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Abstract
With the advent of Big Data technologies-the capacity to store and efficiently process

large sets of data, doors of opportunities for developing business intelligence that

was previously unknown, has opened. Each phase in the processing of this data

requires specialized infrastructures. One such phase, the preservation and archiving

of data, has proven its usefulness time and again. Data archives are processed using

novel data mining methods to elicit vital data gathered over long periods of time and

efficiently audit the growth of a business or an organization. Data preservation is also

an important aspect of business processes which helps in avoiding loss of important

information due to system failures, human errors and natural calamities.

This thesis investigates the need, discusses possibilities and presents a novel,

highly cost-effective, unified, long- term storage solution for data. Some of the com-

mon processes followed in large-scale data warehousing systems are analyzed for

overlooked, inordinate shortcomings and a profitably feasible solution is conceived

for them. The gap between the general needs of ’efficient’ long-term storage and

common, current functionalities is analyzed. An attempt to bridge this gap is made

through the use of a hybrid, hierarchical media based, performance enhancing mid-

dleware and a monolithic namespace filesystem in a new storage architecture, Tape

Cloud.

The scope of studies carried out by us involves interpreting the effects of using

heterogeneous storage media in terms of operational behavior, average latency of

data transactions and power consumption. The results show the advantages of the

new storage system by demonstrating the difference in operating costs, personnel

costs and total cost of ownership from varied perspectives in a business model.
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Chapter 1

Introduction

1.1 The Explosion of Data

The world of Big Data is changing dramatically right before our eyes, from the

amount of data being produced to the way in which it is structured and used. The

modernization and technological advancement in many fields has contributed to the

generation of large quantities of soft information which provides critical feedback

on ways to make operating practices in the field better. This not only provides

exceptional opportunities in improving businesses, but the sheer size of the data also

presents enormous challenges in terms of efficient data maintenance and computing.

Experts in the field point to an average 4300% increase in the data generated every

year by 2020 [9]. This is no surprise to anyone in the information technology arena

who has faced or is currently facing the burden of data proliferation. Growth rates

are especially high for the digital archives of compliance data (both government
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and corporate mandated), video/multimedia files, digital images, fixed content, and

social-network-related data[21].

Management of data includes the ability to efficiently compute and economically

store raw data and results. The computation of data has been supported by process-

ing systems which have undergone continuous improvement over time. This includes

central processing units, high-performance processing techniques, specialized kernels,

platforms and operating systems. We can imagine the overall management of data

to be a pipelined process made up of three distinct stages. The first stage is the

collection of raw data to be processed, the second stage is the processing of this raw

data and the final stage is the storage of the newly generated results. The size of the

data storage needed in the first and final stage has grown rapidly over time. This is

due to the “more data, better results” postulation that is commonly revered in many

fields[12][38]. A common requirement for any organization to maintain or improve

the profitability of managing such data is to minimize the cost of storing these data.

An unavoidable concern arises when the importance of the data stored cannot be

judged and its long-term need is uncertain.

1.2 Data Archive and Backup: Correlations and

Contrasts

At any time, data can be easily distinguished on the basis of its momentary impor-

tance. While much research and development work has been done to suggest effective
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ways of handling transiently valuable data by using faster caches and buffers, the

trivial, usually much larger data are not the focus of active research any more. The

fact of the matter is that the smaller, faster storage devices used to store the mo-

mentarily important data are much more expensive than the slower, much bigger

storage devices. In the hierarchy of memory and storage, the less important data

slowly trickles down until it is stored in media that are less potent in performance

and speed. This process is at the heart of most data archiving methods followed

today.

While it is commonplace to use the terms archiving and Backup interchange-

ably, distinct features differentiate the two processes. Archiving of data involves the

transfer of inessential data to economical storage tiers in the storage stack at regular

intervals. The storage stack can be represented as a pyramidal structure with the

archiving tiers taking up the base of the pyramid while the apex comprises of expen-

sive, agile and highly-responsive storage tiers that are closest to the data processing

units. The access patterns, as discussed in the later parts of this document, show

high rates of data transactions at the apex of the pyramid and a lower, nevertheless

prominent data input and output rates at the base.en a unit of data stored at the

foot of the pyramid needs to be accessed, it moves up the hierarchy to ensure quicker

access in case it is needed again in the near future. The units of data that have

resided unaccessed for long durations of time at the higher levels in the memory

hierarchy are slowly pushed down the pyramid.

Backup, on the other hand, is the process of organizing and storing data for

long-term preservation. The probability of access of backed up data is smaller than

4



that of archived data. Backup of data servers taken at regular intervals can help

in auditing, disaster recovery and data loss prevention. Backup servers are located

on-site at the location of the organization generating the data or in remote locations

and the transfer of data are usually done over the network or by manually shipping

the media that contains the data to the location of the storage.

The correlations between archiving and data backup, however, can be found in

the fact that the speed of data transactions at both the archiving and backup levels is

much slower than regular, secondary storage. We attribute this to the use of certain

technology where delay in data transactions is inherent in its operation. Moreover,

the large size of data stored in data archives and backup systems is a common feature,

leading to the investment of extra efforts and time to seek the required units of data

within the storage infrastructure.

1.3 Current Traditions and Infrastructures

As mentioned before, archiving and backup of data can be performed either at the

site of the production of data or at remote locations. While both have its advantages

and disadvantages, either of the methods is chosen based on the need.-site archiving

might help in faster recovery of data but off-site archiving might contribute to data

protection against natural calamities. Organizations with sensitive and important

data such as financial institutions prefer using both on-site as well as remote backup

of data. Archiving systems are generally made up of redundant array of independent
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hard disks (RAID) [22] based storage systems that are normally attached to gener-

ators of data such as web servers over a network. This setup is commonly known

as network attached storage or NAS[30]. Organizations usually combine the storage

needs of more than one web server together to set up an exclusive network of data

storage devices called as storage area network or SAN[31]. A dedicated group of

servers within the NAS or SAN is used to store the archived data.

Data backup, on the other hand, conventionally uses the well-known magnetic

tapes as a medium to store data. Magnetic tapes have demonstrated extended shelf

life and easy transportability characteristics over many years. Magnetic tapes, which

started off as a primary storage media decades ago, have been preferred for backup

storage of information generated by organizations for a long time now. There has

been a continuous development of quality, form factor, capacity and robustness of the

storage cartridges[7]. Magnetic tapes are much cheaper than hard disks in storing

unit data so it continues to be an economic type of storage medium. Periodic copies

or snapshots of data on web servers are stored sequentially on tapes, which are then

vaulted for long-term preservation.

Some archival data may be retained for decades, although rarely (if ever) accessed.

And now, there is considerable growth of archived data due to the activities of

billions of data-centric applications in addition to tens of thousands of traditional

data-generating businesses. The situation demands effective archiving solutions that

make data easy to find while lowering the cost of ownership for whatever organization

is ultimately tasked with the responsibility for storing it. Today’s archival storage

environments need to be robust, inexpensive, secure, and scalable. Fortunately,
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significant enhancements to tape drives, tape media, and libraries have occurred in

recent years, meaning that for a lot of use cases, tape technology is now an optimal

choice for staying ahead of data growth. To be specific, the tape is now exceedingly

appealing for use as cloud storage. In fact, some cloud storage service providers are

reaching unprecedented levels of cost control, security, scalability, and availability by

deploying tape in the cloud[33][21].

1.4 The Cloud Backup Model

Cloud storage is a model commonly found in networked enterprise systems where

data are stored in virtually partitioned pools of storage which are generally hosted

by designated service providers or hosts [36]. Hosting companies operate large data

storage centers and individuals and organizations that require data to be hosted, buy

or lease storage capacity. The data center operators, in the background, virtualize

the resources according to the requirements of the customer and expose them as

storage pools, which the customers can themselves use to store files or data objects.

Physically, the resource may span across multiple servers and multiple placements.

The safety of the files depends upon the hosting company, and on the applications

that leverage the cloud storage. Information stored with these providers is accessi-

ble via the internet or Wide Area Network (WAN). The economy of scale enables

providers to supply data storage cheaper than the equivalent electronic data storage

devices.

The introduction of cloud storage and the virtual-storage models have brought
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about notable changes in both the technical and business specifications of organiza-

tions requiring large and affordable data storage space[21]. The pay-per-requirement

feature offered by the cloud service providers helps service users to choose the exact

amount of resources needed to avoid wastage and exempts them from infrastructure

and personnel costs. Cloud data storage has many advantages. From the service

users’ perspective, it is cheap, doesn’t require installation of heavy software or hard-

ware components, doesn’t need replacing, has backup and recovery systems, has no

on-site physical presence, requires no environmental conditions, requires no personnel

and doesn’t require energy for power or cooling.

1.5 Challenges

1.5.1 Cost of In-House Ownership

Economic factors have an immense influence on the storage initiatives and storage

infrastructure that an IT organization can deploy. The main issue with having in-

house NAS and SAN infrastructures for archiving and backup of data is the cost

of ownership and operation. The infrastructure needed in the form of hardware,

storage media, software and operating personnel is usually a large investment for

any organization to make. High-capacity electronic data storage devices like file

servers, Storage Area Networks (SAN) and Network Attached Storage (NAS) pro-

vide high-performance, high-availability data storage accessible via industry standard

interfaces. However the electronic data storage devices have many pricey drawbacks,
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including the need for regular maintenance and have short operational lifetimes. To

make the SAN system generally efficient for all the web servers using it, the com-

monly used storage medium is the hard disk which is not only expensive in nature,

but also demands other support needs such as the software needed to establish RAID

and adequate cooling systems in data centers. In this regard, magnetic tapes and

tape-based infrastructure fare much better in terms of operating and media costs.

Historically, magnetic tapes have been a more affordable medium compared to hard

disks and the fact that the tapes do not require perpetually powered infrastructure

for its working, decreases the power consumption and reduces the need for cooling

systems in large data centers.

Despite the cost advantage, the growth of the use of magnetic tapes has not

been as impressive as that of hard disks. This is due to the comparatively poorer

performance of magnetic tapes when used in a SAN like storage in terms of average

response time of data retrieval and data write as compared to hard disks. Also, the

systems needed to operate magnetic tapes, which usually involves tape drives and

tape libraries are much too expensive to highlight the economic benefits of the tape

media alone. The large investment needed to host an on-site backup system with

either of the storage media tends to be a considerable investment to make.

1.5.2 Monetary “Leak” and its Causes

The flexibility and potential cost savings of storage clouds hold great appeal for

several reasons. Cloud storage provides elasticity, with capacity growing on-demand
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as the business requires and scaling back when capacity is not needed. You pay

only for what you use. Typically, public cloud storage service providers charge for

the capacity used monthly, the data-transfer bandwidth, and value-added services

performed in the cloud (i.e., security, encryption, deduplication, or replication in

other locations for redundancy).

At this stage, it is clear that in cloud-based storage services, there are usually more

than one player involved, such as service users and service providers. From the service

user’s perspective, the motives for choice of storage would be reduced costs per unit

data stored, efficient retrieval, options for specialized support and secure, long-term

data storage. But, a service provider’s considerations span operating cost efficiency,

labor, scalability, support for different types of data, varied policies from multiple

clients and managing workload uncertainty among others. A closer observation shows

that the cost factor favors one or the other player but not both. Some factors such

as the likelihood of recovery of data after they have been backed up, also firmly

influence the offering by service providers.

A study by Joab Jackson [17] showed that over 90 percent of the data in networked

servers sits untouched. In such situations, service users either end up unnecessarily

paying for large and expensive storage space to store unimportant data, or the service

providers offer cheap storage at the cost of operating and maintaining the servers

which again leads to lower profits. Even with efficient auditing of the required storage

space, both players still face tough tasks in dealing with unexpected workloads and

unauthorized elastic expansion. We term this concept as “Monetary Leak”, which

results in inefficiencies in business and technology propositions. In order to cope
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with such anomalies, service providers must have at their disposal, a cheap, energy

efficient and performance sufficient storage tier which can be used for storing data

over long periods of time without having to invest much in its maintenance and a

platform which can intelligently transport specific units of data to this tier when

needed. Thus, a sensible inclusion in the storage tiers to archive low-read/write-only

data would be a low cost, low maintenance yet durable media [17].

1.6 Architecture for a Solution

Client
Client Side 

Interface

Disk based Library

Tape based storage for 

archiving

Dropbox, Google 

Cloud, etc

Tape Cloud

Backup Engine

Figure 1.1: Representation of the Architecture of Tape Cloud.

In this thesis, we propose and evaluate a design prototype to overcome the chal-

lenge of monetary leak and provide cost beneficial storage options to both service

providers and service users. Our design leverages the economic advantages of mag-

netic tapes and combines them with the cloud-based storage models. Technically,

the proposed design is the result of elaborate exploration of specifications and config-

urations to enable the integration of magnetic tape libraries into cloud-based storage

systems such that the resulting storage stack is a centrally accessible, unified backup

and archiving infrastructure. The tape layer, in this case, serves by capturing and
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restraining the redundant, archaic and trivial valued data within its storage bound-

aries as an inline activity in the regular process of storing and not as an explicit

activity that a user needs to initiate. It can also provide periodic backup at low

costs with little operation and maintenance costs.

Tape Cloud (figure 1.1), as christened in this document, is a venture that seeks to

find suitable solutions that are analogous to the ideals mentioned before. Tape Cloud

is a cloud-based, nearline storage Infrastructure-as-a-Service which makes use of

magnetic tapes as the main backend storage medium. The cloud model exempts users

from the large initial investments needed for in-house backup infrastructure, external

tiers for archiving legacy data and its maintenance. From the service provider’s

perspective, using tapes allows hassle-free scaling of systems and reduces the total

cost of ownership due to its characteristic low power usage, durability and form factor

per unit data.

In designing Tape Cloud, we defined certain goals that helped in conceiving the

system as per the requirements. Our principal intention is to 1. Reduce the average

response times for read requests issued by applications - This is the ultimate re-

quirement and a non-empirical measure to judge the performance of Tape Cloud. 2.

Conjointly, ensure efficient data writes to the tapes tier of storage - Productive write

capability ensures the need for smaller buffers and prevents clogging of data when

there are more than one sources competing to store its data; and 3. Strengthen

the infrastructure’s support for a large and diverse client base - Given that Tape

Cloud is offered as a cloud-based service, it is natural for the systems to expect a

wide range of data with varying workloads. We cite the efficiency of Tape Cloud
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in terms of its support for and stability in dealing with various kinds of data[13].

However, overcoming the latency offered by tapes is a complex problem to be solved.

Even with the latest in tape technology, high-performance in terms of reading and

writing of data cannot be achieved as delays caused due to seeking and winding of

tapes is still persistent. There is also a delay induced by the stock robots and other

ambulatory mechanics within the tape library which physically handle and move the

tape cartridges.

The main contributions of our work are as follows,

• We analyze some of the common practices in large-scale backup and archiving

systems and their shortcomings. In seeking a suitable solution, we focus our

research on the cost benefits and possibilities for enhancement that are available

through the use of tapes and related technology.

• We observe and record the common delay incurred in the operation of a com-

mercially available tape library. Some of the latencies of tape drives and tape

filesystem are analyzed using typical benchmarking tools. These data, along

with the delay are used to model the performance characteristics of unit hard-

ware, which are later used to simulate data centers.

• We analyze backup and archiving application traces to obtain typical workload

characteristics. We employ specific methods to trace the operations at different

stages in the storage infrastructure and aggregate the traces into meaningful

statistics. This not only provides information about backend storage medium

activity, but also provides information about activities at the application and
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filesystem levels.

• We propose the design of an exciting new alternative in tape-based big data

storage system, tape Cloud”, which allows organizations to benefit from a large

storage bandwidth without having to invest in the infrastructure itself. The

crux of this approach lies in the optimization of the usage of the most afford-

able storage medium. Tape Cloud allows storage service providers to focus

on storage technicalities such as using affordable medium, setting up of the

required infrastructure and planning the essential man power while permitting

client organizations to concentrate monetary expenditures away from investing

on the fundamentals of data backup and storage.

• We evaluate the merits of a middleware that is designed to work with Tape

Cloud. The functions of the middleware include the aggregation and batch

processing of data, IO request management and efficient distribution of data

over available resources. The middleware is independent of factors such as

operating system, type of data, workload and deployment specifications.

• The middleware, which is constituted by a FUSE filesystem, an implementation

of priority-based queuing of IO tasks and a latency preemptive, probabilistic

data distribution scheme, acts between the backup application tier and propri-

etary filesystems that is commonly used with tapes.

• We synthesize artificial workloads which emphasize prominent features of backup

applications and use them to evaluate the impact of using the proposed middle-

ware in a simulated deployment of Tape Cloud. In keeping with the project’s
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goals, we demonstrate and provide proof of improved data distribution ability,

improved response time for read requests originating from each of the applica-

tions’ workloads and regulation of write requests that the middleware provides

through experimental results.
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Chapter 2

State-of-the-Art and Research

Direction

In this chapter, we present the results of some of the studies we performed to under-

stand the positive and negative aspects of the state of the art in storage technologies.

We conducted a comparative analysis of different storage media and storage config-

urations which helped us obtain a clear definition of the problem at hand and a

direction for research to find a solution. We begin the chapter with a brief intro-

duction to the data backup process, its importance and the different types of data

backup that is commonly performed. A study about the types of storage systems

and its internal architecture was performed, including a one-on-one comparison of

the different aspects (cost of operation, maintenance, personnel, random IO, sequen-

tial IO etc.) of the three major storage media used for data backup namely hard

disks, solid state drives and tapes. Collectively, the difference in costs arising due to
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these aspects can lead to the phenomenon of “Monetary Leak” introduced earlier.

With a special inclination towards tapes, we note the benefits and constraints posed

by tapes and tape libraries in the course of its regular operation. This information

helps us in obtaining a clear understanding of expenses, monetary or otherwise, at

various levels within the storage infrastructure and clarifies our research direction.

At the highest level, the goals of our research are deceptively simple. Throughout

this document, all the assumptions and claims that are made and the experiments

conducted are ultimately aimed at fulfilling ALL of these goals in the best possible

and compatible ways.

• REDUCE the overall cost of storing data for clients who want to use the backup

and archiving service.

• REDUCE the cost of owning, maintaining and operating the archiving and

backup infrastructure for service providers.

• MAINTAIN a record of good performance in terms of fast data read and effi-

cient data write into storage.

• Enable ADAPTATION of the archiving and backup infrastructure to ensure

support for different types and workloads of data.

17



2.1 Types of Backup

Backing-up of data is a crucial process that many organizations perform in order to

have a fail-safe reserve, for when the inevitable happens. The principle is to make

copies of particular data in order to use those copies for restoring the information if a

failure occurs (a data loss event due to deletion, corruption, theft, viruses etc.). Each

program has its own approach in executing the backup, but there are four common

backup types implemented and generally used in most of these programs: full backup,

differential backup, incremental backup and mirror backup. The type of backup also

influences the infrastructure deployed for the purpose. Thus, it is recommended that

a clear understanding of the needs and circumstances be obtained before enabling a

backup application to use a certain backup storage system.

2.1.1 Full backup

Full backup is the starting point for all other types of backup and contains all the

data in the folders and files on personal computers and servers that are selected to

be backed up. Because full backup stores all files and folders, frequent full backups

result in faster and simpler restore operations.

2.1.2 Differential backup

Differential backup contains all files that have changed since the last full backup.

The advantage of a differential backup is that it shortens restore time compared to a
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full backup or an incremental backup. However, performing a differential backup too

many times might cause the size of the differential backup might grow to be larger

than the baseline full backup.

2.1.3 Incremental backup

Incremental backup stores all files that have changed since the last full, differential

OR incremental backup. The advantage of an incremental backup is that it takes

the least time to complete. However, during a restore operation, each incremental

backup must be processed, which could result in a lengthy restore job.

2.1.4 Mirror backup

Mirror backup is identical to a full backup, with the exception that the files are not

compressed in zip files and they cannot be protected with a password. A mirror

backup is most frequently used to create an exact copy of the source data. It has a

benefit that the backup files can also be readily accessed using filesystem tools.

2.2 Comparing the Costs of Storage Media

Throughout modern history many digital storage systems have been researched, de-

veloped, manufactured, used and eventually shelved in an effort to address ever-

increasing demand for high-speed, efficient and economical storage systems. This

cycle of innovation has lead us to a new generation of NAND Flash memory-based
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solid state drives (SSDs) that represent the next evolutionary step in both enterprise

and consumer storage applications. While many of the storage devices have seen

trends of decreased costs of operation as its usage increased, the current era is still

in its infancy for SSD-based systems to be widely and profitably deployed. The most

popular storage media used in a large number of the systems consists primarily of

hard disks of larger capacity and a comparatively smaller and faster random access

memory tier made up of SSDs.

Magnetic tapes were in active usage over the last 60 years, a time period that is

comparatively high for a storage technology in the growing IT age. This has been

possible due to the continuous improvement in the quality, capacity, durability and

areas of application of tapes. The dominant motivation to use tapes, however, arises

from the fact that tapes are highly economical and ideal to store large amount of data

which may or may not be useful to the organization in the near future. The Linear

Tape-Open is a set of standards that directs development and manages licensing and

certification of media and mechanism manufacturers. The standard form-factor of

LTO technology goes by the name Ultrium, the original version of which was released

in 2000 and could hold 100 GB of data in a cartridge.

Table 2.1: Comparison of Costs of Storing Unit Data On Different Storage Media

Solid State Hard Disk Tapes
$/TB/yr % total $/TB/yr % total $/TB/yr % total

Media 19456 96.0 220 25.1 23 5.4
Capital 197 0.009 163 18.6 155 36.4
Maintenance 152 0.007 176 20.1 88 20.7
Facilities 221 0.010 118 13.5 56 13.1
Personnel 234 0.01 197 22.5 103 22.4
Total 20260 874 425
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LTO version 6 released in 2012 can hold 2.5 TB in a cartridge of the same size as

its predecessors. Another very important storage media that has been around for a

long time is the Hard Disk Drive. The similarity between hard disk and tapes is only

the principle of using magnetic material to store data. Hard disks rose to the scene

as a better option to store data that needed faster retrieval. The cost of operating

hard disks has been an attractive tradeoff to the cost of the medium itself. This also

has proved to be the “tape killer” as the hardware required to operate tapes and the

personnel required to maintain them cost unreasonably high. A comparative study

performed let us see that the monetary expenses in the form of initial investment

involved are too large for many small organizations to have backup solutions on

tapes despite its competitive cost advantages, results of which have been shown in

table 2.1.
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Figure 2.1: Idle State Power Consumption of Hard Disk vs Tapes.

Another contributor to costs is the overall energy consumption of storage media

and the associated infrastructure. Power inefficiencies in storage systems can arise at

two stages, when the system uses a lot of energy even in the idle state (in figure 2.1,
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the column title tape shows least power consumed) and when the operating temper-

atures (in figure 2.2, tape libraries show least increase in operating temperatures)

of the system results in the need for external temperature conditioning systems. A

study performed with a tape drive and six hard disk drives of different specification

and manufacturer reveals that tape is much more power efficient than hard disk when

used on a large- scale such as in data centers. The fact that hard disks need to be

electrically powered for operation is a mammoth disadvantage over tapes which is a

non-powered static storage and has very low power consumption per unit data [28].
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Figure 2.2: Operating Temperatures of Hard disks and Tapes-based systems.

Figure 2.3 shows the total cost of ownership of tape versus hard disk-based storage

systems as a function of time. From the figure, the energy cost incurred over a five

year period for disks is comparable with the acquisition cost of the tapes with equal

storage capacities. From the perspective of the storage service provider, scalability

becomes very expensive [16] [4] [3]. From the Clippers model [27][26], for long-term

archiving of digital data, the average disk-based solution costs 15 times the average

tape-based solution. The cost of energy alone for the average disk-based solution

22



exceeds the entire TCO for the average tape-based solution.
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The overall cost of storing data on different types of storage system can directly

depend on the above mentioned factors. Closer investigations show that individual

benefits of a particular type of storage can vary significantly from one another. For

instance, magnetic tapes require tape libraries to operate on enterprise scales and

hard disks require the appropriate networked software and hardware infrastructure

for its operation. While the medium itself is less expensive in the case of tapes,

the overall cost of operation sets it on par with hard disks. This is caused mainly

due to the extensive gap that exists between the costs related to medium and costs

related to using the medium in a system. Figure 2.4 shows the difference in costs of

the storage hardware and the complete storage system for varying amounts of data.

Apparently, due to the offering by companies which include more features than the
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hardware that is available off the shelf, the total cost of ownership in both cases

differ slightly.
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Figure 2.4: Comparative costs of storage media alone versus the total cost of storage
system.

2.3 Contrasting Performance and Overhead

The infrastructure for using tapes which, in most cases, is the tape library, introduces

a new kind of expenses in the form of delays which need to be incurred due to

the use of robotics inside the device. The delay caused can create a slowdown of

I/O processes, indirectly affecting business processes of the organization [7]. We

monitor and study some of the device specific delays by conducting experiments over

a commercial LTO-5 tape library (e.g., Tandberg tape library[1]).

Figure 2.5 shows the diagrammatic representation of the simple tape library (the

number of tape slots is a parameter that varies among different tape library prod-

ucts). The numbered slots are tape cartridge holders. The robotic cart runs on the
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rail in front of the tape driver and helps load the tapes into the driver. To complete

the analysis, we perform a multi trial recording of the delay of various operations

performed within the library. The basic principles of operation can be well under-

stood and a run-time profile can be created for these operations which help us in

creating faster and more efficient hardware. Table 2.2 shows the delay incurred in

moving tape cartridges in the numbered slots to the drive and back to the slots after

performing the operation. The average time taken for the transport of cartridges

in both cases is more than a minute. Once the tape is in place, it takes nearly 30

seconds for it to load and be ready to read or write. The tape transportation cart has

an upward path time of 2.6 seconds and a total end to end path time of 7.4 seconds.

The robot usually performs both together during the load or unload operation from

a slot at the very end of the library so time can be saved. Based on the numbers, it

is possible to get a clear time profile about the tape library operations. One of the

design objectives is to reduce the time spent on the tasks such as movement of tapes

from the slots to the drive.

Table 2.2: Tandgerg T24 Load and Unload Delays

Type From To Motion(sec) Load(sec) Type From To Motion(sec) Load(sec)
LOAD 1 Drive 62.4 33.3 UNLOAD Drive 1 61.6 30.1
LOAD 2 Drive 62.9 31.9 UNLOAD Drive 2 62.3 30.6
LOAD 3 Drive 64.06 32.6 UNLOAD Drive 3 62.26 30.3
LOAD 4 Drive 65.2 34.6 UNLOAD Drive 4 64.0 30.3
LOAD 5 Drive 62.42 34.0 UNLOAD Drive 5 61.3 30.9
LOAD 6 Drive 63.3 33.6 UNLOAD Drive 6 61.76 31.01
LOAD 7 Drive 64.2 31.3 UNLOAD Drive 7 62.22 30.1
LOAD 8 Drive 65.45 33.9 UNLOAD Drive 8 63.8 29.62
LOAD 9 Drive 61.8 34.0 UNLOAD Drive 9 60.7 30.3
LOAD 10 Drive 62.3 31.6 UNLOAD Drive 10 61.4 30.34
LOAD 11 Drive 63.7 32.23 UNLOAD Drive 11 61.97 33.9
LOAD 12 Drive 64.02 33.8 UNLOAD Drive 12 63.6 32.59

Average − − 63.64 33.1 Average − − 62.37 31.21

Due to the delay induced by the robots in the tape library and the delay caused

by the winding and seeking of tapes, random access of data on tapes perform poorly
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Figure 2.5: Representation of the Tandberg T24 Tape Library.

in comparison to hard disks. Although the rate of sequential read and write by tape

drives is on par or better that that of most commercially available hard disks as

shown in figure 2.8, the performance when judged based on the common parameters

of input/output per second (IOPS) and milliseconds per operation (ms/op) is not in

the same league as that of hard disks (and definitely not even worthy of comparing

with SSDs considering the fact that SSDs have been designed for significantly high

IOPS and much lower ms/op). Figure 2.6 and figure 2.7 gives a comparison between

the IO performance of hard disks-based filesystem(a) and tape-based filesystem(b) in

terms of IOPS and milliseconds per operation. The x-axis in all figures is a notation

of the transfer size of data where 1 represents 8KB, 2 represents 16 KB and so on.

As seen in the figure, the number of both random read and write operations on tapes

is much lower than that of hard disks and takes a longer period for each operation

to complete due to the periodic winding of tapes to the correct point that needs to

be performed.
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Figure 2.6: Read IOPS of hard disk-based ext4 filesystem and tape-based LTFS
filesystem.

2.4 Conclusion from Study

In this chapter, we focus on the ground truth and a side by side comparison of

some of the popular storage media and associated systems that are available in

the market today. Research in the area of tape technology has lost steam over

the decades. Academia has given in to the marketing strategies of the industry

and moved on to research in disk and SSD-based storage systems. The industry,

although actively facing the problem of monetary leak, prevents the usage of tapes

under the justification of advancement in technology as tapes are considered by most

as obsolete. Few major players realize the importance of tapes and continue to market

it, while most companies are taking a proactive role in assisting other organizations

to overcome tape usage.

The cost of total ownership is a combined component of two major entities that is

usually expressed for a fixed number of years, the initial investment needed and the
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Figure 2.7: Write IOPS of tape-based Linear Tape File System.
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cost incurred over the operational period of time. It is apparent from figure 2.3 that

the difference in the total cost of ownership and operation per terabyte of data stored

over a period of three years is much higher than that needed for tapes. This can

be attributed to the low power consumption and reduced need of cooling systems

which contributes to much of the savings. The total cost of ownership definitely

benefits tape operators in the long run as it prevents monetary leak in both storage

service users and providers. However, the initial investment needed in the form of
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tape libraries and infrastructure is much larger than the costs incurred for hard disk-

based devices as shown in figure 2.4. The flat rate of growth of usage and popularity

is another culprit for its rising costs. From the performance perspective as shown in

figure 2.8, it is apparent that tapes have an impressive steaming capacity but not

noteworthy numbers in terms of random read and write requests.

The numbers and a close observation of deficiencies of either storage system en-

courages finding a suitable solution which can benefit both service users and providers

both commercially and technically. Some of the quick points that can be noted are:

• Creation of a service that can benefit storage service users by minimizing the

cost incurred over a period of time to store massive amounts of data and help

reduce the overall cost of operation and infrastructure ownership for service

providers and effectively reduce monetary leak.

• Leverage the cloud business model and the best of what tapes and hard disks

have to offer in a combination. The resultant system is a unified hybrid of the

two storage types. This system will have the ability to migrate and manage

data within the storage stack based on certain parameters such as storage time,

the importance of data and the duration of data retrieval.

• Overcome the high cost of hard disk medium by reducing the number of hard

disk units in the infrastructure, and substituting them with tapes. The quantity

of hard disk that is expelled is a function of the duration of which a particular

block of data with specific size is stored in the system. More the stale data

stored in the system, the higher is the opportunity to eliminate expensive hard
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disks and introduce cheaper tapes.

• Overcome the latency of tapes by reducing the delay associated with random

access and library robotics. The options include redesigning tape libraries and

have faster locomotion of tapes within it or managing the data write and read

requests in a way that can improve performance and efficiency of tapes. To

make the system compatible with current tape libraries, the management of

delay needs to be performed above the hardware layer.

• Ensure minimum modifications to the current hardware and software to im-

prove compatibility and ease of integration and deployment. Also induce the

need for minimum alteration on current data backup and archive storage prac-

tices, including the logic followed by current backup and archiving applications.
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Chapter 3

Operational Models and Solution

Approach

In order to design an infrastructure around a particular storage medium, it is impor-

tant to understand the characteristics, advantages and weaknesses that are associated

with it. A clear understanding of the storage medium and devices can eventually

lead to its large-scale deployment such as in data centers. These characteristics are

expressed quantitatively using models which are conjured using some of the defin-

ing features of a particular storage medium and the algorithms used in the storage

system. Using these models, it is possible to isolate the performance of system in

dealing with individual units of data or blocks. Using these models, we can simulate

the behavior of Tape Cloud. The models are mainly used to determine the delays

caused by tape libraries and the consequence of particular hardware configurations.

Therefore some of the main discussions in this chapter span the models that can be
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created by the general scenarios that are faced by the tape libraries and the hardware

architectures.

3.1 Modelling Tape-Based Delays

Although many published works and projects focus on performance metrics and

improvement of hard disk-based storage subsystems [20][39][15], little has been done

in the direction of analyzing tape performance. Some of the works that have been

done in [35] and [24] focus on how best magnetic tape technology can be used in

archiving and backup systems. Since the advent of LTO-4 and LTO-5 magnetic

tapes, there has not been an in-depth study of the performance of tapes. In this

thesis, we study some of the quantitative characteristics of the hardware and the

software that are required to design a suitable storage system. The study, unlike

hard disk-based systems, involves the need for tape libraries which introduce new

concerns for modelling tape storage performance. The resultant models are functions

of the features of data such as block size, combined with the features of tape drives

such as wind, seek and data transfer time and also with that of the tape library such

as the speed of robotics. The results of a study performed on various block sizes

shows that tape drives have a uniform data transfer rate compared to three other

hard disks. However, a difference in performance can be seen when random reads and

writes are performed. The time spent in changing tapes, loading and seeking to the

correct point on the tape creates delays that are out of proportion when compared

to the sequential performance of tapes. An important takeaway from the results is
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that one must assure that the tape drive and the infrastructure spends most of the

time either writing or reading to tapes and less time performing seek operations.

This helps us in deciding important parameters such as rate of batch processing of

data. The following subsections present an introduction to important terminologies

that are used often in the chapter.

3.1.1 Average Response Time

The time between the end of an inquiry or demand on a storage system and the

beginning of a response by the storage system can be termed as the average response

time. The intermediate time is used to locate and fetch the data from within the

storage system. The average response time depends on a number of factors such as

the rate of disk/tape IO, queue depth and heterogeneity of requests. Response time

can be affected by changes to the processing time of the systems above the storage

layer and by changes in latency, which occur due to changes in hardware resources

or utilization.

3.1.2 Write throughput

The amount of data an application can write to stable storage on the server over a

period of time is a measurement of the write throughput of a storage system. Write

throughput is therefore an important aspect of performance. All storage systems

must ensure that data is safely written to the destination file while at the same time

minimizing the impact of server latency on write throughput.
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3.2 Generic Models for Tape-Based Latency

Storage systems have a mode of operation that are similar in most of the cases.

For example, they have read and write requests that are issued by more than one

application. The requests are queued for completion by internal data IO queues or

task queues. These queues store references to location in main memory where data

temporarily resides and to locations that data needs to be written in the secondary

storage tier. Some of the dynamic attributes of the queuing techniques include the

time taken for tasks in each queue to be completed, queue depth and waiting times

for the execution of the tasks. Some of the circumstances that is encountered based

on these attributes can be used to model the overall behaviour of tape-based storage

systems. Based on the facts obtained about the hardware and delays, an attempt to

model the latency for generic cases[14] is made. For the models, the following are

some of the constants that need to be considered.

• Tsearch(i) is the time taken by the robot to locate and move to the tape to

execute the ith request in the task queue.

• Tload is the time taken to load the tape into the drive.

• Tunload is the time taken to unload the tape from the drive.

• Tseek(average) is the time to wind the tape to seek to the position of the first

byte to execute the new task. The average time for LTO5 tapes is considered

in this case.
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• γread is the data transfer rate for read operations of the tape. Similarly γwrite

is the data transfer rate for write operations on the tape.

• The smallest unit of a data that is considered in this case is a block. A single

read or write might involve transaction of a varying number of blocks. The

representation of a unit block is made as BLK.

Keeping with the goals that were introduced earlier, the design of Tape Cloud

seeks to reduce the average response time required to read data of a particular size

from the tape tier in the storage. The system employs able techniques to reduce

the average response time Tread for read tasks and furthermore, ensure that these

read-friendly techniques, cause minimal distortion to the write throughput and total

time Twrite required to collect data and write it onto tapes. Thus, for a workload Θ,

Topt(Θ) = min(Tread(Θ) + ∆Twrite(Θ)) (3.1)

Where Topt(Θ) is the optimal time required to complete the execution of workload

Θ. The analysis of some of the latencies and overhead incurred in achieving this goal

is performed in different scenarios. These scenarios are commonly occurring cases in

storage systems.

3.2.1 Scenario 1: Single Read/Write Task in Queue

When there is a single read task in the task queue, the total amount of time required

to complete the task and obtain the block of data is given as the sum of times taken

for a series of events. Thus TsingleRead = Tsearch + Tload + Tseek + n(BLK
γread

) where n is
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the total number of unit blocks that need to be read. BLK
γread

is a constant, the total

time required to read a single block and can be substituted by Γread to get

TsingleRead = Tsearch + Tload + Tseek + nΓread (3.2)

Similarly, a single write operation in a queue undergoes similar delays as read op-

erations, the only difference being the rate at which data is written to tapes. The

delay for a single write operation is given by

TsingleW rite = Tsearch + Tload + Tseek + nΓwrite (3.3)

3.2.2 Scenario 2: Write task(s) before Read task in Queue

In scenarios where there are one or more write tasks in the queue before a read

task, the total time required to obtain the data will include the time required to

complete the write task too. For a single write task before the read task, the total

time required to complete the task will be equal to Ttotal = Tsearch + Tload + Tseek +

nΓwrite + Tunload + Tsearch + Tload + Tseek + nΓread. This can simply be written as

Ttotal = TsingleW rite + Tunload + TsingleRead. Generalizing this, when there are N write

tasks before a read task, it is apparent that

Ttotal = N(TsingleW rite) + ξ(Tunload) + TsingleRead (3.4)

where 0 ≤ ξ ≤ (N − 1). ξ is called the tape switch rational which determines the

probable number of tape changes that need to be made and is based on BLK and n.

Thus BLK is an important value that influences the efficiency of write operations

and helps in deciding the maximum size of data that can be written as a continuous

process on to a single tape.
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3.2.3 Scenario 3: Other Read Task(s) before Read Task in

Queue

The total time required for a particular read task to complete when there are one or

more read task ahead of it differs from the previous scenarios in that, read requests

are usually not localized to a single tape mostly due to replication and data striping.

Continuous read requests mean more search, load and seek operations, thus increas-

ing the overall time taken. In the worst case, the total time taken can be given

by

Ttotal = (N + 1)(TsingleRead) + (N)(Tunload) (3.5)

where there are N read requests ahead of the read task in question. This not only

causes excessive delays in retrieving data but also leads to the pile up of write tasks

at the queue in situations where there is an equal ratio of read to write requests.

3.3 Multiple Reader Model

When we imagine a large-scale storage system, it is hard to narrow down on the exact

specification of the storage hardware needed. As far as Tape Cloud is concerned, a

certainty that can be assumed is the synchronized operation of a large number of

tape drives or tape readers and writers. If there are more than one readers/writers

available, the data IO request scheduling problem is NP-Hard. Since it is impossible

to find the optimal solution, a partitioned solution for multiple readers is examined

as shown in Alg.2. In this design, each reader is responsible for a specific set of tapes
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within the tape library unit. Each reader only operates on the tapes assigned to it.

For example, if there are two readers and 100 tapes, the first reader may work on

the first 50 tapes while the second reader is in charge of the rest. Thus we can also

postulate that the tapes belonging to a particular set are physically close to each

other.

However, this design may result in a “hot spot” situation where one reader may

be busy all the time while others are idle. To solve this, the system allows the

idle readers help to process the requests, but have to be back to their own duties if

requests to their assigned tapes arrive.

Algorithm 1 Partitioned Task Scheduling Algorithm for Multiple Tape Readers
Require: m tapes: Γt = {tape1, tape2, ·, tapem}

n tape readers: Γtr = {reader1, reader2, · · · , readern}
Ensure: Online Schedule for each coming requests
1: Assign the m tapes to n readers. Each reader will take care at most ⌈m/n⌉ tapes which

are close to each other.
2: Store the assignments to the global schedule manager.
3: while TRUE do
4: Wait for the next request, req.
5: Get the meta-information of the req from the database and find the tapeid for req.
6: Forward req to the reader, which is in charge of the requests for tapeid.
7: Schedule req at the reader locally using elevator schedule algorithm.
8: end while
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3.4 Proposed System’s Approach to Overcome La-

tency

The models present an elaborate and quantitative depiction of the expected average

response time in regular working scenarios of a data storage system. As mentioned

in the opening paragraph of this chapter, the main purpose of these models is to

simulate a large deployment of the storage infrastructure with a clear understanding

of how the infrastructure’s smallest units behave under particular workloads. With

this understanding, it is possible to interpret the details about the delay statistics of

tape storage systems.

In this thesis, we consider some of the constraints of the models and propose

methods to overcome excessive delays by designing novel solution approaches to the

problem. The following sections present the ideas that are at the core of our efforts

to achieving the goals of Tape Cloud.

3.5 Prioritizing Read Tasks over Write Tasks

3.5.1 The Concept of Priority Queues

A priority queue is an abstract data type which is similar to a regular queue or stack

data structure, but where additionally, each element has a ”priority” associated with

it. In a priority queue, an element with high priority is served before an element

with low priority. If two elements have the same priority, they are served according
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Figure 3.1: A pictorial representation of the split queuing mechanism.

to their order in the queue. A priority queue must at least support the following

operations 1. Insert with priority: Add an element to the queue with an associated

priority and 2. Pull highest priority element: Remove the element from the queue

that has the highest priority, and return it.

For Tape Cloud, a Split Queue Priority Queuing technique (figure 3.1) is imple-

mented where the read and write requests are assigned different priorities and placed

in two virtually split queues. We have to handle read requests appropriately in order

to reduce the average response time of data retrieval. Therefore, a higher priority

is given to read requests compared to write requests. In a multi tape reader model

discussed in the previous section, each tape drive is assigned a queue made up of a

pair of virtual queues.
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3.5.2 Split Queue Priority Queueing

From equation 3.4, we can see that a major share of the delay occurs due to tasks

that are ahead of the read task in the queue. In order to reduce the overall time

taken for retrieving data, an approach involving biasing between read and write tasks

is used. In our case, the read tasks are given a higher preference over write tasks.

We place read requests in the designated, high-priority virtual queue. When there

is at least one read request in the queue, the subsequent write requests are blocked

and the tape drive immediately caters to the read request after the completion of

the current task. Thus the resulting time taken can be given by

T (Pri)total = Ttotal − (N(TsingleW rite) + ξ(Tunload)) + (Tunload + TsingleRead) (3.6)

T (Pri)total = ρ + Tunload + TsingleRead (3.7)

where T (Pri)total is the total time taken when priority queueing is applied. ρ is the

time spent for completion of current task and ⌈ρ⌉ = TsingleW rite and 0 ≤ ξ ≤ (N −1).

By implementing priority queuing, read tasks can be accelerated to be completed

much faster.

3.6 Read Probability-Based Data Distribution

Under the circumstances of scenario 3, applying priority queuing would not signif-

icantly reduce the total response time as multiple read requests that need to be

executed by the same tape drive still induce delay associated with the search and
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seeking processes. This thesis proposes a method to overcome this by considering

the Balls into Bins problem [25][23][8].

3.6.1 Balls Into Bins Problem

We associate the issue faced in scenario 3 with a well-known computer science prob-

lem called Balls into Bins. This association helps us in refining our options for an

optimal solution. The problem involves the sequential assignment of m balls into n

bins by placing each ball into a bin chosen independently and uniformly at random.

The questions that arise at this point are related to the maximum number of balls in

any bin and the difference in the number of balls between the bin with the highest

number of balls and the bin with the lowest number of balls. The gap between the

weights of the most loaded bin and the average is given by

Wgap =
√

m log n

n
(3.8)

where m is the number of balls and n is the number of bins.

One of the important applications of this method includes online load balancing.

With the rapid growth of parallel and distributed computing, the load balancing

problem has gained considerable attention during the last decade. The problem is to

assign the specific requests to servers in such a way that all servers handle (about)

the same number of requests. By introducing a central dispatcher one can easily

achieve uniform load on the servers. Randomized strategies have been applied very

successfully for the development of good and efficient load balancing algorithms. In

their simplest version, each request is assigned to a server chosen independently and
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uniformly at random. If all requests are about the same size, the maximum load of

a server then corresponds exactly to the maximum number of ’balls in a bin’ in the

balls-into-bins model introduced above. The problem assumes all requests to be of

a similar kind in terms of efforts needed to complete them or equal priorities. In

the case of Tape Cloud, we consider a similar analogy with data write requests but

with a difference. Write requests can be classified based on a numeric value that is

assigned to them based on its inherent property. These values are the probabilities of

the data being read again once it is written to storage, a novel proposal introduced in

this thesis. The varying probabilities, or in this case, weights, creates the motivation

to further augment the Balls into Bins and consider the “Weighted” Balls into Bins

case[23].

3.6.2 Read Probability Weight (RPW)-Based Data Distri-

bution

Every block of data that needs to be written to tapes has a certain probability of

being read again. This probability or “weight” is based on the type of application

and its historic transactions with the storage system. Intuitively, it is possible to

note that blocks of data with a higher weight causes a higher delay when written to

tapes by the same tape drive as compared to data with lower weight (because the

read requests that come in eventually still have to be queued at the same tape drive).

So the motive to reduce this delay has to be to distribute the data blocks of higher

weight equally among the available tape drives such that a single tape drive need not
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take the entire burden of heavy weighted objects. This is similar to Balls into Bins

problem except that in the case of Tape Cloud, balls are of different weights. Assume

that there are n types of data blocks, where Wn = {P 1
r , P 2

r ...P n
r } are its respective

weights. Given m tape drives Tdrive = {t1, t2...tm}, the RPW data distribution makes

sure that

∀tϵ(Tdrive), (
k∑

i=0
P i

r)/k u φ(Wn) (3.9)

where φ(Wn) is the arithmetic mean of all the elements in the set (Wn) and
p/2∑
j=0

((
k∑

i=0
P i

r)/k) −
m∑

j=p/2
((

k∑
i=0

P i
r)/k) u 0 (3.10)

Where k is the total number of write tasks in a particular queue t. If data originating

from an application q is assigned a weight Pq, then each queue will have a weight

Sq equivalent to Pq/
N∑

n=1
Pn of data pertaining to application q where N is the total

number of weighted tasks in the queue. No single application can have all its data

written to a single location. RPW-based data distribution coupled with priority

queuing not only improves average response time efficiency, but also contributes

towards maintaining write throughput as it reduces the overall delay caused due to

continuous blocking of write tasks by a series of read tasks.

The following excerpt shows the algorithm to assign tasks to queues using the

RPW method.

The process of assigning tasks to queues are offline and are performed in batches.

At any given time, the total number of tape drives available is very large considering

the scale of the deployment of Tape Cloud. In that case the findTapeDrive function

needs to loop through the entire set of tape drives to obtain a suitable tape drive
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Algorithm 2 Read Probability Weight-Based Task Distribution
Require: m tape drives Γtd = {td1, td2, ·, tdm}

n write tasks: Γtr = {tk1, tk2, · · · , tkn} where n is many times larger than m
n weights of tasks: Γw = {w1, w2, · · · , wn}

Ensure: m packages, each for tape drive, containing encapsulated tasks.
1: Assign the first task tk1 to first tape drive td1
2: for i = 2 to n do
3: idx = placeInIdealTapeDrive(tki, wi)
4: tdidx = assignTask(tki)
5: increment i
6: end for

to insert the task into. To make the process of searching for the ideal tape drive to

insert into more efficient, we introduce a method complementary hashing which

uses hash maps of the instantaneous average RPW of tape drives to obtain the next

ideal task queue to assign the task. The algorithm titled placeInIdealTapeDrive gives

an idea of how the complementary hashing technique works.

3.7 The Combined Strategy

In this thesis, we use a combined strategy of Split Queue Priority Queuing and

RPW-based data distribution. These strategies form the core of the functionality of

the middleware that is used in Tape Cloud. The use of this strategy is compared

with other commonly followed methods of data distribution in SAN and NAS-based

storage systems. The elaborate result set in the evaluation section shows the benefits

of the methods proposed, the use of the middleware and ultimately, the feasibility of

Tape Cloud.
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Algorithm 3 Function placeInIdealTapeDrive to place a task in the ideal task queue
Require: m tape drives Γtd = {td1, td2, ·, tdm}

Singular Hashtable h < ReadProbability, LinkedList < Γtd >> where
ReadProbability = [0.1 · · · ·0.9]
Parameter: task task and weight of task wtask Whighest the highest value of the RPW
among all the queues.
Wlowest the lowest value the RPW among all the queues.
Waverage the average of the interim Whighest and Wlowest values.

1: Initialize Whighest and Wlowest to 0.
2: for i = 0.1 to 0.9 do
3: Initialize empty linked list linkedlist
4: Put in h key (i) and value (linkedlist)
5: end for
6: Get Waverage =

Whighest + Wlowest

2
7: if wtask < Waverage then
8: Get tape drive tdx, head of linked list at Whighest

9: Assign task task to tdx

10: Recalculate RPW at tdx

11: Reassign tdx in the h to appropriate key based on RPW
12: Recalculate Whighest and Wlowest values.
13: else
14: Get tape drive tdx, head of linked list at Wlowest

15: Assign task task to tdx

16: Recalculate RPW at tdx

17: Reassign tdx in the h to appropriate key based on RPW
18: Recalculate Whighest and Wlowest values.
19: end if
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Chapter 4

System Design

Figure 4.1 is a bird’s eye view of the Tape Cloud architecture. The arrows represent

the direction of flow of data. We propose a hybrid middleware that performs efficient

hard disk caching, data block management, data distribution and IO task scheduling.

The middleware functions as an agent, arbitrating the various components in order

to reduce the overhead caused by using the slower backend medium. Figure 4.2

provides the logical representation of the middleware and some of its functionalities.

The solid lines show the path taken by control statements and metadata while dotted

lines show the path of the actual data blocks that need to be stored on tapes. The

data that needs to be written to tapes is collected and channeled suitably before it

reaches its destination. IO requests are processed in batches. This helps in easy read

and write of data to and from collection servers and for efficient distribution. In

order to ensure efficient data transactions in the Tape Cloud on the whole, buffers

constituted by faster storage media such as hard disks are used. The buffer storage
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tiers Figure 4.1 are named collection servers, where data that is obtained from clients

is first collected before it is written into tapes. The rate at which data are removed

from these buffers and written into tapes is user defined. It is based on the rate of

data read requests generated by the application.
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Figure 4.1: Implementation Architecture of Tape Cloud.

4.1 An Abstraction for Tape Library Hardware

The massive scale of the focus of Tape Cloud encompasses multiple drives, high speed

robotics that seek, grab and load tapes to drivers at high speeds and hazard resistant

tape storage space. To make data retrieval and deposition more efficient, a design

proposal for the conventional driver to be split into two parts is considered. One

part rewinds the subsequent scheduled tapes to the correct position and the other

part is involved in reading and writing into tapes (the read and write head also has a

rewinding functionality to perform small and quick seeks so it could be the addition

of a rewinder in the system). This way, it is possible to pipeline the rewinding process

and isolate the rewind latency from the overall read operation. The introduction of

48



multiple synchronized tape drives also contributes in efficient reading and writing of

striped data.

4.2 Data Source or Clients

The focus of Tape Cloud is consistent with most cloud-based services. It provides

an efficient storage service for a variety of data. Clients who wish to archive data

on Tape Cloud, run a service to deliver data to the storage collection servers (see

figure 4.1). One of the features of Tape Cloud is that it allows clients to deliver data

in more than one way as discussed in the subsequent section. Large data sets (which

is an unavoidable attribute of archive data) can also be delivered by mailing the

media itself. From the storage system’s perspective, each client is tagged and labelled

based on the physical attributes of the data, relative storage activity over time, space

requirements and the frequency of requests for data IO that is derived from the

clients. This information serves as policies which is used by the middleware to make

decisions on the location of data, level of security, and distribution of data blocks

and also provides the recipe to cook the read probability weight (RPW) information

of data pertaining to particular clients. The data manager, with access to the central

block database, updates and maintains maps of blocks of data to its physical location

on tapes, in libraries and section of the data center.
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Figure 4.2: The placement and interfacing of the functional blocks of the Middleware.

4.3 Data and Resource Manager

The Data manager is the point of interaction between the clients and the storage

infrastructure. More importantly, it is the interaction point between the client appli-

cation and the middleware as no data is directly written to tapes without the data

manager’s consent. The data manager module runs on the load balancing server and

manages the other parts of the middleware such as the filesystem, task queues and

data distribution modules. To perform efficient management, the data manager re-

lies on informative references to the actual client data. These references or metadata

contains details about the blocks of data such as its location in the file system, size,

type and RPW along with other client specific information. The metadata is used

as representation of data blocks in the queuing and the distribution modules of the

middleware. This prevents the overhead of moving around large amounts of data

within the system.

An important task the data manager undertakes is the grouping of data stored in

the middleware’s filesystem to be processed in batches. The data manager employs

a specific technique to pick metadata pertaining to blocks of data which are most
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Figure 4.3: Stages and functions of each stage of the filesystem for Tape Cloud.

probable to be retrieved as a single unit from the filesystem, packs them and passes

them to the data distribution module. Other responsibilities include the attestation

of data deposition requests from and client and allocating suitable resources.

4.4 Multi Tier File System

FUSE [34] is a framework that helps develop the customized file system. FUSE

module has been officially merged into the Linux kernel tree since kernel version

2.6.14. FUSE provides 35 interfaces to fully comply with POSIX file operations. A

design a file system using FUSE is drawn up to be operated in the middleware of

the architecture. The implementation presents a monolithic image of the filesystem,

but internal divisions exist based on functionalities. Figure 4.3 shows the pathway

taken by data to be written to tapes and the various actions taken upon it. Although

distributed by functionality, the filesystem is monolithic across the storage system.

The filesystem depends on external databases to maintain records of the locations of

blocks of data. In order to prevent loss of data due to server failure, the filesystem

performs a replication of similar data in multiple location similar to HDFS [32].
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The filesystem acts as a temporary data holding space while the data is being

audited. The mount point of the filesystem can be remotely created on the client

side or using the dedicated interface on the server side. This provides users with

more than one way to upload data. Some of the common ways of shipping data to

an archiving or backup site and how the filesystem developed for Tape Cloud can

support it is discussed below.

• Subscription for HDE (Hard Disk Exchange:) The HDE continues to be

a popular method of data backup for many organizations set up in areas with

inefficient data networks. The HDE model includes specialized backup service

providers who ship usable hard disks to clients and collect hard disks with

data that need to be archived. This rotation of hard disks, although poor on

security, ensures that either the client or the backup service providers maintain

a copy of the data at any point of time to avoid loss due to system failures.

The Tape Cloud file system allows docking stations for hard disks and treats

them as new file system mounts. So Tape Cloud supports and is completely

compatible with the HDE model.

• Data transfer over Inter-Network: An efficient and secure wide area net-

work (WAN) can allow the convenient transfer of data over the internet. Al-

though an expensive option which demands extremely large bandwidth, many

organizations have remote back up locations where data is periodically trans-

ferred over the internet. Tape Cloud offers a client system mountable networked

file system (NFS) interface. Backup and archiving applications need only read

or write data to a particular path in centralized servers or every individual
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computer. The data are transferred to Tape Cloud for archiving or backup in

the background.

• Shipment of Tapes: One of the other famous methods of ensuring backup

of data is by shipping magnetic tapes to remote locations for preservation.

This method is mainly preferred to avoid loss of data through natural calami-

ties. Tape Cloud maintains the compatibility by operating conventional tape

libraries which allow inclusion and accounting of standalone tapes into the

system.
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4.5 Data Handling

Figure 4.5 shows the possible paths that data takes within the Tape Cloud infras-

tructures. Data, in this case includes the metadata of the actual data blocks which

move to and from the block databases and the blocks of data that need to be archived

or backed up.

4.5.1 Data Acquisition

The previous section elaborated some of the possible methods and ways in which data

that needs to be backed up on tapes are delivered to Tape Cloud. These methods

can be aptly selected based on the size and the frequency of the backup that needs to

be performed. The client side has an application that requests a data upload session
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from the load balancing server which then allocates the required amount of space in

the collection server. The client directly uploads its data to the specified location.

Another data acquisition protocol is designed for very large data sets where data is

received in the form of storage media units itself. The collection servers, in this case,

provide a docking interface functionality where the media can be mounted directly

on the servers. The extracted data is treated in the same way as uploaded data.

4.5.2 Data distribution to Tape Interface Machines (TIM)

Once the data has been segmented at the collection servers, it is audited, tagged for

identity, recorded in the block database and partitioned to be written to tape. The

next set of data blocks to be written to tapes are then placed in virtual containers.

Each of these containers are said to be RPW weight normalized so that the difference

in weight between each of these containers is said to be minimal at the time of

creation of the containers. A software daemon that processes data in batches is

triggered, which collects the particular blocks of data and then encapsulates them

into packages, each of which is then delivered to a tape drive to be written to tape.

Another consideration that is made when data needs to be delivered to a particular

tape drive is its current IO queue depth.

4.5.3 Distributed Tape Write/Read

Like any other cloud service, the architecture is complex with a large number of

tape drives. In order to increase the IO bandwidth, parallel reading and writing of
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data into multiple tapes can be envisioned. This consideration, however, needs to be

analyzed from more than one perspective. The larger the number of subdivisions,

the larger the latency induced by seeking for the data. Yet, a huge single read or

write to tape can cause an increase in the waiting time of other requests. Many task

scheduling algorithms have been designed[29] to improve performance of IO in tapes

and better utilize drive resources, but little has been done with the latest LTO5 tape

drives. Based on the latency test results of the tape device, it can be noted that the

seek time of the robotics takes a considerable longer time than reading or writing of

data to the disk. In order to improve time efficiency, the I/O requests are scheduled

such that each request spends the least amount of time performing seek operations

and longer periods of read or write operations.

4.6 Read Probability Weight-Based Data Distri-

bution

The analysis of latencies that is performed leads to induction of a technique where

some of the delays are preempted before data is written to tape. As discussed

in section 3.4, this is to ensure that a small group of task queues does not take

the burden of a large number of discontinuous read tasks. The probabilistic data

distribution module is an important part of the middleware that distributes blocks

of data to the tape interface machines based on a particular weight associated with

the data. The weight or the read probability weight (RPW) is the probability of the

block of data being read once written onto tape. The probabilistic data distribution
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module is designed to obtain the RPW by two ways. It can be enclosed in the

metadata that is handed down by the data manager. The other avenue that can be

taken to deduce the RPW is over time, when the middleware notices that there are

some blocks of data that have undergone access in a manner inconsistent with its

knowledge about the RPW. In this scenario, the middleware updates the RPW of

data incoming from the client and adapts to the workloads of different clients over

time. After the references have been assigned specific tapes or drives, the references

of data blocks are handed over to the task queuing module of the middleware.

4.7 Task Queueing

The large-scale operation of the storage system involves the use of multiple tape

drives. The entire tape storage facility is divided into sections, each of which can be

serviced by a tape drive. Each of these tape drives has an exclusive queue assigned to

it which holds the IO task to be performed on tapes which are in its logical vicinity.

These task queues are maintained and used by the middleware and should not be

confused with the ones that are used by the storage media or drivers. One of the

approaches to decrease the delay in retrieving data is to prioritize between the read

and write requests as discussed in section 3.4. The task queuing module caters to

this need by assigning each tape drive with two virtual queues, one each for write and

read requests. Read requests having higher priority over write requests are granted

resources immediately after the completion of the current task regardless of the depth

of the write queue. After completion of the read task, the system continues with the
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execution of other tasks in the write queues. Assuming an efficient distribution of

data, the task queuing module ensures that read tasks are performed under strict

time constraints while maintaining acceptable standards of throughput for write

tasks. The task queues provide periodic feedbacks to the data manager about the

overall time taken in performing tasks associated with a specific batch. This feedback

is used by the data manager to assess the overall performance of the data distribution

module and the distribution parameters in the system.

4.8 Security in Tape Cloud

Many prospective cloud storage users agree that security concerns in general and a

lack of appropriate security tools in particular are among the top factors preventing

their organizations from using cloud storage more pervasively[21]. Those concerns

are legitimate, and CIOs and IT managers must address them when deciding whether

to move to cloud-based storage. Public clouds are where, by definition, users must

be willing to have their data reside side-by-side with data belonging to possible

competitors and other completely unknown parties. Additionally, disk arrays in

the cloud use RAID algorithms to break up and spread data at the block level

across multiple disks for resiliency. In multi-tenant cloud environments, the potential

result is that pieces of data from multiple cloud customers could commingle on the

same drive. It also means that a drive failure could affect a large number of users.

Additional software and possibly encryption are required to ensure that a particular

customer’s data is isolated secure. Conversely, in a tape environment, each tape
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cartridge is a separate object. The customer or cloud provider has control over which

files go onto which tape. In addition, the encryption and WORM capabilities of tape

provide security for data at rest, as they are fundamental to delivering a secure cloud

archive strategy. Tape is also easily movable/removable. The removable/vaulting

capability of tape as it relates to security centers on the fact that it can be literally

locked down to prevent unauthorized access. That kind of security is not generally

available with disk storage, which is one reason why storage service providers such

as Iron Mountain use tape technology as the foundation for many of their offerings.
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Chapter 5

Characterizing Archive Workload

from Traces

Testing storage systems is a widely performed activity by the IT department in

every organization. They evaluate their current storage infrastructures to judge its

abilities to cope with the organization’s needs. Infrastructure administrators perform

periodic tests to report the abilities and shortcomings of the current systems so that

investments in newer and advanced technologies can be made. There are many ways

of evaluating a storage system stack out of which two methods are very popular.

• Large amounts of data pertaining to the operation of storage servers are col-

lected and analyzed. The method highlights anomalies and unusual behaviors

in the system but is also a very tedious process which involves the efforts of a

dedicated team of highly skilled professionals and tools.

60



• Storage systems are run on artificially generated workloads or benchmarks.

These benchmarks can be used for comprehensive testing of system perfor-

mance or validation of individual units. A globally accepted verity of bench-

marks involves the acceptance of results obtained by running benchmark work-

loads on an as-is basis. Benchmarks serve as a common set of parameters used

to judge different systems or methods so that an ideal choice from the available

options can be made.

When we look for effective benchmarks to evaluate archiving and backup-based

storage systems, we realized that most of the benchmarks that are available are

either outdated or considers parameters for the modern hard disk-based backup and

archiving backend. The lack of availability of benchmarks leads to the need for a

novel approach for evaluation. A combination of the above mentioned approaches

is considered to create a set of custom workload traces that are congruent with the

workloads generated in conventional backup and archiving systems. The process is

initiated by collecting workload traces from backup and archiving systems at various

stages in the software stack. The traces are analyzed and then recreated using

workload generating tools for testing Tape Cloud. The new results are compared

with the results that are obtained when the same workload has been tested on other

backup systems to note the difference that Tape Cloud brings to the table.
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5.1 Characterizing Archive Workload from Traces

While a number of articles provide benchmarks and suggest methods to evaluate

various aspects of storage such as the medium, queues, IO characterization[6] and

filesystem [5][11], there has been a comparatively limited literature on evaluating

performance of archival storage systems. Kavalanekar et. al.[18] provide elaborate

results on storage workloads from production windows servers. But the variation in

workload type between non archival and archival storage varies as suggested by Lee

et. al. in [19], who make an attempt to create benchmarks. But their work is limited

to providing a better understanding of the type of files and its sizes than provide

a complete set of results. Another important contribution has been provided by

Wallace et. al.[37] for EMC production servers. Although a large number of aspects

have been covered, the impact of different types of archiving and application level

transactions with the storage have not been projected.

In order to perform a bias free evaluation of the middleware, it is subjected

to a workload that has been characterized by traces obtained from live archiving

applications. The traces are collected from the archiving infrastructure of IVigil, a

company that provides video surveillance services to a local client base. The backed

up data usually includes surveillance videos, security related data, virtual disks and

documents that are wielded by the company on a daily basis. Aspects which are

important to the working of the middleware such as the rate of requests with respect

to time, inter arrival time of requests and a comparison of the rate of read to write

request are recorded and analyzed. Some of the characteristics of Table 5.1 and
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Table 5.1: Applications Contributing Workload Traces for Evaluation of Middleware

Sl. No. Archiving Type Description
1 Periodic Full

Backup
10 disk array on 3 networked attached
storage (NAS) servers archiving surveillance
video and security data. Videos and related
information is collected from local systems
once every 24 hours through a customized
asynchronous pull server-based system. High
churn rate.
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Surveillance Application Servers

Gateway / Backup 

Server

Backend / Long 

term Storage

2 Periodic Full
Backup + LRU
Archiving

Application archived least recently used sup-
port files on larger disk-based backend stor-
age with smaller churn rate. Periodic archiv-
ing of data on individual terminals are per-
formed by servers with small internal fast ac-
cess storage and a larger remote storage (usu-
ally tape-based system).

T
e
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in

a
ls

Ethernet

Archiving Server with onboard 

storage

Tape based backend 

archive
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Table 5.1 (continued)

Sl. No. Archiving Type Description
3 Incremental+Full

Backup
Incremental backup of hard disks and virtual
disks at the end of every login session and
periodic full backup of 22 computers on hard
disk-based NAS storage running CryptoNAS
software. Files are of comparatively smaller
size with high data transaction rates even at
remote tape storage.

T
e

rm
in

a
ls

Ethernet
Backup Storage

CryptoNAS Storage Software + 

Incremental Backup Software 

Server

4 Non Periodic Mir-
roring Backup

Shared documents backup on request on ded-
icated LUN in SAN infrastructure with a du-
plication client running on an inline server.
Number of overall requests are low consider-
ing backup is triggered on request.

T
e
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a
ls

…
...

Inline 

deduplication 

and archiving 

server

SAN switch
Storage 

Server in SAN

Web Server 

in San
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Table 5.1 provides some information about the characteristics of the infrastructure

and applications.
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Figure 5.1: The total number of requests generated by archiving applications.

The applications show characteristics that prove common beliefs about archival

data wrong[19]. The application level traces help in understanding the frequency with

which IO requests are generated. This serves as a clear indicator of how backup types

differ from each other. The filesystem level traces provide a defined understanding of

what each IO request generated by the application demands. Each of the applications

varies in infrastructure so it is important to co-relate traces obtained to reflect a

common operation at each stage. The following are the results of the characteristics

extraction from the traces.
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Figure 5.2: Interarrival(IA) time of requests generated by archiving applications.

Figure 5.1 shows the total number of IO requests generated by the archiving

applications 1(a), 2(b), 3(c) and 4(d). The record for the number of requests are

collected and generated at the application level for discrete read or write requests to

the underlying filesystems. Interarrival(IA) time of requests generated by archiving

applications 1(a), 2(b), 3(c) and 4(d) is shown in figure 5.2. Application, type of

data, file sizes and temporal locality are some of the factors influencing inter-arrival

time. The asynchronous nature of some applications and storage system software

also affect IA time.

As discussed earlier, random IO is responsible for the major share of the delay in a
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Figure 5.3: Average number of read requests as a percentage of the total IO requests

tape infrastructure. Figure 5.3 is the average number of read requests as a percentage

of the total IO requests in 12 hour buckets by archiving applications 1(a), 2(b), 3(c)

and 4(d). The whiskers show the maximum percent of read requests received during

the particular 12 hour interval. Figure 5.4 shows the total number of read requests

for the 200 most frequently accessed files as a percentage of the total read requests

received by archiving applications 1(a), 2(b), 3(c) and 4(d). Figure 5.3 and Figure 5.4

provide a better understanding of the number of read requests obtained as a ratio

of write requests, or in other words, the relation between the number of read and

write requests which is a critical quantity in the modelling process. It also shows

how frequently 200 individual “hot” files are accessed within the storage system as

a function of all reads that is generated by an application.
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Figure 5.4: Total number of read requests for the 200 most frequently accessed files.

5.2 Workload Modeling and Generation

Existing workload generation tools are not flexible enough to generate workloads that

vary in three key dimensions - variations in the amount of load, variations in the mix

of operations performed by clients (e.g., changes in read vs. write or customer usage-

patterns), and variations in the popularity of the data accessed, i.e., data hotspots.

These dimensions are needed for making resource allocation decisions for storage

systems. There have been many projects in developing synthetic workload to test

storage systems such as in [10][14] which depend on models created by Markov chains

of states and virtualized environments. The commendable results focus on workloads

that vary from archiving workloads. A workload using Vdbench[2] in order to test
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the middleware’s and Tape Cloud’s performance is synthesized.

5.2.1 VDBench: The Workload Generator

Vdbench is a disk I/O workload generator that is used for testing and benchmarking

of storage products. The objective of Vdbench is to generate a wide variety of storage

I/O workloads, allowing control over workload parameters such as I/O rate, LUN

or file sizes, transfer sizes, thread count, volume count, volume skew, read/write

ratios, read and write cache hit percentages, and random or sequential workloads.

This applies to both raw blocks on the medium and filesystem files and is integrated

with a detailed performance reporting mechanism eliminating the need for the So-

laris command iostat or equivalent performance reporting tools. Raw I/O workload

parameters describe the storage configuration to be used and the workload to be

generated. The parameters include General, Host Definition (HD), Replay Group

(RG), Storage Definition (SD), Workload Definition (WD) and Run Definition (RD)

and must always be entered in the order in which they are listed here. A Run is

the execution of one workload requested by a Run Definition. Multiple Runs can be

requested within one Run Definition. The Parameter files serve as the input for gen-

erating the workload. The parameter files entered will be read in the order specified.

All parameters have a required order as defined here: General, HD, RG, SD, WD

and RD, or for file system testing: General, HD, FSD, FWD and RD.
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Figure 5.5: The process of synthesizing a workload based on previously analysed
application traces.

5.2.2 Generating Archival and Backup Workloads

The workload generator is carefully designed by performing a sectional analysis of

the results obtained in the real archive workload traces. The real time workloads are

spliced on the basis of a user defined time interval and the features of each division

such as the number of requests, types of requests, file sizes and inter-arrival times

are extracted. The newly created workload is essentially a time-based, weighted

aggregation hybrid of the workloads. Since Tape Cloud is a cloud-based storage

infrastructure, it needs to support multiple types of workloads from more than one

application. Although the applications considered for synthesizing workloads are sin-

gletons in their specific domains and are not related to each other, the experiments

consider a simulation where all applications are made to use single backend storage

for archiving and backing up of data. This way, experiments conducted in this section

are an aggregated synthetic product of all the workloads. The weighted aggregation

provides the flexibility to produce workloads in any combination of amounts of the

given traces. It depends on a workload aggregation scheme provided by the user
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Figure 5.6: The work flow of the synthesis of the workload through weighted aggre-
gation process.

which generates a Vdbench script based on the input. For example, an aggregation

scheme (W1,W2,W3,W4) would produce a workload from the 4 participating work-

loads in equal proportion, ((2)W1,(0.5)W2,W3) would produce twice the amount of

workload 1, half the amount of workload 2 with no change to workload 3 and no

trace of workload 4. This type of modelling has proven to provide a wide range of

options for generating workloads. The focus of this paper being the evaluation of the

middleware, an equal proportion workload to record the difference in performance

is used. Figure 5.5 gives an informative sketch of the process that is followed in

generating the synthetic workload. The traces are divided based on a user defined

time interval, features extracted and an aggregation performed to create a block of

the new artificial workload.

5.2.3 Workload Generation Flow

Figure 5.6 shows the workflow of the generator. The original workload trace files

are parsed and the information is assembled as multiple units of time. This means

that a workload that is collected for 48 hours is divided into 2880 values, each with

71



the time stamp during which it was generated. Each of these units is fed into a

workload parameter module which creates parameter files based on the aggregated

values obtained from the workload divisions. The parameter module then uses the

user defined aggregation scheme to multiply or create different configuration of the

original workload patterns. The new workload configurations are written into dif-

ferent parameter files which are used by the VDBench tool to create the synthetic

workload. The user has control over the aggregation scheme and the time units.
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Chapter 6

Performance Evaluation

This section presents the experimental results on the benefits of using Tape Cloud.

The evaluation of Tape Cloud is analogous with the goals that have been previously

discussed. The results of the evaluation exhibit the benefits of Tape Cloud in terms

of monetary savings and also the overall performance of the technology used. In

chapter 2, some of the individual perks of using components such as magnetic tapes

have been highlighted along with some of its drawbacks. The implementation of Tape

Cloud focuses on preserving some of the advantages while attempting to overcome the

drawbacks to the best possible extent at minimum costs. This chapter is divided into

two parts. The first section focuses on the technical improvements of the methods in

comparison with the conventional practices followed in most storage infrastructures.

The conventional methods serve as cases where the improvements, in this case the

middleware, is absent. Effectively, the evaluation of Tape Cloud is the evaluation

of the performance of the middleware. In the second section, some of the savings
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Figure 6.1: The difference or error % between the actual and synthetic workloads
used in the experiments.

achieved by both the storage service users and storage service providers are discussed.

The assessment includes cost reduction of data storage, ownership and operation of

Tape Cloud.

6.1 Synthetic Workload Generator

An evaluation using the models and synthetic workload created on the basis of the

actual archiving workloads is performed. The performance of the middleware and its

contribution in achieving the goals to minimize average response time and efficient

data distribution, are assessed in the absence and in the presence of the middleware.

In the former case, a commonly preferred way of task and data distribution such

as First Come First Serve (FCFS) with Round Robin and Application specific task

queuing techniques are made use of, which are among the commonly opted methods

in large-scale storage systems. As mentioned in chapter 3, section 3.5, the priority
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queuing technique has a few drawbacks which are overcome with the RPW Data

distribution method. First of all, it is important to check for inconsistencies in the

synthetic workloads as compared to the real time workloads obtained from traces.

Figure 6.1 gives the error percentage of the synthetic workloads.

6.2 Read Probability Weight-based Data Distri-

bution

The novel idea of preempting delay caused due to the large number of read requests

especially in a system like Tape Cloud calls for preliminary evaluation of the tech-

nique. RPW considers the probability of a block of data being read once written

to tapes and distributes blocks based on this probability. To verify the correctness

of the assumption and theories presented in this document, 10000 random weighted

objects are considered and distributed into bins. Two tests are performed, where

each has 500 and 1000 bins. This emulates blocks with different probabilities that

need to be assigned to different tape drives. Figure 6.2 shows that RPW offers a

distribution that is closer to the ideal case than other approaches like FCFS in both

cases. As shown in the figure, compared to FCFS, RPW offers a higher convergence

in the ideal case. Here Fig(a) is with 500 bins and Fig(b) is with 1000 bins. The

arrow points to the queue ID which serves as the point of distribution balance. The

technique used for RPW ensures that a balance of read probability of all the tasks

assigned to a particular task queue. The result of this is the minimum difference in

the average of the RPW of all the task queues.
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Figure 6.2: Verifying the correctness of the RPW approach.

In evaluating the RPW using the synthetic workload, two cases are considered

where there are 500 tape drives (figure 6.3) and 1000 tape drives (figure 6.4). A com-

parison of RPW with FCFS and Application Specific Queuing which distributes data

blocks generated by specific applications to specific queues is made. The application

specific approach has clear boundaries between queues for each application in the

system. When the number of total requests generated by the synthetic workload are

varied, a more efficient distribution is provided by RPW where the gap between the

queue with the largest average weight and the queue with smallest average weight

is much lesser than that of the other approaches. The whiskers show the largest

and smallest average weights of queues. The gap between the average weights of

the heaviest and lightest queues for different number of requests for 500 queues.

FCFS (a) and Application Specific Queuing (b) show inefficient weight distribution

as compared to RPW (c).
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Figure 6.3: The gap between the average weights of the heaviest and lightest queues
for different number of requests for 500 queues.
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Figure 6.4: The gap between the average weights of the heaviest and lightest queues
for different number of requests for 1000 queues.

6.3 Average Response Time for Read Requests

The use of RPW-based data distribution helps in avoiding long stretches of read

operations that is localized to a small set of task queues. As shown in section 3.2.3

of chapter 3, concentrating a large number of read requests at a particular task queue

can induce large amounts of delays through the load, unload or the seek operation

as not all read operations are localized to a single tape of a tape drive. By using the

RPW-based distribution, blocks of data with varying probabilities of being read are

distributed evenly over the available resources. This reduces the aggregation of read

requests at a particular task queue. This in turn reduces the average delay caused
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at each of the queues. When Tape Cloud is tested with the synthetic workload, the

absence of the middleware leads to the use of conventional data distribution and

queuing techniques such as FCFS, Round Robin and application specific queuing of

tasks. But with the middleware and enhanced task management, there is an overall

reduction in the response time for read tasks generated by every application as shown

in figure 6.5. The average response time of read requests under the synthetic workload

is shown for application 1 (a), application 2 (b), application 3 (c) and application 4

(d). Note the clear difference and the reduction of the average response time for each

of the applications. Also, RPW-based data distribution offers a very small rate of

increase of response time even over larger variations of the number of requests. The

graphs have Log values in X axis which show the rate of change of average response

time when number of requests are varied and the RPW have negligible rate of change

of response time even for a large number of requests.

One of the notable differences that can be seen in the traces of the four applica-

tions is the variation in the number of requests over time. Theoretically, the induction

of RPW-based data distribution along with priority queuing must make the average

response time immune to the number of total number of requests. It is apparent

from figure 6.6 that, along with having the smallest response time, the combination

of priority queuing and RPW distribution provides a nearly constant response time

over the entire period of the test, making it independent of other requests. Appli-

cations 1 and 2 are considered because application 1 has the highest write requests

and application 2 has highest read requests. Compared to the other methods such

as FCFS and Application specific Queuing, RPW-based data distribution maintains
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Figure 6.5: The average response time of read requests under the synthetic workload
(Based on number of requests).
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Figure 6.6: Time-based average response time for application 1 (a) and application
2 (b).
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Figure 6.7: Time-based average response time for application 3.

a stable average response time regardless of the density of the workload. A similar

analysis for application 3 is performed. In figure 5.2, it is apparent that requests

generated by the application 3 have small inter arrival time. Tape Cloud uses col-

lection servers (figure 4.1) which collect data from clients and stores them until it is

processed to be written into tapes. The read requests issued by application 3 arrives

before the data can be written to tape so data is fetched from the collection servers

which is mainly hard disk-based temporary storage. Thus the fetching time of data

is much lesser equal in all cases as shown in figure 6.3.

6.4 Preserving Rate of Write Task Execution

In keeping with our goals, the middleware is tested for its notoriety to bring about

a negative impact on the write task completion rate of the workload. Figure 6.8

provides a comparison of the write performance before and after the deployment of
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Figure 6.8: The difference in write throughput with and without the middleware.

the middleware. The difference in write throughput with and without the middleware

for application 1 (a) and application 2 (b). Although small differences exist, the

middleware successfully provides a nearly equal write rate to all applications. The

test includes cases that present extreme scenarios such as application 1 which has the

highest write requests and application 2 which has the highest read requests for the

aggregation scheme in use and it is very clear that, along with dutifully improving

data retrieval efficiency, the middleware also maintains that similar justice be done

to write tasks as well. There is only a negligible reduction in the number of write

tasks performed per minute in both cases proving the abilities of the middleware.

6.5 Improved Cost Efficiency

In keeping consistent with the primary motives and the goals of the project, an

evaluation of the improvement in terms of monetary savings needs to be performed.

The evaluation performed in this respect involves the calculation and recognition
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Figure 6.9: Comparison of cost for service users for different sizes of data.

of per aspect costs incurred by the service user and the service provider. The pa-

rameters such as cost of energy needed and the cost of media are consistent with the

current, local commercial values. Thus, on the service users’ side, some of the results

obtained include the cost of using Tape Cloud for specific sizes of data backed up

and the length of time of the data backup. Similarly, the results obtained on the

service providers’ end include, most importantly, the improved cost of operation.

6.5.1 Tape Cloud Costs for Service Users

Figure 6.5.1 shows a comparison of costs of backing up different sizes of data on

Tape Cloud against having an in-house tape-based backup infrastructure and an in-

house hard disk-based infrastructure. The in house tape-based infrastructure has

a constant component of cost of ownership that is added to the cost of storing

data. This external component is applied to all in house infrastructure deployments.

Figure 6.5.1 shows similar results when projected for the time period for which the

data has been backed up for the three types of infrastructures.
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backup.
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Figure 6.11: Cost of operation for service provider over a period of 12 months.

6.5.2 Tape Cloud Costs for Service Providers

Figure 6.5.2 shows the cost of operation for storing various sizes of data on Tape

Cloud as compared to other forms of backup and archival storage mainly constituted

by hard disk for a period of 12 months. It is clear from the diagram that Tape Cloud

offers much lower operating cost which benefits not only the customers in the way of

low cost online data archiving and backup solutions, but also increases profitability

and scalability for service providers.

83



Chapter 7

Conclusion

This thesis studies some of the current practices that are followed for archiving and

backing up large amounts of data. After serving as the preferred media for data

backup, tapes have now improved its position as the preferred choice for long-term

data retention in the cloud. A particular area of interest is the costs incurred in

the long term preservation of data. Some of the common system characteristics

of data storage systems such as storage media, data distribution techniques and

deployment details is analyzed. The shortcomings that entail the current systems in

terms of high infrastructure costs, high operating costs and cost of ownership is noted

and the focus of the research is shifted to finding feasible and economical solutions

to these problems. The solutions that are considered include the examination of

the cloud storage models and exploiting the economical nature of magnetic tapes.

The bottom line is that tape in the cloud offers a significantly lower total cost of

ownership (primarily by leveraging low $/GB and significantly lower energy costs),
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better reliability, longer life, and as good or even faster streaming performance than

today’s disk alternatives[21].

As a result, the thesis presents and evaluates Tape Cloud, a design for a cost

efficient, hybrid, cloud based storage which mainly makes use of magnetic tapes as

backend storage media. Tape Cloud is a large-scale unified data backup and archiving

solution with a number of synchronized tape drives, each associated with a task

queue. Tape Cloud is designed to be compatible with current backup infrastructure

and can support various types of data acquisitions as discussed in chapter 4. Tape

Cloud is focused on providing the much needed cost efficiency in long term storage

of data, especially when its importance in the long run is uncertain. The proposed

tape cloud framework also points to a new direction in creating service oriented, cost

effective, massive scale infrastructure to meet the growing storage challenge in the

coming era of big data enabled industries and research.

Although tapes have been widely categorized as a slow and unpopular storage

medium, it outperforms magnetic disks in total cost of ownership and energy con-

sumption (tapes don’t consume power when stored in a tape library), which makes

tape technology an ideal choice for cloud based archiving services. The research ex-

plores the benefits of the state of the art in tape storage technology. The need for

a managerial middleware, which is a combination of algorithms and data distribu-

tion policies, that contributes in overcoming the latency offered by tapes in order

to improve performance of IO processes is proposed and evaluated. The middleware

serves its purpose and by improving data distribution efficiency and decreasing the

overall response time for read requests. The test cases have been generated using
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the extensive analysis of live archiving workloads and modelling techniques.

7.1 Efficient Data Distribution

At the core of the approach discussed in the thesis, is the Read Probability Weight

based data distribution which is a novel method to distribute blocks of data internally

within Tape Cloud to decrease the time needed to retrieve it from tapes. The idea is

based on ensuring even distribution of data blocks based on the probability of it being

read again. Some of the delay models that are created based on the commercially

available tape libraries suggest that accumulation of read requests at task queues can

increase the average response time needed to retrieve data. The end result of RPW

based data distribution is the improved average response time of the Tape Cloud

infrastructure.

7.2 Improved Cost Efficiency

Tape Cloud is a hybrid infrastructure made of hard disk and magnetic tapes. The

hard disks are used as data buffers for collecting and temporarily storing data while

it is processed before being written into tapes. The major storage is constituted by

magnetic tapes. This reduces the comparatively high costs of hard disk based storage

media and that of operating hard disk based systems. Tape Cloud being primarily

a cloud based offering, the decreased overall cost benefits both the service users and

service providers.
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7.3 Future Work

7.3.1 New Economics of Legacy Storage

One of the most exciting aspects of our work is the doors of opportunity it opens

for new research. Understanding the economics of revisiting a legacy system to

solve the data explosion problems of today requires an overhaul of nearly every piece

of technology associated with the storage system. The impact of Tape Cloud in

live deployment scenarios will shed light on the performance of the middleware and

related components and their ability in handling diverse workloads.

7.3.2 Adaptability to Versatile RPW

Currently the implementation of RPW based distribution is based on the pre-assigned

weights to data blocks generated by specific applications. Although this is logically

correct and serves in evaluating the performance of Tape Cloud, there could be in-

stances where clients provide incorrect information about the importance of data

being backed up on Tape Cloud. This leads to incorrect assignment of RPW to data

blocks. To avoid this, one of the future enhancements to Tape Cloud include the

automated and adaptive learning-based assignment of RPW to data blocks. Future

plans of the project also include the improvement of the middleware and the filesys-

tem to support message passing-enabled, adaptive data weight management and IO

parallelization. Another area of focus is the elaboration of operation of Tape Cloud

for a variety of data types, application and magnitude of serviceability.
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