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Abstract—A significant challenge in modern computer security
is the growing skill gap as intruder capabilities increase, making
it necessary to begin automating elements of penetration testing
so analysts can contend with the growing number of cyber
threats. In this paper, we attempt to assist human analysts by
automating a single host penetration attack. To do so, a smart
agent performs different attack sequences to find vulnerabilities
in a target system. As it does so, it accumulates knowledge,
learns new attack sequences and improves its own internal
penetration testing logic. As a result, this agent (AgentPen for
simplicity) is able to successfully penetrate hosts it has never
interacted with before. A computer security administrator using
this tool would receive a comprehensive, automated sequence
of actions leading to a security breach, highlighting potential
vulnerabilities, and reducing the amount of menial tasks a
typical penetration tester would need to execute. To achieve
autonomy, we apply an unsupervised machine learning algorithm,
Q-learning, with an approximator that incorporates a deep neural
network architecture. The security audit itself is modelled as a
Markov Decision Process in order to test a number of decision-
making strategies and compare their convergence to optimality.
A series of experimental results is presented to show how this
approach can be effectively used to automate penetration testing
using a scalable, i.e. not exhaustive, and adaptive approach.

Index Terms—Pentesting, audit, Q-learning, reinforcement
learning, deep neural network

I. INTRODUCTION

Computer security auditing is a decision-making process
where a computer system is comprehensively explored and
tested, in a secure environment, to reveal potential vulnera-
bilities. Strategically exploring a target system, as an attacker
would, to discover and fix vulnerabilities is currently done
by cyber-security specialists. While often resulting in high
accuracy, human-based decision making is a limited resource
in today’s world, due to skill shortages and rising threats [1].
Therefore, developing an intelligent automated audit process
to complement human resources would be an useful aid going
forwards. However, most existing penetration testing tools (i.e.
pentesting) rely on predefined datasets of exploits and trigger
vulnerabilities one-by-one. The drawback of this is that, in
practice, strategic human decisions are needed at each exploit
“link” in an attack chain, consuming considerable resources.
Conversely, existing automated attack tools struggle to adapt
to environmental changes or update an attack strategy mid-test.
Related works are discussed further in Section I-A.

This paper presents a novel, adaptive approach to pentesting,
using an automated, learning-based, decision-making process.

The tool, AgentPen, removes the human element from the
actual penetration attack stage and discovers its own strategy,
adapting and improving its attack logic in real-time. This
mitigates human limitations, such as speed and scalability.
That said, this approach does not completely remove the need
for cyber-security expertise, but instead raises human analysts
to a higher level of control. Human-based decisions will still
drive (1) the audit with high-level learning algorithm modifi-
cations, (2) hacking ethics, legal concerns, and results, and (3)
develop machine learning strategies and solutions to increase
the performance. AgentPen can be tuned by analysts, given
specific tasks and goals, relieving cyber-security experts from
the more menial, routine, pentesting tasks and enabling them
to focus on higher-level control tasks.

To achieve a sophisticated level of automation, AgentPen
applies a model-free reinforcement machine learning algo-
rithm. Unlike most other methods, this pentesting does not use
a full predefined model of the environment and, instead, learns
the environment using Q-learning [2]. To better generalize the
solution, the original Q-learning algorithm was modified by
integrating an approximator to improve its performance while
maintaining accuracy. This approach has shown that it can
mitigate all the disadvantages of pre-defined environmental
models and also address our research problems (Section I-B).

A. Related Work and Background

Most computer security audit software tools are limited
by human resources, target environment changes, or both,
making many state-of-the-art audit processes time consuming
and/or error-prone. This is particularly troubling with growing
skill-shortages in cyber-security [3], threat increases [4], and
increasing number of computing systems [1]. Auditing relies
on the use of software exploits, pieces of computer code
that trigger a system vulnerability, and additional actions (i.e.,
payloads) may follow after a successful penetration. Nessus
[5] executes Network Vulnerability Tests one by one, using
a list of targets, without examining real-time environmental
changes. Nessus does not automate any decision-making and
is not able to operate independently. Core Impact [6] is
allegedly the most advanced vulnerability scanner on the
market and builds automated attack plans to be executed by
an auditor. The limits of this strategy is that the attack plan
is built on a target environment model prior to penetration
testing, making the tool highly dependent on the model’s



quality and unable to adapt mid-attack. For example, while
building its model and generating an attack plan, Core Impact
assumes that the network configuration is static and in order
to deal with network/host configuration changes, it would
need to recreate the environment model and recalculate the
whole attack plan, increasing cost. This tool has a few other
drawbacks, internal model parameters compromise scalability
and it does not have enough data for new OS versions or
network configurations, reducing likelihood an optimal attack
plan is used. Another popular penetration testing tool that lacks
intelligent automation is Rapid 7 Nexpose [7]. This scanner
supports the entire vulnerability management life-cycle by
using Metasploit [8], a vulnerability exploitation penetration
tool. While this can distribute multiple scan engines across the
network for flexibility, Nexpose cannot learn attack strategies
itself. In summary, the majority of well-known commercial
vulnerability scanners have shown many benefits, but are
highly dependent on the expertise and decisions of security
specialists. These tools have also exhibited adaptability issues,
unable to update an attack strategy if the environment changes.

Within academic literature, security audit scope studies have
proposed improvements to the accuracy, speed and state-space
reduction of penetration testing processes [9]–[12]. However,
these rely heavily on the initial modelling stage and demand
significant security expert involvement. Machine learning tech-
niques have mainly been used in Intrusion Detection Systems
(IDSs) to improve detection, classify threats, and extract fea-
tures [13]–[16] rather than automating audits per se. Other ap-
proaches like model checking [17], [18] identify vulnerabilities
by comparing several models over a large space. However, this
large space approach is inherently exhaustive, difficult to scale
[19], [20], and not adaptive to target environment changes.
Another non-security paper [21] used model-free machine
learning for agile, self-adaptive congestion management in
networks.

This paper uses machine learning techniques such as rein-
forcement learning (RL), Q-learning in particular, and neural
networks. In RL, an agent learns by interacting with the
environment, executing actions at a given state, observing the
immediate outcome, i.e. reward signal, and making subsequent
predictions about the future value of their choices (i.e. Q-value
of a state-action pair) [22]. Q-learning [2] has been proven
to converge to an optimal solution in tabular cases [23] and
adjustments based on experience are executed independently
of the policy followed. In tabular cases, Q-values are stored in
a table for every Markov Decision Process (MDP) state-action
pair. Problems can arise when a large state space makes the
corresponding table intractable. Past studies have overcome
this with an approximator, [24]–[26]. To account for state-
action space limitations in tabular cases, our approach uses
a neural network-based approximator to give our tool both
adaptive and scalable capabilities, which is novel compared to
the state-of-the-art approaches.

Neural networks are universal approximators implemented
as layers of connected neurons that transmit signals to each
other and are modelled by their architecture [27]. To ap-

proximate the state-action space in sequential tasks (e.g., a
series of exploits in an attack sequence) AgentPen uses
a Recurrent Neural Network (RNN), specifically, the Elman
Neural Network. RNNs typically have three layers (input,
hidden and output) which are connected in a feed-forward
manner with additional connections between hidden and input
layers to feed hidden neuron values back to the input. This
structure means previously experienced values to future inputs
can be incorporated, so AgentPen can learn a sequence
of actions, “memorizing” previously experienced states [28]–
[30]. For low overheads, i.e. high scalability, we choose to use
the Elman type RNN [31], [32].This has a special layout with
additional neurons feeding to every neuron in the hidden layer
of its previous value, implementing an analog of memory.

B. Problem Statement

To effectively pentest systems in the current threat land-
scape [4], more automation needs to be introduced. However,
accuracy and performance are the two challenges that must be
addressed. To mirror realistic threats for quality, we consider
both local, on the target, and remote, within the same network,
exploits targeting Windows and Linux systems. Part of both
quality and quantity problems is selecting which machine
learning methods would best automate AgentPen. As the
target system is assumed unknown in our approach, we con-
sider the learning algorithm to be model-free. This deviates
from previous approaches with pre-defined models while still
addressing the problem of attack-sequence quality.

While building an approximator to address the challenge of
quantity, i.e. scalable performance overhead, it was crucial to
choose the best features to describe the state-action space for
the problem at hand. More specifically, performance problems
with the proposed approach to automate pentesting audits
are (1) how to decrease number of features representing the
state space and (2) how to approximate state-action space
with a small feature set. To achieve this, we use an Elman-
type recurrent neural network (RNN) - see Section II-E. Too
many features would place a significant load on the learning
algorithm and may add unacceptable time overheads during
the attack stages. To address this problem, we compress
the feature set into a smaller space using an autoencoder,
just prior to learning. This approach compresses the neural
network input to a smaller, hidden layer with minimal error.
In our experiments this reduced feature set helped address the
performance challenge without negatively affecting the quality
of pentesting achieved.

II. METHODOLOGY

In most current pentesting approaches, a human auditor
is needed to launch exploits and perform different attacks,
using a set of tools. In contrast, this paper proposes trans-
ferring the menial pentesting tasks to the intelligent auto-
mated AgentPen. This section is dedicated to describing our
methodology to the noted challenges of achieving this.



Fig. 1. Automatic learning pentesting audit process

A. Architecture of the Audit System

AgentPen consists of a client (target) and server (host)
(see Figure 1) on the same corporate network. The server
performs multi-step attacks without human guidance by gen-
erating and executing a sequence of actions one-by-one in a
chain. Actions include exploits and discoveries, such as port
scan. After the server attacks a target, the client is notified of
the attack. It then checks whether the exploit was successful
and sends the results back to the server. It also restarts local
services if needed.

The target host in this paper is Windows 7 with a number
of potentially vulnerable ports and services (see Tables I-
II). It is important to note that AgentPen can use any set
of exploits and work with OSs besides Windows. For the
purpose of producing useful experimental results in Section
III, Win7 was used because it is outdated and vulnerable,
testing AgentPen’s ability to learn an optimal attack strategy,
not just a valid one. Although targets and environments may
change (e.g., target updates to Win10), the techniques pre-
sented are able to adapt by using a set of viable exploits during
its learning penetration process. Exploits used by AgentPen
are customized for the environment, derived from Metasploit
and other external sources. For Win7, remote code execution
and local privileges buffer overflow exploits were used. Exploit
payloads were also used to trigger uniquely-named processes
within targets, and once AgentPen successfully penetrates
one target, it automatically moves on to pentest its next target
in a network consisting of more than 80 hosts.

All decisions on exploits sequences, and the generation
of custom strings for attacks, are done using server-side
Q-learning, while the client generates reward signals. The
environmental feedback provided by the client is fed back
into the server Q-learning algorithm, indicating if the exploit
successfully breached the target. This updates the reward
signal (see Section II-C) according to the server’s actions.
This client-server architecture is designed to prevent malicious
uses of AgentPen as they should have admin rights on
the target to make the server-client system work. Therefore
only an authorized owner of the target should be able to run
autonomous penetration audits.

B. AgentPen Audit Process

Our audit process is modelled as an MDP, with a transition
function to define states resulting from executing specific
actions in a given state and a corresponding reward function
to quantify executed action rewards. These audit states and
actions can be found in Tables I and II. An example of transi-
tions between the 18 states is shown in Figure 2, where Init

TABLE I
SECURE AUDIT STATE NUMBER, START STATE, AND TRIGGERS.

# Start State State trigger and requirements
1 H8.34 Win The host has a Windows OS
2 H8.34 Lx The host has a Linux OS
3 H8.34 P445 The host has an open port 44
4 H8.34 P135 The host has an open port 135
5 H8.34 P22 The host has an open port 22
6 H8.34 P2525 The host has an open port 2525
7 H8.34 serv1 The host has a vulnerable RDPService

8 H8.34 serv2 The host has a vulnerable MsvcrtService

9 H8.34 SSH The host has a SSH service
10 H8.34 Expl1 Remote Exploit1 for serv1 is executed
11 H8.34 Expl2 Remote Exploit2 is executed
12 H8.34 Expl3 Local Exploit3 is executed
13 H8.34 SSH SSH brute force attack is performed
14 H8.34 Expl1 2 Remote Exploit1 executed as 2nd exploit
15 H8.34 Expl2 2 Remote Exploit2 executed as 2nd exploit
16 H8.34 Expl3 2 Local Exploit3 executed as 2nd exploit
17 Fail terminal Final state, dead end, i.e. exploit failed
18 Suc terminal Final state, target host hacked

TABLE II
CHECKS PRIOR MDP ACTIONS TO CHANGE STATE.

State Check Description
OS Win Check Checks for Windows OS using nmap
OS Linux Check Checks for Linux OS using nmap
Port445 Check Checks if Port445 is open using nmap
Port135 Check Checks if Port135 is open using nmap
Port22 Check Checks if Port22 is open using nmap
Port2525 Check Checks if Port2525 is open using nmap
Service1 Check Check Service1 process is running
Service2 Check Check Service2 process is running
SSH Check Check Port22 and parse connection requests
Exploit1 Grants local attacker admin privileges
Exploit2 Grants remote user-level privileges
Exploit3 local Exploit local services, privilege escalation
SSH SSH Brute force

is the initial system state. AgentPen moves between states
by executing exploits and discovery actions that reveal the
target environment (Table I, 1-9) including running services.
Discovery actions help reduce the action space and, therefore,
performance overhead. If it were discovered that the target’s
OS is Windows, Linux-related exploits would not be used.

In our experiments, targets were left intentionally vulnerable
for remotely executed Exploit1, which grants admin privi-
leges to the attacker, and Exploit2, which grants user-level
privileges. Any privilege changes or successful remote/local
code executions is monitored by the feedback agent. Vulnera-
bilities in local services, RDPService and MsvcrtService, are
exploited locally using Exploit3 to escalate attacker privileges
to admin. RDP is responsible for remote connections and
Msvrcrt supports executions of basic C functions from Mi-
crosoft C Runtime Library. If exploits required unique strings,
AgentPen automatically generates these with RL.

C. Reward Function

A reward function guides learning by allocating a numerical
signal to each transition and, as previously mentioned, it is
produced by the client. Intuitively, the “better” an action is
at leading to a successful attack, a higher associated reward
is returned. This is critical for the automated adaptive attack



Fig. 2. MDP audit system transitions from initial state.

strategy, independent from external human help or environ-
ment models. While the reinforced learning algorithm and
approximator elements will be defined in the next subsection,
here we define the reward function. This is the key for
finding an optimal attack sequence as the agent maximizes
its cumulative reward via trial and error. The reward function
used (see Eq 1) is defined as a linear combination of the main
reward and additional rewards, defined in the bullets below.

Reward = Rmain +R1 +R2 +R3 (1)

Here Rmain is defined as a value for reaching a successful
terminal state. The additional reward components are defined
as follows:
• R1: exploit effectiveness according to the metasploit

rating [33]. The more effective, the higher the reward;
• R2: possible OS/service harm if exploit used, according

to the Common Vulnerabilities and Exposures database
[34]. If system service crashes, the reward is smaller;

• R3: additional testing actions (e.g. port scan), defined as
20/n where n is the number of iterations per episode and
20 was obtained experimentally. R3 motivates an agent
to apply environment checks before actual attacks.

High reward values signify better attack choices in order to
reach the successful terminal state (18 in Table I). To optimize
the learning process negative rewards are also applied if the
agent enters an action-loop, if it had learned a non-optimal
experience, helping it break out and reach either terminal state.
Human ingenuity is still required to get these coefficients
right and this negative reward is elided from Eq1. In our
approximated Q-learning experiments, the reward values are
mapped to the range [0,1] as those are the min and max values
for neural network neurons. These reward values are designed
to provide a fast, technically valid, penetration attack strategy.

D. Q-Learning

This model-free approach is autonomous and does not
require previous knowledge on the target environment; it uses
reinforcement learning instead, Q-learning in particular, to
identify new system vulnerabilities through the execution of at-
tack sequences. At each time step in the sequence, AgentPen
chooses an action randomly according to a softmax distribu-
tion (i.e., following a softmax policy), which incorporates the

Algorithm 1: Q-Learning Algorithm
1 Initialize Q(state, action);
2 Observe current state;
3 for every time step do
4 Select action from state;
5 if state trigger successful then
6 take action;
7 check next state′ and reward;
8 update Q-values (see Eq 2);
9 else

10 end action;
11 end
12 state← states′

13 end

knowledge about previously experienced states. As a result,
the actions leading to higher reward states will be chosen
more often. At the end of an attack sequence the audit agent
receives a numerical signal from either the client or target
agent indicating if it was successful in penetrating the host.
With this information the agent updates its estimations (i.e.,
Q-values for each state-action pair), about the long-term value
of executing the attack, for which the audit agent receives
the immediate reward, and what AgentPen believes it would
receive in subsequent attacks. This Q-learning algorithm can
be succinctly described with the pseudo-code in Algorithm 1
where update “Q-values” is achieved with Eq 2.

Q(s, a)← Q(s, a) + α([r + γmaxQ(s′, a′)]−Q(s, a)) (2)

Here s and s′ define current and next states respectively.
a and a′ stand for current and future actions. r represents a
Reward defined in Eq. 1. Since AgentPen does not know
the underlying MDP model, its initial Q-value estimations
are initialized to zero, as it is ignorant and inexperienced.
This only occurs at the start of an audit, Step 1 of learning
Algorithm 1. In Step 2 the agent observers and checks which
audit state it is in and which actions it is allowed to execute. It
then executes one of the actions following the softmax policy.
After executing an action successfully two things happen:
the agent moves to another state and receives a reward, as
shown by Step 7’s if-statement. By interacting with the target
environment, the agent updates its Q-value estimations, at
Step 8, using Eq. 2. This defines the learning rule, which is
used to find the new Q-value based on the old value plus
the estimation (prediction) error multiplied by a learning rate
α, a value between 0 and 1. This dictates how quickly the
error is updated, modulating the learning process. The error
itself is the difference between the old estimation and the
result of adding the immediate reward the agent receives after
executing the action and what it estimates will be the best
option in the future, discounted by a γ parameter, which
also ranges from 0 to 1, and represents how confident the
agent is about its future predictions. The agent follows this
process until a terminal state is reached and this entire process,
starting from Init, is considered as one learning episode or
epoch, and this is repeated until the agent converges to an



optimal penetration strategy, i.e. an attack sequence which best
maximizes cumulative rewards.

E. Deep Architecture Approximator

Although AgentPen may eventually successfully penetrate
the target, to improve performance, an autoencoder reduces the
state space. Traditional implementations of Q-learning use a
table, or matrix, where the utility function stores its values. As
the state space increases, the standard tabular approach does
not scale well and often negatively affects overall performance.
An approximator can mitigate this problem by learning the Q-
function itself, instead of Q-values one at a time. To improve
audit performances this paper uses an Elman-type RNN.

Like any other neural network, an Elman-type RNN consists
of interconnected nodes that process information across its
architecture, from input to output nodes. Characteristically,
RNN also has hidden nodes which can have multiple input
and output connections. Elman networks, a three-layer version
of RNN, includes a critical “context unit” that feeds the
values from previous processing steps back to the hidden layer
neurons, merging them with current input values, providing
a type of “memory”. This gives AgentPen the ability to
remember a sequence of pentesting actions. The number of
input, middle, and output nodes per layer in an Elman-RNN
is not defined and can be varied. Backpropagation through time
(BPTT) algorithm is used to train the neural network [35]. This
algorithm is an application of traditional backpropagation (BP)
[36] to the RNN sequence data. BP propagates the inputs of
neural network to calculate the output. Next, the actual output
is compared to the predicted one and the derivatives of the
error with respect to the network weights are calculated. On the
later step, all weight are adjusted to minimize the output error.
This process continues until the error is minimised enough.

The main principle of the autoencoder’s operation is the
adjustment of internal weights within the neural network to
recreate the input as an output with minimal error. This can be
used to reduce the input layer to the smaller hidden layer with
minimal loss. As a result, the autoencoder learns to extract
the correlation of input data automatically and maps it to a
smaller space, increasing performance without sacrificing its
adaptive pentesting capabilities. In the experiments evaluating
AgentPen’s performance, in Section III, features describing
the target host are fed as inputs to the autoencoder. As a
result, the autoencoder maps the features to a smaller hidden
layer, which are then fed as inputs to the approximator-based
Elman-type RNN. These interactions form the deep learning
architecture for AgentPen’s Q-learning approximation.

In summary, the very nature of reinforcement learning for
our research problem is to learn the optimal sequence of pen-
etration attacks by prioritizing the autonomous AgentPen’s
actions to gain maximum cumulative rewards. The approach
proposed in this paper does so by exploring and exploiting
the target system(s) intelligently to discover vulnerabilities
through interactions with its environment, as opposed to hav-
ing all actions dictated by a pre-generated model. In addition,
unlike supervised learning, AgentPen is not trained with

successful attacks but instead learns from scratch. This is par-
ticularly valuable when the audit tool is capable of discovering
attack sequences without analyst involvement. Therefore, this
reinforcement learning approach offers a critical mechanism
for AgentPen to learn the optimal sequence of system
penetration actions, given metrics of its behaviour, even when
starting from complete ignorance. Alternatively, AgentPen
can be pre-trained before deployment into the environment if
an analyst chooses to. In this case it will be able to identify
the vulnerabilities much faster based on the similarity of
vulnerable configurations it already experienced.

III. EXPERIMENTS AND RESULTS

To test AgentPen several experiments were designed to
illustrate how Q-learning could be successfully applied to the
pentesting process and discover its own attack strategy despite
unforeseen environmental changes. Without a pre-defined en-
vironment model AgentPen can only execute actions and
learn from trial/errors it experienced in real-time.

Experiments are divided into two groups, tabular Q-learning
(Figure 3 (a)) and Elman-RNN approximated Q-learning (Fig-
ure 3 (b) and (c)). The first group was intended to test the basic
hypothesis of the model-free approach, as outlined in Section
II and whether it could autonomously learn a technically
correct penetration attack sequence. In these experiments the
Q-learning algorithm (see Algorithm 1) is used without human
assistance or prior knowledge of predefined transitions and
rewards for every state-action pair. The reward was defined
by general reward function based on successful terminal state
reach and exploratory actions only. The relaxation of prede-
fined transitions and rewards requirements leads to learning
them directly from interaction with the environment. Since
these first experiments were designed to only test the basic
concepts, the penetration testing process was defined as a
specific MDP with state and action spaces.

Once it is established that the tabular setup (first group
of experiments) in Figure 3 (a) could optimally learn a
successful attack strategy, the other two setups (second group
of experiments) were designed to test the performance en-
hancing approximator and AgentPen’s real-time adaptive
capabilities. First group shows the basic model-free approach.
The second group demonstrates the extension of model-free
approach to the real world scenarios when using a state space
reducing autoencoder and aproximator to process large state
spaces. These second group experiments do not compare the
learning speed with the tabular approach, but test the concept
with a larger real-world state space using processes previously
discussed. The second group setups seen in Figure 3 (b) and
(c) use our autoencoder as explained in Section II. With this,
AgentPen not only learns an attack strategy in real time,
but extends that accumulated knowledge to cases it has never
experienced before, like a new target.

The experiments in Group 1 have no state space reduction,
so we used the optimal hyperparameters (e.g., learning rate,
discount factor) of the Q-learning algorithm identified with
our tabular Q-learning experiments. In experiments related to



Fig. 3. Overview of automatic audit experiments.

Group 2, approximator architecture related hyperparameters
were tested in order to check pentesting learning performance:
the autoencoder was tested with different values of weight
decay, number of iterations, neurons per hidden layer, and
sparsity penalties. RNN hyperparameters, such as weight de-
cay, number of iterations and neurons quantity per hidden
layer, were tested as well.

In first setup for Group 2, the successful model-free attacks
were demonstrated in non changing environment. In second
setup for Group 2, the environment was changed during the
audit process. With these changes, the attack strategy that was
learned earlier would no longer lead to successful penetration.
This change is introduced to test if our approach is truly
able to adapt attacks in real-time. In our experiments, it is
shown that AgentPen can do this, independently finding a
new successful penetration attack with its own logic in several
real-world environments.

A. Group 1: Tabular Q-Learning

The first set of experiments to penetrate and escalate privi-
lege in the target consists of learning the optimal audit strategy
using the tabular case Q-learning algorithm (see Figure 3 (a)).
As described in Section II-A, the server executes the majority
of the pentest (i.e. exploit and discovery actions) unless the
client is instructed to perform Exploit3 locally after remote
Exploit2 is executed.

The Group 1 tabular Q-learning experimental results show
that the algorithm was able to learn the optimal sequence
leading to the successful exploitation of the vulnerability after
1,000 episodes: Initialization + OS_Win_Check +
Exploit2 + Exploit3. This solution was the optimal one
for this experiment, as the execution of remote Exploit2
gives AgentPen user privileges, which are then escalated
to admin-level with local Exploit3. This was more effective
than executing the single remote Exploit1 since Exploit2 has
a higher penetration rating that the former, which affected the
reward value. Furthermore, the remote Exploit1 affects the
system process and is potentially more harmful to the target,
which is not the aim of a pure penetration attack. Looking at

Fig. 4. Tabular Q-learning experiment performance

these results, it is apparent that Q-learning achieves the best
possible strategy by maximizing the reward. Scalability and
performance is addressed in group two of our experiments.

Figure 4 shows that the tabular Q-learning algorithm per-
formance increased until roughly 545 epochs. This is because
the acting policy initially chooses actions randomly, ignorantly,
but as AgentPen learns, it is able to use past experiences to
optimize exploring target system vulnerabilities. As it takes
time to randomly explore most of the states, performance
increases slowly. A plateau appears towards later episodes
as AgentPen begins to act intelligently, choosing the most
optimal action sequences it has learned. As a result, the best
sequence of actions is always chosen, and the cumulative
reward value stabilizes. In Group 1 experiments the most
optimal hyper parameters for the Q-learning algorithm, using
the softmax acting policy, were identified as γ = α = 0.8.

These results show that tabular QL performs relatively well.
Nevertheless, the algorithm performance is hindered by the
random exploring actions at the start. Group 2 experiments
reduce the state space to optimize AgentPen. While it is pos-
sible that “fewer experienced states” could hinder the learning
process, that has not been observed in our experiments.

B. Group 2: RNN Approximated Q-Learning

Group 2 experiments were designed to build on the success
of Group 1 model-free learning approach and address potential
performance issues with the hypothesis that Q-learning, paired
with an autoencoder based on an artificial neural network,
could reduce the state space and, therefore, lessen the amount
of time needed to find an optimal attack strategy. Unlike Group
1, Group 2 presents the attacker host with multiple targets.
Target1 is the first target to be penetrated. During this process
AgentPen learns an attack strategy based on the learning
feedback. Once a wealth of experience is gained, AgentPen
is self-directed to penetrate Target2 using only the knowledge
it had accumulated.

In these experiments AgentPen derives the reward value
directly from the environmental feedback while acting without
a predefined transition function. The representation of the
penetration testing process is also generalized for huge state
spaces. This means that, instead of a fixed number of states,
their general representation is defined by the feature set, which
is related to the configuration definition of target system. This
“configuration” is the combination of processes running and
dlls used by the target. The learning performance of feature



Fig. 5. Autoencoder learning process after 100 episodes/iterations

extraction, to support the state space reducing autoencoder
architecture, is presented in Figure 5. It should be noted
that the decoder error for the autoencoder learning process
seen here was minimized relatively quickly to 126 after 100
episodes, demonstrating a successful mapping of features to a
smaller dataset with minimal error. Further minimization of the
error did not improve the following RNN learning processes,
but significantly slowed down the system performance overall.
Therefore, it was decided to use 100 learning epochs as the
most optimal value for AgentPen. After the feature set was
decreased, features were fed to the RNN approximator to learn
a sequence of pentesting actions, as seen in Figure 6.

As the autoencoder learning process is a one-time perfor-
mance cost per target (features are extracted once per host),
it can help reduce overall overheads as AgentPen learns
to penetrate multiple targets, even with some configuration
changes. As a result of Group 2 first setup Figure 3 (b), the
cumulative reward converged to a solution. This showed an
optimal attack strategy, found during the learning process,
and consisted of the following actions: Initialization
+ Probe action (check OS) + Exploit1. This gen-
erates a new, bespoke, attack sequence when targeting a
host it has not experienced before. After the new penetration
sequence is learned, AgentPen self-directs to attack another
target on the network with a client installed. AgentPen then
acts according to its own experiences, gathered during the
learning stage, after it extracts the feature set representing the
new target host configuration. This feature set is, again, used
as an input to the approximator in order to get the sequence of
actions leading to successful penetration without starting the
learning process all over again.

In Group 2 second setup Figure 3 (c), a second solu-
tion was found when Target2 changed its configuration:
Initialize + Exploit1. While this sequence leads to a
successful penetration, it might seem less optimal than the
one first discovered in first setup Figure 3 (b) as probe actions
to check OS were not used. However, it was still effective
in getting admin privileges on the remote host. Given these
results, we can see that the AgentPen was able to penetrate
a new host, with which it had never interacted before. More
importantly, it was able to use past experience accumulated
during the previous learning iterations to adapt its attack the
new Target2 host.

After one successful penetration of a Target2, the tar-
get configuration was changed mid-attack to test whether

Fig. 6. RNN approximated Q-Learning performance

Fig. 7. Adapting RNN approximated QL performance using softmax policy

AgentPen could truly independently adapt and create an-
other successful penetration strategy (Figure 3 (c)). The old
configuration was updated in such a way that the old suc-
cessful attack strategy, revealed during the second phase, no
longer provided a successful target penetration. As a result, it
utilized its learning process (Figure 7) in order to find this
new successful attack strategy: Initialize + Exploit2
+ Exploit3. Therefore, AgentPen did independently adapt
its penetration strategy with minimal overheads.

IV. DISCUSSIONS

The main contribution of the paper is its approach to
automating the computer security audit process using Q-
learning to create an intelligent audit agent. In most other
methods, the attack strategy is developed manually by a
computer security expert. Such approaches cannot handle huge
state spaces or difficult environmental models used during
assessment [37], [38]. In some circumstances, security experts
use semi-automatic tools to support manually created attack
strategies, however more intelligent tools are needed as tech-
nology becomes more prevalent, and the skill gap increases.

Other approaches apply machine learning with environmen-
tal models [39]. Unfortunately, by automating the decision-
making process this way, the planning approach generates
problems. Building models cost time and computations, par-
ticularity when using exhaustive approaches. In cases where
the model was not developed properly, the attack strategy of
the audit agent is not reactive and every change to the host
demands new additional simulations in order to rebuild the
environment model. Additionally, modern penetration testing
systems are not able to accumulate experience in real time.

This paper aims to provide scalable, autonomous, audit-
ing without these drawbacks and the results in Section III
demonstrate that it is possible by applying model-free ma-
chine learning algorithms and state space reductions. In our
approach, people have been fully excluded from the attack



decision-making process, and can instead focus on higher-level
strategies, ethics, etc [40]. The method presented achieved this
despite the fact that multiple steps were needed for a success-
ful attack and the environment could change unexpectedly.
Therefore AgentPen is able to derive attack strategies itself
without cyber security officer involvement. It also learns the
penetration strategy in real-time with accumulated experience.
AgentPen also mitigates the problem of huge state space that
other exhaustive approaches depend on - it uses approximators
to efficiently define all possible host configurations. This
allows for derivation of successful attacks strategies even for
new targets. The developed deep learning architecture works
universally for any quantity and quality of the chosen feature
set. Thus, AgentPen is significantly scalable and adjustable.

There are several future research directions for this work.
Different ways of feature representation could be developed
for optimization. Additional features can be added to the set,
describing a host’s network position in relation to the attack
path. This could make the agent learn attack strategies based
on the target’s network environment as well. The proposed
deep learning architecture leaves freedom to experiment with
different feature extraction and learning mechanisms. For
example, instead of RNNs, different types of neural networks
can be used. The back-propagation algorithm can also be
substituted, or the activation functions, to improve learning
performance. The reward function can also be altered for
different situations, for example factoring in ethics and laws.

V. CONCLUSIONS

A major challenge in modern computer security is automat-
ing audit processes so analysts can reliably, and efficiently,
analyse the growing number of cyber-threats. While most
existing audit tools rely on a predefined attack strategy, require
an environment model of the target, and depend heavily on hu-
man expertise to use the various tools correctly, our proposed
approach has none of these constraints and has been shown
to be a successful, adaptive and learning audit tool. Unlike
previous tools, it can therefore make autonomous decisions
on which attack strategy to implement, even when facing
unforeseen changes. As AgentPen accumulates knowledge,
it is able to learn new optimal attack sequences, explore new
host environments, and improve its own internal penetration
testing logic. With the positive experimental results, we be-
lieve that the model-free Q-based learning approach proposed,
enhanced with an approximator, can inform analysts of the
events leading to security breaches, highlighting potential
vulnerabilities, and reducing the amount of menial tasks a
typical penetration tester would need to do for the same result.
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