288 research outputs found

    Empirical investigation of decision tree ensembles for monitoring cardiac complications of diabetes

    Full text link
    Cardiac complications of diabetes require continuous monitoring since they may lead to increased morbidity or sudden death of patients. In order to monitor clinical complications of diabetes using wearable sensors, a small set of features have to be identified and effective algorithms for their processing need to be investigated. This article focuses on detecting and monitoring cardiac autonomic neuropathy (CAN) in diabetes patients. The authors investigate and compare the effectiveness of classifiers based on the following decision trees: ADTree, J48, NBTree, RandomTree, REPTree, and SimpleCart. The authors perform a thorough study comparing these decision trees as well as several decision tree ensembles created by applying the following ensemble methods: AdaBoost, Bagging, Dagging, Decorate, Grading, MultiBoost, Stacking, and two multi-level combinations of AdaBoost and MultiBoost with Bagging for the processing of data from diabetes patients for pervasive health monitoring of CAN. This paper concentrates on the particular task of applying decision tree ensembles for the detection and monitoring of cardiac autonomic neuropathy using these features. Experimental outcomes presented here show that the authors' application of the decision tree ensembles for the detection and monitoring of CAN in diabetes patients achieved better performance parameters compared with the results obtained previously in the literature

    Anomaly detection and explanation in big data

    Get PDF
    2021 Spring.Includes bibliographical references.Data quality tests are used to validate the data stored in databases and data warehouses, and to detect violations of syntactic and semantic constraints. Domain experts grapple with the issues related to the capturing of all the important constraints and checking that they are satisfied. The constraints are often identified in an ad hoc manner based on the knowledge of the application domain and the needs of the stakeholders. Constraints can exist over single or multiple attributes as well as records involving time series and sequences. The constraints involving multiple attributes can involve both linear and non-linear relationships among the attributes. We propose ADQuaTe as a data quality test framework that automatically (1) discovers different types of constraints from the data, (2) marks records that violate the constraints as suspicious, and (3) explains the violations. Domain knowledge is required to determine whether or not the suspicious records are actually faulty. The framework can incorporate feedback from domain experts to improve the accuracy of constraint discovery and anomaly detection. We instantiate ADQuaTe in two ways to detect anomalies in non-sequence and sequence data. The first instantiation (ADQuaTe2) uses an unsupervised approach called autoencoder for constraint discovery in non-sequence data. ADQuaTe2 is based on analyzing records in isolation to discover constraints among the attributes. We evaluate the effectiveness of ADQuaTe2 using real-world non-sequence datasets from the human health and plant diagnosis domains. We demonstrate that ADQuaTe2 can discover new constraints that were previously unspecified in existing data quality tests, and can report both previously detected and new faults in the data. We also use non-sequence datasets from the UCI repository to evaluate the improvement in the accuracy of ADQuaTe2 after incorporating ground truth knowledge and retraining the autoencoder model. The second instantiation (IDEAL) uses an unsupervised LSTM-autoencoder for constraint discovery in sequence data. IDEAL analyzes the correlations and dependencies among data records to discover constraints. We evaluate the effectiveness of IDEAL using datasets from Yahoo servers, NASA Shuttle, and Colorado State University Energy Institute. We demonstrate that IDEAL can detect previously known anomalies from these datasets. Using mutation analysis, we show that IDEAL can detect different types of injected faults. We also demonstrate that the accuracy of the approach improves after incorporating ground truth knowledge about the injected faults and retraining the LSTM-Autoencoder model. The novelty of this research lies in the development of a domain-independent framework that effectively and efficiently discovers different types of constraints from the data, detects and explains anomalous data, and minimizes false alarms through an interactive learning process

    The 10th Jubilee Conference of PhD Students in Computer Science

    Get PDF

    New Fundamental Technologies in Data Mining

    Get PDF
    The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining

    Searching For Phenotypes Of Sepsis: An Application Of Machine Learning To Electronic Health Records

    Get PDF
    SEARCHING FOR PHENOTYPES OF SEPSIS: AN APPLICATION OF MACHINE LEARNING TO ELECTRONIC HEALTH RECORDS. Michael J. Boyle (Sponsored by R. Andrew Taylor). Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT. Sepsis has historically been categorized into discrete subsets based on expert consensus-driven definitions, but there is evidence to suggest it would be better described as a continuum. The goal of this study was to perform an exhaustive search for distinct phenotypes of sepsis using various unsupervised machine learning techniques applied to the electronic health record (EHR) data of 41,843 Yale New Haven Health System emergency department patients with infection between 2013 and 2016. Specifically, the aims were to develop an autoencoder to reduce the high-dimensional EHR data to a latent representation amenable to clustering, and then to search for and assess the quality of clusters within that representation using various clustering methods (partitional, hierarchical, and density-based) and standard evaluation metrics. Autoencoder training was performed by minimizing the mean squared error of the reconstruction. With this exhaustive search, no convincing consistent clusters were found. Various clustering patterns were produced by the different methods but all had poor quality metrics, while evaluation metrics meant to find the ideal number of clusters did not agree on a consistent number but seemed to suggest fewer than two clusters. Inspection of one promising arrangement with eight clusters did not reveal a statistically significant difference in admission rate. While it is impossible to prove a negative, these results suggest there are not distinct phenotypic clusters of sepsis

    Temporal Information in Data Science: An Integrated Framework and its Applications

    Get PDF
    Data science is a well-known buzzword, that is in fact composed of two distinct keywords, i.e., data and science. Data itself is of great importance: each analysis task begins from a set of examples. Based on such a consideration, the present work starts with the analysis of a real case scenario, by considering the development of a data warehouse-based decision support system for an Italian contact center company. Then, relying on the information collected in the developed system, a set of machine learning-based analysis tasks have been developed to answer specific business questions, such as employee work anomaly detection and automatic call classification. Although such initial applications rely on already available algorithms, as we shall see, some clever analysis workflows had also to be developed. Afterwards, continuously driven by real data and real world applications, we turned ourselves to the question of how to handle temporal information within classical decision tree models. Our research brought us the development of J48SS, a decision tree induction algorithm based on Quinlan's C4.5 learner, which is capable of dealing with temporal (e.g., sequential and time series) as well as atemporal (such as numerical and categorical) data during the same execution cycle. The decision tree has been applied into some real world analysis tasks, proving its worthiness. A key characteristic of J48SS is its interpretability, an aspect that we specifically addressed through the study of an evolutionary-based decision tree pruning technique. Next, since a lot of work concerning the management of temporal information has already been done in automated reasoning and formal verification fields, a natural direction in which to proceed was that of investigating how such solutions may be combined with machine learning, following two main tracks. First, we show, through the development of an enriched decision tree capable of encoding temporal information by means of interval temporal logic formulas, how a machine learning algorithm can successfully exploit temporal logic to perform data analysis. Then, we focus on the opposite direction, i.e., that of employing machine learning techniques to generate temporal logic formulas, considering a natural language processing scenario. Finally, as a conclusive development, the architecture of a system is proposed, in which formal methods and machine learning techniques are seamlessly combined to perform anomaly detection and predictive maintenance tasks. Such an integration represents an original, thrilling research direction that may open up new ways of dealing with complex, real-world problems.Data science is a well-known buzzword, that is in fact composed of two distinct keywords, i.e., data and science. Data itself is of great importance: each analysis task begins from a set of examples. Based on such a consideration, the present work starts with the analysis of a real case scenario, by considering the development of a data warehouse-based decision support system for an Italian contact center company. Then, relying on the information collected in the developed system, a set of machine learning-based analysis tasks have been developed to answer specific business questions, such as employee work anomaly detection and automatic call classification. Although such initial applications rely on already available algorithms, as we shall see, some clever analysis workflows had also to be developed. Afterwards, continuously driven by real data and real world applications, we turned ourselves to the question of how to handle temporal information within classical decision tree models. Our research brought us the development of J48SS, a decision tree induction algorithm based on Quinlan's C4.5 learner, which is capable of dealing with temporal (e.g., sequential and time series) as well as atemporal (such as numerical and categorical) data during the same execution cycle. The decision tree has been applied into some real world analysis tasks, proving its worthiness. A key characteristic of J48SS is its interpretability, an aspect that we specifically addressed through the study of an evolutionary-based decision tree pruning technique. Next, since a lot of work concerning the management of temporal information has already been done in automated reasoning and formal verification fields, a natural direction in which to proceed was that of investigating how such solutions may be combined with machine learning, following two main tracks. First, we show, through the development of an enriched decision tree capable of encoding temporal information by means of interval temporal logic formulas, how a machine learning algorithm can successfully exploit temporal logic to perform data analysis. Then, we focus on the opposite direction, i.e., that of employing machine learning techniques to generate temporal logic formulas, considering a natural language processing scenario. Finally, as a conclusive development, the architecture of a system is proposed, in which formal methods and machine learning techniques are seamlessly combined to perform anomaly detection and predictive maintenance tasks. Such an integration represents an original, thrilling research direction that may open up new ways of dealing with complex, real-world problems

    Experimental evaluation of big data querying tools

    Get PDF
    Nos últimos anos, o termo Big Data tornou-se um tópico bastanta debatido em várias áreas de negócio. Um dos principais desafios relacionados com este conceito é como lidar com o enorme volume e variedade de dados de forma eficiente. Devido à notória complexidade e volume de dados associados ao conceito de Big Data, são necessários mecanismos de consulta eficientes para fins de análise de dados. Motivado pelo rápido desenvolvimento de ferramentas e frameworks para Big Data, há muita discussão sobre ferramentas de consulta e, mais especificamente, quais são as mais apropriadas para necessidades analíticas específica. Esta dissertação descreve e compara as principais características e arquiteturas das seguintes conhecidas ferramentas analíticas para Big Data: Drill, HAWQ, Hive, Impala, Presto e Spark. Para testar o desempenho dessas ferramentas analíticas para Big Data, descrevemos também o processo de preparação, configuração e administração de um Cluster Hadoop para que possamos instalar e utilizar essas ferramentas, tendo um ambiente capaz de avaliar seu desempenho e identificar quais cenários mais adequados à sua utilização. Para realizar esta avaliação, utilizamos os benchmarks TPC-H e TPC-DS, onde os resultados mostraram que as ferramentas de processamento em memória como HAWQ, Impala e Presto apresentam melhores resultados e desempenho em datasets de dimensão baixa e média. No entanto, as ferramentas que apresentaram tempos de execuções mais lentas, especialmente o Hive, parecem apanhar as ferramentas de melhor desempenho quando aumentamos os datasets de referência
    corecore