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Abstract
Wireless data networks are widespread and growing quickly. As their use increases,
many wireless networks are becoming congested. In addition, as wireless data capability
moves into ever-smaller devices, power becomes a significant issue.

This thesis presents a system that increases network bandwidth and decreases energy use
without changing existing network hardware or protocols. We use specialized proxy
servers to transparently modify the traffic sent over the mobile link such that the total

energy used by the receiver is reduced and the effective bandwidth is increased. Our
techniques include optimizing packet size, eliminating unnecessary traffic, and masking

wireless packet losses.

We design and implement two proxies - one for access points and one for mobile devices
- which when used together, achieve up to a 20% decrease in energy and 38% increase in

throughput.

Thesis Supervisor: Anant Agarwal

Title: Associate Director, Lab for Computer Science
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1 Overview
Wireless networks are important: excluding cell phones, there are tens of millions of
devices in use today and their number is expected to continue to grow. Since wireless
network bandwidth is limited, as the number of users increases congestion can become a
problem. Unlike wired networks, it is difficult to upgrade wireless networks: adjacent
nodes interfere with each other, standards conflict, and government regulations limit the
available frequency bands. Moreover, changing hardware or networking protocols is
very difficult once devices are widely deployed.

Also, since wireless network devices often operate on battery power, the energy
efficiency of wireless networking is important.

This thesis describes the design and implementation of Sinew, short for System for
Increasing the Network Efficiency of Wireless. Sinew increases the energy efficiency and
improves the performance of wireless networks for common applications like file
transfers. It uses a proxy server to reshape the traffic sent over the wireless link. An
optional client proxy server provides additional performance enhancements, such as
allowing us to use a special TCP replacement protocol over the wireless link.

Sinew proxies can be implemented in user-mode software and do not require any changes
to existing network infrastructure or hardware.

Our proxy design is only one of several ways to approach the problems of wireless
throughput and energy efficiency. Section 2 covers alternative approaches and previous
work. Section 3 describes our system in detail, section 4 models its theoretical benefits,
and section 5 presents actual results.

1.1 Constraints and Limits
Wireless networking and the problems we have outlined are broad, so it is important to
state the limitations within which we are working.

* We consider only 802.1 lb-based networks, since they are the most widespread.
However, many of our techniques will apply to other kinds of 802.11 as well as
other wireless networking standards.

" We limit ourselves to approaches that minimize changes to mobile hosts and do
not require changes to the 802.1 lb hardware or firmware or to Internet protocols.

* We do not consider ad-hoc networks since infrastructure networks are more
common.

* Our target usage mode is client-initiated file transfer and Web browsing. At
present few wireless hosts act as servers.

" We evaluate Sinew in an environment with little noise and few users. This is not
representative of real 802.11 networks and is an area for future study.

" We focus on energy and performance improvements and do not explicitly treat
jitter, fairness, congestion control, wireless interference, or handoffs.
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0 To realize energy savings benefits, we require that the mobile host use power
saving model.

2 Related Work
There have been many attempts to improve the energy efficiency and performance of
Interetworking over wireless networks. We limit ourselves to an examination of
approaches that, like ours, attempt to reduce energy or increase performance while
requiring minimal changes to the mobile device or existing network infrastructure.

Our proxy approach is sometimes referred to as a split-connection proxy. Few have tried
to use a split connection proxy to reduce energy, although they have been considered for
performance improvements. One explanation is that, until the 802.1 lb PSM was widely
deployed, the best way to reduce the energy consumption of a wireless networking device
was not to decrease the traffic on the link but to reduce the amount of time that the
wireless radio was turned on. However, with PSM, reductions in the amount of traffic
yield significant power gains. Recent work on more efficient PSMs [20] makes reduction
of traffic all the more important.

2.1 HardwarelPhysical Layer
The power efficiency of wireless networking hardware is an area of ongoing research and
development. For example, many 802.1 lb cards sold today use 3.3V instead of 5V.
Such work complements our system.

Shih et al. [23] proposed use of a secondary low-power radio as a control channel to
minimize the amount of time the power-hungry data radio is on but idle. Although
discussed in the context of PDA-based telephony, their ideas and hardware could easily
be adapted to improving the power-efficiency of data traffic by alerting the device when
incoming packets are waiting at the base station.

The 802.15.4 working group is developing an ultra-low power radio that could also be
used as a secondary channel.

Other physical layers such as 802.11 a and 802.11 g offer higher bandwidth.
Unfortunately, these physical layers either interfere with 802.11 b or they do not offer
significant benefits in the presence of 802.11 b. Improvements in the physical layer will
likely be compatible with Sinew.

2.2 MAC Layer
MAC-layer strategies try to improve the protocol between the mobile device and the base
station. [11] contains a discussion of the energy efficiency of various MAC protocols,
including 802.11. MAC improvements typically require changes to the firmware,
hardware, or standards.

1 PSM stands for Power Saving Mode. In PSM, a device wakes up periodically to see if the access point
has packets available and, if so, retrieves those packets before going back to sleep.
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Stemm and Katz [25] were the first to show that putting a wireless LAN card to sleep
whenever possible can dramatically reduce its power consumption. They concluded that
savings obtained in this way dwarfed any that could be obtained by reducing the amount
of traffic sent on the link.

In 2002 Krashinksy [20] proposed a PSM that further reduces energy consumption by I-
14% while avoiding some of the performance penalties of the original PSM. Kravets
[22] proposed a similar strategy. Unfortunately, these approaches require changes to the
hardware or firmware of mobile networking hardware.

Chiasserini [9] tried to improve the performance of TCP by adapting link layer
parameters to changing network conditions. In particular, he dynamically changed the
number of 802.11 retransmits to reflect network conditions. This approach is most likely
to have an impact in noisy environments in which packets are often lost. It has the added
bonus that it could be implemented by a user- level program. Wong and Leung [26] also
investigated interactions between TCP and the link layer.

While there has been significant work on improving the energy efficiency of ad- hoc
wireless networks [10] at the MAC layer, we are concerned only with base-station
networks.

2.3 TCP Layer
In the same 1997 study referenced above, Stemm and Katz [25] also simulated the
performance gains of two reliable UDP schemes. Their simulations showed that,
excluding time when the radio was idle (neither transmitting nor receiving), reliable UDP
consumed over 50% less power than TCP with delayed acks. However, the paper
concluded that "...the choice of transport layer can have a significant impact on the
number of packets sent and received... [but] the actual power difference is
minimal.. .because the energy consumed simply by keeping the network interface on
during the transfer contributes the most to the final energy cost."

However, in 1999 the 802.11 b specification [17] defined a power saving mode (PSM)
that drastically reduces the amount of energy used when the radio is idle.

Balakrishnan et al. [2] proposed the snoop protocol, which masks losses over wireless
links from the sender by intercepting duplicate acks, which signal a packet loss, and
resending the required data to the mobile host. This approach has the advantage of being
transparent to sender and receiver and appears to alleviate TCP problems with noisy
links. However, it does not improve energy efficiency or bandwidth over clean or simply
congested links, where few duplicate acks are sent.

Balakrishnan et al. [3] proposed ack- filtering to reduce the number of ack packets sent on
slow upstream links, e.g., those often used with satellite downlinks. Ack-filtering can
increase downstream bandwidth when acks do not arrive quickly enough. The technique
is applicable to mobile networks because they are half-duplex, and thus every ack that is
sent upstream reduces the downstream bandwidth. Our SRDP protocol attempts to solve
this problem by using sacks and delayed acks; ack- filtering would be another approach.

9



Unfortunately, ack- filtering would likely require kernel TCP modifications on the mobile
host. It might also be possible to implement it at the 802.11 layer.

Yavatkar and Bhagawat [27] showed that a split-connection proxy scheme similar to our
own can increase simulated performance under various noise levels. They too used a
specialized protocol over the wireless link. Since their paper was published in 1994,
mobile networking technology has changed significantly, and many of the specifics of
our techniques differ from theirs. For example, we use a larger MTU than is commonly
available on the Internet whereas they used a much smaller one.

2.4 Higher Layer
Caching Web proxies [24] have been around for over a decade and are effective.
Moreover, almost all mobile devices have support at the application level for Web
proxies.

In the early to mid 90's, many researchers tried to reduce the number of bytes sent over
wireless links or slow modem connections by a technique called transcoding.
Transcoding techniques include reducing image size and quality, modifying multimedia
content, changing text formats, and eliminating unimportant information. Some
transcoding proxies have gone into commercial deployment [7][9][16], e.g. T-Mobile's
Accelerator and AvantGo. IBM sells a commercial trans coding proxy. These products
try to reduce latency and bandwidth. We propose the use of some transcoding techniques
such as having the proxy resolve hostnames.

Barr [4] showed that compression of network traffic could be energy-efficient in certain
situations. Our dualproxy architecture allows this technique to be easily implemented
without any modifications to the mobile device or access point software. Krashinsky [21]
described a dualproxy system similar to our own that compressed HTTP traffic.

There has been much work on the energy management of hardware devices ([12] is a
representative paper). Many of these techniques operate at the OS level [14], although
some work at the application level [18]. Moving control of the networking hardware
power to the client proxy would enable the network hardware to be turned on whenever it
is needed.

2.5 Prior Measurement Studies
Jun [19] calculated the theoretical performance limits of various 802.11 standards. These
limits are applicable when a large number of devices or high-bandwidth applications use
the network. In section 4 we calculate how some of our schemes will increase the
theoretical performance of 802.1 lb, and in section 5 we measure their actual
effectiveness.

Feeny [13] published extensive power measurement data for 802.11 devices in an ad-hoc
environment. Unfortunately the data cannot be used to calculate the energy usage of
802.1 lb devices in PSM mode.
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3 Design
Sinew reduces mobile devices' network energy usage while increasing the average
bandwidth. The system comprises two main components: an access point proxy and a
client proxy. We implement both proxies as user-level programs so that they may be
easily used on different operating systems or hardware.

Figure 1 illustrates the Sinew components.

Figure 1 - Sinew Overview

Sinew Component

F Access Point )

-TCP Internet

Applications and operating systems interface with our proxies through standard TCP or
HTTP proxy mechanisms. This interface ensures that end users will be able to
understand and use our proxies with minimal training. Also, existing applications such as
Web browsers do not need to be rewritten or recompiled. Application modification
would be a major barrier to adoption.

The access point proxy may be integrated with the access point (as in the figure above) or
may be connected to the access point via a local network. For research purposes we used
the former configuration - our access point was a PC running Linux. A low cost
commercial access point could be used instead of a PC; in this case the access point
proxy would run on a server elsewhere on the LAN2

The AP proxy can use the following energy-saving schemes, each of which is described
in more detail later:

2 One of our techniques uses packets larger than 1500 bytes, which is the maximum packet size for 10 and

100 Mbps Ethernet networks. To continue to use this technique, the proxy server would need to be
connected to the access point via a network that supported large packets, e.g., gigabit Ethernet. Alternately,
the access point would need to be modified.
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" Buffering

* Packet size optimization

* DNS transcoding for HTTP traffic

The client proxy is an optional user-level program that runs on the mobile device. We
made the client proxy optional because, while it enables additional benefits, it requires
the user to install additional software. A client proxy, when used in conjunction with an
access point proxy, enables the following energy-saving schemes:

" Simple Reliable Datagram Protocol, a specialized TCP replacement protocol used
to communicate between the client and access point proxies

* TCP/IP parameter tuning

" Explicit power management

" Data and header compression

In Figure 1 mobile device A is not using the client proxy, and so communicates directly
over TCP with the access point proxy. Mobile device B uses the client proxy and
communicates with the AP Proxy over SRDP, a special-purpose reliable transport
protocol.

To test our design we implement an access point and client proxy. We implement the
features that we predict will have the highest energy savings, including buffering, packet
size optimization, and SRDP. Section 5 contains a discussion of the performance of the
system using these features.

It is important to stress that our proxy only delivers significant energy savings when used
in conjunction with an efficient 802.1 lb power saving mode (PSM). Without PSM, the
802.11 radio is always on, and thus reductions in traffic do not save energy.3 Thankfully,
PSM is widely deployed.

3.1 Base Station Proxy
Our base station proxy is a scalable, portable, and extensible TCP and HTTP proxy. It
uses a number of schemes to reduce the power and increase the performance of 802.1 lb
networks. Our base station uses non-blocking 10 to provide scalability. See Appendix B
for notes on the implementation.

The following section describes those schemes in detail. We implement a subset of these
features.

3.1.1 Buffering
Buffering is possible when one splits the TCP connection. When the client requests a
large amount of information, e.g. a large Web page, the proxy will retrieve that file, store
it in a buffer, and then resend it to the mobile client out of the buffer.

3 Although, as we will show, we still achieve significant bandwidth increases even without PSM.
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The split TCP connection shields the sender and the mobile device from losses or
congestion on each others' networks. This concept is very similar to snoop [2], which
also buffered packets. The energy benefit of buffering comes from fewer duplicate
transmissions and acks being sent over the wireless network.

In addition, as suggested in [1], buffering eliminates TCP timeouts due to drops on the
wireless link and reduces client-proxy round trip time (RTT). The result is improved
throughput and reduced latency.

Buffering is distinct from caching, which would try to save the information in case it is
requested again. Caching might be a reasonable strategy depending upon the amount of
memory available, although it is probably most effective when there are more users than
are typically at a single access point.

3.1.2 Packet Size Optimization
IP packets received from the Internet at large typically range in size from 50-1,450 bytes.
Smaller packets are acks, small files (e.g. buttons on a Web page) or, more rarely,
fragments. The largest packet that can be transmitted from one point to another without
fragmentation is known as the maximum transmission unit (MTU). The default MTU on
the Internet today is -1,500 bytes, which is the maximum packet size allowed by
Ethernet.

We can save energy and increase performance by changing the size of the 802.1 lb
packets. Our proxy accomplishes this by buffering incoming data and then sending it out
in optimally sized packets.

802.11 offers 2,296 bytes 4 (called the frame body or data field) of payload to higher-level
protocols. In the absence of losses, large packets are more efficient. This is true because
802.1 lb, like Ethernet, requires a contention period between each packet sent.
Amortizing this contention period over a greater number of bytes reduces the total
amount of delay per byte, and hence increases the effective bandwidth.

With losses, determining the optimal packet size becomes much more complicated, and is
out of the scope of this paper. Techniques such as those used in [9] or online learning
could be used to set the optimal packet size

In section 4 we show the theoretical improvement due to a higher MTU, and in section 5
we show that in our test setup a larger MTU offers a significant performance
improvement.

4 Actually, implementations must support frame bodies of 2,312 bytes to accommodate WEP overhead. 8
bytes are then used for WEP and 8 for Link Layer headers. Some implementations, such as the Linux
hostap and orinoco-cs drivers, set the maximum payload to 2,290.
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3.1.3 Jumbo IP Packets with Fragment Burst

Figure 2 - 802.1 lb Packet Timing without Fragments

CSMA/CA

I DIFS i BO SIFS DIFS i BO SIFS|-.. -.. -F-timS

Repeated cycle of CSMA/CA

Figure 3 - 802.1lb Packet Timing with Fragments (Fragment Burst)

CSMA/CA

DIFS I BO SFS SIFS SFS IFS SIS DIFS

Fragment Burst

There may be a way to send very large IP packets over 802.1 lb without fragmenting
them at the IP level, thus providing for efficient transport.

Non-fragment packets are sent after DIFS 5 amount of time plus a backoff period (BO), as
in Figure 2. However, as Figure 3 shows, 802.1 lb fragments are sent after SIFS amount
of time. Since SIFS is much smaller than DIFS, and no contention or backoff period is
required, more bytes can be sent per unit time with fragments than without.

The maximum number of fragments is 16, so that the maximum number of bytes that we

might send in this way is 36,736. The maximum IP packet size is 216 or 65,536 bytes.

It is unclear whether existing 802.1 lb implementations would tolerate a packet with a
payload greater than 2,296 bytes, but it does not appear to be unreasonable. The benefits
of this scheme are modeled in section 4. We did not implement this scheme.

3.1.4 Transcoding
Classical Web transcoding techniques change the resolution of images, the frame rate of
video, or cut out advertisements. These changes are often visible to the user and are
typically used in situations where bandwidth is severely limited, such as with cell phones.
We are not interested in these lossy approaches here.

However, there are certain cases where transcoding can still be useful. For example, one

traffic trace done with a Compaq iPaq showed that approximately 20% of all packets
were DNS lookups. 6 This can occur when browsing Web pages that use fully qualified
domain names instead of relative names, or that have many links to external domains. A

5 DIFS is the Distributed Inter-Frame Space, SIFS is the Short Inter-Frame Space. In 802.1 lb DFIS is 50
pts and SIFS is 10 ps.

6 Some browsers will cache DNS lookups.
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browser may do a DNS lookup for each one of these URLs, thus increasing latency and
wasting bandwidth. With an HTTP proxy already running, it is an easy step to replace all
hostnames in the HTML with IP addresses.

3.2 Client Proxy
The client proxy is an optional component of Sinew. It is optional because some mobile
hosts might not have the computational power or space to run the proxy, or some users
may not wish to use it.

Use of our client proxy in conjunction with the access point proxy allows the following
performance-enhancing schemes to be used.

3.2.1 Simple Reliable Datagram Protocol (SRDP)
We create a new protocol, SRDP, to replace TCP over 802.11 b links. SRDP is a reliable
UDP-based protocol similar in spirit to SRP [27]. Like TCP, it provides in-order, reliable
delivery of bytes. Unlike TCP, it adjusts its ack rate and does not need to worry about
congestion control (we rely on 802.1 lb for that). SRDP is designed to appear identical to
TCP to applications. 7 Table 1 summarizes the key feature differences between TCP and
SRDP. SRDP is described fully in Appendix A.

Table 1 - SRDP Feature Comparison

Feature TCP UDP SRDP
Reliable X X
In-Order X X
Congestion Control X
SACKS X
Max Packets between acks 2 no limit

SRDP should be faster than TCP because it does not have to ramp up its congestion
window or back off when packets are lost. Also, since it uses sacks or delayed acks,
SRDP does not have to ack every packet. In a half-duplex environment, acks reduce the
amount of data that can be sent. It would also be possible to use 802.1 lb acks to generate
TCP acks, but this would likely require kernel modifications.

As its name implies, SRDP is designed to be simple and, hence, easy to implement. It is
suitable for implementation in user mode.

While SRDP has several advantages, the introduction of a new protocol must be
considered carefuall'. SRDP may have adverse interactions with lower and higher-layer
protocols, routers, or applications that expect TCP or TCP-like performance. Since

7 Our SRDP socket implementation has the same methods as a normal TCP socket.

8 TCP SACK has been widely discussed and different approaches have been proposed; however, it is not
widely deployed. RFC 2018 and 2883 and others discuss TCP SACK.

9 Since SRDP operates over a single hop or LAN it should not be going through routers.
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SRDP sends at the maximum rate allowed by lower layers, it has the potential to crowd
out protocols that back off when faced with congestion. It is also possible that by not
backing off, SRDP could aggravate congested wireless networks. Further studies and
simulations are required to address these issues.

3.2.2 Compression
A dual-proxy platform is also an excellent way to implement a protocol- level
compression scheme. While we have not done so ourselves, an approach similar to that
taken by Barr [4] or Krashinsky [21] would be appropriate.

3.2.3 Application Power Management
Web browsing, email, and file transfer do not require a mobile device to be able to accept
incoming connections. 10 Thus it should be possible to turn on the radio whenever the
client requests a new page or file. Our client proxy provides a convenient platform on
which to build this functionality.

3.2.4 IP Parameter Tuning
Several papers have suggested adjusting or dynamically tuning TCP/IP parameters based
on network conditions. Our dual-proxy platform enhances such efforts by providing an
easy way to coordinate adjustments between the sender (the access point) and receiver
(the mobile host). We modify some parameters, such as send and receive buffer size, on
the mobile host.

4 Theoretical Calculations
We modeled the increase in the maximum theoretical throughput to 802.11 b from our
various performance-enhancing schemes. We drew heavily on the data in [19].

We made the following simplifying assumptions:

* We use CSMA/CA, not RTS/CTS."

* We use the 11Mbps data rate.' 2

* TCP always sends at the maximum rate allowed by the hardware (ignore slow
start and back-off).

* There are no dropped packets and no collisions.

10 Inability to receive incoming connections does cause problems with some protocols, such as FTP.
However, firewalls have prevented incoming connections for many years so there are well-established
work arounds.

" CSMA/CA and RTS/CTS are different techniques a host may use to determine if a wireless channel is
available for sending. RTS/CTS is typically used in noisier or more crowded environments.

1 The model does take into account the fact that some management frames are sent at lower speeds.
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Let D be the delay per packet, X be the number of data bytes sent per packet, B be the bit-
rate at which the packet is sent, and TMT be the theoretical maximum throughput of
802.1 lb (without any TCP or IP headers). Then

TMT =XX
-+ D

B

One can think of X/B as the variable time per packet and D as the fixed time per packet.
As Figure 4 illustrates, D is the sum of multiple delays.

Figure 4 - 802.11 b Packet Timing

CSMA/CA a

DIFSi BO FPT S F i BO A IFS
___..._.. __ - --__... __ - - -

time

Repeated cycle of CSMA/CA

TDIFS is the wait time before the contention period can begin, TBO is the average
contention time, TSIFS is the wait time before the 802.1 lb ack can be sent, TACK is the
time it takes to send the 802.1 lb ack, and TDATA is the time required to send the payload.

D = TDIFS + TSIFS + TBo + TACK + TDATA-

TCP requires that we send an ack for every two data packets received.13 The delay for a
single 40 byte TCP packet is 920 ps, so the effective delay, TTCPACK, is half that, or 460
ps. We can treat a TCP ack as a delay because the 802.11 channel is half-duplex, so that
we must contend for each TCP packet. A full duplex channel would allow acks to be sent
without affecting the data flow.

DTCP = TDIFS + TFS + TBO + TACK + TDATA + TTCPACK

We also need to take into account the overhead of the TCP and IP headers, which amount
to 40 bytes total. A 1500 byte Ethernet packet has at most 1460 bytes of non-header data.

Plugging in these figures yields TMT= 4.8 Mbps. This is perhaps surprising given that

the bit rate of 802.11 b is 11Mbps. Table 2 shows the variable values used and the TMT
for each of our performance-enhancing schemes.

SRDP is our Simple Reliable Datagram Protocol with an ack sent for every 10 packets

received. We found this setting to work in practice. We did not use Sack.

BIGSDU is modeled using a 2290 byte 802.11 b packet.

13 This is a conservative assumption; without delayed ack, TMT decreases to about 4.0 Mbps
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BIGIP refers to the fragmentation burst scheme explained in section 3.1.3. The
effectiveness of this scheme comes from the fact that we can amortize the DIFS and BO
period over each of the fragments. As noted above, however, it is unclear whether
existing hardware would support this scheme.

DCOMP is a simple data compression scheme. The 35% compression ratio is based on
[21] and serves to illustrate how data compression could increase effective throughput.
The number is likely to change significantly depending on the kind of traffic - images are
already compressed while text compresses well.

We point out that the SRDP+BIGSDU scheme, which we implement, is predicted to
increase the total maximum throughput to 6.9Mbps, a 31% increase. In section 5.2.2 we

Table 2

Scheme

SRDP+
SRDP+ BIGIP+

Parameter Units ITCP SRDP BIGSDU BIGIP DCOMPIBIGSDU BIGSDU

802.11b
Effective DIFS ms 50 50 50 10 50 50 10
SIFS ms 10 10 10 10 10 10 10
Average Backoff ms 310 310 310 62 310 310 62
Time Ack ms 304 304 304 304 304 304 304
Time Overhead ms 192 192 192 192 192 192 192
Overhead Bytes byes 34 34 34 34 34 34 34

IP
Number of IP Fra s 0 0 0 5 0 0 5
Amortized IP Overhead byes 20 20 20 4 20 20 4

UDP
UDP Overhead byes 0 8 0 0 0 8 1.6

TCP/SRDP
Amortized Overhead bytes 20 13 20 4 20 13 2.6
Time Ack ms 460 92 460 184 460 92 18.4
Packets per Ack 1 10 1 1 1 10 10

Compression
Data 0% 0% 0% 0% 35% 0% 0%

Bitrate mbit/s 11 11 11 11 11 11 11

Time per Packet _ ms 2442 2074 3023 1878 2442 2655 2294
Throughput mbits/s 4.8 5.6 6.0 6.4 7.4 6.8 8.0
Bitrate Increase over TCP mbits/s 0% 18% 25% 33% 55% 42% 67%

show a measured increase to approximately 6.3Mbps.

The combination of SRDP, BIGSDU, and BIGIP would result in 8.0MBps throughput.
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5 Measurements
The following section presents performance and energy efficiency measurements.
first describe the test setup and then present and analyze the data.

We

5.1 Test Setup
We desired an environment that would give us accurate and precise results. To that end
we used precise equipment and operated on a low noise channel with no other users.
Tests were conducted between 10PM and 2AM to minimize other possible traffic, such as
random nodes trying to use our access point. Our mobile host was approximately 3 feet
from our base station.

To measure power we created a test circuit to measure the power use of 802.1lb card.
We placed a small, high-accuracy, resistor R in series with the power supply to the card,
VaC. We then used two voltage probes 14 to measure the voltage drop Vr over the resistor.
The currert flowing to the card Ir is thus Vr/R. We then calculated the instantaneous
power use P of the card by P = c , I- To calculate the energy use we summed the
voltage samples.

Figure 5 illustrates the test setup.

Figure 5 - Experimental Test Setup

Agilent Infinium
54830B Scope

Acer TravelMate
100 serving as an

1.5 Ohm access point

Intersil
Syscard Lucent Orinoco 802.11 b

Evo Laptop -- PCCExtend - Silver 802.11 b PCMCIA
PCMCIA Extender PCMCIA Card 8 02 .11b Card

3'

Unless otherwise noted the 802.1 lb card was in power saving mode with a beacon period
of 0.1s and was operating at 1 1Mbps. 802.11 b fragmentation was disabled and the card
was in CSMA/CA mode.

14 A more accurate measurement circuit would use a single differential probe instead of two passive probes.
15 This formula is approximately correct for small values of R; to get an exact reading one would use the
voltage actually going into the card.
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We used two techniques to give the mobile host access to the local network and the
Internet. If the experiment used the access point proxy, then we setup the access point
routing tables to route packets through the mobile host over the wireless interface and all
other packets over the wired interface. If the experiment did not use the access point
proxy then we used the br c t 1 utility to bridge the mobile host to the local network. We
could not use br c t 1 in the former case because it did not allow packets larger than 1500
bytes.

5.1.1 Equipment Details
The mobile host was a Compaq Evo laptop running Debian Linux 2.4.21. It used a
Lucent Orinoco Silver PCMCIA 802.1 lb card.

The base station was an Acer TravelMate C100 laptop running Debian Linux and a
2.4.21 kernel. We used an Intersil PCMCIA Ethernet card. The hostap-0.0.4 driver
provided the access point functionality.

Power measurements were conducted using an Agilent Infinium 54830B scope. We
collected data at 25-50 KSamples/s. 16 We used a Syscard PCMCIA extender to get
access to the power pins on the 802.1 lb card. We used two passive probes to measure
the voltage drop across a 1.5 Ohm (±1%) resistor in series with the VCC terminal of the
PCMCIA card extender.

5.1.2 Data Analysis Procedure
Most of our measurements lasted -40s and captured -1 million data points, the maximum
allowed by our scope. To compute the total energy used we exported the waveform and
manipulated the data points with an analysis program.1 7

5.2 Measurements
Our two performance metrics were energy (in Joules) and time to completion. Energy is
important to users because it determines how long their battery will last. Time to
completion is important because users do not like waiting for Web pages to load or files
to transfer. In some cases we report bandwidth, which is inversely proportional to time to
completion.

Energy and time to completion are closely related - the longer a transmission takes, the
longer the radio is transmitting and receiving, and so the more energy it uses.

16 We believe that the shortest amount of time that an 802.1lb radio turns on is about 0.2ms - the time it
takes to send a CTS or RTS packet. If we want to make sure that we capture every time the radio is not
idle, we need to make sure we sample that event multiple times. We arbitrarily decided that we wanted 5
samples/event. This results in a minimum sampling rate of 25,000 Samples/s. We could not determine the
sampling rate used in other studies.

17 The Agilent 54830B did not accurately compute averages over large waveforms, which would have
given us enough information to calculate the energy used, so we were forced to do these calculations
ourselves.
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The most interesting measurements quantify what users are actually doing. We
constructed 4 data sets that correspond to typical user activities. The following table
describes the data sets and how they relate to user activity.

Table 3 - Description of Data Sets

Data Set Typical User Activity

Baseline The user is doing nothing

Bulk The user is downloading a large file (10MB or more) from the
LAN; 802.11 is the bandwidth bottleneck

Single File The user is downloading a medium-sized (500K) file from the
Internet; the bottleneck is likely on the Internet

Web Suite The user is browsing Internet Web pages.

It is important to note that when we refer to energy we are referring to the energy used by
the network card, not the total system. Our client proxy is certain to incur some
incremental CPU and memory energy cost, although rough profiling using top
indicated that our client proxy rarely used over 10% of the CPU. An efficient
implementation would likely reduce this even further. This is an area of future work.

5.2.1 Baseline
Baseline power use is an important figure. If it were the case that baseline power use
were similar to transmit or receive power, as was true in the early 90's [25], then
changing the number or size of packets sent over the link would have little impact on
energy.

However, as the following table illustrates, Idle is about 10 times more expensive than
PSM. This factor of 10 is the key reason why we are able to save energy by increasing
the effective bandwidth of the 802.1 lb link.

Table 4 - 802.1 lb Card Characteristics

Lucent Orinoco Silver Manufacturer Spec Measured
Sleep 45mW 73mW
Idle 890mW
Receive 925mW
Transmit 1425mW -
Average in PS Mode - 94mW
Power Supply 5V 4.74-5.07V
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We are not able to explain the discrepancy between the manufacturer's and our sleep
mode power measurements. 18

To obtain the above data we placed the 802.1 lb card in PSM mode and measured the
voltage drop over the resistor. Our sample period was about 40s.

Table 5 - 802.1 lb PSM Measurements

Measurement Average Value (n=2)
Average voltage 28.9mV
Average voltage between wakeup periods 22.OmV
Average voltage during wakeup time 259mV
Wakeup period 102ms
Duration of wakeup 1.80ms

Figure 6 is the actual output of the scope and helps visualize
the card is waking up every .Is as anticipated.

the data above. Notice that

Figure 6 - Power Saving Mode Scope Output

.1 .2 .3 .4 .5 .6

Time (s)

-. 7

- I
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-8 . . . .

5.2.2 Bulk Data
The bulk data set measures the maximum throughput of the 802.1 lb link
without our proxies. Maximum throughput is the figure of interest when
transferring a large file over a LAN, in which case the slow 802.1 lb link
the bottleneck.

with and
a user is
is likely to be

18 We note that [13] also observed a significant (25mW) difference between measured and spec. There may

be some variance based on what mode the card is in.
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We used a custom program to generate and send random bytes from the base station and
the ne t c at utility to receive those bytes on the mobile host. The bash t ime command
was used to measure the transfer time on the mobile host. Our byte generation program
could send data at at least 100Mbps, so it was never the bottleneck.

In PSM mode our proxies increased the throughput of the 802.1 lb link by 38%, from
4.5Mbps to 6.2Mbps. With only the access point proxy - meaning that we used TCP
over the link instead of SRDP - we achieved a 22% increase. Figure 7 illustrates the
gain.

Figure 7 - Effect of Proxies on Maximum Throughput with PSM

We also measured the effect of the proxies on maximum throughput without PSM mode.
This measurement would be interesting in a real-world deployment since there would
likely be a combination of devices with and without batteries. Without PSM we achieved
a 35% increase in maximum throughput, from 4.7 to 6.3Mbs. The numbers are similar
because the host is not sleeping during the file transfer.

It is interesting to note that even with a 1500 byte SDU, we were able to achieve a 32%
increase in bandwidth. SRDP is likely the major contributor.
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Figure 8 - Effect of Proxies on Maximum Throughput without PSM

We also measured the energy consumption of the network card during a bulk transfer.
Using both our proxies we reduced energy consumption per Mbit by 20%. As Figure 9
illustrates, energy is roughly proportional to speed.
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Figure 9 - Energy per Mbit with and without Proxies
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5.2.3 Single File
The single file test gives us an idea of how our system performs when the 802.1 lb link is
not the bottleneck.

To perform the single file transfer test we downloaded a 325K file from the Internet using
wget' 9. For each energy measurement we downloaded the same file 10 times, with a 1
second delay between each download. A new TCP connection was established for each
retrieval. We chose the file arbitrarily but tried to ensured it was on route with few
dropped packets and no routing abnormalities. We subtracted the baseline energy cost
from the total energy of the capture after the 10 files were retrieved.

For a single file we obtained a 24% decrease in the energy required when using the
access point proxy and a 23% decrease when using both proxies. It is possible that the
extra latency introduced by the client proxy outweighed the benefits of reduced ack
traffic from SRDP. In addition to saving energy, our proxies reduce the latency
experienced by the user by up to 17%.

Figure 10 displays this data graphically and shows the correlation between energy
savings and time to completion. Figure 11 shows the throughput with and without the
proxies.

19 wget is a unix utility to fetch web pages. The actual command line used in the transfer tests was wget
-C off -r -p -H -u "Internet Explorer" -e robots=off -- no-http-keep-
alive -- delete-after [URLs]
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Figure 10 -Single File Energy Savings

14- 0 Energy 40

13 .I me - 38

- -36
12 -

34

11 - 10.6 -
0))

010- -.- o3E
W 0

9 26.2 280
z 8.1 8.1 -

8E
23.2 -- 24

7 21.7
--22

6 20

No Proxy AP Proxy Both Proxies
n=20

Figure 11 - Single File Throughput
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5.2.4 Web Suite
We downloaded 5 popular sites from the Internet and measured the performance of the
AP proxy. The client proxy was not used because it introduced additional overhead.
Table 6 lists the contents of the suite and Figure 12 shows our performance.

The effective transfer rate is very low due to the large number of small files (184 in total,
with an average wise of about 3K). Because of the large number of small files, the
overhead incurred by going through the proxy becomes significant.

One way to fix this problem is to have the proxy prefetch each file once it received the
original request. That is, when the initial request is received, the proxy guesses (based on
the links in the HTML) which files the browser will request next and caches them.

Table 6 - Web Suite

Site Size (bytes) Number of Files Average Size (bytes)
www.cnn.com 204,732 67 3,056
www.netscape.com 91,618 31 2,955
www.yahoo.com 52,054 15 3,470
www.slashdot.org 63,814 5 12,763
www.news.com 145,565 66 2,206
Total 557,783 184 3,031

Figure 12 - Web Suite Throughput
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6 Future Work

6.1 Measure Total System Energy Change
While we do not believe our client proxy is resource intensive, it is certainly using some
amount of energy. It would be very valuable to know what the total system energy
savings is.

6.2 SRDP
Our research implementation of SRDP was not optimized; the proxy had high latency and
resource usage. While SRDP should remain simple, it might benefit from some
additional features like window. Also, we have not studied SRDP in a congested
environment. Modifications might be necessary.

6.3 Implement Additional Performance Enhancing Schemes
As [4] and [21] showed, compression can significantly increase energy efficiency and
performance. Our models show that compression should have a incremental benefit.
With the existing architecture it would be relatively easy to compress the traffic between
the client and access point proxies. More challenging, perhaps, would be to determine
under what situations compression is appropriate.

While we do not implement the application power management, jumbo IP packet scheme,
or transcoding we believe they hold significant promise. Other schemes may also be
possible.

6.4 Other Wireless Networks
We believe many of the approaches we have taken are applicable to other wireless
networks, including 802.11 a and 802.11g. Indeed, the code would run unmodified on
these networks and should scale easily.

6.5 Hostile Network Environments
Our system has not been tested in noisy or congested networks, in part because such
testing is difficult to do. Such testing is clearly a prerequisite for deployment. How our
system will perform at slower or higher network speeds is uncertain, although [19] has
some data on the theoretical effect of SDU.

6.6 Other Architectures
Our access point and access point proxy ran on the same physical computer. It should be
possible to have one access point proxy serve multiple commercial access points,
although to get the benefits of large SDU packets the connecting network would have to
support jumbo frames.
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7 Conclusion

7.1 Summary
We design, build, and test a system to decrease the energy consumption and increase the
performance of wireless networks. Our system is minimally invasive, requiring only
user-level software programs running on commodity hardware. With our Java-based
research implementation, we achieve up to a 20% energy savings and a 38% increase in
network throughput.
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I would like to thank Jason Waterman for his extensive help with systems administration
and answering my many Linux questions. Eugene Weinstein and Ken Steele provided
valuable feedback and support.
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Appendix A: SRDP (Simple Reliable Datagram Protocol)
SRDP is a simple, easy to implement, reliable transport protocol. It is the goal of this
document to provide a description of SRDP, rather than a full specification. A
specification that includes states and state transitions exists but is not included to save
space.

SRDP is designed, though not required, to operate on top of UDP. SRDP provides in-
order delivery of bytes. It does not provide reliability, congestion control, multicast, or
any other feature not explicitly defined below. We rely upon UDP to provide reliability
and 802.1 lb to provide congestion control.

Like TCP, SRDP relies upon sequence numbers to provide reliable delivery. Before
bytes may be sent a connection must be established, which establishes the sequence
numbers both sides will use. Connections should also be shutdown, although that is not
required.

SRDP is not a general protocol. It is designed to operate over 802.1 lb networks of one
hop, although it may have other uses. Because of this specialization, it is missing many
features commonly found in reliable transport protocols like TCP. But it is also because
of this specialized use that we are able to create a simple protocol.

The following sections describe SRDP in more detail.

Packet Framing:
All numbers below are 8-bit bytes unless otherwise noted.

Every SRDP packet contains a 13-byte Header and may optionally contain a variable-
length Body.

13 0-65,460
Header Body

Header:
The header is a fixed-size 13 bytes, broken down as follows.

1 4 4 4
Type FieldO FieldI Field2

Type Binary Packet Type
1 00000001 Data
2 00000010 Ack
3 00000001 Sack
4 00000011 Syn
5 00000100 Syn-Ack
6 00000101 Close
7 00000110 Close-Ack
8 00000111 Reset
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The uses of fieldO, fieldi, and field2 are specific to the type, but every type should
contain a fixed-length fields. This greatly eases implementation and parsing of packets.
Any future extensions should adhere to this principle and put additional information in
the body, if necessary.

Body:
0-65,460
Body
The body is raw bytes. The length of the body is not specified in the leader.

Packet Types
Definitions:

Sender: The sender of the packet described.

Recipient: The recipient of the packet described.

Type 1: Data
4 4 4 0-65,460
Seq Unused Unused Data
This packet contains data.

Seq is the sequence number of the first byte in the packet.

Type 2: Ack
4 4 4
Seq Unused Unused
This packet acknowledges data received.

Seq is the next sequence number expected by the sender, not received.

Type 3: Sack
4 4 4 0-65,460
Seq Number of

Sack Blocks
This packet acknowledges data
data received.

Unused More Sack Blocks

1 1(8 bytes each)
received when that data is not contiguous with existing

Seq is the last contiguous sequence number received by the sender.

The number of sack blocks indicates the number of sack blocks, including the one in the
header, which this packet contains. This is not strictly necessary since we can just look at
the packet length but may help in parsing.

A sack block is a pair of sequence numbers (x,y) where x is the sequence number of the
first byte received and y is the sequence number of the last byte received.

Type 4: Syn
4 4 4
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I Seq I Unused j Unused I
This packet is used to begin an SRDP connection.

Seq is the sequence number of the next packet that the initiator will send. It is a number
from [0, 2121].

Type 5: Syn-Ack
4 4 4
Seq Synack Port
Seq is the sequence number of the next packet that the sender of the Syn-Ack packet will
send. Note that this is not the same as the Seq received in a Syn packet; that Seq is
placed in Synack.

Synack is the sequence number that the receiver of the Syn packet will send. Seq is the
sequence number of the next packet that the initiator will send. It is a number from 0-2-32
1.

Port is the port on the receiver host to which the sender should send packets for this
connection from now on We place no restrictions on valid port numbers.

Type 6: Close
4 4 4
Last Sent Last Received Unused
Last Sent is the sequence number that the sender last sent.

Last Received is the sequence number that the sender last received.

Type 7: Close-Ack
4 4 4
Last Sent Last Received Unused
Last Sent is the sequence number that the sender last sent.

Last Received is the sequence number that the sender last received.

Type 8: Reset
4 4 4
Unused Unused Unused
The sender has closed the connection.

Design Notes:
" A one-hop connection is typically low-latency connection, so it is unlikely a host

will be sending a receiving data at the same time. Thus, to keep things simple, we
opted to have separate ack and data packets. An alternative is to have an ack flag
and field, as in TCP.

" For simplicity, there is no two-sided shutdown. If one side closes the socket, it's
closed.
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* We used 4-byte fields and a fixed- length header to ease implementation, although
it does waste some space.

* We have left much room for expansion and modification of the protocol, e.g.,
extra bits in the type field.
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Appendix B: Implementation Notes
The client and proxy servers were written entirely in Java 1.4 to allow for portability.

In Java 1.4 Sun introduced non-blocking IO (dubbed NIO) to allow development of high-
performance server applications. Our access point and client proxies were developed
using the NIO model.

SRDP
SRDP is designed to mimic a TCP socket. To accomplish this we created a class,
SRDPSocketChannel, which has identical methods and functionality to
SocketChannel, the class that implements non-blocking TCP. We did not subclass
SocketChannel because it would have been complex and difficult. Instead,
SRDPSocketChannel uses a non-blocking DatagramChannel, which implements
non-blocking UDP, for all of its communications. To use SRDP, a programmer simply
replaces all references to SocketChannel with SRDPSocketChannel.
SRDPSocketChannel could thus be used in other applications where a reliable UDP
is desired.

Our SRDP implementation is built on top of UDP. We wanted to keep our
implementation simple and did not want to modify the Selec tor or Se1ec t ionKey
classes, which implement se lec to. We thus select on the underlying
UDPChannel. This has the effect that when the SRDPSocketChannel is selected
for read, there may or may not be actual data available (for example, the packet awaiting
delivery could be an ack). This is not a problem since we do the packet processing (e.g.,
processing the ack) whenever SRDPSocke tChannel.read is called and then return
data only if there were data packets available. We use a similar mechanism for wr i t e.

Real-World Deployment
In an actual deployment, we envision that the first-time user of a power-saving base
station would be redirected to a Web page offering the client proxy software for
download. Use of Java in this situation is highly desirable since the chances of
installation and compatibility problems are minimized, assuming the device can run Java.
Depending on the target device, it may be more feasible to provide a pre-compiled native
binary or perhaps a pre-compiled Java run time environment.

20 There are a couple of other subtle modifications but these are explained in the code documentation.
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