usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

CRAID: Online RAID Upgrades Using
Dynamic Hot Data Reorganization

Alberto Miranda, Barcelona Supercomputing Center (BSC-CNS); Toni Cortes,
Barcelona Supercomputing Center (BSC-CNS) and Technical University of Catalonia (UPC)

https://www.usenix.org/conference/fast14/technical-sessions/presentation/miranda

This paper is included in the Proceedings of the
12th USENIX Conference on File and Storage Technologies (FAST '14).
February 17-20, 2014 - Santa Clara, CA USA
ISBN 978-1-931971-08-9

Open access to the Proceedings of the
12th USENIX Conference on File and Storage
Technologies (FAST "14)

is sponsored by

”"fSyma nte




CRAID: Online RAID Upgrades Using Dynamic Hot Data Reorganization

A. Miranda®, T. Cortes¥*

SBarcelona Supercomputing Center (BSC—CNS)

Abstract

Current algorithms used to upgrade RAID arrays typi-
cally require large amounts of data to be migrated, even
those that move only the minimum amount of data re-
quired to keep a balanced data load. This paper presents
CRAID, a self-optimizing RAID array that performs an
online block reorganization of frequently used, long-term
accessed data in order to reduce this migration even fur-
ther. To achieve this objective, CRAID tracks frequently
used, long-term data blocks and copies them to a ded-
icated partition spread across all the disks in the array.
When new disks are added, CRAID only needs to ex-
tend this process to the new devices to redistribute this
partition, thus greatly reducing the overhead of the up-
grade process. In addition, the reorganized access patterns
within this partition improve the array’s performance,
amortizing the copy overhead and allowing CRAID to
offer a performance competitive with traditional RAIDs.
We describe CRAID’s motivation and design and we
evaluate it by replaying seven real-world workloads in-
cluding a file server, a web server and a user share. Our
experiments show that CRAID can successfully detect
hot data variations and begin using new disks as soon as
they are added to the array. Also, the usage of a dedicated
partition improves the sequentiality of relevant data ac-
cess, which amortizes the cost of reorganizations. Finally,
we prove that a full-HDD CRAID array with a small dis-
tributed partition (<1.28% per disk) can compete in per-
formance with an ideally restriped RAID-5 and a hybrid
RAID-5 with a small SSD cache.

1 Introduction

Storage architectures based on Redundant Arrays of
Independent Disks (RAID) [36, 10] are a popular choice
to provide reliable, high performance storage at an accept-
able economic and spatial cost. Due to the ever-increasing
demand of storage capabilities, however, applications of-
ten require larger storage capacity or higher performance,
which is normally achieved by adding new devices to the
existing RAID volume. Nevertheless, several challenges
arise when upgrading RAID arrays in this manner:

1. To regain uniformity in the data distribution, certain
blocks must be moved to the new disks. Traditional

*Technical University of Catalonia (UPC)

approaches that try to preserve the round-robin or-
der [15, 7, 49] end up redistributing large amounts
of data between old and new disks, regardless of the
number of new and old disks.

2. Alternative methods that migrate a minimum amount
of data, can have problems to keep a uniform data
distribution after several upgrade operations (like the
Semi-RR algorithm [13]) or limit the array’s perfor-
mance (GSR [47]).

3. Existing RAID solutions with redundancy mecha-
nisms, like RAID-5 and RAID-6, have the additional
overhead of recalculating and updating the associated
parities, as well as the necessary metadata updates as-
sociated to stripe migration.

4. RAID solutions are widely used in online services
where clients and applications need to access data con-
stantly. In these services, the downtime cost can be
extremely high [35], and thus any strategy to upgrade
RAID arrays should be able to interleave its job with
normal I/O operations.

To address the challenges above, in this paper we pro-
pose a novel approach called CRAID, whose purpose is
to minimize the overhead of the upgrade process by re-
distributing only “relevant data” in real-time. To do that,
CRAID tracks data that is currently being used by clients
and reorganizes it in a specific partition. This partition
allows the volume to maintain the performance and distri-
bution uniformity of the data that is actually being used
by clients and, at the same time, significantly reduce the
amount of data that must be migrated to new devices.

Our proposal is based on the notion that providing good
levels of performance and load balance for the current
working set suffices to preserve the QoS! of the RAID ar-
ray. This notion is born from the following observations
about long-term access patterns in storage: (i) data in a
storage system displays a non-uniform access frequency
distribution: when considering coarse-granularity time
spans, “frequently accessed” data is usually a small frac-
tion of the total data; (ii) this active data set exhibits long-
term temporal locality and is stable, with small amounts
of data losing or gaining importance gradually; (iii) even

In this paper, the term QoS refers to the performance and load
distribution levels offered by the RAID array.

USENIX Association

12th USENIX Conference on File and Storage Technologies 133



Trace Year ‘Workload Reads (GB) Writes (GB) R/W  Total accessed Accesses to
Total Unique Total Unique ratio data (GB) Top 20% data
cello99 1999 research 73.73 10.52 129.91 10.92 0.62 203.65 65.77%
deasna 2002  research/email 672.4 23.32 231.57 45.45 2.54 903.97 86.88%
home02 2001 NFS share 269.29 9.07 66.35 4.49 3.94 335.64 61.36%
webresearch 2009 web server - - 3.37 0.51 - 3.37 51.33%
webusers 2009 web server 1.16 0.45 6.85 0.50 0.09 8.01 56.17%
wdev 2007 test server 2.76 0.2 8.77 0.42 0.21 11.54 72.44%
proj 2007 file server 215274 1238.86 367.05 168.88 7.33 2519.79 57.64%

Table 1: Summary statistics of 1-week long traces from seven different systems.

within the active data set, usage is heavily skewed, with
“really popular” data receiving over 90% accesses [29].

These observations are largely intuitive and similar to
the findings on short-term access patterns of other re-
searchers [14, 20, 38, 2, 37,42, 41, 5]. To our knowledge,
however, there have not been any attempts to apply this
information to the upgrade process of RAID arrays.

This paper makes the following contributions: we
prove that using a large cache-like partition that uses all
storage devices can be better than using dedicated de-
vices due to the improved parallelism, in some cases even
when the dedicated devices are faster. Additionally, we
demonstrate that information about hot data can be used
to reduce the overhead of rebalancing a storage system.

The paper is organized as follows: (i) we study the char-
acteristics of several I/O workloads and show how the
findings motivate CRAID (§2), (ii) we present the design
of an online block reorganization system that adapts to
changes in the I/O working set (§3), (iii) we evaluate sev-
eral well-known cache management algorithms and their
effectiveness in capturing long-term access patterns (§4),
and (iv) we simulate CRAID under several real-system
workloads to evaluate its merits and weaknesses (§5).

2 Characteristics of I/O Workloads

In this section we investigate the characteristics of several
I/0 workloads, focusing on those properties that directly
motivate CRAID. In order for CRAID to be successful,
the cost of reorganizing data must be lower than the po-
tential gain obtained from the improved distribution, or
it would not make sense to reorganize this data. Thus,
we need to prove that long-term working sets exist and
that they account for a large fraction of I/O. To do that,
we analyzed a collection of well-known traces taken from
several real systems. To increase the scope of our analysis,
we use traces representing many different workloads and
collected at different points in time over the last 13 years.
Even if some of these traces are rather old, they can be
helpful to establish a historical perspective on long-term
hot data. Table 1 summarizes key statistics for one week
of these traces, which we describe in detail below:

e The cello99 traces are a set of well-known block-level
traces used in many storage-related studies [22, 34, 46,
51]. Collected at HP Labs in 1999, they include one
year of I/O workloads from a research cluster.

e The deasna traces [12] were taken from the NFS sys-
tem at Harvard’s Department of Engineering and Ap-
plied Sciences over the course of six weeks, in mid-fall
2002. Workload is a mix of research and email.

e The home02 traces [12] were collected in 2001 from
one of fourteen disk arrays in the Harvard CAMPUS
NFS system. This system served over 10,000 school
and administration accounts and consisted of three
NFS servers connected to fourteen 53GB disk arrays.
The traces collect six weeks worth of I/O operations.

e The MSRC traces [31] are block-level traces of stor-
age volumes collected over one week at Microsoft Re-
search Cambridge data center in 2007. The traces col-
lected I/O requests on 36 volumes in 13 servers (179
disks). We use the wdev and proj servers, a test web
server (4 volumes) and a server of project files (5 vol-
umes), as they contain the most requests.

o The SRCMap traces are block-level traces collected by
the Systems Research Laboratory (SyLab) at Florida
International University in 2009 [41]. The traces were
collected for three weeks at three production systems
with several workloads. We use the webresearch and
webusers workloads as they include the most requests.
The first was an Apache web server managing FIU re-
search projects, and the second a web server hosting
faculty, staff, and graduate student web sites.

Our analysis of the traces shows that the following ob-
servations are consistent across all traces and, thus, vali-
date the theoretical applicability of CRAID.

Obs. 1 Data usage is highly skewed with a small percent-
age of blocks being heavily accessed.

Fig. 1 (top row), shows the CDF for block access fre-
quency for each workload. All traces show that the dis-
tribution of access frequencies is highly skewed: for read

134 12th USENIX Conference on File and Storage Technologies

USENIX Association



....... 100%} 100% P b
80%- 80% .
60%} 60% ’/
reads 40% reads 40% reads 40% reads
20% ---- \writes 20% ----  writes 20%; ---- writes 20% ----  writes
0% L L L L s 0% 0% 0%
10° 10" 102 10° 10t 10° 1° 10" 102 10° 10t 108 10° 10! 10 10° 10° 10" 102 10° 10t 108
frequency frequency frequency frequency
0,
100%. M alblocks, B top 20% 100%- M@ allblocks. ~ WM top20% 1qppu EM all blocks. I top20% 100y EM all blocks. I top 20%
— 80%¢
"
= 60%
B 40%[
3
20%¢
0
0% dl d2 d3 d4 d5 d6 0% dl d2 d3 d4 db d6 0% dl d2 d3 d4 d5 d6 0% dl d2 d3 d4 d5 d6
week days week days week days week days
(a) cello99 (b) deasna (c) home02 (d) webresearch
----------- 100% .. ---- 100%, -
80%),— 80%
60% 60%
— reads a0%f — reads 40% — reads
----  writes 20% ---- writes 20% ----  writes
O T T s i T Tt R B Y Ry S
10° 10 10 10 10 10 10 10 10 10 10 10 100 10" 10° 10° 10" 10° 10
frequency frequency frequency
100%- HM all blocks. B top20% 1oy EM all blocks. I top20% 1p0%- EM allblocks. WM top 20%
80%
60%
40%[
20%
0, 0
0% 41 d2 d3 dé d5 d6  O® dl d2 d3 44 d5 d6  CP d1 d2 43 d4 d5 db
week days week days week days
(e) webusers (f) wdev (g) proj

Figure 1: Block-frequency and working-set overlap for 1-week traces from seven different systems. The top row plots depict the CDF
of block accesses for different frequencies: a point (f,p1) on the block percentage curve indicates that py% of total blocks were
accessed at most f times. Bottom row plots depict changes in the daily working-sets of the workloads: a bar (d, py) indicates that

days d and d + 1 had p; % blocks in common. This is shown for

requests ~~76-98% blocks are accessed S0 times or less,
while for write requests this value rises to ~89-98%. On
the other hand, a small fraction of blocks (~0.05-0.7%) is
very heavily accessed in all cases (read or write requests).
This skew can also be seen in Table 1: the top 20%
most frequently accessed blocks account for a large frac-
tion (=51-83%) of all accesses, which are similar results
to those reported in previous studies [14, 24, 5, 41, 29].

Obs. 2 Working-sets remain stable over long durations.

Based on the first observation, we hypothesize that data
usage exhibits long-term temporal locality. By long-term,
we refer to a locality of hours or days, rather than seconds
or minutes which is more typical of memory accesses. It
is fairly common for a developer to work on a limited
number of projects or for a user to access only a fraction
of his data (like personal pictures or videos) over a few
days or weeks. Even in servers, the popularity of the data

all blocks and for the 20% blocks receiving more accesses.

accessed may result in long-term temporal locality. For
instance, a very popular video uploaded to the web will
receive bursts of accesses for several weeks or months.
Fig. 1 (bottom row), depicts the changes in the daily
working-sets for each of the workloads. Each bar repre-
sents the percentage of unique blocks that are accessed
both in day d and d + 1. Most workloads show a signifi-
cant overlap (=55%—80%) between the blocks accessed
in immediately successive days, and we also observe that
there is a substantial overlap even when considering the
top 20% most accessed blocks. Trace deasna is partic-
ularly interesting because it shows low values of over-
lap (=20%—-35%) when considering all accesses, which
increases to ~55%-80% for the top 20% blocks. This
means that the working-set for this particular workload
is more diverse but still contains a significant amount of
heavily reused blocks. Based on the observations above,
it seems reasonable that exploiting long-term temporal

USENIX Association

12th USENIX Conference on File and Storage Technologies 135



locality and non-uniform access distribution can deal per-
formance benefits. CRAID’s goal is to use these to amor-
tize the cost of data rebalancing during RAID upgrades.

3 CRAID Overview

The goal behind CRAID is to reduce the amount of data
that needs to be migrated in reconfigurations while pro-
viding QoS levels similar to those of traditional RAID.

CRAID claims a small portion of each device and uses
it to create a cache partition (Pc) that will be used to place
copies of heavily accessed data blocks. The aim of this
partition is to separate data that is currently important for
clients from data that is rarely (if ever) used. Data not cur-
rently being accessed is kept in an archive partition (Py)
that uses the remainder of the disks. Notice that this parti-
tion can be managed by any data allocation strategy, but it
is important that the archive can grow gracefully and any
archived data is accessed with acceptable performance.

Effectively optimizing the layout of heavily used
blocks within a small partition is beneficial for several
reasons:

(1) Itis possible to create a large cache by using a small
fraction of all available disks, which allows impor-
tant data to be cache-resident for longer periods.

(i1) A disk-based cache is a persistent cache: any opti-
mized layout continues to be valid as long as it is
warranted by access semantics, even if it is neces-
sary to shutdown or reconfigure the storage system.

(iii) The size of the partition can be easily configured by
an administrator or an automatic process to better
suit storage demands.

(iv) Clustering frequently accessed data together offers
the opportunity to improve access patterns: data ac-
cesses that were originally scattered can be sequen-
tialized if the layout is appropriate. This also helps
reduce seek times and rotational delays in all disks
since “hot” blocks are placed close to each other.

(v) Whenever new devices are added, current strategies
need to redistribute large amounts of data to be able
to use them effectively and also to maintain QoS lev-
els (e.g. performance or load balance). A disk-based
cache offers a unique possibility to maintain QoS by
redistributing only most accessed data. This should
reduce the cost of the upgrade process significantly.

(vi) Extending the partition over all devices has three ad-
vantages over using dedicated devices. First, it maxi-
mizes the potential parallelism offered by the storage
system. Second, it is much more likely to saturate a
reduced set of dedicated devices than a large array.
Third, benefits can be gained with the existing set of
devices, without having to acquire more.

/0 request

CRAID A
\4
D

" update” %
: S
B.2 | 2
Y @
=]
LBAorig | LBAcache send /0 ]
to Pc =
LBAorig | LBAcache a

LBAorig | LBAcache Pa— Pc

MAPPING CACHE g1l copy

Figure 2: CRAID’s I/0 control flow.

Fig. 2 shows the control flow supported by CRAID’s
architecture: when an I/O request enters the system (A),
it is captured by CRAID’s I/O monitor which determines
if the accessed data must be considered “active”. If so,
data blocks are copied to the caching partition if they
are not already in it (B.1) and an appropriate mapping
(LBA yriginal, LBAcache) is stored in the mapping cache
(B.2). From this point on, an /O redirector will redirect
all future accesses to LBA,;ginai to the caching partition
(C.1 and C.2). This continues until the I/O monitor de-
cides that data is no longer active and removes the entry
from the mapping cache. Any update to the contents of
the data is then written back to P4 (D). This flow means
that the upgrade process begins immediately when a new
disk is added to CRAID (which forces Pc to grow), and
is interleaved with the array’s normal I/O operation. This
permits CRAID to use the new disks from the moment
they are added to the array.

4 Detailed Design

This section elaborates on CRAID’s design details by dis-
cussing its individual components mentioned in §3: the
1/0 monitor, the I/O redirector and the mapping cache.

4.1 1/0O Monitor

The I/O monitor is responsible for analyzing I/O requests
to identify the working set and schedule the appropriate
operations to copy data between partitions. The I/O mon-
itor uses a conservative definition of working set that in-
cludes the latest k distinct blocks that have been more
active, where k is Pc’s current capacity.

When a request forces an eviction in Pc, the I/O moni-
tor checks if the cached copy is dirty and, if so, schedules
the corresponding I/O operations to update the original
data. Otherwise, the data is replaced by the newly cached
block. Currently, the I/O monitor supports the following
simple policies in order to make replacement decisions:

e Least Recently Used (LRU) uses recency of access to
decide if a block has to be replaced.

136 12th USENIX Conference on File and Storage Technologies

USENIX Association



o Least Frequently Used with Dynamic Aging (LFUDA)
uses popularity of access and replaces the block with
the smallest key K; = (C; * F;) + L, where C; is the re-
trieval cost, F; is a frequency count and L is a running
age factor that starts at 0 and is updated for each re-
placed block [3].

e Greedy-Dual-Size with Frequency (GDSF) includes
the size of the original request, S;, and replaces the
block with minimum K; = (C; x F;)/S; + L[21, 9, 3].

o Adaptive Replacement Cache (ARC) [28] balances be-
tween recency and frequency in an online and self-
tuning fashion. ARC adapts to changes in the work-
load by tracking ghost hits (recently evicted entries)
and replaces either the LRU or LFU block depending
on recent history.

o Weighted LRU (WLRU,,) is a simple extension of the
LRU algorithm that tries to find the least recently used
block that is also clean (i.e. not dirty). In order to avoid
lengthy O(k) traversals it uses a parameter w € R to
limit the number of blocks that will be evaluated to
k=w. If no suitable candidate is found in k*w steps,
the LRU block is replaced.

We evaluate the effectiveness of these basic strategies
to accurately predict the workload in §5.1. We imple-
mented these basic strategies instead of more complex
ones because these algorithms are typically extremely ef-
ficient and consume few resources, which makes them
suitable to be included in a RAID controller. Further-
more, their prediction rates are usually quite high. Ex-
ploring more sophisticated strategies and/or data mining
approaches to model complex data interrelations is left
for the future.

The I/O monitor is also in charge of rebalancing Fc.
When new devices are added, the I/O monitor invalidates
all the blocks contained in Pc (writing back to P4 the
copies that need updating) and starts filling it with the
current working set when blocks are requested. This con-
servative approach allows us to create long sequential
chains of potentially related blocks, which improves the
sequentiality and parallelism of the data in Pc. Note that
since Pc always holds ‘hot blocks’, the rebalancing is
never completely finished unless the working set remains
stable for a long time. Nevertheless, as we show in §5,
the cost of this ‘on-line’ monitoring and rebalancing is
amortized by the performance obtained.

4.2 Mapping Cache

The mapping cache is an in-memory data structure used
to translate block addresses in the Py to their correspond-
ing copies in Pc. The structure stores, for each block
copied to Pc, the block’s LBA in P4, the corresponding

LBA in Pc and a flag indicating if the cached copy has
been modified.

Our current implementation uses a tree-based binary
structure to handle mappings, which ensures that the to-
tal time complexity for a lookup operation is given by
O(log k). Concerning memory, for every block in P,
CRAID stores 4 bytes for each LBA and 1 dirty bit, plus
8 additional bytes for the structure pointer. Assuming that
all k£ blocks are occupied, that the configured block size
is 4KB and Pc size of S GB, the worst case memory re-
quirement is 2 x SMB for LBAs, §/2° for the dirty infor-
mation, and 4 x S MB for the tree pointers. Thus, in the
worst case, CRAID requires memory of 0.58% the size
of the cache partition, or ~5.9MB per GB, an acceptable
requirement for a RAID controller.

Notice that the destruction of the mapping cache can
lead to data loss since block updates are performed in
place in the cache partition. Failure resilience of the map-
ping cache is provided by maintaining a persistent log of
which cached data blocks have been modified and their
translations. This ensures that these blocks, whose cached
copies were not identical to the original data, can be suc-
cessfully recovered. Blocks that were not dirty in Pc don’t
need to be recovered and are invalidated.

4.3 1/0 Redirector

The I/0 redirector is responsible for intercepting all read
and write requests sent to the CRAID volume and redirect
them to the appropriate partition. For each request, it first
checks the mapping cache for an existing cached copy. If
none is found, the request is served from P4. Otherwise,
the request is dispatched to the appropriate location in Fr.
Multi-block I/Os are split as required.

5 Evaluation

In this section we evaluate CRAID’s behavior using a
storage simulator. We seek to answer the following ques-
tions: (1) How well does CRAID capture working sets?
(2) How does CRAID impact performance? (3) How sen-
sitive is load balance to CRAID’s I/O redirection? To an-
swer these questions, we evaluate CRAID under realistic
workloads, using detailed simulations where we replay
the real-time storage traces described in §2. Since some
of these traces include data collected over several weeks
or months, which makes them intractable for fine-grained
simulations, we simulate an entire continuous week (168
hours) chosen at random from each dataset. Note that
in this paper, we only describe the evaluations of sev-
eral CRAID variants that use RAID-5 in Pc. For brevity’s
sake, we do not include similar results with RAID-0 [4].

Simulation system. The simulator consists of a workload
generator and a simulated storage subsystem composed of

USENIX Association

12th USENIX Conference on File and Storage Technologies 137



parity group 0'  parity group 1' parity group 2'

| |
| A A A
Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7 Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7 ® g | Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7 |
o1 |po| 2|3 |pt]| 4 |p2 0| 1|23 |[po|16]|17|ps 2, [ 2|3 |por| 7|0 |pt]10]p2]
5 (p3| 6|7 |ps| 8 |[p5|9 4|5 |6 |pt| 7 |18[p5]|19 1 112 [p3'] 13 | 14 [ pa’ I
p6 | 10 | 11 [ p7 | 12 | 13 [ 14 | p8 8|9 |p2[10|11 |p6| 20|21 ([ o] 1 [po p1] 4 |p2] |
15 16 [ p9 | 17 | 18 |p10[p11| 19 12 [ p3 |13 14| 15| 22| 23 [ p7 e5! (5 [e3] 6 pa| 8 | ps :
SEI
parity group 0 parity group 1 parity group 2 RAID set 0 RAID set 1 8 | ES : T aeg BS |
| parity group 0 parity group 1 parity group ZJl
(a) RAID-5 (b) RAID-5% (c) CRAID-5
| paritygroup 0 parity group 1 paritygroupz | §1 oo vt sz owaoss | 8! oiko ok oz oz s |
TE =
I — ! EZl 2|3 |79 |po | gEl 2|3 |7]9 |p0 !
" g | Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7 | ° Q-| | % °-| |
SE 82 N 82 o
5 (2] s [0 7 [ o o] o fe2] i 2% 12 | 13 [ 14 | p1*| 17 T 12 [ 13 | 14 [p1t| 17 |
Q 0 0 Q[— — -_— U[_ — -_—
|r— 12 p3 13 17 p4 _! | Disk 5 Disk 6 Disk 7 Disk 8 Disk 9 Disk 10Disk 11Disk 12 l | Disk 5 Disk 6 Disk 7 Disk 8 Disk 9 Disk 10Disk 11Disk 12 l
| [ (o] 1]p0 p1| 4 [p2] ! NERE po | 16 pa | !
[ [
o5l I esi |5 [p3] 6 p4| 8 [ p5 esi|als5]e|p 18 | p5 | 19
2%, | £E I 2z |
g5 | g5! | o6 [RLN 11 | p7 p8 | | S5!|s p2 (10 [ 11 [p6| 20 | 21| |
[
| — : 15 | 16 | p9 18 |p10[p11] 19 | | : p3 W 15 | 22 23 | p7 | |
[ [
a | H_/ H_/ H_/ | | T PE—— |
| paritygroup0 parity group 1 parity group 2 I RAID set 0 RAID set 1
_____________ ] U |
(d) CRAID-5* (e) CRAID-5y (f) CRAID-5%4
D Data - Hot Data |:, Parity
Figure 3: Overview of the different allocation policies evaluated.
an array controller and appropriate storage components. Trace LRU LFUDA GDSF ARC WLRUs
For each request recorded in the traces, the workload gen-
tor i d dine /O t at th g . cello99 65.23 65.23 48.75 65.66 65.22
crafor 1ssues a corresponding /4 request at the approprt- - ;4 89.63  89.90 6724 89.65  89.73
ate time and sends it down.to the array coptroller. home(02 9391 9386 7793 93.92 93.90
The array controller’s main component is the /O pro-  ebresearch 81.14 7892 5441 8238  82.14
cessor which encompasses the functions of both the I/O webusers 80.40  78.72 60.49 81.01 81.40
monitor and the I/O redirector. According to the incoming wdev 91.04 91.88 32.78 91.06 91.02
I/0O address, it checks the mapping cache and forwards it proj 75.55 75.73 25.43 75.58 75.65

to the caching partition’s segment of the appropriate disk.
The workload generator, the mapping cache and the
I/O processor are implemented in C++, while the dif-
ferent storage components are implemented in DiskSim.
DiskSim [8] is an accurate and thoroughly validated disk
system simulator developed in the Carnegie Mellon Uni-
versity, which has been used extensively in research
projects to study storage architectures [1, 32, 50, 25].

All experiments use a simulated testbed consisting of Sea-
gate Cheetah 15,000 RPM disks [39], each with a capacity
of 146GB and 16MB of cache. This is the latest (vali-
dated) disk model available to Disksim. Though some-
what old, we decided to use these disks in order to use
the detailed simulation model offered by Disksim, rather
than a less detailed one. Besides, since our analysis is a
comparative one, the disks’ performance should benefit
or harm all strategies equally. For the simulations involv-

Table 2: Hit ratio (%) for each cache partition management
algorithm. Best and second best shown in bold.

ing SSDs, we use Microsoft Research’s idealized SSD
model [1]. Since the capacity and number of disks in the
original traced systems differs from our testbed, we deter-
mine the datasets for each trace via static analysis. These
datasets are mapped onto the simulated disks uniformly
so that all disks have the same access probability.
Strategies evaluated. All experiments evaluate the six
following allocation policies, an overview of which is
shown in Fig. 3:

e RAID-5: A RAID-5 configuration that uses all disks
available. Stripes are as long as possible but are divided
into parity groups to improve the robustness and recov-

138 12th USENIX Conference on File and Storage Technologies

USENIX Association



Trace LRU LFUDA GDSF ARC WLRUj;
cello99 34.76 34.76 51.24 34.31 33.76
deasna 10.36 10.09 3274  10.34 10.34
home02 6.08 6.13 22.06 6.07 6.08
webresearch 18.84 21.06 45.58 17.60 18.83
webusers 19.58 21.26 39.50 18.98 19.28
wdev 8.88 8.04 67.13 8.85 8.58
proj 2442 24.24 74.55 24.39 24.72

Table 3: Replacement ratio (%) for each cache partition man-
agement algorithm. Best and second best in bold.

erability of the array (Fig.3a). This policy will help
establish a comparison baseline as it provides maxi-
mum parallelism and ideal workload distribution. No-
tice, however, that expanding such an array in real life
can be prohibitively expensive.

e RAID-5*: A RAID-5 configuration that has been ex-
panded and restriped several times. Each expansion
phase adds 30% additional disks [27] that constitute
a new independent RAID-5. Thus the system can be
considered a collection of independent RAID-5 arrays
(or sets), each with its own stripe size, that have been
added to expand the storage capacity (see Fig. 3b). This
serves as a comparison baseline to a realistic system
upgraded many times.

e CRAID-5 and CRAID-5": CRAID configurations
that use RAID-5 for the caching partition. CRAID-5
also uses RAID-5 for the archive partition while
CRAID-5* uses RAID-5". The first one serves to eval-
uate the performance impact of using CRAID on an
ideally restriped RAID-5 and the effects on perfor-
mance of data transfers from/to the cache. With the
second one, we evaluate the benefits of using CRAID
in a storage system that has grown several times, with
a P4 that grows by aggregation.

e CRAID-544 and CRAID-5%4: CRAID configurations
analogous to CRAID-5 and CRAID-5* but using a
fixed number of SSDs for the cache partition. This al-
lows us to evaluate the advantages, if any, of using disk-
based CRAID against using dedicated SSDs, which is
a common solution offered by storage vendors.

We simulate RAID-5 and RAID-5" in their ideal state,
i.e., when the dataset has been completely restriped. The
reason is that since CRAID is permanently in an “expan-
sion” phase and sacrifices a small amount of capacity, in
order to be useful its performance should be closer to an
optimum RAID-5 array, rather than one being restriped.

All the arrays simulated use 50 disks, a number cho-
sen based on the datasets of the traces examined, except
those for CRAID-54,q and CRAID-5% that include 5 ad-
ditional SSDs (10%) for the dedicated cache. RAID-5
uses a parity group size of 10 disks both as a stand-alone

A14[_—| - - - 0 @ 0.45
120 = = = 0.4
E Eo3s
010 () 0.3
Est Eoz5
0 6 o 0.2
12} 2]
c c 0.15
3 43& g m 2 0.1
g2r £ 0.05
- O 1 1 1 ] - O 1 1 1
0.02 0.04 0.08 0.16 0.32 0.08 0.16 0.32 0.64 1.28
cache size (% per disk) cache size (% per disk)
(a) cello99 (b) deasna
8 R
27 = = = Bl
E 3
P Y
()
£5 £
Sy =
23 8
32 g
31 3
29 e
0.02 0.04 008 0.16 0.32 0.004 0.008 0.016 0.032 0.064
cache size (% per disk) cache size (% per disk)
(c) home02 (d) webusers
70 g——8—f 5 4
g4 £25
03 9 2
2,7 215
s} o 1
a1 F 3 05
9 0 1 1 1 ] 9 0 1 1 1 ]
0.002 0.004 0.008 0.016 0.032 0.016 0.032 0.064 0.128 0.256
cache size (% per disk) cache size (% per disk)
(e) wdev (f) proj
—@— RAID-5 —¥— CRAID-5 —6— CRAID-54y
—B— RAID-5* —+— CRAID-5* —— CRAID-5%

Figure 4: Comparison of I/0O response time (read requests).

allocation policy and as a part of a CRAID configuration.
Similarly, RAID-5% begins with 10 disks and adds a new
array of 3,4, 5, 7,9 and 12 disks (+30%) in each expan-
sion step until the 50-disk mark is reached. The stripe
unit for all policies is 128KB based on Chen’s and Lee’s
work [11]. In all experiments, the cache partition begins
in a cold state.

5.1 Cache Partition Management

Here we evaluate the effectiveness to capture the work-
ing set of the different cache algorithms supported by the
I/O monitor (refer to §4.1). In this experiment we are
concerned with the ideal results of the prediction algo-
rithms to select the best one for CRAID. Thus, we use
a simplified disk model that resolves each I/O instantly,
and allows us to measure the properties of each algorithm
with no interferences. The remaining experiments use the
more realistic disk model.

Tables 2 and 3 show, respectively, the hit and replace-
ment ratio delivered by each algorithm using a P¢ size of
0.1% the weekly working set. We observe that, for each
trace, all algorithms except one show similar hit and re-

USENIX Association

12th USENIX Conference on File and Storage Technologies 139



1.0 =
X
\Y|
2 0.8
o
8 0.6
f, 0.4 —@— RAID-5
o Y +
= —5- RAID-5
8 0. ¥~ CRAID-5 g9,
@ —— CRAID5; o,
0.05 20 40 80 80 700
sequential access %
(a) cello99
1.0
x
Vi
2 0.8
o
306
i 0.4 —@— RAID-5
T Y- +
= -8~ RAID-5
8 0.2 = CRAID-5 9049,
@ -+ CRA|D50+004%
0.00 60

40
sequential access %

(b) webusers

Figure 5: Sequential access distribution (CDF) for the cello99
and webusers traces. Sequentiality percentages captured each
second. Other traces show similar results.

placement ratios with the ARC algorithm showing the
best results in both evaluations. The only exception is the
GDSF algorithm, which shows significantly worse results
due to the addition of the request size as a metric which
does not seem very useful in this kind of scenario.

For CRAID strategies based on RAID-5, however, evic-
tions of clean blocks are preferred as long as the effec-
tiveness of the algorithm is not compromised. This is be-
cause evicting a dirty block forces CRAID to update the
original blocks and its parity in the P4, which requires 4
additional I/Os (2 reads and 2 writes). In this regard, the
WLRU strategy is more suitable since it helps reduce the
number of I/O operations needed to keep consistency: if
the data block replaced has not been modified, there’s no
need to copy it back to P4. Thus, in the following exper-
iments we configure the I/O monitor with the WLRUj) 5
algorithm since it shows hit and replacement ratios simi-
lar to ARC, and reduces the amount of dirty evictions.

5.2 Response Time

In this section we evaluate the performance impact of us-
ing CRAID. For each allocation policy and configuration,
we measure the response time of each read and write re-
quest occurred during the simulations. Figs. 4 and 6 show
the response time measurements> of each CRAID variant,

295% confidence interval.

compared to the RAID-5 and RAID-5 baselines.

Note that each strategy was simulated with different
cache partition sizes in order to estimate the influence of
this parameter on performance. In the results shown in
this section, the cache partition is successively doubled
until no evictions have to be performed. This represents
the best case for CRAID since data movement between
the partitions is reduced to a minimum.

Read requests. The results for read requests are shown in
Fig. 4. First, we observe that requests take notably longer
to complete in RAID-5* than in RAID-5 in all cases. This
is to be expected since the longer stripes in RAID-5 in-
crease its potential parallelism and provide a more effec-
tive workload distribution.

Second, in most traces, hybrid strategies CRAID-5 and
CRAID-5* offer performance comparable to that of an
ideal RAID-5, or even better for certain cache sizes (e.g.
webusers trace, Fig. 4d). The explanation lies in the fact
that CRAID’s cache partition is able to better exploit
the spatial locality available in commonly used data: co-
locating hot data in a small area of each disk helps reduce
seek times when compared to the same data being ran-
domly spread over the entire disk, and also increases the
sequentiality of access patterns. This can be seen in Fig. 5,
that shows the probability distribution (CDF) of the se-
quential access percentage for the cello99 and webusers
traces (computed as % and aggregated per sec-
ond of simulation). Here we see that access sequentiality
in CRAID-5 and CRAID-5" is similar to that of RAID-5
and significantly better than that of RAID-5*. This helps
reduce the response time per request and contributes to
the overall performance of the array.

Nevertheless, CRAID’s effectiveness depends on how
well hot data is predicted. Despite the good results shown
in §5.1, Fig. 4f shows that performance results for the
proj trace are not as good as in the other traces. Table 4
shows that CRAID’s best hit ratio for the proj trace is
lower than in other traces (e.g. 85.25% vs. 99.51% in
home02 ) and that its eviction count is higher. These two
factors contribute to more data being transferred to the
cache partition and explain the drop in performance.
Most interestingly, the performance and sequentiality pro-
vided by CRAID-5" is similar to that of CRAID-5, even
though it uses a RAID-5" strategy for the archive par-
tition. This proves that the cache partition is absorb-
ing most of the I/O, and the array behaves like an ideal
RAID-5, regardless of the strategy used for stale data.
Third, increasing the size of the cache partition improves
read response times in all CRAID-5 variants. This is to be
expected since a larger cache partition increases the prob-
ability of a cache hit and also decreases the number of
evictions, which greatly improves the effectiveness of the
strategy. In most traces, however, once a certain partition

140 12th USENIX Conference on File and Storage Technologies

USENIX Association



Trace Best hit ratio Worst eviction ratio
reads writes reads writes
cello99 97.85% 98.88% 21.28% 9.53%
deasna 99.53% 97.80% 0.92% 3.17%
home02 99.51% 99.53%  3.32% 2.59%
webresearch - 98.76% - 7.66%
webusers 94.95% 99.33% 16.65% 6.56%
wdev 98.62% 99.40% 1.90% 10.76%
proj 85.25% 88.45% 21.97% 9.13%

Table 4: Best hit ratio and worst eviction ratio (all simulations).

99" petile Max
log Cdev log Cdev loqg Cdev

CRAID-5* 211 865 20 44 381 50
CRAID-5%,; 474 649 45 23 427 40

Strategy Mean

Table 5: Comparison of CRAID’s SSD-dedicated vs. full- HDD
approach. loq: ioqueue size, Cdev: concurrent devices. Trace:
wdev, Pc size: 0.002%. Other traces show similar results.

size Sy is reached, response times stop improving (e.g.
deasna with Sy; = 0.16% or home02 with Sy = 0.08%,
Figs. 4b and 4c, respectively). Examination of these traces
shows that CRAID is able to achieve a near maximum hit
ratio with a partition of size Sy, and increasing it further
provides barely noticeable benefits.

Finally, we see that the performance with dedicated SSDs
is better than using a distributed partition for most traces.
This is to be expected since SSDs are significantly faster
than HDDs, and requests can be completed fast enough to
avoid saturating the devices. Note, however, that for some
Fc sizes, fullHDD CRAID is able to offer similar per-
formance levels (Figs. 4a, 4b, 4d, and 4e), and, given the
difference in $/GB between SSDs and HDDs, it might be
an appropriate option when it is not possible to add 10%
SSDs to the storage architecture. Additionally, a full-SSD
RAID should also benefit from the improved parallelism
offered by an optimized Pc.

Werite requests. The results for write requests are shown
in Fig.6. Similarly to read requests, we observe that
write requests are significantly slower in RAID-5* than
in RAID-5, for all traces. Most importantly, the hybrid
strategies CRAID-5 and CRAID-5* perform better than
traditional RAID-5 in all traces except webusers, where
performance is slightly below that of RAID-5.

These improved response times can be explained by two
reasons. First, since write requests are always served from
the cache partition (except in the case of an eviction), re-
sponse times benefit greatly from the improved spatial
locality and sequentiality provided by the cache parti-
tion.> Second, the smaller the P fragment for each disk

30bviously, as long as the prediction of the working set is accurate.

Ez5o £ £60 —=——a2=—1"
£200 gig
=150 30
c100 520
§50 210
ped 5—0 1 1 1 ]

002 0.04 0.08 0.16 0.32 0.08
cache size (% per disk)
(a) cello99

% 288 230 5—8—8—=¢
E700 E25

2600 220

£500 £

2400 219

£300 210

ono 3 5

q) 100 g 0 1 1 1 ]

002 0.04 0.08 0.16 0.32
cache size (% per disk)
(c) home02

30
gzs =) =) =) £l
(0]

220

=15

210

&5

9 0 1 1 1 ]

0.004 0.008 0.016 0.032 0.064
cache size (% per disk)

cache size (% per disk)
(b) deasna

cache size (% per disk)

(d) webresearch

-

SO N B O®OOON
T

response time (ms)

cache size (% per disk)

(e) webusers (f) wdev
_25
2 —@— RAID-5
£20
® —&— RAID-5*
E£15 —¥— CRAID-5
[0}
gw —— CRAID-5*
g 5 —O— CRAID-5¢44
=0 —— CRAID-5%4
0.016 0.032 0.064 0.128 0.256

cache size (% per disk)

(g) proj

Figure 6: Comparison of I/0O response time (write requests).

is, the more likely it is that accesses to this fragment ben-
efit from the disk’s internal cache. This explains why re-
sponse times in Fig. 6 increase slightly for larger partition
sizes: a smaller P- means more evictions in CRAID, but
it also means a smaller fragment for each disk and a more
effective use of its internal cache. The effect of this inter-
nal cache is highly beneficial, to the point that it amortizes
the additional work produced by extra evictions.

On the other hand, SSD-based strategies CRAID-54q
and CRAID-5%4 show significantly worse response times
than their full-HDD counterparts in some traces (see
Figs. 6a, 6¢, 6f, or 6g). Examination of these traces re-
veals that the I/O queues in the dedicated SSDs have
significantly more pending requests than those in full-
HDD CRAID. Also, the number of concurrently active
disks during the simulation is lower (see Table 5). In ad-

USENIX Association

12th USENIX Conference on File and Storage Technologies 141

0.16 032 064 1.28

0.002 0.004 0.008 0.016 0.032

002 0.004 0.008 0.016 0.032



Trace CRAID-5 P¢ CRAID-5* P
bestc, worstc, bestc, worstc,
cello99 0.02% 0.32% 0.02% 0.32%
deasna 0.08% 1.28% 0.08% 1.28%
home02 0.02% 0.32% 0.02% 0.32%
webresearch  0.002%  0.032%  0.002%  0.032%
webusers 0.004%  0.064%  0.004%  0.064%
wdev 0.002% 0.032%  0.002% 0.032%
proj 0.016% 0.256% 0.016% 0.256%

Table 6: Influence of Pc size on workload distribution.

dition, we discovered that Disksim’s SSD model does not
simulate a read/write cache. Thus, the lower number of
pending requests coupled with the HDD cache benefit ex-
plained above, makes full-HDD CRAID faster for write
requests in some traces.

5.3 Workload Distribution

In this experiment we evaluate CRAID’s ability to main-
tain a uniform workload distribution. For each second
of simulation we measure the I/O load in MB received
by each disk and we compute the coefficient of variation
as a metric to evaluate the uniformity of its distribution.
The coefficient of variation (c,) expresses the standard
deviation as a percentage of the average (2), and can be
interpreted as how the actual workload deviates from an
ideal distribution.* We perform this experiment for all
strategies described and uses the same Pc sizes of §5.2.

Impact of CRAID. Figs. 7a and 7b show CDFs of ¢, per
% of samples (seconds) for the deasna and wdev traces,
respectively. Notice that for CRAID strategies we show
both the best and worst curves obtained (Table 6 shows
the correspondence with actual P sizes) and we compare
them with the results for RAID-5 and RAID-5*.

We observe that there is a significant difference between
the workload distribution provided by RAID-5 and that of
RAID-5*, which is to be expected since the “segmented”
nature of RAID-5" naturally hinders a uniform work-
load distribution. Most interestingly, all CRAID strategies
demonstrate a workload distribution very similar to (and
sometimes better than) RAID-5. More importantly, this
benefit appears in even those CRAID configurations that
use RAID-5* for the archive partition, despite its poor
performance and uneven distribution. This proves that
the cache partition is successful in absorbing most 1/O,
and that it behaves close to an ideal RAID-5 despite the
cost of additional data transfers.

Influence of the cache partition size. Though barely no-
ticeable, an unexpected result is that, in all traces, the
workload distribution degrades as the cache partition
grows (see Table 6). Examination of the traces shows that

4The smaller ¢y is, the more uniform the data distribution.

a larger cache partition slightly increases the probability
that certain subsets of disks are more used than others due
to the different layout of data blocks. This is reasonable
since our current prototype doesn’t perform direct actions
to enforce a certain workload distribution, but rather re-
lies on the strategy used for the cache partition. Improv-
ing CRAID to employ workload-aware layouts is one of
the subjects of our future investigation.

Workload with dedicated SSDs. The curves shown in
Figs.7a and 7b show a worse workload distribution for
CRAID-54 and CRAID-5%4 when compared to the full-
HDD strategies. This is to be expected since the dedicated
SSDs absorb much of the I/O workload and end up de-
grading the global workload of the system. Note that this
does not necessarily mean that the workload directed to
the dedicated disks is unbalanced, but rather that the other
devices are underutilized. This proves that a spread par-
tition has a higher chance of producing a balanced work-
load, and can compete in performance, than a dedicated
one, even if the devices used for the latter are faster.

6 Discussion and Future Work

While our experiences with CRAID have been positive
in RAID-0 and RAID-5 storage, we believe that they can
also be applied to RAID-6 or more general erasure codes,
since the overall principle still applies: rebalancing hot
data should require less work than producing an ideal dis-
tribution. The main caveat of our solution, however, is the
cost of additional parity computations and I/O operations
for dirty blocks, which directly increases with the num-
ber of parity blocks required. Whether this cost can be
leveraged by the performance benefits obtained, will be
explored in a fully-fledged prototype.

It should also be possible to extend the proposed
solution beyond RAID arrays, adapting the techniques
to distributed or tiered storage. Specifically, we believe
the monitoring of interesting data could be adapted
to work with pseudo-randomized data distributions like
CRUSH [43] or Random Slicing [30] in order to reduce
data migration during upgrades. What to do with blocks
that stop being interesting is a promising line of research.

Additionally, while the current CRAID prototype has
served to verify that it is possible to amortize the cost
of a RAID upgrade by using knowledge about hot data
blocks, it uses simple algorithms for prediction and ex-
pansion. We envision several ways to improve the current
prototype that can serve as subjects of future research.

Smarter prediction. The current version of CRAID does
not take into account the relations between blocks in or-
der to copy them to the caching partition, but rather relies
on the fact that blocks accessed consecutively in a short

142 12th USENIX Conference on File and Storage Technologies

USENIX Association



1.0 Praisiziiiiit 1.0
x 0.8 % 0.8
Vi \
8 3
5 0.6 5 0.6
: :
204 204
[s} [s}
53 x
~ 02 ° 0.2
0§ B 15 20 25 30 35 40 0]
coefficient of variation (o/p)
1.0 1.0
% 0.8 x 0.8
\ VI
8 0.6 8 0.6
g g
© ©
204 204
[s} o
& =
0.2 0.2
0] H 0 25 30 35 40 04

coefficient of variation (o/u)

(a) deasna

RAID-5

RAID-57
CRAID-5 (best)
CRAID-5 (worst)

CRAID-5" (best)
CRAID-5" (worst)

15595 20 25 30 35 40
coefficient of variation (o/u)

RAID-5
RAID-5*
CRAID-5_, (best)

CRAID-5_, (worst)
CRAID-5, (best)

ssd

CRAID-5_, (worst)

01572025 30 35 40
coefficient of variation (o/p)

(b) wdev

Figure 7: CRAID workload distribution: full-HDD (top) vs SSD-dedicated (bottom). Figures show CDFs of c, per % of samples
(seconds) for traces deasna and wdev. Other traces show similar results.

period of time tend to be related. More sophisticated tech-
niques to detect block correlations could improve CRAID
significantly, allowing the I/O monitor to migrate data to
Pc before it is actually needed.

Smarter rebalancing. The current invalidation of the en-
tire Pc when new disks are added is overkill. Though it
benefits the parallelism of the data distribution and new
disks can be used immediately, the current strategy was
devised to test if our hypothesis held in the simplest case,
without complex algorithms. Since working sets should
not change drastically, CRAID could benefit greatly from
strategies to rebalance the small amount of data in P¢
more intelligently, like those in §7.2.

Improved data layout. Similarly, currently CRAID does
not make any effort to allocate related blocks close to
each other. Alternate layout strategies more focused on
preserving semantic relations between blocks might yield
great benefits. For instance, it might be interesting to eval-
uate the effect of copying entire stripes to the cache par-
tition as a way to preserve spatial locality. Besides, this
could help reduce the number of parity computations, thus
reducing the background I/O present in the array.

7 Related Work

We examine the literature by organizing it into data layout
optimization techniques and RAID upgrade strategies.

7.1 Data Layout Optimization

Early works on optimized data layouts by Wong [45],
Vongsathorn et al. [42] and Ruemmler and Wilkes [37]
argued that placing frequently accessed data in the center
of the disk served to minimize the expected head move-
ment. Specifically, the latter proved that the best results in
I/O performance came from infrequent shuffling (weekly)
with small (block/track) granularity. Akyurek and Salem
also showed the importance of reorganization at the block
level, and the advantages of copying over shuffling [2].

Hu et al. [48, 33] proposed an architecture called Disk
Caching Disk (DCD), where an additional disk (or parti-
tion) is used as a cache to convert small random writes
into large log appends, thus improving overall I/O per-
formance. Similarly to DCD, iCache [16] adds a log-disk
along with a piece of NVRAM to create a two-level cache
hierarchy for iSCSI requests, coalescing small requests
into large ones before writing data. HP’s AutoRAID [44],
on the other hand, extends traditional RAID by partition-
ing storage in a mirrored zone and a RAID-5 zone. Writes
are initially made to the mirrored zone and later migrated
in large chunks to RAID-5, thus reducing the space over-
head of redundancy information and increasing parallel
bandwidth for subsequent reads of active data.

Li et al. proposed C-Miner [26], which used data min-
ing techniques to model the correlations between differ-
ent block I/0 requests. Hidrobo and Cortes [18] accu-
rately model disk behavior and compute placement alter-
natives to estimate the benefits of each distribution. Simi-
lar techniques could be used in CRAID to infer complex
access patterns and reorganize hot data more effectively.

USENIX Association

12th USENIX Conference on File and Storage Technologies 143



ALIS [20] and, more recently, BORG [5], reorganize
frequently accessed blocks (and block sequences) so that
they are placed sequentially on a dedicated disk area. Con-
trary to CRAID, neither explores multi-disk systems.

7.2 RAID Upgrade Strategies

There are several deterministic approaches to improve the
extensibility of RAID-5. HP’s AutoRAID allows an on-
line capacity expansion without data migration, by which
newly created RAID volumes use all disks and previously
created ones use only the original disks.

Conventional approaches redistribute data and preserve
the round-robin order. Gonzalez and Cortes proposed
a Gradual Assimilation (GA) algorithm [15] to control
the overhead of expanding a RAID-5 system, but it has
a large redistribution cost since all parities still need to
be modified after data migration. US patent #6000010
presents a method to scale RAID-5 volumes that elim-
inates the need to rewrite data and parity blocks to the
original disks [23]. This, however, may lead to an uneven
distribution of parity blocks and penalize write requests.

MDM [17] reduces data movement by exchanging
some blocks between the original and new disks. It
also eliminates parity modification costs since all par-
ity blocks are maintained, but it is unable to increase
(only keep) the storage efficiency by adding new disks.
FastScale [50] minimizes data migration by moving only
data blocks between old and new disks. It also optimizes
the migration process by accessing physically sequential
data with a single I/O request and by minimizing the num-
ber of metadata writes. At the moment, however, it cannot
be used in RAID-5. More recently, GSR [47] divides data
on the original array into two sections and moves the sec-
ond one onto the new disks keeping the layout of most
stripes. Its main limitation is performance: after upgrades,
accesses to the first section are served by original disks,
and accesses to the second are served only by newer disks.

Due to the development of object-based storage, ran-
domized RAID is becoming more popular, since it seems
to have better scalability. The cut-and-paste strategy pro-
posed by Brinkmann et al. [6] uses a randomized func-
tion to place data across disks. When a disk is added
to disks, it cuts off ranges of data [1/(n+ 1),1/n] from
the original n disks, and pastes them to the new disk.
Also based on a random hash function, Seo and Zim-
mermann [40] proposed finding a sequence of disks addi-
tions that minimized the data migration cost. On the other
hand, the algorithm proposed in SCADDAR [13] moves a
data block only if the destination disk is one of the newly
added disks. This reduces migration significantly, but pro-
duces an unbalanced distribution after several expansions.

RUSH [19] and CRUSH [43] are the first methods with
dedicated support for replication, and offer a probabilis-
tically optimal data distribution with minimal migration.

Their main drawback is that they require new capacity to
be added in chunks and the number of disks in a chunk
must be enough to hold a complete redundancy group.
More recently, Miranda et al.’s Random Slicing [30] used
a small table with information on insertion and removal
operations to reduce the required randomness and deliver
a uniform load distribution with minimal migration.
These randomized strategies are designed for object-
based storage systems, and focus only on how blocks are
mapped to disks, ignoring the inner data layout of each
individual disk. In this regard, CRAID manages blocks
rather than objects and is thus more similar to determinis-
tic (and extensible) RAID algorithms. To our knowledge,
however, it is the first strategy that uses information about
data blocks to reduce the overhead of the upgrade process.

8 Conclusions

In this paper, we propose and evaluate CRAID, a self-
optimizing RAID architecture that automatically reorga-
nizes frequently used data in a dedicated caching parti-
tion. CRAID is designed to accelerate the upgrade pro-
cess of traditional RAID architectures by limiting it to
this partition, which contains the data that is currently
important and on which certain QoS levels must be kept.

We analyze CRAID using seven real-world traces of
different workloads and collected at several times in the
last decade. Our analysis shows that CRAID is highly suc-
cessful in predicting the data workload and its variations.
Further, if an appropriate data distribution is used for
the cache partition, CRAID optimizes the performance
of read and write traffic due to the increased locality and
sequentiality of frequently accessed data. Specifically, we
show that it is possible to achieve a QoS competitive with
an ideal RAID-5 or RAID+SSD array, by creating a small
RAID-5 partition of at most 1.28% the available storage,
regardless of the layout outside the partition.

In summary, we believe that CRAID is a novel ap-
proach to building RAID architectures that can offer re-
duced expansion times and I/O performance improve-
ments. In addition, its ability to combine several layouts
can serve as a starting point to design newer allocation
strategies more conscious about data semantics.

Acknowledgments

We wish to thank anonymous reviewers and our shep-
herd C.S. Lui for their comments and suggestions for im-
provement. Special thanks go to André Brinkmann, Maria
S.Pérez and BSC’s SSRG team for insightful feedback
that improved initial drafts significantly. This work was
partially supported by the Spanish and Catalan Govern-
ments (grants SEV-2011-00067, TIN2012-34557, 2009-
SGR-980), and EU’s FP7/2007-2013 (grant RI-283493).

144 12th USENIX Conference on File and Storage Technologies

USENIX Association



References

(1]

(2]

13

—

[4

—_

(5]

(6]

[7

—

(8]

(9]

(10]

(11]

[12]

[13]

AGRAWAL, N., PRABHAKARAN, V., WOBBER,
T.,DAVIS,J., MANASSE, M., AND PANIGRAHY,
R. Design tradeoffs for SSD performance. In USENIX
2008 Annual Technical Conference on Annual Technical
Conference (2008), pp. 57-70.

AKYUREK, S., AND SALEM, K. Adaptive block
rearrangement. ACM Transactions on Computer Systems
(TOCS) 13,2 (1995), 89-121.

ARLITT, M., CHERKASOVA, L., DILLEY, J.,
FRIEDRICH, R., AND JIN, T. Evaluating content
management techniques for web proxy caches. ACM SIG-
METRICS Performance Evaluation Review 27, 4 (2000),
3-11.

ARTIAGA, E., AND MIRANDA, A. PRACE-2IP De-
liverable D12.4. Performance Optimized Lustre. INFRA-
2011-2.3.5 — Second Implementation Phase of the Eu-
ropean High Performance Computing (HPC) service
PRACE (2012).

BHADKAMKAR, M., GUERRA, J., USECHE, L.,
BURNETT, S., LIPTAK, J., RANGASWAMI, R.,
AND HRISTIDIS, V. BORG: block-reORGanization
for self-optimizing storage systems. In Proccedings of the
7th conference on File and storage technologies (2009),
USENIX Association, pp. 183-196.

BRINKMANN, A., SALZWEDEL, K., AND
SCHEIDELER, C. Efficient, Distributed Data Place-
ment Strategies for Storage Area Networks. In Proceed-
ings of the 12" ACM Symposium on Parallel Algorithms
and Architectures (SPAA) (2000), pp. 119-128.

BROWN, N. Online RAID-5 resizing. drivers/md/raid5.
c in the source code of Linux Kernel 2.6. 18, 2006.

Bucy, J., SCHINDLER, J., SCHLOSSER, S.,
AND GANGER, G. The DiskSim Simulation Environ-
ment Version 4.0 Reference Manual (CMU-PDL-08-101).
Parallel Data Laboratory (2008), 26.

CAo0, P., AND IRANI, S. Cost-aware WWW proxy
caching algorithms. In Proceedings of the 1997 USENIX
Symposium on Internet Technology and Systems (1997),
vol. 193.

CHEN, P., LEE, E., GiBSON, G., KATzZ, R.,
AND PATTERSON, D. RAID: High-performance, reli-
able secondary storage. ACM Computing Surveys (CSUR)
26,2 (1994), 145-185.

CHEN, P. M., AND LEE, E. K. Striping in a RAID
level 5 disk array, vol. 23. ACM, 1995.

ELLARD, D., LEDLIE, J., MALKANI, P., AND
SELTZER, M. Passive NFS tracing of email and re-
search workloads. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies (2003),
USENIX Association, pp. 203-216.

GOEL, A., SHAHABI, C., YAO, S., AND ZIM-
MERMANN, R. SCADDAR: An efficient randomized
technique to reorganize continuous media blocks. In Data

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Engineering, 2002. Proceedings. 18th International Con-
ference on (2002), IEEE, pp. 473-482.

GOMEZ, M., AND SANTONIJA, V. Characterizing
temporal locality in I/O workload. In Proc. of the Inter-
national Symposium on Performance Evaluation of Com-
puter and Telecommunication Systems (2002).

GONZALEZ, J., AND CORTES, T. Increasing the
capacity of RAIDS5 by online gradual assimilation. In
Proceedings of the international workshop on Storage net-
work architecture and parallel I/0s (2004), ACM, pp. 17—
24.

HE, X., YANG, Q., AND ZHANG, M. A caching
strategy to improve iSCSI performance. In Local Com-
puter Networks, 2002. Proceedings. LCN 2002. 27th An-
nual IEEE Conference on (2002), IEEE, pp. 278-285.

HETZLER, S. R., ET AL. Data storage array scaling
method and system with minimal data movement. US
Patent 8,239,622.

HiprROBO, F., AND CORTES, T. Autonomic storage
system based on automatic learning. In High Performance
Computing-HiPC 2004. Springer, 2005, pp. 399—4009.

HONICKY, R., AND MILLER, E. L. Replication
under scalable hashing: A family of algorithms for scal-
able decentralized data distribution. In Parallel and Dis-
tributed Processing Symposium, 2004. Proceedings. 18th
International (2004), IEEE, p. 96.

Hsu, W., SMITH, A., AND YOUNG, H. The auto-
matic improvement of locality in storage systems. ACM
Transactions on Computer Systems (TOCS) 23, 4 (2005),
424-473.

JIN, S., AND BESTAVROS, A. GreedyDual* Web
caching algorithm: exploiting the two sources of temporal
locality in Web request streams. Computer Communica-
tions 24,2 (2001), 174-183.

LEE, S., AND BAHN, H. Data allocation in MEMS-
based mobile storage devices. Consumer Electronics,
IEEE Transactions on 52, 2 (2006), 472-476.

LEGG, C. Method of increasing the storage capacity of
a level five RAID disk array by adding, in a single step, a
new parity block and N-1 new data blocks which respec-
tively reside in a new columns, where N is at least two,
Dec. 7 1999. US Patent 6,000,010.

LEUNG, A., PASUPATHY, S., GOODSON, G.,
AND MILLER, E. Measurement and analysis of large-
scale network file system workloads. In USENIX 2008
Annual Technical Conference on Annual Technical Con-
ference (2008), pp. 213-226.

Li, D., AND WANG, J. EERAID: energy efficient
redundant and inexpensive disk array. In Proceedings of
the 11th workshop on ACM SIGOPS European workshop
(2004), ACM, p. 29.

Li,Z., CHEN, Z., SRINIVASAN, S., AND ZHOU,
Y. C-miner: Mining block correlations in storage systems.
In Proceedings of the 3rd USENIX Conference on File and
Storage Technologies (2004), vol. 186, USENIX Associa-
tion.

USENIX Association

12th USENIX Conference on File and Storage Technologies 145



(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

[37]

(38]

(39]

[40]

LymaN, P. How much information? 2003.
http://www.sims.berkeley.edu/research/
projects/how—much—-info-2003/ (2003).

MEGIDDO, N., AND MODHA, D. ARC: A self-
tuning, low overhead replacement cache. In Proceedings
of the 2nd USENIX Conference on File and Storage Tech-
nologies (2003), pp. 115-130.

MIRANDA, A., AND CORTES, T. Analyzing Long-
Term Access Locality to Find Ways to Improve Dis-
tributed Storage Systems. In Parallel, Distributed and
Network-Based Processing (PDP), 2012 20th Euromicro
International Conference on (2012), IEEE, pp. 544-553.

MIRANDA, A., EFFERT, S., KANG, Y.,
MILLER, E. L., BRINKMANN, A., AND
CORTES, T. Reliable and randomized data distri-

bution strategies for large scale storage systems. In High
Performance Computing (HiPC), 2011 18th International
Conference on (2011), IEEE, pp. 1-10.

NARAYANAN, D., DONNELLY, A., AND ROw-
STRON, A. Write off-loading: Practical power manage-
ment for enterprise storage. ACM Transactions on Storage
(TOS) 4, 3 (2008), 10.

NARAYANAN, D., THERESKA, E., DONNELLY,
A., ELNIKETY, S., AND ROWSTRON, A. Migrat-
ing server storage to SSDs: analysis of tradeoffs. In Pro-
ceedings of the 4th ACM European conference on Com-
puter systems (2009), ACM, pp. 145-158.

NIGHTINGALE, T., HU, Y., AND YANG, Q. The
design and implementation of DCD device driver for
UNIX. In Proceedings of the 1999 USENIX Technical
Conference (1999), pp. 295-308.

PARK, J., CHUN, H., BAHN, H., AND KOH, K.
G-MST: A dynamic group-based scheduling algorithm for
MEMS-based mobile storage devices. Consumer Electron-
ics, IEEE Transactions on 55, 2 (2009), 570-575.

PATTERSON, D., ET AL. A simple way to estimate
the cost of downtime. In Proc. 16th Systems Administra-
tion Conf.— LISA (2002), pp. 185-8.

PATTERSON, D., GIBSON, G., AND KATZ,R. A
case for redundant arrays of inexpensive disks (RAID),
vol. 17. ACM, 1988.

RUEMMLER, C., AND WILKES, J. Disk shuf-
fling. Tech. rep., Technical Report HPL-91-156, Hewlett
Packard Laboratories, 1991.

RUEMMLER, C., AND WILKES, J. UNIX disk ac-
cess patterns. In Proceedings of the Winter 1993 USENIX
Technical Conference (1993), pp. 405-420.

Seagate Cheetah 15K.5 FC product manual. http://www.

seagate.com/staticfiles/support/disc/manuals/
enterprise/cheetah/15K.5/FC/100384772f.pdf
Last retrieved Sept. 9, 2013.

SEO, B., AND ZIMMERMANN, R. Efficient disk
replacement and data migration algorithms for large disk
subsystems. ACM Transactions on Storage (TOS) 1, 3
(2005), 316-345.

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

VERMA, A., KOLLER, R., USECHE, L., AND
RANGASWAMI, R. SRCMap: energy proportional stor-
age using dynamic consolidation. In Proceedings of the
8th USENIX conference on File and storage technologies
(2010), USENIX Association, pp. 20-20.

VONGSATHORN, P., AND CARSON, S. A system
for adaptive disk rearrangement. Software: Practice and
Experience 20, 3 (1990), 225-242.

WEIL, S. A., BRANDT, S. A., MILLER, E. L.,
AND MALTZAHN, C. Crush: Controlled, scalable, de-
centralized placement of replicated data. In Proceedings
of the 2006 ACM/IEEE conference on Supercomputing
(2006), ACM, p. 122.

WILKES, J., GOLDING, R., STAELIN, C., AND
SULLIVAN, T. The HP AutoRAID hierarchical storage
system. ACM Transactions on Computer Systems (TOCS)
14,1 (1996), 108-136.

WoONG, C. Minimizing expected head movement in one-
dimensional and two-dimensional mass storage systems.
ACM Computing Surveys (CSUR) 12, 2 (1980), 167-178.

WONG, T., GANGER, G., WILKES, J., ET AL.
My Cache Or Yours?: Making Storage More Exclusive.
School of Computer Science, Carnegie Mellon University,
2000.

Wu, C., AND HE, X. Gsr: A global stripe-based redis-
tribution approach to accelerate raid-5 scaling. In Parallel
Processing (ICPP), 2012 41st International Conference
on (2012), IEEE, pp. 460-469.

YANG, Q., AND Hu, Y. DCD—disk caching disk: A
new approach for boosting I/O performance. In Computer
Architecture, 1996 23rd Annual International Symposium
on (1996), IEEE, pp. 169-169.

ZHANG, G., SHU, J., XUE, W., AND ZHENG,
W. SLAS: An efficient approach to scaling round-robin
striped volumes. ACM Transactions on Storage (TOS) 3,
1 (2007), 3.

ZHENG, W., AND ZHANG, G. FastScale: accelerate
RAID scaling by minimizing data migration. In Proceed-
ings of the 9th USENIX Conference on File and Storage
Technologies (FAST) (2011).

ZHU, Q., CHEN, Z., TAN, L., ZHOU, Y., KEE-
TON, K., AND WILKES, J. Hibernator: helping disk
arrays sleep through the winter. In ACM SIGOPS Operat-
ing Systems Review (2005), vol. 39, ACM, pp. 177-190.

146

12th USENIX Conference on File and Storage Technologies

USENIX Association





