303 research outputs found

    Knowledge Structures for Visualising Advanced Research and Trends

    Get PDF

    Efficient Micro-Mobility using Intra-domain Multicast-based Mechanisms (M&M)

    Full text link
    One of the most important metrics in the design of IP mobility protocols is the handover performance. The current Mobile IP (MIP) standard has been shown to exhibit poor handover performance. Most other work attempts to modify MIP to slightly improve its efficiency, while others propose complex techniques to replace MIP. Rather than taking these approaches, we instead propose a new architecture for providing efficient and smooth handover, while being able to co-exist and inter-operate with other technologies. Specifically, we propose an intra-domain multicast-based mobility architecture, where a visiting mobile is assigned a multicast address to use while moving within a domain. Efficient handover is achieved using standard multicast join/prune mechanisms. Two approaches are proposed and contrasted. The first introduces the concept proxy-based mobility, while the other uses algorithmic mapping to obtain the multicast address of visiting mobiles. We show that the algorithmic mapping approach has several advantages over the proxy approach, and provide mechanisms to support it. Network simulation (using NS-2) is used to evaluate our scheme and compare it to other routing-based micro-mobility schemes - CIP and HAWAII. The proactive handover results show that both M&M and CIP shows low handoff delay and packet reordering depth as compared to HAWAII. The reason for M&M's comparable performance with CIP is that both use bi-cast in proactive handover. The M&M, however, handles multiple border routers in a domain, where CIP fails. We also provide a handover algorithm leveraging the proactive path setup capability of M&M, which is expected to outperform CIP in case of reactive handover.Comment: 12 pages, 11 figure

    System for improving the efficiency of wireless networks

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references (p. 30-31).Wireless data networks are widespread and growing quickly. As their use increases, many wireless networks are becoming congested. In addition, as wireless data capability moves into ever-smaller devices, power becomes a significant issue. This thesis presents a system that increases network bandwidth and decreases energy use without changing existing network hardware or protocols. We use specialized proxy servers to transparently modify the traffic sent over the mobile link such that the total energy used by the receiver is reduced and the effective bandwidth is increased. Our techniques include optimizing packet size, eliminating unnecessary traffic, and masking wireless packet losses. We design and implement two proxies--one for access points and one for mobile devices--which when used together, achieve up to a 20% decrease in energy and 38% increase in throughput.by Hans Robertson.M.Eng

    TCP Performance Enhancement over UMTS Network with RNC Feedback

    Full text link
    TCP optimization for wireless networks to deal with packet losses due to fading, shadowing and contention should preferably maintain TCP end-to-end semantics with minimal dependence on intermediate nodes. The development of advanced 3G networks and services makes it necessary to find a way of improving TCP's efficiency and resource utilization. Previous research on this issue suggests that TCP needs radio network feedback to distinguish wireless related losses from congestion related losses. This paper presents such a mechanism that notifies the TCP sender of any noncongestion related losses by introducing a proxy at the RNC node of the UMTS network. Only a minimal change to the standard TCP is required to achieve this. OPNET is used in this study and the simulation results show that the proposed scheme significantly improves the TCP performanc

    Just Queuing: Policy-Based Scheduling Mechanism for Packet Switching Networks

    Get PDF
    The pervasiveness of the Internet and its applications lead to the potential increment of the users’ demands for more services with economical prices. The diversity of Internet traffic requires some classification and prioritisation since some traffic deserve much attention with less delay and loss compared to others. Current scheduling mechanisms are exposed to the trade-off between three major properties namely fairness, complexity and protection. Therefore, the question remains about how to improve the fairness and protection with less complex implementation. This research is designed to enhance scheduling mechanism by providing sustainability to the fairness and protection properties with simplicity in implementation; and hence higher service quality particularly for real-time applications. Extra elements are applied to the main fairness equation to improve the fairness property. This research adopts the restricted charge policy which imposes the protection of normal user. In terms of the complexity property, genetic algorithm has an advantage in holding the fitness score of the queue in separate storage space which potentially minimises the complexity of the algorithm. The integrity between conceptual, analytical and experimental approach verifies the efficiency of the proposed mechanism. The proposed mechanism is validated by using the emulation and the validation experiments involve real router flow data. The results of the evaluation showed fair bandwidth distribution similar to the popular Weighted Fair Queuing (WFQ) mechanism. Furthermore, better protection was exhibited in the results compared with the WFQ and two other scheduling mechanisms. The complexity of the proposed mechanism reached O(log(n)) which is considered as potentially low. Furthermore, this mechanism is limited to the wired networks and hence future works could improve the mechanism to be adopted in mobile ad-hoc networks or any other wireless networks. Moreover, more improvements could be applied to the proposed mechanism to enhance its deployment in the virtual circuits switching network such as the asynchronous transfer mode networks

    Topology influence on TCP congestion control performance in multi-hop ad hoc wireless

    Get PDF
    Wireless ad hoc nodes are freely and dynamically self-organize in communicating with others.Each node can act as host or router.However it actually depends on the capability of nodes in terms of its current power level, signal strength, number of hops, routing protocol, interference and others.In this research, a study was conducted to observe the effect of hops count over different network topologies that contribute to TCP Congestion Control performance degradation.To achieve this objective, a simulation using NS-2 with different topologies have been evaluated.The comparative analysis has been discussed based on standard observation metrics: throughput, delay and packet loss ratio.As a result, there is a relationship between types of topology and hops counts towards the performance of ad hoc network.In future, the extension study will be carried out to investigate the effect of different error rate and background traffic over same topologies
    • …
    corecore