2,818 research outputs found

    Random redundant storage in disk arrays: Complexity of retrieval problems

    Get PDF
    Random redundant data storage strategies have proven to be a good choice for efficient data storage in multimedia servers. These strategies lead to a retrieval problem in which it is decided for each requested data block which disk to use for its retrieval. In this paper, we give a complexity classification of retrieval problems for random redundant storage

    Building high-performance web-caching servers

    Get PDF

    CRAID: Online RAID upgrades using dynamic hot data reorganization

    Get PDF
    Current algorithms used to upgrade RAID arrays typically require large amounts of data to be migrated, even those that move only the minimum amount of data required to keep a balanced data load. This paper presents CRAID, a self-optimizing RAID array that performs an online block reorganization of frequently used, long-term accessed data in order to reduce this migration even further. To achieve this objective, CRAID tracks frequently used, long-term data blocks and copies them to a dedicated partition spread across all the disks in the array. When new disks are added, CRAID only needs to extend this process to the new devices to redistribute this partition, thus greatly reducing the overhead of the upgrade process. In addition, the reorganized access patterns within this partition improve the array’s performance, amortizing the copy overhead and allowing CRAID to offer a performance competitive with traditional RAIDs. We describe CRAID’s motivation and design and we evaluate it by replaying seven real-world workloads including a file server, a web server and a user share. Our experiments show that CRAID can successfully detect hot data variations and begin using new disks as soon as they are added to the array. Also, the usage of a dedicated partition improves the sequentiality of relevant data access, which amortizes the cost of reorganizations. Finally, we prove that a full-HDD CRAID array with a small distributed partition (<1.28% per disk) can compete in performance with an ideally restriped RAID-5 and a hybrid RAID-5 with a small SSD cache.Peer ReviewedPostprint (published version

    Doctor of Philosophy

    Get PDF
    dissertationIn the past few years, we have seen a tremendous increase in digital data being generated. By 2011, storage vendors had shipped 905 PB of purpose-built backup appliances. By 2013, the number of objects stored in Amazon S3 had reached 2 trillion. Facebook had stored 20 PB of photos by 2010. All of these require an efficient storage solution. To improve space efficiency, compression and deduplication are being widely used. Compression works by identifying repeated strings and replacing them with more compact encodings while deduplication partitions data into fixed-size or variable-size chunks and removes duplicate blocks. While we have seen great improvements in space efficiency from these two approaches, there are still some limitations. First, traditional compressors are limited in their ability to detect redundancy across a large range since they search for redundant data in a fine-grain level (string level). For deduplication, metadata embedded in an input file changes more frequently, and this introduces more unnecessary unique chunks, leading to poor deduplication. Cloud storage systems suffer from unpredictable and inefficient performance because of interference among different types of workloads. This dissertation proposes techniques to improve the effectiveness of traditional compressors and deduplication in improving space efficiency, and a new IO scheduling algorithm to improve performance predictability and efficiency for cloud storage systems. The common idea is to utilize similarity. To improve the effectiveness of compression and deduplication, similarity in content is used to transform an input file into a compression- or deduplication-friendly format. We propose Migratory Compression, a generic data transformation that identifies similar data in a coarse-grain level (block level) and then groups similar blocks together. It can be used as a preprocessing stage for any traditional compressor. We find metadata have a huge impact in reducing the benefit of deduplication. To isolate the impact from metadata, we propose to separate metadata from data. Three approaches are presented for use cases with different constrains. For the commonly used tar format, we propose Migratory Tar: a data transformation and also a new tar format that deduplicates better. We also present a case study where we use deduplication to reduce storage consumption for storing disk images, while at the same time achieving high performance in image deployment. Finally, we apply the same principle of utilizing similarity in IO scheduling to prevent interference between random and sequential workloads, leading to efficient, consistent, and predictable performance for sequential workloads and a high disk utilization

    ON OPTIMIZATIONS OF VIRTUAL MACHINE LIVE STORAGE MIGRATION FOR THE CLOUD

    Get PDF
    Virtual Machine (VM) live storage migration is widely performed in the data cen- ters of the Cloud, for the purposes of load balance, reliability, availability, hardware maintenance and system upgrade. It entails moving all the state information of the VM being migrated, including memory state, network state and storage state, from one physical server to another within the same data center or across different data centers. To minimize its performance impact, this migration process is required to be transparent to applications running within the migrating VM, meaning that ap- plications will keep running inside the VM as if there were no migration operations at all. In this dissertation, a thorough literature review is conducted to provide a big picture of the VM live storage migration process, its problems and existing solutions. After an in-depth examination, we observe that a severe IO interference between the VM IO threads and migration IO threads exists and causes both types of the IO threads to suffer from performance degradation. This interference stems from the fact that both types of IO threads share the same critical IO path by reading from and writing to the same shared storage system. Owing to IO resource contention and requests interference between the two different types of IO requests, not only will the IO request queue lengthens in the storage system, but the time-consuming disk seek operations will also become more frequent. Based on this fundamental observation, this dissertation research presents three related but orthogonal solutions that tackle the IO interference problem in order to improve the VM live storage migration performance. First, we introduce the Workload-Aware IO Outsourcing scheme, called WAIO, to improve the VM live storage migration efficiency. Second, we address this problem by proposing a novel scheme, called SnapMig, to improve the VM live storage migration efficiency and eliminate its performance impact on user applications at the source server by effectively leveraging the existing VM snapshots in the backup servers. Third, we propose the IOFollow scheme to improve both the VM performance and migration performance simultaneously. Finally, we outline the direction for the future research work. Advisor: Hong Jian

    Scalable Storage for Digital Libraries

    Get PDF
    I propose a storage system optimised for digital libraries. Its key features are its heterogeneous scalability; its integration and exploitation of rich semantic metadata associated with digital objects; its use of a name space; and its aggressive performance optimisation in the digital library domain

    Resurrection: Rethinking Magnetic Tapes For Cost Efficient Data Preservation

    Get PDF
    With the advent of Big Data technologies-the capacity to store and efficiently process large sets of data, doors of opportunities for developing business intelligence that was previously unknown, has opened. Each phase in the processing of this data requires specialized infrastructures. One such phase, the preservation and archiving of data, has proven its usefulness time and again. Data archives are processed using novel data mining methods to elicit vital data gathered over long periods of time and efficiently audit the growth of a business or an organization. Data preservation is also an important aspect of business processes which helps in avoiding loss of important information due to system failures, human errors and natural calamities. This thesis investigates the need, discusses possibilities and presents a novel, highly cost-effective, unified, long- term storage solution for data. Some of the common processes followed in large-scale data warehousing systems are analyzed for overlooked, inordinate shortcomings and a profitably feasible solution is conceived for them. The gap between the general needs of 'efficient' long-term storage and common, current functionalities is analyzed. An attempt to bridge this gap is made through the use of a hybrid, hierarchical media based, performance enhancing middleware and a monolithic namespace filesystem in a new storage architecture, Tape Cloud. The scope of studies carried out by us involves interpreting the effects of using heterogeneous storage media in terms of operational behavior, average latency of data transactions and power consumption. The results show the advantages of the new storage system by demonstrating the difference in operating costs, personnel costs and total cost of ownership from varied perspectives in a business model.Computer Science, Department o
    • …
    corecore