595 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Generative Adversarial Learning for Intelligent Trust Management in 6G Wireless Networks

    Full text link
    Emerging six generation (6G) is the integration of heterogeneous wireless networks, which can seamlessly support anywhere and anytime networking. But high Quality-of-Trust should be offered by 6G to meet mobile user expectations. Artificial intelligence (AI) is considered as one of the most important components in 6G. Then AI-based trust management is a promising paradigm to provide trusted and reliable services. In this article, a generative adversarial learning-enabled trust management method is presented for 6G wireless networks. Some typical AI-based trust management schemes are first reviewed, and then a potential heterogeneous and intelligent 6G architecture is introduced. Next, the integration of AI and trust management is developed to optimize the intelligence and security. Finally, the presented AI-based trust management method is applied to secure clustering to achieve reliable and real-time communications. Simulation results have demonstrated its excellent performance in guaranteeing network security and service quality

    A Review of Physical Human Activity Recognition Chain Using Sensors

    Get PDF
    In the era of Internet of Medical Things (IoMT), healthcare monitoring has gained a vital role nowadays. Moreover, improving lifestyle, encouraging healthy behaviours, and decreasing the chronic diseases are urgently required. However, tracking and monitoring critical cases/conditions of elderly and patients is a great challenge. Healthcare services for those people are crucial in order to achieve high safety consideration. Physical human activity recognition using wearable devices is used to monitor and recognize human activities for elderly and patient. The main aim of this review study is to highlight the human activity recognition chain, which includes, sensing technologies, preprocessing and segmentation, feature extractions methods, and classification techniques. Challenges and future trends are also highlighted.

    Unsupervised Intrusion Detection with Cross-Domain Artificial Intelligence Methods

    Get PDF
    Cybercrime is a major concern for corporations, business owners, governments and citizens, and it continues to grow in spite of increasing investments in security and fraud prevention. The main challenges in this research field are: being able to detect unknown attacks, and reducing the false positive ratio. The aim of this research work was to target both problems by leveraging four artificial intelligence techniques. The first technique is a novel unsupervised learning method based on skip-gram modeling. It was designed, developed and tested against a public dataset with popular intrusion patterns. A high accuracy and a low false positive rate were achieved without prior knowledge of attack patterns. The second technique is a novel unsupervised learning method based on topic modeling. It was applied to three related domains (network attacks, payments fraud, IoT malware traffic). A high accuracy was achieved in the three scenarios, even though the malicious activity significantly differs from one domain to the other. The third technique is a novel unsupervised learning method based on deep autoencoders, with feature selection performed by a supervised method, random forest. Obtained results showed that this technique can outperform other similar techniques. The fourth technique is based on an MLP neural network, and is applied to alert reduction in fraud prevention. This method automates manual reviews previously done by human experts, without significantly impacting accuracy

    Quantized Non-Volatile Nanomagnetic Synapse based Autoencoder for Efficient Unsupervised Network Anomaly Detection

    Full text link
    In the autoencoder based anomaly detection paradigm, implementing the autoencoder in edge devices capable of learning in real-time is exceedingly challenging due to limited hardware, energy, and computational resources. We show that these limitations can be addressed by designing an autoencoder with low-resolution non-volatile memory-based synapses and employing an effective quantized neural network learning algorithm. We propose a ferromagnetic racetrack with engineered notches hosting a magnetic domain wall (DW) as the autoencoder synapses, where limited state (5-state) synaptic weights are manipulated by spin orbit torque (SOT) current pulses. The performance of anomaly detection of the proposed autoencoder model is evaluated on the NSL-KDD dataset. Limited resolution and DW device stochasticity aware training of the autoencoder is performed, which yields comparable anomaly detection performance to the autoencoder having floating-point precision weights. While the limited number of quantized states and the inherent stochastic nature of DW synaptic weights in nanoscale devices are known to negatively impact the performance, our hardware-aware training algorithm is shown to leverage these imperfect device characteristics to generate an improvement in anomaly detection accuracy (90.98%) compared to accuracy obtained with floating-point trained weights. Furthermore, our DW-based approach demonstrates a remarkable reduction of at least three orders of magnitude in weight updates during training compared to the floating-point approach, implying substantial energy savings for our method. This work could stimulate the development of extremely energy efficient non-volatile multi-state synapse-based processors that can perform real-time training and inference on the edge with unsupervised data

    Generating a Risk Profile for Car Insurance Policyholders: A Deep Learning Conceptual Model

    Get PDF
    In recent years, technological improvements have provided a variety of new opportunities for insurance companies to adopt telematics devices in line with usage-based insurance models. This paper sheds new light on the application of big data analytics for car insurance companies that may help to estimate the risks associated with individual policyholders based on complex driving patterns. We propose a conceptual framework that describes the structural design of a risk predictor model for insurance customers and combines the value of telematics data with deep learning algorithms. The model’s components consist of data transformation, criteria mining, risk modelling, driving style detection, and risk prediction. The expected outcome is our methodology that generates more accurate results than other methods in this area
    corecore