dy

ti

t

∫
%

&
'
'

(

)
*
*

 

where the difference 
xp+1(c)− xp+1(t j ) , which depends on the stability of 

xp+1(t) , is 

expected to be lower as Δtk  is small. 

 

 

A.5. Proof of the expected value calculations for each prediction noise (σ p )  element in 

the process noise covariance (Q) matrix to show how to arrive at (6) starting from (5). 

 

Derivation for 
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And, 
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A.6. Representative Visual Basic code  

Sub Update_Current_Location() 
 

Locx_prev1 = Locx 
Locy_prev1 = Locy 
Locy = Kalman_Filters.Convert_Deg2Rad(curlat) 
Locx = Kalman_Filters.Convert_Deg2Rad(curlong) 
Vx_prev1 = Vx 
Vy_prev1 = Vy 
Vx = Locx - Locx_prev1 
Vy = Locy - Locy_prev1 
Ax_prev1 = Ax 
Ay_prev1 = Ay 
Ax = Vx - Vx_prev1 
Ay = Vy - Vy_prev1 
Jx_prev1 = Jx 
Jy_prev1 = Jy 
Jx = Ax - Ax_prev1 
Jy = Ay - Ay_prev1 
 
'Loading Z matrix with measured data 
Z(0, 0) = Locx: Z(1, 0) = Locy: Z(2, 0) = Vx: Z(3, 0) = Vy 
Z(4, 0) = Ax:   Z(5, 0) = Ay:   Z(6, 0) = Jx: Z(7, 0) = Jy 
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If (loop_cnt = PERIOD) Then 

B_cnt = 1  'seconds ahead to estimate 
 
CL_X_(0, 0) = Z(0, 0):   CL_X_(1, 0) = Z(1, 0):   CL_X_(2, 0) = 

Z(2, 0):     CL_X_(3, 0) = Z(3, 0) 
CL_X_(4, 0) = Z(4, 0):   CL_X_(5, 0) = Z(5, 0):   CL_X_(6, 0) = 

Z(6, 0):     CL_X_(7, 0) = Z(7, 0) 
CV_X_(0, 0) = Z(0, 0):   CV_X_(1, 0) = Z(1, 0):   CV_X_(2, 0) = 

Z(2, 0):     CV_X_(3, 0) = Z(3, 0) 
CV_X_(4, 0) = Z(4, 0):   CV_X_(5, 0) = Z(5, 0):   CV_X_(6, 0) = 

Z(6, 0):     CV_X_(7, 0) = Z(7, 0) 
CA_X_(0, 0) = Z(0, 0):   CA_X_(1, 0) = Z(1, 0):   CA_X_(2, 0) = 

Z(2, 0):     CA_X_(3, 0) = Z(3, 0) 
CA_X_(4, 0) = Z(4, 0):   CA_X_(5, 0) = Z(5, 0):   CA_X_(6, 0) = 

Z(6, 0):     CA_X_(7, 0) = Z(7, 0) 
CJ_X_(0, 0) = Z(0, 0):   CJ_X_(1, 0) = Z(1, 0):   CJ_X_(2, 0) = 

Z(2, 0):     CJ_X_(3, 0) = Z(3, 0) 
CJ_X_(4, 0) = Z(4, 0):   CJ_X_(5, 0) = Z(5, 0):   CJ_X_(6, 0) = 

Z(6, 0):     CJ_X_(7, 0) = Z(7, 0) 
 
'Predict next position with updated filter 
Call CL_model_predict 
Call CV_model_predict 
Call CA_model_predict 
Call CJ_model_predict 

 
ElseIf (loop_cnt > PERIOD) Then 
 

'Display Current Location 
Set objPin = objMap.FindPushpin("Current Location") 
objPin.Delete 
Set objLoc = objMap.GetLocation(curlat, curlong) 
objMap.AddPushpin objLoc, "Current Location" 
Set objCurLoc = objMap.FindPushpin("Current Location") 
objCurLoc.Symbol = 30 '82 
objCurLoc.Location.GoTo 
     
'----- EKF Correct Step ----- 
Call CL_model_correct   'Correct previous prediction with 

obtained data 
Call CV_model_correct   'Correct previous prediction with 

obtained data 
Call CA_model_correct   'Correct previous prediction with 

obtained data 
Call CJ_model_correct   'Correct previous prediction with 

obtained data 
 
'----- IMM Steps 1,2,3 ----- 
Call MM_filter_part1 
 
'----- EKF Predict Step ----- 
Call CL_model_predict   'Predict next position with updated 

filter 
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Call CV_model_predict   'Predict next position with updated 
filter 

Call CA_model_predict   'Predict next position with updated 
filter 

Call CJ_model_predict   'Predict next position with updated 
filter 

 
'----- IMM Steps 4,5 ----- 
Call MM_filter_part2 

 
'go into this extended loop of MMAE 
If (loop_cnt > PERIOD * 5) Then 
'---------------------------------------- 

For B = 2 To 3 
B_cnt = B 
delta_k_loop = 1 
 
'----- EKF Correct Step ----- 
'Correct previous prediction with obtained data 
Call CL_model_correct_loop    
Call CV_model_correct_loop    
Call CA_model_correct_loop    
Call CJ_model_correct_loop    
 
'----- IMM Steps 1,2,3 ----- 
Call MM_filter_part1_loop 
 
'----- EKF Predict Step ----- 
'Predict next position with updated filter 
Call CL_model_predict_loop    
Call CV_model_predict_loop   
Call CA_model_predict_loop   
Call CJ_model_predict_loop   
 
'----- IMM Steps 4,5 ----- 
Call MM_filter_part2_loop 

 
Next 

'---------------------------------------- 
End If 
 

End If 
 
loop_cnt = loop_cnt + 1 

End Sub 
 
 
Sub CL_model_correct() 
 

CL_HP2HT = Mat.Multiply(Mat.Multiply(H, CL_P2), HT) 
CL_VRVT = Mat.Multiply(Mat.Multiply(V, CL_R), VT) 
CL_S = Mat.Add(CL_HP2HT, CL_VRVT) 
CL_Sinv = Mat.Inv(CL_S) 
 
CL_P2HT = Mat.Multiply(CL_P2, HT) 
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CL_k = Mat.Multiply(CL_P2HT, CL_Sinv) 
 
CL_X_tmp = Mat.Add(CL_h_, Mat.Multiply(CL_k, Mat.Subtract(Z, 
CL_h_))) 
CL_P = Mat.Multiply(Mat.Subtract(i, Mat.Multiply(CL_k, H)), CL_P2) 
 
CL_X(0, 0) = CL_X_tmp(0, 0):    CL_X(1, 0) = CL_X_tmp(1, 0):    
CL_X(2, 0) = CL_X_tmp(2, 0):    CL_X(3, 0) = CL_X_tmp(3, 0) 
CL_X(4, 0) = CL_X_tmp(4, 0):    CL_X(5, 0) = CL_X_tmp(5, 0):    
CL_X(6, 0) = CL_X_tmp(6, 0):    CL_X(7, 0) = CL_X_tmp(7, 0) 
CL_X_(0, 0) = CL_X(0, 0):       CL_X_(1, 0) = CL_X(1, 0):       
CL_X_(2, 0) = CL_X(2, 0):       CL_X_(3, 0) = CL_X(3, 0) 
CL_X_(4, 0) = CL_X(4, 0):       CL_X_(5, 0) = CL_X(5, 0):       
CL_X_(6, 0) = CL_X(6, 0):       CL_X_(7, 0) = CL_X(7, 0) 

 
End Sub 
 
 
Sub CL_model_predict() 
 

CL_APAT = Mat.Multiply(Mat.Multiply(CL_A, CL_P), CL_AT) 
CL_WQWT = Mat.Multiply(Mat.Multiply(W, CL_Q), WT) 
CL_P2 = Mat.Add(CL_APAT, CL_WQWT) 
 
CL_h_(0, 0) = CL_X(0, 0): CL_h_(1, 0) = CL_X(1, 0): CL_h_(2, 0) = 
CL_X(2, 0): CL_h_(3, 0) = CL_X(3, 0) 
CL_h_(4, 0) = CL_X(4, 0): CL_h_(5, 0) = CL_X(5, 0): CL_h_(6, 0) = 
CL_X(6, 0): CL_h_(7, 0) = CL_X(7, 0) 

 
End Sub 
 
 
Sub CV_model_correct() 
 

CV_HP2HT = Mat.Multiply(Mat.Multiply(H, CV_P2), HT) 
CV_VRVT = Mat.Multiply(Mat.Multiply(V, CV_R), VT) 
CV_S = Mat.Add(CV_HP2HT, CV_VRVT) 
CV_Sinv = Mat.Inv(CV_S) 
 
CV_P2HT = Mat.Multiply(CV_P2, HT) 
CV_k = Mat.Multiply(CV_P2HT, CV_Sinv) 
 
CV_X_tmp = Mat.Add(CV_h_, Mat.Multiply(CV_k, Mat.Subtract(Z, 
CV_h_))) 
CV_P = Mat.Multiply(Mat.Subtract(i, Mat.Multiply(CV_k, H)), CV_P2) 
 
CV_X(0, 0) = CV_X_tmp(0, 0):    CV_X(1, 0) = CV_X_tmp(1, 0):    
CV_X(2, 0) = CV_X_tmp(2, 0):    CV_X(3, 0) = CV_X_tmp(3, 0) 
CV_X(4, 0) = CV_X_tmp(4, 0):    CV_X(5, 0) = CV_X_tmp(5, 0):    
CV_X(6, 0) = CV_X_tmp(6, 0):    CV_X(7, 0) = CV_X_tmp(7, 0) 
CV_X_(0, 0) = CV_X(0, 0):       CV_X_(1, 0) = CV_X(1, 0):       
CV_X_(2, 0) = CV_X(2, 0):       CV_X_(3, 0) = CV_X(3, 0) 
CV_X_(4, 0) = CV_X(4, 0):       CV_X_(5, 0) = CV_X(5, 0):       
CV_X_(6, 0) = CV_X(6, 0):       CV_X_(7, 0) = CV_X(7, 0) 
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End Sub 
 
 
Sub CV_model_predict() 
 

CV_X(0, 0) = CV_X_(0, 0) + CV_X_(2, 0) * delta_k 
CV_X(1, 0) = CV_X_(1, 0) + CV_X_(3, 0) * delta_k 
CV_X(2, 0) = CV_X_(2, 0) 
CV_X(3, 0) = CV_X_(3, 0) 
CV_X(4, 0) = 0 'CV_X_(4, 0) 
CV_X(5, 0) = 0 'CV_X_(5, 0) 
CV_X(6, 0) = 0 'CV_X_(6, 0) 
CV_X(7, 0) = 0 'CV_X_(7, 0) 
 
CV_APAT = Mat.Multiply(Mat.Multiply(CV_A, CV_P), CV_AT) 
CV_WQWT = Mat.Multiply(Mat.Multiply(W, CV_Q), WT) 
CV_P2 = Mat.Add(CV_APAT, CV_WQWT) 
 
CV_h_(0, 0) = CV_X(0, 0): CV_h_(1, 0) = CV_X(1, 0): CV_h_(2, 0) = 
CV_X(2, 0): CV_h_(3, 0) = CV_X(3, 0) 
CV_h_(4, 0) = CV_X(4, 0): CV_h_(5, 0) = CV_X(5, 0): CV_h_(6, 0) = 
CV_X(6, 0): CV_h_(7, 0) = CV_X(7, 0) 

 
End Sub 
 
 
Sub CA_model_correct() 
 

CA_HP2HT = Mat.Multiply(Mat.Multiply(H, CA_P2), HT) 
CA_VRVT = Mat.Multiply(Mat.Multiply(V, CA_R), VT) 
CA_S = Mat.Add(CA_HP2HT, CA_VRVT) 
CA_Sinv = Mat.Inv(CA_S) 
 
CA_P2HT = Mat.Multiply(CA_P2, HT) 
CA_k = Mat.Multiply(CA_P2HT, CA_Sinv) 
 
CA_X_tmp = Mat.Add(CA_h_, Mat.Multiply(CA_k, Mat.Subtract(Z, 
CA_h_))) 
CA_P = Mat.Multiply(Mat.Subtract(i, Mat.Multiply(CA_k, H)), CA_P2) 
CA_X(0, 0) = CA_X_tmp(0, 0):    CA_X(1, 0) = CA_X_tmp(1, 0):    
CA_X(2, 0) = CA_X_tmp(2, 0):    CA_X(3, 0) = CA_X_tmp(3, 0) 
CA_X(4, 0) = CA_X_tmp(4, 0):    CA_X(5, 0) = CA_X_tmp(5, 0):    
CA_X(6, 0) = CA_X_tmp(6, 0):    CA_X(7, 0) = CA_X_tmp(7, 0) 
CA_X_(0, 0) = CA_X(0, 0):       CA_X_(1, 0) = CA_X(1, 0):       
CA_X_(2, 0) = CA_X(2, 0):       CA_X_(3, 0) = CA_X(3, 0) 
CA_X_(4, 0) = CA_X(4, 0):       CA_X_(5, 0) = CA_X(5, 0):       
CA_X_(6, 0) = CA_X(6, 0):       CA_X_(7, 0) = CA_X(7, 0) 

 
End Sub 
 
 
Sub CA_model_predict() 
 

CA_X(0, 0) = CA_X_(0, 0) + CA_X_(2, 0) * delta_k + (1 / 2) * 
CA_X_(4, 0) * delta_k * delta_k 
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CA_X(1, 0) = CA_X_(1, 0) + CA_X_(3, 0) * delta_k + (1 / 2) * 
CA_X_(5, 0) * delta_k * delta_k 
CA_X(2, 0) = CA_X_(2, 0) + CA_X_(4, 0) * delta_k 
CA_X(3, 0) = CA_X_(3, 0) + CA_X_(5, 0) * delta_k 
CA_X(4, 0) = CA_X_(4, 0) 
CA_X(5, 0) = CA_X_(5, 0) 
CA_X(6, 0) = 0 'CA_X_(6, 0) 
CA_X(7, 0) = 0 'CA_X_(7, 0) 
 
 
CA_APAT = Mat.Multiply(Mat.Multiply(CA_A, CA_P), CA_AT) 
CA_WQWT = Mat.Multiply(Mat.Multiply(W, CA_Q), WT) 
CA_P2 = Mat.Add(CA_APAT, CA_WQWT) 
 
CA_h_(0, 0) = CA_X(0, 0): CA_h_(1, 0) = CA_X(1, 0): CA_h_(2, 0) = 
CA_X(2, 0): CA_h_(3, 0) = CA_X(3, 0) 
CA_h_(4, 0) = CA_X(4, 0): CA_h_(5, 0) = CA_X(5, 0): CA_h_(6, 0) = 
CA_X(6, 0): CA_h_(7, 0) = CA_X(7, 0) 

 
End Sub 
 
 
Sub CJ_model_correct() 
 

CJ_HP2HT = Mat.Multiply(Mat.Multiply(H, CJ_P2), HT) 
CJ_VRVT = Mat.Multiply(Mat.Multiply(V, CJ_R), VT) 
CJ_S = Mat.Add(CJ_HP2HT, CJ_VRVT) 
CJ_Sinv = Mat.Inv(CJ_S) 
 
CJ_P2HT = Mat.Multiply(CJ_P2, HT) 
CJ_k = Mat.Multiply(CJ_P2HT, CJ_Sinv) 
 
CJ_X_tmp = Mat.Add(CJ_h_, Mat.Multiply(CJ_k, Mat.Subtract(Z, 
CJ_h_))) 
CJ_P = Mat.Multiply(Mat.Subtract(i, Mat.Multiply(CJ_k, H)), CJ_P2) 
 
CJ_X(0, 0) = CJ_X_tmp(0, 0):    CJ_X(1, 0) = CJ_X_tmp(1, 0):    
CJ_X(2, 0) = CJ_X_tmp(2, 0):    CJ_X(3, 0) = CJ_X_tmp(3, 0) 
CJ_X(4, 0) = CJ_X_tmp(4, 0):    CJ_X(5, 0) = CJ_X_tmp(5, 0):    
CJ_X(6, 0) = CJ_X_tmp(6, 0):    CJ_X(7, 0) = CJ_X_tmp(7, 0) 
CJ_X_(0, 0) = CJ_X(0, 0):       CJ_X_(1, 0) = CJ_X(1, 0):       
CJ_X_(2, 0) = CJ_X(2, 0):       CJ_X_(3, 0) = CJ_X(3, 0) 
CJ_X_(4, 0) = CJ_X(4, 0):       CJ_X_(5, 0) = CJ_X(5, 0):       
CJ_X_(6, 0) = CJ_X(6, 0):       CJ_X_(7, 0) = CJ_X(7, 0) 

 
End Sub 
 
 
Sub CJ_model_predict() 
 

CJ_X(0, 0) = CJ_X_(0, 0) + CJ_X_(2, 0) * delta_k + (1 / 2) * 
CJ_X_(4, 0) * delta_k * delta_k + (1 / 6) * CJ_X_(6, 0) * delta_k * 
delta_k * delta_k 
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CJ_X(1, 0) = CJ_X_(1, 0) + CJ_X_(3, 0) * delta_k + (1 / 2) * 
CJ_X_(5, 0) * delta_k * delta_k + (1 / 6) * CJ_X_(7, 0) * delta_k * 
delta_k * delta_k 
CJ_X(2, 0) = CJ_X_(2, 0) + CJ_X_(4, 0) * delta_k + (1 / 2) * 
CJ_X_(6, 0) * delta_k * delta_k 
CJ_X(3, 0) = CJ_X_(3, 0) + CJ_X_(5, 0) * delta_k + (1 / 2) * 
CJ_X_(7, 0) * delta_k * delta_k 
CJ_X(4, 0) = CJ_X_(4, 0) + CJ_X_(6, 0) * delta_k 
CJ_X(5, 0) = CJ_X_(5, 0) + CJ_X_(7, 0) * delta_k 
CJ_X(6, 0) = CJ_X_(6, 0) 
CJ_X(7, 0) = CJ_X_(7, 0) 
 
CJ_APAT = Mat.Multiply(Mat.Multiply(CJ_A, CJ_P), CJ_AT) 
CJ_WQWT = Mat.Multiply(Mat.Multiply(W, CJ_Q), WT) 
CJ_P2 = Mat.Add(CJ_APAT, CJ_WQWT) 
 
CJ_h_(0, 0) = CJ_X(0, 0): CJ_h_(1, 0) = CJ_X(1, 0): CJ_h_(2, 0) = 
CJ_X(2, 0): CJ_h_(3, 0) = CJ_X(3, 0) 
CJ_h_(4, 0) = CJ_X(4, 0): CJ_h_(5, 0) = CJ_X(5, 0): CJ_h_(6, 0) = 
CJ_X(6, 0): CJ_h_(7, 0) = CJ_X(7, 0) 

 
End Sub 
 
 
Sub MM_filter_part1() 
 

'--- IMM Step 1 --- Calculation of the mixing probabilities 
For col = 0 To 3 
cb(col) = 0 
For row = 0 To 3 
cb(col) = cb(col) + BT(row, col) * U1(row) 
Next row 
For row = 0 To 3 
U(row, col) = (1 / cb(col)) * BT(row, col) * U1(row) 
Next row 
Next col 
 
'--- IMM Step 2 --- Mixing 
For r = 0 To 7 
CL_X0(r, 0) = CL_X_(r, 0) * U(0, 0) + CV_X_(r, 0) * U(1, 0) + 
CA_X_(r, 0) * U(2, 0) + CJ_X_(r, 0) * U(3, 0) 
CV_X0(r, 0) = CL_X_(r, 0) * U(0, 1) + CV_X_(r, 0) * U(1, 1) + 
CA_X_(r, 0) * U(2, 1) + CJ_X_(r, 0) * U(3, 1) 
CA_X0(r, 0) = CL_X_(r, 0) * U(0, 2) + CV_X_(r, 0) * U(1, 2) + 
CA_X_(r, 0) * U(2, 2) + CJ_X_(r, 0) * U(3, 2) 
CJ_X0(r, 0) = CL_X_(r, 0) * U(0, 3) + CV_X_(r, 0) * U(1, 3) + 
CA_X_(r, 0) * U(2, 3) + CJ_X_(r, 0) * U(3, 3) 
 
CL_errj0_(r, 0) = (CL_X_(r, 0) - CL_X0(r, 0)) 
CV_errj0_(r, 0) = (CV_X_(r, 0) - CV_X0(r, 0)) 
CA_errj0_(r, 0) = (CA_X_(r, 0) - CA_X0(r, 0)) 
CJ_errj0_(r, 0) = (CJ_X_(r, 0) - CJ_X0(r, 0)) 
Next r 
 
CL_errj0 = Mat.Multiply(CL_errj0_, Mat.Transpose(CL_errj0_)) 
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CV_errj0 = Mat.Multiply(CV_errj0_, Mat.Transpose(CV_errj0_)) 
CA_errj0 = Mat.Multiply(CA_errj0_, Mat.Transpose(CA_errj0_)) 
CJ_errj0 = Mat.Multiply(CJ_errj0_, Mat.Transpose(CJ_errj0_)) 
 
For r = 0 To 7 
For col = 0 To 7 
 
CL_P0(r, col) = (CL_P(r, col) + CL_errj0(r, col)) * U(0, 0) + 
(CV_P(r, col) + CV_errj0(r, col)) * U(1, 0) + (CA_P(r, col) + 
CA_errj0(r, col)) * U(2, 0) + (CJ_P(r, col) + CJ_errj0(r, col)) * 
U(3, 0) 
CV_P0(r, col) = (CL_P(r, col) + CL_errj0(r, col)) * U(0, 1) + 
(CV_P(r, col) + CV_errj0(r, col)) * U(1, 1) + (CA_P(r, col) + 
CA_errj0(r, col)) * U(2, 1) + (CJ_P(r, col) + CJ_errj0(r, col)) * 
U(3, 1) 
CA_P0(r, col) = (CL_P(r, col) + CL_errj0(r, col)) * U(0, 2) + 
(CV_P(r, col) + CV_errj0(r, col)) * U(1, 2) + (CA_P(r, col) + 
CA_errj0(r, col)) * U(2, 2) + (CJ_P(r, col) + CJ_errj0(r, col)) * 
U(3, 2) 
CJ_P0(r, col) = (CL_P(r, col) + CL_errj0(r, col)) * U(0, 3) + 
(CV_P(r, col) + CV_errj0(r, col)) * U(1, 3) + (CA_P(r, col) + 
CA_errj0(r, col)) * U(2, 3) + (CJ_P(r, col) + CJ_errj0(r, col)) * 
U(3, 3) 
 
Next col 
Next r 
 
'Updating value to KF parameters calculated in Correct Step to be 
used in Predict Step 
For r = 0 To 7 
CL_X_(r, 0) = CL_X0(r, 0) 
CV_X_(r, 0) = CV_X0(r, 0) 
CA_X_(r, 0) = CA_X0(r, 0) 
CJ_X_(r, 0) = CJ_X0(r, 0) 
 
For col = 0 To 7 
CL_P(r, col) = CL_P0(r, col) 
CV_P(r, col) = CV_P0(r, col) 
CA_P(r, col) = CA_P0(r, col) 
CJ_P(r, col) = CJ_P0(r, col) 
Next col 
Next r 

 
End Sub 
 
 
Sub MM_filter_part2() 
 

'--- IMM Step 3 --- Mode matched filtering 
'Likelihood funcion for each of the EKF 
MM0_V = Mat.Subtract(Z, CL_h_) 
MM0_VT = Mat.Transpose(MM0_V) 
MM0_S = Mat.Add(CL_HP2HT, CL_R) 
MM0_IS = Mat.Inv(MM0_S) 
MM0_S2 = Math.Sqr(Mat.Det(MM0_S)) 
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MM0_X = Mat.Multiply(Mat.Multiply(MM0_VT, MM0_IS), MM0_V) 
MM0_X2 = MM0_X(0, 0) 
MM0_m = filters 'number of filters 
MM0_f = (1 / (((2 * 3.14) ^ (MM0_m / 2)) * MM0_S2)) ^ ((-1 / 2) * 
MM0_X2) 
 
MM1_V = Mat.Subtract(Z, CV_h_) 
MM1_VT = Mat.Transpose(MM1_V) 
MM1_S = Mat.Add(CV_HP2HT, CV_R) 
MM1_IS = Mat.Inv(MM1_S) 
MM1_S2 = Math.Sqr(Mat.Det(MM1_S)) 
MM1_X = Mat.Multiply(Mat.Multiply(MM1_VT, MM1_IS), MM1_V) 
MM1_X2 = MM1_X(0, 0) 
MM1_m = filters 'number of filters 
MM1_f = (1 / (((2 * 3.14) ^ (MM1_m / 2)) * MM1_S2)) ^ ((-1 / 2) * 
MM1_X2) 
 
MM2_V = Mat.Subtract(Z, CA_h_) 
MM2_VT = Mat.Transpose(MM2_V) 
MM2_S = Mat.Add(CA_HP2HT, CA_R) 
MM2_IS = Mat.Inv(MM2_S) 
MM2_S2 = Math.Sqr(Mat.Det(MM2_S)) 
MM2_X = Mat.Multiply(Mat.Multiply(MM2_VT, MM2_IS), MM2_V) 
MM2_X2 = MM2_X(0, 0) 
MM2_m = filters 'number of filters 
MM2_f = (1 / (((2 * 3.14) ^ (MM2_m / 2)) * MM2_S2)) ^ ((-1 / 2) * 
MM2_X2) 
 
MM3_V = Mat.Subtract(Z, CJ_h_) 
MM3_VT = Mat.Transpose(MM3_V) 
MM3_S = Mat.Add(CJ_HP2HT, CJ_R) 
MM3_IS = Mat.Inv(MM3_S) 
MM3_S2 = Math.Sqr(Mat.Det(MM3_S)) 
MM3_X = Mat.Multiply(Mat.Multiply(MM3_VT, MM3_IS), MM3_V) 
MM3_X2 = MM3_X(0, 0) 
MM3_m = filters 'number of filters 
MM3_f = (1 / (((2 * 3.14) ^ (MM3_m / 2)) * MM3_S2)) ^ ((-1 / 2) * 
MM3_X2) 
 
'--- IMM Step 4 --- Mode probability update 
c = MM0_f * cb(0) + MM1_f * cb(1) + MM2_f * cb(2) + MM3_f * cb(3) 
U1(0) = (1 / c) * MM0_f * cb(0) 
U1(1) = (1 / c) * MM1_f * cb(1) 
U1(2) = (1 / c) * MM2_f * cb(2) 
U1(3) = (1 / c) * MM3_f * cb(3) 
 
'--- IMM Step 5 --- For OUTPUT purposes only (not part of algorithm 
recursions) 
 
For r = 0 To 7 
C_X(r, 0) = CL_h_(r, 0) * U1(0) + CV_h_(r, 0) * U1(1) + CA_h_(r, 0) 
* U1(2) + CJ_h_(r, 0) * U1(3) 
CL_errj_(r, 0) = CL_h_(r, 0) - C_X(r, 0) 
CV_errj_(r, 0) = CV_h_(r, 0) - C_X(r, 0) 
CA_errj_(r, 0) = CA_h_(r, 0) - C_X(r, 0) 
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CJ_errj_(r, 0) = CJ_h_(r, 0) - C_X(r, 0) 
Next r 
 
CL_errj = Mat.Multiply(CL_errj_, Mat.Transpose(CL_errj_)) 
CV_errj = Mat.Multiply(CV_errj_, Mat.Transpose(CV_errj_)) 
CA_errj = Mat.Multiply(CA_errj_, Mat.Transpose(CA_errj_)) 
CJ_errj = Mat.Multiply(CJ_errj_, Mat.Transpose(CJ_errj_)) 
 
For r = 0 To 7 
For col = 0 To 7 
C_P(r, col) = (CL_P2(r, col) + CL_errj(r, col)) * U1(0) + (CV_P2(r, 
col) + CV_errj(r, col)) * U1(1) + (CA_P2(r, col) + CA_errj(r, col)) 
* U1(2) + (CJ_P2(r, col) + CJ_errj(r, col)) * U1(3) 
Next col 
Next r 
 
If (loop_cnt > PERIOD * 5) Then 
If SNAP2ROAD Then 
Call Snap_to_Road_2.Start(Kalman_Filters.Convert_Rad2Deg(C_X(0, 0) - 
offset_lat), Kalman_Filters.Convert_Rad2Deg(C_X(1, 0) - offset_lon), 
Kalman_Filters.Convert_Rad2Deg(Z(0, 0)), 
Kalman_Filters.Convert_Rad2Deg(Z(1, 0))) 
C_X(0, 0) = Kalman_Filters.Convert_Deg2Rad(curlong) + offset_lon 
C_X(1, 0) = Kalman_Filters.Convert_Deg2Rad(curlat) + offset_lat 
'----------------------------------------------------- 
Set objPin = objMap.FindPushpin("Estimated Location b") 
objPin.Delete 
estlong = Convert_Rad2Deg(C_X(0, 0)) 
estlat = Convert_Rad2Deg(C_X(1, 0)) 
Set objLoc = objMap.GetLocation(estlat, estlong) 
objMap.AddPushpin objLoc, "Estimated Location b" 
Set objCurLoc = objMap.FindPushpin("Estimated Location b") 
objCurLoc.Symbol = 25 
'----------------------------------------------------- 
Else 
'----------------------------------------------------- 
Set objPin = objMap.FindPushpin("Estimated Location") 
objPin.Delete 
estlong = Convert_Rad2Deg(C_X(0, 0)) 
estlat = Convert_Rad2Deg(C_X(1, 0)) 
Set objLoc = objMap.GetLocation(estlat, estlong) 
objMap.AddPushpin objLoc, "Estimated Location" 
Set objCurLoc = objMap.FindPushpin("Estimated Location") 
objCurLoc.Symbol = 26 
'----------------------------------------------------- 
End If 
End If 
 
XM(0) = C_X(0, 0)   'estimated x location 
XM(1) = C_X(1, 0)   'estimated y location 

 
End Sub 

 

A.7. Representative Matlab code  
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function [OUT_val,OUT_err,OUT_data]=sf_main(data) 
%  s* indicates available systems: s1 (sensor1=GPS), s2 
(sensor2=ScanTool), s3 (sensor3=Accelerometer),  
%  s*_ekf are lists of EKF filters (each number represents an EKF id 
supported in that system) 
%  s*_P{#}, s*_W{#}, s*_Q{#}, s*_A{#}, s*_X{#} are arrays of matrices 
where "#" indicates EKF id values the matrix is for, and s* indicates 
for what system 
%  s*_H, s*_V, s*_I, s*_R, s*_U1, s*_BT, s*_Z are matrices shared 
between all the EKFs in each system (no # needed) 
 
data_name = inputname(1); %save name of data array passed 
 
%---------------------------------------------------- 
%VARIABLES SETTING SECTION 
%----------- 
Dk_orig = 0.1;           %in seconds (0.1 for 10Hz) NOTE: anything less 
than 1 requires IMM to be running 
sensors = [1 2 3];       %define which sensors to use in the system   
options=1,2,3 
ekfs = [1 2 3];          %number of KFs in use (can NOT change this 
without affecting BT) 
use_ekf = 1;             %set to 0 for estimation of Z only, or set to 
1 to run system 
use_imm = 1;             %set to 0 for EKF only run (no IMM), or set to 
1 for IMM run as well 
est_sec_ahead = 3;       %set to far estimation location 3 seconds 
ahead (must also set use_imm=1), OTHERWISE set to 0 
est_sec_toGPS = 0;       %0=always estimate $est_sec_ahead; 1=adjust 
estimation to always match record with GPS value 
if Dk_orig == 1 

est_mid_points = 0;      %1=estimate intermediate points between 
est_sec_ahead and est_sec_ahead+0.9 

end 
 
use_Q_calc_vars = 0;     %1=uses dynamic Q variable; 0=uses simple Q 
variable 
calc_missing_values = 1; %1=calc missing values based on online 
sensors;  0=use IMM estimated values 
gps_difORtot = 1;        %1=diff between starting point and current 
value, 2=full value (for the location units) 
%----------- 
 
[rows,cols] = size(data);%Get size of data matrix 
tot_recs=rows-50;        %Define total number of records to process; 
default is all minus last 50 
tot_loops=rows;          %Define max number of loops allowed (set to 
large number if not used) 
s_loop_start = 100;      %number of loop_count (rows of data) to start 
system on [sensors section] (must be >3) 
selected_curve = 0;      %1=run selected curve only, 0=run whole 
trajectory 
if strcmpi(data_name,'data_UConn') 

rec=17;               %Define starting record (minus 1) to read (can 
not have a zero for GPS data) 



 141 

rec=206; 
if selected_curve == 1 

rec=8901; 
tot_loops=1000;  

end 
elseif strcmpi(data_name,'data_Alcatel') 

rec=20;               %Define starting record (minus 1) to read (can 
not have a zero for GPS data) 
rec=3500; 
if selected_curve == 1 

rec=15800; 
tot_loops=1000;  

end 
elseif strcmpi(data_name,'data_HTC') 

rec=20;               %Define starting record (minus 1) to read (can 
not have a zero for GPS data) 
rec=3500; 
if selected_curve == 1 

rec=15800; 
tot_loops=1000;  

end 
elseif strcmpi(data_name,'data_LG') 

rec=20;               %Define starting record (minus 1) to read (can 
not have a zero for GPS data) 
rec=3500; 
if selected_curve == 1 

rec=15800; 
tot_loops=1000;  

end 
elseif strcmpi(data_name,'data_iPhone3GS') 

rec=18;               %Define starting record (minus 1) to read (can 
not have a zero for GPS data) 
rec=3498; 
if selected_curve == 1 

rec=15798; 
tot_loops=1000;  

end 
elseif strcmpi(data_name,'data_iPhone5') 

rec=18;               %Define starting record (minus 1) to read (can 
not have a zero for GPS data) 
rec=3498; 
if selected_curve == 1 

rec=15808; 
tot_loops=1000;  

end 
else 

disp(['data array name not supported: ' data_name]); 
return; 

end 
 
%---------------------------------------------------- 
%Initializing variables that will hold the data from the sensors for 
the different seconds 
Dks1=0;%Dks1 will contain the gap between each set of data for s1 
Dks2=0;%Dks2 will contain the gap between each set of data for s2 
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Dks3=0;%Dks3 will contain the gap between each set of data for s3 
%EKF initialize step (defines all corresponding variables for all EKFs 
per sensor in use) 
[H,I,A,P,BT,U1,U]=ekf_initialize(sensors,ekfs,Dk_orig); 
%---------------------------------------------------- 
 
%Loop through records in data array while rec < tot_recs 
 
Dk_prev=Dk; 
loop_count = loop_count+1; 
 
while loop_count <= tot_loops & rec <= tot_recs 
 

%Loading new data into variables 
if strcmpi(data_name,'data_UConn') 

[sensor_status,gps_lat2,gps_lon2,gps_dir2,gps_vel2,sct_vel2,acc_a
vx2,acc_avy2,rec,Dk,Dk_prev,cur_sec,prev_sec,next_sec,cur_min,cur
_hr]=load_data_UConn(Dk,Dk_orig,sensors,data,rec,tot_recs,gps_lat
_orig,gps_lon_orig,gps_difORtot,use_rolling_window,loop_count,s_l
oop_start,gps_dir,selected_curve); 

elseif strcmpi(data_name,'data_Alcatel') 
[sensor_status,gps_lat2,gps_lon2,gps_dir2,gps_vel2,sct_vel2,acc_a
vx2,acc_avy2,rec,Dk,Dk_prev,cur_sec,prev_sec,next_sec,cur_min,cur
_hr]=load_data_Alcatel(Dk,Dk_orig,sensors,data,rec,tot_recs,gps_l
at_orig,gps_lon_orig,gps_difORtot,use_rolling_window,loop_count,s
_loop_start,gps_dir,selected_curve); 

elseif strcmpi(data_name,'data_HTC') 
[sensor_status,gps_lat2,gps_lon2,gps_dir2,gps_vel2,sct_vel2,acc_a
vx2,acc_avy2,rec,Dk,Dk_prev,cur_sec,prev_sec,next_sec,cur_min,cur
_hr]=load_data_HTC(Dk,Dk_orig,sensors,data,rec,tot_recs,gps_lat_o
rig,gps_lon_orig,gps_difORtot,use_rolling_window,loop_count,s_loo
p_start,gps_dir,selected_curve); 

elseif strcmpi(data_name,'data_LG') 
[sensor_status,gps_lat2,gps_lon2,gps_dir2,gps_vel2,sct_vel2,acc_a
vx2,acc_avy2,rec,Dk,Dk_prev,cur_sec,prev_sec,next_sec,cur_min,cur
_hr]=load_data_LG(Dk,Dk_orig,sensors,data,rec,tot_recs,gps_lat_or
ig,gps_lon_orig,gps_difORtot,use_rolling_window,loop_count,s_loop
_start,gps_dir,selected_curve); 

elseif strcmpi(data_name,'data_iPhone3GS') 
[sensor_status,gps_lat2,gps_lon2,gps_dir2,gps_vel2,sct_vel2,acc_a
vx2,acc_avy2,rec,Dk,Dk_prev,cur_sec,prev_sec,next_sec,cur_min,cur
_hr]=load_data_iPhone3GS(Dk,Dk_orig,sensors,data,rec,tot_recs,gps
_lat_orig,gps_lon_orig,gps_difORtot,use_rolling_window,loop_count
,s_loop_start,gps_dir,selected_curve); 

elseif strcmpi(data_name,'data_iPhone4') 
[sensor_status,gps_lat2,gps_lon2,gps_dir2,gps_vel2,sct_vel2,acc_a
vx2,acc_avy2,rec,Dk,Dk_prev,cur_sec,prev_sec,next_sec,cur_min,cur
_hr]=load_data_iPhone4(Dk,Dk_orig,sensors,data,rec,tot_recs,gps_l
at_orig,gps_lon_orig,gps_difORtot,use_rolling_window,loop_count,s
_loop_start,gps_dir,selected_curve); 

elseif strcmpi(data_name,'data_iPhone5') 
[sensor_status,gps_lat2,gps_lon2,gps_dir2,gps_vel2,sct_vel2,acc_a
vx2,acc_avy2,rec,Dk,Dk_prev,cur_sec,prev_sec,next_sec,cur_min,cur
_hr]=load_data_iPhone5(Dk,Dk_orig,sensors,data,rec,tot_recs,gps_l
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at_orig,gps_lon_orig,gps_difORtot,use_rolling_window,loop_count,s
_loop_start,gps_dir,selected_curve); 

end 
 
%Update Dk for each of the sensors to keep track of time since last 
time it was online 
if sensor_status(1,1) == 0      

Dks1 = Dks1 + Dk; 
else 

Dks1 = 0; 
end 
if sensor_status(2,1) == 0      

Dks2 = Dks2 + Dk; 
else 

Dks2 = 0; 
end 
if sensor_status(3,1) == 0      

Dks3 = Dks3 + Dk; 
else 

Dks3 = 0; 
end 
 
%LOAD Z matrices for each sensor  
%assumes each EKF for the same sensor will have the same matrix size 
[6x1] 
 
%--- acceleration -------------- 
if sensor_status(3,1)==1 %if acc is online use measured data 

Z(5,1) = acc_avx(1); 
Z(6,1) = acc_avy(1); 
ax2 = Z_prev(5,1); 
ay2 = Z_prev(6,1); 
%determining vectors based on acceleration and previous direction 
Anx = ax2*cos(gps_dir(2)); 
Atx = ay2*sin(gps_dir(2)); 
Any = ax2*sin(gps_dir(2)); 
Aty = ay2*cos(gps_dir(2)); 
if ay2 > 0 

Ax  = Atx + Anx; 
Ay  = Aty - Any; 

else 
Ax  = Atx - Anx; 
Ay  = Aty + Any; 

end 
%Calculate new velocities based on new accelerations 
Vx  = Z_prev(3,1) + Ax *Dk_prev; 
Vy  = Z_prev(4,1) + Ay *Dk_prev; 
%Calculate new positions based on new accelerations 
Sx = Z_prev(1,1) + ( Z_prev(3,1) )*Dk_prev + (1/2)*( Ax 
)*Dk_prev^2; 
Sy = Z_prev(2,1) + ( Z_prev(4,1) )*Dk_prev + (1/2)*( Ay 
)*Dk_prev^2; 
%Recalculate angle of direction based on changes in location 
dx=Sx-Z_prev(1,1); 
dy=Sy-Z_prev(2,1); 
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if dy == 0 
if dx >0 

gps_dir(1) = pi/2; 
else 

gps_dir(1) = 3*pi/2; 
end 

else 
gps_dir(1) = abs( atan( abs(dx) / abs(dy) ) ); 
if dx >0 && dy >0  % 1st quadrant 

gps_dir(1) = gps_dir(1); 
elseif dx >0 && dy <0  % 2nd quadrant 

gps_dir(1) = (pi) - gps_dir(1); 
elseif dx <0 && dy <0  % 3rd quadrant 

gps_dir(1) = (pi) + gps_dir(1); 
else  

gps_dir(1) = (2*pi) - gps_dir(1); 
end 

end 
else 

if use_imm == 1  
Z(5,1) = X_imm(5,1);  %using previously estimated value (we 
don't want to derive it from location for now) 
Z(6,1) = X_imm(6,1);  %using previously estimated value (we 
don't want to derive it from location for now) 

else 
Z(5,1) = Z_prev(5,1);  %using previous value 
Z(6,1) = Z_prev(6,1);  %using previous value 

end 
gps_dir(1) = gps_dir(2); 

end 
 

%--- GPS is online ------- 
if sensor_status(1,1)==1  %If GPS is online use measured data 

%location 
Z(1,1)=gps_lon(1); %x 
Z(2,1)=gps_lat(1); %y 
gps_dir(1) = double(gps_dir2); %use actual data if sensor is 
online and ignore angle calculated when s3 is on 

else                      %If GPS is offline then use previously 
estimated data to assume current location 

%location 
if calc_missing_values == 1 && sensor_status(3,1) == 1 

Z(1,1)=Sx; %x 
Z(2,1)=Sy; %y 

else 
if use_imm == 1  

Z(1,1)=X_imm(1,1); %x 
Z(2,1)=X_imm(2,1); %y 

else 
Z(1,1)=Z_prev(1,1); %x 
Z(2,1)=Z_prev(2,1); %y 

end 
end 

end 
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%--- Velocity ------------ 
if sensor_status(1,1)==1  || sensor_status(2,1)==1 %if GPS is online 
use measured data 

if sensor_status(2,1)==1 & ( sct_vel(1) > 0 | sct_vel(1) < 0 )  
%If ST is online use measured data (ST measurement preferred over 
GPS) 

Z(3,1) = sct_vel(1)*sin(gps_dir(1)); 
Z(4,1) = sct_vel(1)*cos(gps_dir(1)); 

else 
Z(3,1) = Z_prev(3,1); 
Z(4,1) = Z_prev(4,1); 

end 
else 

Z(3,1) = Vx; 
Z(4,1) = Vy; 

end 
 
if loop_count < s_loop_start 
 

%----- Initialization stage for the system -------- 
%KF prediction step for sensors 
 
[R,Q]=ekf_update(sensor_status,ekfs,Dk,Dks1,Dks2,Dks3,use_Q_calc_
vars,use_R_calc_vars); %updating R and Q matrices to use the 
current Dk 
%Loop through each KF defined 
[rows,cols] = size(ekfs); 
n=cols; 
for f=1:n 

if use_ekf == 1 
[ekf_P] = ekf_predict(sensor_status,A{f},P{f},Q{f}); 
P{f}=double(ekf_P); 

end 
[ekf_X] = 
ekf_models(rec,1,ekfs(f),sensor_status,Dk,Dk_orig,Z,Z_prev,gps
_dir,acc_avx,acc_avy,time); 
X{f}=double(ekf_X); 

end 
 
         

else 
 

%----- Running stage for the system -------------- 
%KF correct step for sensors 
%Loop through each KF defined 
[rows,cols] = size(ekfs); 
n = cols; 
for f=1:n 

if use_ekf == 1 
[ekf_X,ekf_P]=ekf_correct(ekfs(f),H,P{f},R{f},I,Z,X{f}); 
P{f}=double(ekf_P); 
X{f}=double(ekf_X); 

end 
end 
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%IMM_part1 
[X,P,cb,U]=imm_part1(sensor_status,sensors,ekfs,X,P,BT,U1,U,cb); 
 
%KF prediction step for sensors 
[R,Q]=ekf_update(sensor_status,ekfs,Dk,Dks1,Dks2,Dks3,use_Q_calc_
vars,use_R_calc_vars); %updating R and Q matrices to use the 
current Dk 
%Loop through each KF defined 
[rows,cols] = size(ekfs); 
n = cols; 
for f=1:n 

if use_ekf == 1 
[ekf_P] = ekf_predict(sensor_status,A{f},P{f},Q{f}); 
P{f}=double(ekf_P); 

end 
[ekf_X] = 
ekf_models(rec,1,ekfs(f),sensor_status,Dk,Dk_orig,Z,Z_prev,gps
_dir,acc_avx,acc_avy,time); 
X{f}=double(ekf_X); 

end 
 
%IMM_part2 
[U1,X_imm,mm_f] = 
imm_part2(sensor_status,sensors,ekfs,X,P,H,R,cb,mm_f); 

 
%Estimating position 3 seconds ahead. 
if est_sec_ahead > 0  

Dk2 = est_sec_ahead; 
%Run KF again but this time using a larger Dk 
[rows,cols] = size(ekfs); 
n = cols; 
for f=1:n 

[ekf_X_ahead] = 
ekf_models(rec,1,ekfs(f),sensor_status,Dk2,Dk_orig,Z,Z_prev
,gps_dir,acc_avx,acc_avy,time); 
if ekfs(f)==3 && use_geom_method == 1 

[ekf_X_ahead,Ap,Cp] = 
correction(ss0,ekf_X_ahead,est0,Ap,Cp,ang1,ang2,Z,Z0,rec
,cur_hr,cur_min,cur_sec); 
est0 = ekf_X_ahead; 

end 
X_ahead{f}=ekf_X_ahead; 

end 
 

if use_imm == 1 
%Run IMM_part2 to merge the results from the KF for this 
3sec ahead estimation 
[U1_ahead,X_imm_ahead,mm_f_ahead] = 
imm_part2(sensor_status,sensors,ekfs,X_ahead,P,H,R,cb,mm_f)
; 

else 
X_ahead = X; 
X_imm_ahead = X_imm; 

end 
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loop_count = loop_count+1; 
 

end 
 
 
end 

 
loop_count = loop_count+1; 
end 
 
 
function [P2]=ekf_predict(status, A, Pf, Qf) 

APAT = A*Pf*A'; 
P2   = APAT+Qf; 
return; 

end 
 
 
function [X2, P2]=ekf_correct(ekf, H, P0, R, I, Z, X0) 

HPHT = H*P0*H'; 
S = HPHT + R;  %for KF only 
%Determine how many elements in diagonal are important for this KF 
if ekf == 1 

d = 2; 
elseif ekf == 2 

d = 4; 
else 

d = 6; 
end 
%--removing zeros from the diagonal to be able to do the inverse 
[rows,cols] = size(S); 
for r=d+1:rows 

for c=d+1:cols 
if r == c  

if S(r,c) > -0.0001 & S(r,c) < 0.0001 
S(r,c) = 1; 

end 
end 

end 
end 
k2 = inv(S); 
%--adding zeros back to the diagonal to maintain matrix properties 
[rows,cols] = size(k2); 
for r=d+1:rows 

for c=d+1:cols 
if r == c & k2(r,c) == 1 

k2(r,c) = 0; 
end 

end 
end 
 
k = k1*k2; 
X2 = X0+(k*(Z-X0)); 
P2 = (I-(k*H)) * P0; 
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return; 
end 
 
 
function [X2]=ekf_models(rec,sensor, ekf, status, Dk, Dk_orig, Z, 
Z_prev, gps_dir,acc_avx,acc_avy,time) 

%---EKF1 - const_location------------------- 
if ekf == 1 

X2(1,1) = Z(1,1); 
X2(2,1) = Z(2,1); 
X2(3,1) = 0; 
X2(4,1) = 0; 
X2(5,1) = 0; 
X2(6,1) = 0; 

end 
 
%---EKF2 - const_speed---------------------- 
if ekf == 2 

X2(1,1) = Z(1,1) + Z(3,1)*Dk; 
X2(2,1) = Z(2,1) + Z(4,1)*Dk; 
X2(3,1) = Z(3,1); %constant velocity 
X2(4,1) = Z(4,1); %constant velocity 
X2(5,1) = 0;      %no acceleration 
X2(6,1) = 0;      %no acceleration 

end 
 
%---EKF3 - const_acc------------------ 
if ekf == 3 

An=Z(5,1); %Saving An as we will assume it does not change 
through the next 3 seconds 
At=Z(6,1); %Saving At as we will assume it does not change 
through the next 3 seconds 
if sqrt( Z(3,1)^2 + Z(4,1)^2 ) == 0 

Ax = 0; 
Ay = 0; 

else 
if At>0 

Ax = ( At*Z(3,1) + An*Z(4,1) ) / sqrt( Z(3,1)^2 + Z(4,1)^2 
); 
Ay = ( At*Z(4,1) - An*Z(3,1) ) / sqrt( Z(3,1)^2 + Z(4,1)^2 
); 

else 
Ax = ( At*Z(3,1) - An*Z(4,1) ) / sqrt( Z(3,1)^2 + Z(4,1)^2 
); 
Ay = ( At*Z(4,1) + An*Z(3,1) ) / sqrt( Z(3,1)^2 + Z(4,1)^2 
); 

end 
end 
Vx = Z(3,1) + Ax *Dk; 
Vy = Z(4,1) + Ay *Dk; 
 
X2(1,1) = Z(1,1) + ( Z(3,1) )*Dk + (1/2)*( Ax )*Dk^2; 
X2(2,1) = Z(2,1) + ( Z(4,1) )*Dk + (1/2)*( Ay )*Dk^2; 
X2(3,1) = Vx; 
X2(4,1) = Vy; 
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X2(5,1) = Z(5,1); %constant acceleration sideways 
X2(6,1) = Z(6,1); %constant acceleration forwards 

end 
 
return; 

end 
 
 
function [X0,P0,cb0,U0]=imm_part1(ekf_status, sensors, ekfs, X, P, BT, 
U1, U, cb) 

%Get total number of EKFs defined 
[rows,cols] = size(ekfs); 
total_ekfs=cols; 
 
%--- IMM step 1 --- Calculation of the mixing probabilities 
for c=1:total_ekfs 

cb0(c,1)=0; 
for r=1:total_ekfs 

ttt=cb0(c,1); 
cb0(c,1)=cb0(c,1)+BT(r,c)*U1(r,1); 

end 
if(cb0(c,1) <= 0) 

cb0(c,1)=0.0001; 
end 
for r=1:total_ekfs 

U0(r,c)=(1/cb0(c,1))*BT(r,c)*U1(r,1); 
if(U0(r,c) <= 0) 

U0(r,c)=0.0001; 
end 

end 
end 
 
%--- IMM step 2 --- Mixing 
for f=1:total_ekfs 

X_ekf  = X{f}; 
for r=1:6   %total rows in Z 

X0_ekf(r,1)=0; 
for c=1:total_ekfs     

X0_ekf(r,1)= X0_ekf(r,1)+ (X_ekf(r,1)*U0(c,f)); 
end 
errj0_(r,1)= X_ekf(r,1)-X0_ekf(r,1); 

end 
errj0{f} = errj0_*errj0_'; 
X0{f} = X0_ekf; 

end 
 
for f=1:total_ekfs 

for r=1:6   %total rows in Z 
for c=1:6   %total rows in Z 

P0_ekf(r,c)=0; 
for j=1:total_ekfs 

P_ekf = P{j}; 
errj0_ekf = errj0{j}; 
P0_ekf(r,c) = P0_ekf(r,c) + 
(P_ekf(r,c)+errj0_ekf(r,c))*U0(j,f);  
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end 
end 

end 
P0{f} = P0_ekf; 

end 
 
return; 

end 
 
 
function [U1,X_imm,mm_f1]=imm_part2(ekf_status, sensors, ekfs, X, P, H, 
R, cb, mm_f) 

%Get total number of KFs in use 
[rows,cols] = size(ekfs); 
total_ekfs=cols; 
 
%--- IMM step 3 --- Mode matched filtering 
for f=1:total_ekfs 

X_ekf = X{f}; 
P_ekf = P{f}; 
R_ekf = R{f}; 
mm_s2   = abs(det(H*P_ekf*H'+R_ekf)); 
HPHT = H*P_ekf*H'; 
 
%---Determine how many elements in diagonal are important for 
this KF 
if ekfs == 1 

d = 2; 
elseif ekfs == 2 

d = 4; 
else 

d = 6; 
end   
 
%--removing zeros from the digonal to be able to do the inverse 
[rows,cols] = size(HPHT); 
for r=d+1:rows 

for c=d+1:cols 
if r == c  

if HPHT(r,c) > -0.000001 & HPHT(r,c) < 0.000001 
HPHT(r,c) = 1; 

end 
end 

end 
end 
 
%--doing the inverse of HPHT 
HPHT_inv = inv(HPHT); 
 
%--adding zeros back to the diagonal to maintain matrix 
properties 
[rows,cols] = size(HPHT_inv); 
for r=d+1:rows 

for c=d+1:cols 
if r == c & HPHT_inv(r,c) == 1 
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HPHT_inv(r,c) = 0; 
end 

end 
end 
%-------- 
mm_x2   = det( HPHT_inv ) ; 
mm_f_ekf = (1/sqrt( ((2*pi)^(total_ekfs/2) )*mm_s2 )) *exp((-
1/2)*mm_x2); 
mm_f1(f,1) = mm_f_ekf; 

 
end 
 
%--- IMM step 4 --- Mode probability update 
c = 0; 
for f=1:total_ekfs 

ttt = c; 
c = c + mm_f1(f,1)*cb(f,1); 

end 
 
for f=1:total_ekfs 

U1(f,1) = (1/c) * mm_f1(f,1) * cb(f,1); 
if(U1(f,1) <= 0) 

U1(f,1)=0.0001; 
end 

end 
 
return; 

end 
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