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ABSTRACT

ANOMALY DETECTION AND EXPLANATION IN BIG DATA

Data quality tests are used to validate the data stored in databases and data warehouses, and

to detect violations of syntactic and semantic constraints. Domain experts grapple with the issues

related to the capturing of all the important constraints and checking that they are satisfied. The

constraints are often identified in an ad hoc manner based on the knowledge of the application

domain and the needs of the stakeholders. Constraints can exist over single or multiple attributes as

well as records involving time series and sequences. The constraints involving multiple attributes

can involve both linear and non-linear relationships among the attributes.

We propose ADQuaTe as a data quality test framework that automatically (1) discovers differ-

ent types of constraints from the data, (2) marks records that violate the constraints as suspicious,

and (3) explains the violations. Domain knowledge is required to determine whether or not the sus-

picious records are actually faulty. The framework can incorporate feedback from domain experts

to improve the accuracy of constraint discovery and anomaly detection. We instantiate ADQuaTe

in two ways to detect anomalies in non-sequence and sequence data.

The first instantiation (ADQuaTe2) uses an unsupervised approach called autoencoder for con-

straint discovery in non-sequence data. ADQuaTe2 is based on analyzing records in isolation

to discover constraints among the attributes. We evaluate the effectiveness of ADQuaTe2 using

real-world non-sequence datasets from the human health and plant diagnosis domains. We demon-

strate that ADQuaTe2 can discover new constraints that were previously unspecified in existing

data quality tests, and can report both previously detected and new faults in the data. We also use

non-sequence datasets from the UCI repository to evaluate the improvement in the accuracy of

ADQuaTe2 after incorporating ground truth knowledge and retraining the autoencoder model.
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The second instantiation (IDEAL) uses an unsupervised LSTM-autoencoder for constraint dis-

covery in sequence data. IDEAL analyzes the correlations and dependencies among data records to

discover constraints. We evaluate the effectiveness of IDEAL using datasets from Yahoo servers,

NASA Shuttle, and Colorado State University Energy Institute. We demonstrate that IDEAL can

detect previously known anomalies from these datasets. Using mutation analysis, we show that

IDEAL can detect different types of injected faults. We also demonstrate that the accuracy of

the approach improves after incorporating ground truth knowledge about the injected faults and

retraining the LSTM-Autoencoder model.

The novelty of this research lies in the development of a domain-independent framework that

effectively and efficiently discovers different types of constraints from the data, detects and ex-

plains anomalous data, and minimizes false alarms through an interactive learning process.
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Chapter 1

Introduction

Enterprises use databases and data warehouses to store, manage, access, and query the data

for making critical decisions. Records can get corrupted because of how the data is collected,

transformed, and managed, and also because of malicious activities. Incorrect records may violate

constraints pertaining to the attributes and records. Inaccurate data can lead to incorrect decisions.

Thus, rigorous data quality testing approaches are required to ensure that the data is correct.

Data quality tests validate the data in data stores to check for violations of syntactic and seman-

tic constraints. Syntactic constraint validations check for the conformance of an attribute with the

structural specifications in the data model. For example, in a health data store, patient_age must

take numeric values. Semantic constraint validations check for the conformance of the record and

attribute values with the specifications stated by domain experts. Semantic constraints can exist

over single attributes (e.g., patient_age >= 0) or multiple attributes (e.g., pregnancy_status = true

→ patient_gender = female). Moreover, these constraints can exist over multiple records in time-

series data. For example, semantic constraint validations check that the patient_weight growth rate

change is positive and in the range [4, 22] lb for every infant. The validations also check for the

relationship between the patient_weight and blood_pressure, and their growth rates over time for

the adult patients.

1.1 Problem Statement

Data quality tests rely on the specification of constraints, which are typically identified by do-

main experts but often in an ad hoc manner based on their knowledge of the application domain

and the needs of the stakeholders. For example, a data record in a health data store may con-

tain an incorrect value for the day’s supply of a drug. However, the constraint that restricts the

values for the drug may be missing. Incorrect values in attributes pertaining to medications and

prescriptions can have disastrous consequences for both patient health and research outcomes if
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the data is used for patient treatment and in medical research [9]. Tools that automatically generate

syntactic constraints also exist, but they only check for trivial ones, such as the not-null and unique-

ness checks [10]. Existing machine learning-based approaches can automatically discover some

non-trivial semantic constraints from the data and report the anomalous records as outliers [11].

However, these approaches do not explain which constraints are violated by those records. As

a result, domain experts have to validate a huge number of outliers to determine whether or not

they are actually faulty and to find the reason behind the invalidity of those records. Moreover,

these approaches have the potential to learn incorrect constraints pertaining to the invalid data and

generate false alarms, which can make the anomaly inspection process overwhelming for domain

experts [12] especially when the size of the data is large.

1.2 Proposed Approach

We propose ADQuaTe as an Automated Data Quality Test framework that provides generic

functionality for constraint discovery and anomaly detection, which we instantiate to develop spe-

cific applications for non-sequence and sequence data. ADQuaTe automatically discovers complex

semantic constraints from the data in a flat data model (i.e., a model that consists of a single, two-

dimensional array of data records), marks records/sequences that violate the constraints as suspi-

cious, and explains the violations. ADQuaTe uses unsupervised deep learning techniques based on

autoencoders [13] to discover the constraints associated with the unlabeled records (i.e., records

whose validity is not known in advance).

ADQuaTe assigns a suspiciousness score (s-score) to each record/sequence. Records/sequences

whose s-score is greater than a threshold are flagged as suspicious. Decision trees are gener-

ated using a Random Forest classifier [14] to identify the constraints violated by the suspicious

records/sequences.

While domain expert intervention is not required for using our framework, ADQuaTe can min-

imize false alarms through an interactive learning process [15], which incorporates domain expert

feedback (when available) to improve the accuracy of the approach. ADQuaTe provides a web-
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based interface to allow domain experts to inspect the suspicious records and sequences and mark

records and sequences that are actually faulty. This feedback is incorporated to retrain the machine

learning model and improve the accuracy of constraint discovery and anomaly detection.

ADQuaTe uses a grid search-based technique to select the best learning model for constraint

discovery. The original grid search technique for autoencoders selects the model that generates the

lowest value of reconstruction error [13]. This model has the potential to overfit on the training

data and generate false alarms. We propose to use ground truth data with a set of known faults to

select a model that maximizes the true positive rate. We measure the true positive rate for different

deep network architectures to select a network with the highest accuracy. Moreover, we use an

early stopping technique [16] based on the true positive rate to avoid overfitting on training data.

We instantiate ADQuaTe for non-sequence data (ADQuaTe2 [17,18]) using an autoencoder [13]

as an unsupervised deep learning technique to discover the constraints involving both linear and

non-linear relationships among the data attributes. Records that do not conform to the discov-

ered constraints are flagged as suspicious. To reduce the time needed to inspect a large number

of suspicious records, the Self Organizing Map (SOM) clustering technique is used to identify a

small number of record groups such that the records in each group are likely to violate the same

constraints. ADQuaTe2 uses a grid search technique based on ground truth data to tune the au-

toencoder parameters.

We instantiate ADQuaTe for sequence data (IDEAL [19]) using an LSTM-Autoencoder [20]

to discover complex constraints from univariate or multivariate time-series data in big datasets.

IDEAL reports subsequences that violate the constraints as anomalies. We propose an auto-

mated autocorrelation-based windowing approach to adjust the LSTM-Autoencoder network in-

put size, thereby improving the correctness and performance of constraint discovery over manual

approaches.
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1.3 Evaluation

We have implemented the components of ADQuaTe in an open-source web-based tool [21].

We evaluated the constraint discovery and fault detection effectiveness of ADQuaTe2 without do-

main expert intervention using datasets from a health data warehouse [22] and a plant diagnosis

database [23]. We demonstrated that our approach can discover new constraints that were missed

by domain experts and can also detect new faults in these datasets. We also evaluated the improve-

ments in the accuracy of ADQuaTe2 using datasets with ground truth data (i.e., a set of known

faults) from the UCI repository [2]. We measured the fault detection effectiveness and efficiency

of ADQuaTe2 using this data as well. We showed that ADQuaTe2 can detect the previously known

faults in these datasets and the accuracy of the approach improves after incorporating the ground

truth knowledge and retraining the learning model. We demonstrated that the true positive rate

increases and the false negative rate decreases after incorporating the ground truth knowledge and

retraining the learning model.

We evaluated the constraint discovery, anomaly detection, and anomaly explanation effective-

ness of IDEAL using the Yahoo server [24], NASA Shuttle [25], and Energy [26] datasets. We

compared the anomaly detection effectiveness of IDEAL with existing stochastic and Machine

Learning-based anomaly detection techniques. Moreover, we compared the effectiveness and ef-

ficiency of our autocorrelation-based reshaping approach with a brute-force approach. Mutation

analysis showed that the true positive and false negative rates improve after incorporating ground

truth knowledge about the injected faults and retraining the interactive-based LSTM-Autoencoder

model. We showed that the visualization plots correctly explain the reason behind the reporting of

the suspicious sequences.

1.4 Contributions

To the best of our knowledge, ADQuaTe is the first framework to find anomalies in both non-

sequence and sequence big data and explain them in terms of constraints violations using domain

concepts. The key contributions of this research are as follows:
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• ADQuaTe uses unsupervised deep learning techniques that effectively discover from unla-

beled data different types of constraints involving linear and non-linear associations among

data records and attributes.

• ADQuaTe helps a domain expert interpret the detected anomalies by (1) highlighting the

contribution of each record and attribute to the invalidity of the anomalies and (2) generating

decision trees where paths indicate the constraints violated by the anomalies.

• ADQuaTe minimizes false alarms using expert feedback to retrain the machine learning

model and improve the accuracy of constraint discovery and anomaly detection.

• ADQuaTe uses a grid search technique based on ground truth data to tune parameters of

learning models in a way to avoid overfitting on training data.

• ADQuaTe uses an autocorrelation-based approach to automatically adjust the input size for

the constraint discovery component to improve the effectiveness and efficiency of the com-

ponent than when manually set fixed input sizes or brute-force approaches are used.

The rest of the dissertation is organized as follows. Chapter 2 describes related work on data

quality test approaches and discusses their limitations. Chapter 3 presents ADQuaTe as our pro-

posed data quality test framework. Chapter 4 and 5 describe instantiations of ADQuaTe for non-

sequence and sequence data respectively and report on evaluating the instantiations. Finally, Chap-

ter 6 concludes the dissertation and outlines the directions for future work.
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Chapter 2

Related Work

We categorize existing data quality test approaches into two groups: approaches for testing

non-sequence data and those for testing sequence data. This chapter summarizes the approaches

and describes their limitations.

2.1 Data Quality Test Approaches for non-Sequence Data

Non-sequence data [27] is a set of unordered records. Large volumes of real-world non-

sequence data are collected from various sources, such as patient medical reports and bank records.

In this section, we describe existing data quality testing approaches for non-sequence data and

classify them into two categories based on their constraint identification methods (manual and

automatic).

2.1.1 Non-sequence Data

A non-sequence dataset D is a set of d-dimensional records described using the set D =

{R0, ..., Rn−1}, where Ri = (a0i , ..., a
d−1
i ) is a record, for 0 ≤ i ≤ n − 1 and a

j
i is the jth at-

tribute of the ith record. No order is assumed for the non-sequence data records by existing data

analysis approaches [28].

A non-sequence dataset can have a single attribute (d=1) or multiple attributes (d>1). For

example, a one-attribute breast cancer dataset [29] may contain values of tumor size for different

patients. A multiple-attribute glass identification dataset [30] may contain the concentration val-

ues of different elements, such as Sodium, Magnesium, Aluminum, Silicon, Potassium, Calcium,

Barium, and Iron that form a glass type.

A constraint for non-sequence data is defined as a rule over the data attributes. For example,

the tumor size must be in a specific range for all breast cancer patients. Moreover, the value of
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Sodium must be in the 10.73–17.38 range for glass type=vehicle windows. Anomalies are records

that violate the constraints over single or multiple attributes in non-sequence data.

2.1.2 Approaches based on Manual Constraint Identification

There are two phases involved in these approaches [31–33]: (1) specifying data quality con-

straints and (2) generating test assertions.

2.1.2.1 Specify Data Quality Constraints

Syntactic and semantic constraints are specified by domain experts as mathematical formulas,

natural language, and database queries. The following paragraphs describe the syntactic and se-

mantic constraints from the papers published by Golfarelli and Rizzi [31], Gao et al. [32], Darkory

et al. [33], and Kahn et al. [34].

• Syntactic constraint: This constraint specifies that the syntax of an attribute must conform

to the data model used to describe the data in a store. This constraint is also called data

correctness [32] and data conformance [34] in different papers. Examples of constraints

imposed by the data model are data type and integrity.

– Data type: A data type is a classification of the data that defines the operations that

can be performed on the data and the way the values of the data can be stored [35].

The data type can be numeric, text, boolean, or date-time; these types are defined in

different ways in different languages. For example, the Sex attribute of patient records

takes one ASCII character.

– Data integrity: A data integrity constraint imposes restriction on the values that an

attribute or a set of attributes can take in a data store. Primary key, foreign key, unique-

ness, and not-null constraints are typical examples. For example, a Person_ID attribute

must take unique values.
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• Semantic constraint: This constraint specifies the content of an attribute. The same con-

straint is also called accuracy [32, 33] and plausibility [34]. This constraint can exist over

single or multiple attributes.

– Single attributes: This constraint is defined as the conformance of individual attribute

values to the application domain specification. For example, the Sex attribute in the

previous example can take only ‘M’ for male, ‘F’ for female or ‘U’ for undefined

values.

– Multiple attributes: This constraint is defined as the conformance of an attribute content

to the contents of other relevant attributes in the data store. This constraint is also called

data coherence [31] and logical constraint consistency [36]. This constraint ensures

that the logical relationships between multiple attributes are correct with respect to

the business requirements. For example, postal code=33293 does not apply to streets

where city=Berlin since the postal codes in Berlin are between 10115 and 14199.

Quality Assurance (QA) by the National Weather Service (NWS) [37] and the US Forest Ser-

vice’s i-Tree Eco [38] are examples of approaches that rely on manual identification of the con-

straints for weather and climate data. Achilles [39], proposed by the Observational Health Data

Sciences and Informatics (OHDSI) [40] community, and PEDSnet [41], proposed by the Patient-

Centered Outcomes Research Institute (PCORI) [42], are examples of approaches for validating

electronic health data. The Data Quality Constraint column in Table 2.1 presents examples of

constraints that are specified using natural language for a weather data warehouse [38]. Such a

data warehouse gathers observations from stations all around the world into a single data store to

enable weather forecasting and climate change detection.

GuardianIQ [43] is a data quality test tool that does not define specific data quality constraints

but allows users to define and manage their own expectations from the data in a data store as

constraints for data quality. The GuardianIQ tool provides a user interface to define, browse, and
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Table 2.1: Data Quality Constraints and Test Assertions for Weather Records

Data Quality Constraint Query
1 Relative_humidity must be in the range [0,1]. Select count(Relative_humidity)

from Weather_fact
where Relative_humidity > 1 or Relative_humidity < 0

2 Temperature must be a numeric value. Select count(Temperature)
from Weather_fact
where data_type(Temperature)!= integer

3 Temperature must not be null. Select count(Temperature)
from Weather_fact
where Temperature is null

4 If Rain_fall is greater than 80%, Select count(*)
Relative_humidity cannot be zero. from Weather_fact

where Rain_fall > 0.8 and Relative_humidity = 0

edit a rule base in an editor. The example in Table 2.2 is a rule specified by a user to verify the

consistency property in a customer data warehouse:

Table 2.2: A Data Quality Constraint Defined by a GuardianIQ User and the Corresponding Test Assertion

Data Quality Constraint Query
1 If the customer’s age is less than 16, Insert into tbl_test_results (status, description)

then the driver’s license field should be null. values (’Failed’, ’Invalid value for driver’s license’)
from Customers
where (age < 16 and driver_license != null))

2.1.2.2 Generate Test Assertions

Data quality tests are defined as a set of queries that verify the constraints. The Query column

in Table 2.1 shows data quality test assertions defined as queries to verify the constraints presented

in the Data Quality Constraint column of the same table. After executing a query in this table, a

positive value of count indicates that the corresponding assertion failed.

GuardianIQ [43] transforms declarative data quality constraints into SQL queries that measure

data quality conformance with the user’s expectations. The Query column in Table 2.2 is a SQL

query that is automatically generated by the tool to implement the constraint in the Data Quality

Constraint column of the same table. The tool executes the queries against the data and calculates

to what extent the data matches the user’s expectations. This tool allows sharing the constraints
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across multiple users of the same domain with the same expectations. The interface allows users

to quickly browse and easily edit the constraints.

2.1.3 Approaches based on Automated Constraint Identification

In these data quality test approaches, the constraints are automatically identified from the data.

These approaches are based on Machine Learning (ML) techniques that can discover semantic

constraints from the data. In this section, we describe ML-based approaches and discuss their

specific challenges and open problems.

ML-based data quality test approaches have been proposed by researchers to detect anomalous

records as outliers in the data [44]. Outliers are also referred to as abnormalities, discordants,

deviants, and anomalies in the literature [11]. Depending on the availability of labeled data, these

techniques can be classified as supervised, semi-supervised, and unsupervised.

2.1.3.1 Supervised Outlier Detection Techniques

These techniques train a binary classifier using a training dataset where the data records are

labeled valid or invalid. The trained classifier is applied afterward to classify the unseen (testing)

data records as valid or invalid. Examples of supervised outlier detection techniques are classifica-

tion tree, Naive Bayesian, Support Vector Machine (SVM), and Artificial Neural Network (ANN).

Classification Tree [45–47]. This method uses a tree-structured classifier to label the records as

valid and invalid. In this structure the non-leaf nodes correspond to the attributes, the edges corre-

spond to the possible values of the attributes, and every leaf node contains the label of the records

(0: valid and 1: invalid) described by the attribute values from the root node to that leaf node.

Classification trees are one of the easiest to understand machine learning models [48]. One can

analyze the tree to determine the constraints that are violated by each invalid record. However,

these trees are prone to overfitting [49]. Random Forest [50] and Gradient Boosting [51] meth-

ods address overfitting by training multiple trees using independent random subsets taken from
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the training data records. As a result, the chance for overfitting is reduced and the entire forest

generalizes well to the new data records.

Naive Bayesian [52, 53]. This method uses a probabilistic classifier that calculates the probability

of a data record belonging to a certain class. This classifier calculates p(C|X) as the probability of

belonging to a class C ∈ {valid, invalid} given a data record X with n attributes. The objective is

to determine whether X ∈ valid or X ∈ invalid based on the following decision rule.

X ∈











valid p(C = valid|X) > p(C = invalid|X)

invalid otherwise.
(2.1)

According to the Bayes theorem [54], this decision rule can be rewritten as follows.

X ∈











valid
p(X|C=valid)

p(X|C=invalid)
≥ p(C=invalid)

p(C=valid)

invalid otherwise.
(2.2)

The Naive Bayesian classifier assumes a strong independence between the record attributes. As

a result, the p(X|C) probability can be calculated based on the multiplication rule for independent

events as
∏n

i=1 p(Xi|C). The values of p(Xi|C = valid) and p(Xi|C = invalid) are computed

using a training set of labeled records. In the Naive Bayesian classifier all the attributes indepen-

dently contribute to the probability that a data record belongs to a class. However, attributes are

typically related (i.e., not independent) in the real-world data sets. This approach cannot discover

constraints that involve relationships among multiple related attributes.

Support Vector Machine (SVM) [55]. The objective of the SVM classifier is to train a hyperplane

function in the attribute space that best divides a labeled data set into valid and invalid classes. The

hyperplane is used afterwards to determine the class of each testing record based on the side of

the hyperplane where it lands. Figure 2.1 shows a dividing hyperplane formed by an SVM for

a simple outlier detection task. The data records in this example have only two attributes. The
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records nearest to the hyperplane are called support vectors. These records are considered the

critical elements of a data set because, if removed, the position of the hyperplane would change.

Figure 2.1: SVM Divides Valid/Invalid Records by a Linear Hyperplane [5]

The objective of the SVM is to position the hyperplane in a manner that the data records fall as

far away from the hyperplane as possible, while remaining on the correct side. Unlike Figure 2.1,

data records in typical data sets are not completely separated. When these records are hard to

separate (Figure 2.2), the SVM method maps the data into a higher dimension. This approach

is called kernelling. Figure 2.2 shows that the data records can now be separated by a plane. In

the kernelling approach, the data continues to be mapped into higher attribute dimensions until a

hyperplane can be formed to divide it.

Figure 2.2: SVM Maps Records into a Higher Dimension [5]

SVM is applicable to both Linearly Separable and Non-linearly Separable labeled data records.

However, the kernelling approach is sensitive to overfitting [56], especially when the generated
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hyperplane is complex. Moreover, the trained hyperplane is an equation over data attributes that is

not human interpretable.

Artificial Neural Network (ANN) [57, 58]. This method uses labeled records to train a network

of information processing units that mimic the neurons of the human brain. The objective is to

use this network to classify the testing records as valid and invalid. A neural network consists

of an input layer, one or more hidden layers, and one output layer. Each layer includes a set of

nodes. The node interconnections are associated with a scalar weight, which is adjusted during

the training process. These weights are initialized with random values at the beginning of the

training phase. Then, the algorithm tunes the weights with the objective of minimizing the error

of mis-classification, which is measured based on the distance between the predicted label and

the actual label of the data records. A neural network can be viewed as a simple mathematical

function f : X → C, where X is the input record with n attributes and C is the label assigned to

the record by the network function. A widely used function is the nonlinear weighted sum of the

input attributes, σ(
∑n

i=1 xiwi), where σ is an activation function, such as hyperbolic tangent and

sigmoid. An ANN is applicable to both Linearly Separable and Non-linearly Separable labeled

data records. However, the trained network for labeling the testing data records is in the form of

complex equations, which is not human interpretable.

2.1.3.2 Semi-supervised Outlier Detection Techniques

These techniques train a supervised learning model using the data that only consists of valid

records [59]. The model of the valid data is used afterward to detect the outliers that deviate

from that model in the testing data records. An example of the semi-supervised outlier detection

techniques is one-class Support Vector Machine (OC-SVM).

One-Class Support Vector Machine (OC-SVM) [60, 61]. This method is a SVM-based classi-

fication technique that is trained only on the valid data. This method can be viewed as a regular

two-class SVM where all the valid training data records lie in the first class, and the second class

has only one member, which is the origin of the attribute space. This approach results in a hyper-
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plane that captures regions where the probability density of the valid data lives. Thus, the function

returns valid if a testing record falls in this region and invalid if it falls elsewhere. Like the two-class

SVM classifier, this approach is applicable to both Linearly Separable and Non-linearly Separable

data records. However, it is sensitive to overfitting and is not human interpretable.

2.1.3.3 Unsupervised Outlier Detection Techniques

These techniques [62] detect invalid records whose properties are inconsistent with the rest of

the data in an unlabeled dataset. No prior knowledge about the data is required and there is no

distinction between the training and testing data sets. Examples of the unsupervised techniques are

clustering and representation learning.

Clustering [63, 64]. Clustering is an unsupervised learning technique that has been widely used

to detect outliers. The constraints are investigated by grouping similar data into several categories.

The similarity of the records is measured using distance functions, such as Euclidean and Manhat-

tan distances. External outliers are defined as the records positioned at the smallest cluster. Internal

outliers are defined as the records distantly positioned inside a cluster [65]. Distance-based clus-

tering algorithms, such as K-prototypes [66] cannot derive the complex non-linear relationships

that exist among attributes of the data in their clusters [67]. This is a problem in real-world ap-

plications, where non-linear associations are prevalent among the data attributes. Moreover, the

clusters do not determine the violated constraints.

Local Outlier Factor (LOF [68]). LOF is an unsupervised technique that assigns to each data

record a degree of being an outlier. This degree is called the local outlier factor of the record and is

calculated based on how isolated the record is with respect to its surrounding neighborhood. LOF

degree calculation is based on a fixed number of neighbors k. The approach compares the density

of data records neighborhood (i.e., local density) to assign the LOF degree to the records. Data

records that have a substantially lower density than their neighbors are considered to be anomalous.

The local density is calculated by a typical distance measure. It is not straight forward to choose the

correct value for the k parameter. A small value of k results in only consideration of nearby data
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records in the degree calculation, which is erroneous in presence of noise in the data. A large value

of k can miss local outliers. This approach is distance-based, which compares the records only

with respect to their single attribute values and not based on the relationships among the attribute

values. Moreover, the approach does not determine the constraints violated by the outliers.

Isolation Forest (IF [69]). Isolation Forest is an unsupervised anomaly detection technique that

is built on an ensemble of binary decision trees called isolation trees. This technique isolates

anomalous data records from valid ones. For this purpose, the technique recursively generates

partitions on a dataset by (1) randomly selecting an attribute and (2) randomly selecting a split

value for that attribute (i.e., between the minimum and maximum values of that attribute). This

partitioning is represented by an isolation tree (Figure 2.3). The number of partitions required

to isolate a point is equal to the length of the path from the root node to a leaf node (i.e., a data

record) in the tree. As anomalous records are easier to separate (isolate) from the rest of the records,

compared to valid records, data records with shorter path lengths are highly likely to be anomalous.

This technique is faster than distance-based techniques, such as clustering and LOF, because it does

not depend on computationally expensive operations like distance or density calculation [70]. The

partitioning process is based on single attribute values and not on the relationships among the

values. Moreover, this technique does not determine the violated constraints.

Figure 2.3: Isolation Forest for Anomaly Detection [6]
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Elliptic Envelope (EE [71]). Elliptic Envelope is an unsupervised technique that fits a high di-

mensional Gaussian distribution [72] with possible covariances between attribute dimensions to

the input dataset. Records that stand far enough from the fit shape are identified as anomalous. An

ellipse is drawn around the data records, classifying any record inside the ellipse as valid and any

record outside the ellipse as anomalous. A FAST-Minimum Covariance Determinate based on Ma-

halanobis distance [73] is used to estimate the size and shape of the ellipse. This technique assumes

that the data comes from a known distributions, which is not practical for real-world datasets.

Representation Learning [74]. Representation learning is an unsupervised learning technique

that investigates associations among the data attributes by capturing a representation of the at-

tributes present in the data and flags as anomalous those records that are not well explained using

the new representation. Principal Component Analysis (PCA) [12] is a representation learning ap-

proach that investigates the relationships among the data attributes by converting a set of correlated

attributes into a set of linearly uncorrelated attributes called principal components. PCA represen-

tation learning can only investigate linear relationships among the data attributes, not non-linear

ones. Moreover, the representations investigated by these methods are not human interpretable.

2.1.4 Summary

Table 2.3 summarizes and describes existing data quality test approaches in terms of their

applicability and the steps they perform. The blank cells mean “not applicable to”. We have

identified the following open problems in testing the non-sequence data.

Inapplicable to multiple domains. Approaches based on manual constraint identification validate

syntactic and semantic constraints that are specified by domain experts. These approaches are only

applicable to a single domain. We propose a domain-independent approach based on machine

learning techniques.

Lacking labeled data. Supervised ML-based techniques require labeled data for training the

machine learning model. The existing data quality test approaches rely on manual labeling of
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Table 2.3: Existing Data Quality Testing Approaches

Applicability Steps
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Approach Manual Automated
Golfarelli and Rizzi [31]

Dakrory et al. [33]

Gao et al. [32]

X X

Kahn et al. [34] X X

QA [37]

i-Tree Eco [38]

Achilles [39]

PEDSnet [41]

X X X X

GuardianIQ [43] X X X

Informatica [75] X X X

ML-based:

Classification Tree [45–47]

Naive Bayesian [52, 53]

Support Vector Machines [55]

Artificial Neural Network [57, 58]

One-Class Support Vector Machine [60, 61]

Clustering [63, 64]

Representation Learning [12]

Local Outlier Factor [68]

Isolation Forest [69]

Elliptic Envelope [71]

X X X

training data by the domain experts. Moreover, they restrict the training phase to a set of labeled

data that are biased towards the domain expert’s knowledge. Semi-supervised techniques require

providing a clean data set for the training phase. These techniques are also biased towards the

definition of valid records by the domain experts. We use an unsupervised technique that does not

require labeled data.
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Potential to generate false alarms. Unsupervised techniques have the potential to generate false

alarms, which can make analysis overwhelming for a data analyst [12]. We propose to use an

interactive learning-based Autoencoder to minimize the false alarms.

Lacking explanation. Unsupervised techniques report the anomalous records but do not determine

the constraints that are violated by those records. However, specifying the reason behind invalidity

is critical for domain experts to investigate the anomalies and prevent any further occurrences. We

generate visualization diagrams of two types to describe the detected faults: (1) suspiciousness

scores per attribute and (2) decision tree.

2.2 Data Quality Test Approaches for Sequence Data

Sequence data, also known as time-series data [76], is a set of time-ordered records [77]. Large

volumes of real-world time-series data are increasingly collected from various sources, such as

Internet of Things (IoT) sensors, network servers, and patient medical flow reports [77–79].

A time series T is a sequence of d-dimensional records [77] described using the vector

T =< R0, ..., Rn−1 >, where Ri = (a0i , ..., a
d−1
i ) is a record at time i, for 0 ≤ i ≤ n − 1 and a

j
i

is the jth attribute of the ith record. Existing data analysis approaches [77] assume that the time

gaps between any pair of consecutive records differ by less than or equal to an epsilon value, i.e.,

the differences between the time stamps of any two consecutive records are nearly the same.

A time series can be univariate (d=1) or multivariate (d>1) [78]. A univariate time series

has one time-dependent attribute. For example, a univariate time series can consist of daily tem-

peratures recorded sequentially over 24-hour increments. A multivariate time series is used to

simultaneously capture the dynamic nature of multiple attributes. For example, a multivariate time

series from a climate data store [80] can consist of precipitation, wind speed, snow depth, and

temperature data.

The research literature [1, 82] uses various features that describe the relationships among the

time-series records and attributes. Trend and seasonality [83] are the most commonly used features.

Trend is defined as the general tendency of a time series to increment, decrement, or stabilize over
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Table 2.4: Time Series Features [1]

Feature Description

F1: Mean Mean value of time series

F2: Variance Variance value of time series

F3: Lumpiness Variance of the variances across multiple blocks in time series

F4: Lshift Maximum difference in mean between consecutive blocks in time series

F5: Vchange Maximum difference in variance between consecutive blocks in time

series

F6: Linearity Strength of linearity, which is the sum of squared residuals of time se-

ries from a linear autoregression

F7: Curvature Strength of curvature, which is the amount by which a time series curve

deviates from being a straight line and calculated based on the coeffi-

cients of an orthogonal quadratic regression

F8: Spikiness Strength of spikiness, which is calculated based on the size and location

of the peaks and troughs in time series

F9: Season Strength of seasonality, which is calculated based on a robust STL [81]

decomposition

F10: Peak Strength of peaks, which is calculated based on the size and location of

the peaks in time series

F11: Trough Strength of trough, which is calculated based on the size and location

of the troughs in time series

F12: BurstinessFF Ratio between the variance and the mean (Fano Factor) of time series

F13: Minimum Minimum value of time series

F14: Maximum Maximum value of time series

F15: Rmeaniqmean Ratio between interquartile mean and the arithmetic mean of time series

F16: Moment3 Third moment, which is a quantitative measure that identifies the skew-

ness of time series

F17: Highlowmu Ratio between the means of data that is below and upper the global

mean of time series

F18: Trend Strength of trend, which is calculated based on a robust STL decompo-

sition

time [83]. For example, there may be an upward trend for the number of patients with cancer diag-

nosis. Seasonality is defined as the existence of repeating cycles in a time series [83]. For example,

the sales of swimwear is higher during summers. A time series is stationary (non-seasonal) if all

its statistical features, such as mean and variance are constant over time. Table 2.4 shows a set of

features defined by Talagala et al. [1] to describe a time series.

A constraint is defined as a rule over the time-series features. For example, the mean (F1)

value of the daily electricity power delivered by a household must be in the range 0.1–0.5 KWH.
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We categorize the faults that violates the constraints over time-series features as anomalous records

and anomalous sequences.

Anomalous records. Given an input time series T, an anomalous record Rt is one whose

observed value is significantly different from the expected value of T at t. An anomalous record

may violate constraints over the features F1, F2, F3, F4, F5, F6, F7, F8, F12, F13, F14, F15, F16, and

F17. For example, if there is a constraint that imposes a range of values (F13, F14) for the infant

patients’ weights during their first three months, a record in the first three months with a weight

value outside this range must be reported as faulty.

Anomalous sequences. Given a set of subsequences T = {T0, ..., Tm−1} in a time series T ,

a faulty sequence Tj ∈ T is one whose behavior is significantly different from the majority of

subsequences in T. An anomalous sequence may violate constraints over any of the features F1

through F18. For example, consider the constraint that imposes an upward trend (F18) for the

number of cars passing every second at an intersection from 6 to 7 am on weekdays. A decrease in

this trend is anomalous.

Machine Learning-based techniques for outlier detection for non-sequence data, such as Sup-

port Vector Machine (SVM) [84], Local Outlier Factor (LOF) [68], Isolation Forest (IF) [69], and

Elliptic Envelope (EE) [71] have been used in the literature to detect anomalous records from a

time series [4]. These approaches discover the constraints in individual data records and cannot

be used for testing time-series data as constraints may exist over multiple attributes and records

in a time series. The records in a sequence have strong correlations and dependencies with each

other, and constraint violations over multiple records cannot be discovered by analyzing records in

isolation [85].

We classify the approaches that detect anomalies in time-series data into two groups based

on anomaly types they can detect from input datasets; these are anomalous record detection

and anomalous sequence detection. Figure 3 shows the classification framework we propose for

anomaly detection techniques based on anomaly types they can detect in time-series data. The
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framework presents what is detected in terms of anomaly types and how they are detected. A

rounded rectangle represents a class and an edge rectangle represents a technique.

Figure 2.4: Classification Framework for Anomaly Detection Approaches for Sequence Data

2.2.1 Approaches to Detect Anomalous Records

We categorize these approaches based on how they analyze the time-series data as time series

modeling and time series decomposition techniques.

2.2.1.1 Time Series Modeling Techniques

Given a time series T = {Rt}, these techniques model the time series as a linear/non-linear

function f that associates current value of a time series to its past values. Next, the techniques use

f to provide the predicted value of Rt at time t, denoted by R′
t, and calculate a prediction error

PEt = |Rt − R′
t|. The techniques report Rt as outlier if the prediction error falls outside a fixed

threshold value. Every model f has a set of parameters, which are estimated using stochastic or

machine learning techniques.
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In the stochastic modeling techniques, a time series is considered as a set of random variables

T = {Rt, t = 0, ..., n}, where Rt is from a certain probability model [83]. Examples of these

techniques are Autoregressive (AR), Moving Average (MA), and Autoregressive Integrated Moving

Average (ARIMA) and Holt-Winters (HW) models.

Autoregressive (AR) models [86]. In an Autoregressive model, the current value of a record in a

time series is a linear combination of the past record values plus a random error. An autoregressive

model makes an assumption that the data records at previous time steps (called as lag variables)

can be used to predict the record at the next time step. The relationship between data records is

called correlation. Statistical measures are typically used to calculate the correlation between the

current record and the records at previous time steps. The stronger the correlation between the

current record and a specific lagged variable, the more weight the autoregressive model puts on

that variable. If all previous records show low or no correlation with the current one, then the time

series problem may not be predictable [87]. Equation 2.3 shows the mathematical expression for

an AR model.

Rt =

p
∑

i=1

AiRt−i + Et (2.3)

where Rt is the record at time t and p is the order of the model. For example, an autoregressinve

model of order two indicates that the current value of a time series is a linear combination of the

two immediately preceding records plus a random error. The coefficients A = (A1, ..., Ap) are

weights applied to each of the past records. The random errors (noises) Et are assumed to be

independent and following a Normal N(0, σ2) distribution. Given the time series T , the objective

of AR modeling is to estimate the model parameters (A, σ2). The linear regression estimators [88],

likelihood estimators [89], and Yule-Walker equations [83] are typical stochastic techniques used

to estimate this model parameters.

The AR model is only appropriate for modeling univariate stationary time-series data [83].

Moreover, it does not consider the non-linear associations between the data records in a time series.
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Moving Average (MA) models [90]. In these models, a data record at time t is a linear combina-

tion of the random errors that occurred in past time periods (i.e. Et−1, Et−2,...,Et−p). Equation 2.4

shows the mathematical expression for an MA model.

Rt = µ

p
∑

i=1

BiEt−i + Et (2.4)

Where µ is the series mean, p is the order of the model, and B = (B1, ..., Bp) are weights

applied to each of the past errors. The random errors Et are assumed to be independent and

following a Normal N(0, σ2) distribution.

The MA model is appropriate for univariate stationary time series modeling [83]. Moreover, it

is more complicated to fit an MA model to a time series than fitting an AR model. Because in an

MA model, the random error terms are not foreseeable [83].

Autoregressive Integrated Moving Average (ARIMA) models [86]. ARIMA is a mixed model,

which incorporates: (1) Autoregression (AR) model, (2) an Integrated component, and (3) Moving

Average (MA) model. The integrated component stationarized the time series by using transforma-

tions like differencing [91], logging [92], and deflating [93]. ARIMA can model time series with

non-stationary behaviour. However, this model assumes that the time series is linear and follows a

known statistical distribution, which makes it inapplicable to many practical problems [83].

Holt-Winters (HW [3]). This technique uses exponential smoothing [94] to model three fea-

tures of a time series: (1) mean value, (2) trend, and (3) seasonality. Exponential smoothing

assigns to past records exponentially decreasing weights over time. The objective is to decrease

the weight put on older data records. Three types of exponential smoothing (i.e., triple exponen-

tial smoothing) are performed for the three features of a time series. The model requires multiple

hyper-parameters: one for each smoothing, one for the length of a season, and one for the number

of periods in a season. Hasani et al. [3] enhanced this technique (HW-GA) using a Genetic Algo-

rithm [95] to optimize the HW hyper-parameters. The HW model is only appropriate for modeling
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univariate time-series data. Moreover, it does not consider the non-linear associations between the

data records in a time series.

In Machine Learning-based modeling techniques, a time series is considered to follow a spe-

cific pattern. Examples of these techniques are Multi Layer Perceptron (MLP), Seasonal Artificial

Neural Networs (SANN), Long Short Term Network (LSTM), and Support Vector Machine (SVM)

models for big data and Hierarchical Temporal Memory (HTM) for streamed data (i.e., data cap-

tured in continuous temporal processes).

Multi Layer Perceptron (MLP) [96]. This technique is a type of Artificial Neural Network

(ANN) [97], which supports non-linear modeling, with no assumption about the statistical distri-

bution of the data [83]. An MLP model is a fully connected network of information processing

units that are organized as input, hidden, and output layers. Equation 2.5 shows the mathematical

expression of an MLP for time series modeling.

Rt = b+

q
∑

j=1

αjg

(

bj +

p
∑

i=1

βijRt−i

)

+ Et (2.5)

where Rt−i (i = 1, .., p) are p network inputs, Rt is the network output, αj and βij are the

network connection weights, Et is a random error, and g is a non-linear activation function, such

as logistic sigmoid and hyperbolic tangent.

The objective is to train the network and learn the parameters of the non-linear functional map-

ping f from the p past data records to the current data record Rt (i.e., Rt = f(Rt−1, ..., Rt−p, w) +

Et). Approaches based on minimization of an error function (equation 2.6) are typically used to

estimate the network parameters. Examples of these approaches are Backpropagation and Gener-

alized Delta Rule [97].

Error =
∑

t

e2t =
∑

t

(Rt −R′
t)

2 (2.6)

where R′
t is the actual network output at time t.
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An MLP can model non-linear associations between data records. However, it is appropriate

for univariate time series modeling. Moreover, because of the limited number of network inputs, it

can only discover the short-term dependencies among the data records.

A Seasonal Artificial Neural Network (SANN) model is an extension of MLPs for modeling

seasonal time-series data. The number of input and output neurons are determined based on a

seasonal parameter s. The records in the ith and (i+1)th seasonal period are used as the values of

network input and output respectively. Equation 2.7 shows the mathematical expression for this

model [83].

Rt+l = αl +
m
∑

j=1

w1jlg

(

θj +
s−1
∑

i=0

w0ijRt−i

)

(2.7)

where Rt+l(l = 1, .., s) are s future predictions based on the s previous data records (Rt−i(i =

0, ..., s − 1)); w0ij and w1jl are connection weights from the input to hidden and from hidden to

output neurons respectively; g is a non-linear activation function and αl and θj are network bias

terms.

This network can model non-linear associations in seasonal time-series data. However, it is

appropriate for modeling univariate time series. Moreover, the values of records in a season are

considered to be dependent only on the values of the previous season. As a result, the network can

only learn short-term dependencies between data records.

Long Short Term Network (LSTM) [98]. An LSTM is a Recurrent Neural Network (RNN) [7]

that contains loops in its structure to allow information to persist and make network learn sequential

dependencies among data records [98]. An RNN can be represented as multiple copies of a neural

network, each passing a value to its successor. Figure 2.5 shows the structure of an RNN [7]. In

this Figure, A is a neural network, Xt is the network input, and ht is the network output.

The original RNNs can only learn short-term dependencies among data records by using the

recurrent feedback connections [78]. LSTMs extend RNNs by using specialized gates and memory

cells in their neuron structure to learn long-term dependencies.
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Figure 2.5: An Unrolled RNN [7]

Figure 2.6: LSTM Structure [7]

Figure 2.6 shows the structure of an LSTM network. The computational units (neurons) of an

LSTM are called memory cells. The horizontal line passing through the top of the neuron is called

the memory cell state. An LSTM has the ability to remove or add information to the memory

cell state by using gates. The gates are defined as weighted functions that govern information

flow in the memory cells. The gates are composed of a sigmoid layer and a point-wise operation

to optionally let information through. The sigmoid layer outputs a number between zero (to let

nothing through) and one (to let everything through).

There are three types of gates, namely, forget, input, and output.

• Forget gate (Figure 2.6 (a)): Decides what information to discard from the memory cell.

Equation 2.8 shows the mathematical representation of the forget gate.

ft = σ(Wf .[ht−1, xt] + bf ) (2.8)

where Wf is the connection weight between the inputs (ht−1 and xt) and the sigmoid layer;

bf is the bias term and σ is the sigmoid activation function. In this gate, ft = 1 means that

completely keep the information and ft = 0 means that completely get rid of the information.
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• Input gate (Figure 2.6 (b)): Decides which values to be used from the network input to

update the memory state. Equation 2.9 shows the mathematical representation of the input

gate.

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.9)

where Ct is the new memory cell state and Ct−1 is the old cell state, which is multiplied by

ft to forget the information decided by the forget gate; C̃t is the new candidate value for the

memory state, which is scaled by it as how much the gate decides to update the state value.

• Output gate (Figure 2.6 (c)): Decides what to output based on the input and the memory

state. Equation 2.10 shows the mathematical representation of the output gate. This gate

pushes the cell state values between -1 and 1 by using a hyperbolic tangent function and

multiplies it by the output of its sigmoid layer to decide which parts of the input and the cell

state to output.

ot = σ(Wo.[ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)
(2.10)

An LSTM network for time series modeling takes the values of p past records (Rt−i, (i =

1, ..., p)) as input and predicts the value of the current record (Rt) in its output. LSTM modeling

techniques can model non-linear long-term sequential dependencies among the data records in

univariate/multivariate time series, which makes them more practical for real-world applications.

Moreover, LSTMs have the ability to learn seasonality [99]. However, the trained network is a

complex equation over the attributes of the data records, which is not human interpretable.

Support Vector Machine (SVM [83]). An SVM model maps the data from the input space into a

higher-dimensional feature space using a non-linear mapping (referred to as a Kernel Function) and

then performs a linear regression in the new space. The linear model in the new space represents a

non-linear model in the original space.
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An SVM for time series modeling uses the training data as pairs of input and output, where

an input is a vector of p previous data records in the time series and the output is the value of the

current data record. Equation 2.11 shows the mathematical representation of a non-linear SVM

regression model.

Rt = b+
∑

p

αiϕ(Rt−i) (2.11)

where Rt is the data record at time t, ϕ is a kernel function, such as Gaussian RBF [100], and

Rt−i is the ith previous record in the time series.

The SVM modeling techniques can model both linear and non-linear functions for predict-

ing time series values. However, these techniques require an enormous amount of computation,

which makes them inapplicable to large datasets [83]. Moreover, the trained model is not human

interpretable.

Hierarchical Temporal Memory (HTM [101]).

This is an unsupervised technique that continuously models time-series data using a memory

based system. An HTM uses online learning algorithms, which store and recall constraints as

spatial and temporal patterns in an input dataset. An HTM is a type of neural network whose

neurons are arranged in columns, layers, and regions in a time-based hierarchy. This hierarchical

organization considerably reduces the training time and memory usage because patterns learned

at each level of the hierarchy are reused when combined at higher levels. The learning process of

HTM discovers and stores spatial and temporal patterns over time. Once an HTM is trained with

a sequence of data, learning new patterns mostly occurs in the upper levels of the hierarchy. An

HTM matches an input record to previously learned temporal patterns to predict the next record.

It takes longer for an HTM to learn previously unseen patterns. Unlike deep learning techniques

that require large datasets to be trained, an HTM requires streamed data. The patterns discovered

by this technique are not human interpretable.
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2.2.1.2 Time Series Decomposition Techniques

These techniques decompose a time series into its components, namely level (the average value

of data points in a time series), trend (the increasing or decreasing value in the time series), sea-

sonality (the repeating cycle in the time series), and noise (the random variation in the time se-

ries) [102, 103]. Next, they monitor the noise component to capture the anomalies. These ap-

proaches report as anomalous the data record Rt whose absolute value of noise is greater than a

threshold.

These techniques consider the time series as an additive or multiplicative decomposition of

level, trend, seasonality, and noise. Equation 2.12 and 2.13 shows the mathematical representation

of additive and multiplicative models respectively.

Rt = lt + τt + st + rt (2.12)

Rt = lt ∗ τt ∗ st ∗ rt (2.13)

where Rt is the data record at time t, lt is the level as the average value of data records in a time

series, τt is the trend in time series, and st is the seasonal signal with a particular period, and rt is

the residual of the original time series after the seasonal and trend are removed and is referred to

as noise, irregular, and remainder. In this model, st can slowly change or stay constant over time.

In a linear additive model the changes over time are consistently made by the same amount.

A linear trend is described as a straight line and a linear seasonality has the same frequency (i.e.,

width of cycles) and amplitude (i.e., height of cycles) [104].

In a non-linear multiplicative model, the changes increase or decrease over time. A non-linear

trend is described as a curved line and a non-linear seasonality has increasing or decreasing fre-

quency or amplitude over time [104].
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Different approaches are proposed in the literature to decompose a time series into its com-

ponents. Seasonal-Trend decomposition using LOESS (STL) is one of the most commonly used

approaches, which is described as follows.

Figure 2.7: STL Decomposition of Liquor Sales Data [8]

Seasonal-Trend decomposition using LOESS (STL) [105]. This approach uses LOESS (LO-

cal regrESSion) smoothing technique to detect the time series components. LOESS is a non-

parametric smoother that models a curve of best fit through a time series without assuming that the

data must follow a specific distribution. This method is a local regression based on a least squares

method; it is called local because fitting at point t is weighted towards the data nearest to t. The

effect of a neighboring value on the smoothed value at a certain point t decreases with its distance

to t. Figure 2.7 shows an example of the STL decomposition for a liquor sales dataset. This Figure

shows the trend, seasonality, and noise components extracted from an original time-series data.

The time series decomposition techniques provide non-complex models that can be used to

analyze the time-series data and detect anomalies in the data. However, in real-world applications,

we may not be able to model a specific time series as an additive or multiplicative model, since
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real-world datasets are messy and noisy [104]. Moreover, the decomposition techniques are only

applicable to univariate time series data.

2.2.2 Approaches to Detect Anomalous Sequences

The approaches proposed in the literature to detect anomalous sequences are based on (1) split-

ting the time-series data into multiple subsequences, typically based on a fixed size overlapping

window, and (2) detecting as anomalous those subsequences whose behavior is significantly dif-

ferent from the majority of subsequences in the time series. Examples of these approaches are

Clustering, Autoencoder, and LSTM-Autoencoder.

Clustering [103]. These techniques extract subsequence features, such as trend and seasonality.

Table 2.4 shows the time series features from the TSFeatures CRAN library [82]. Next, an un-

supervised clustering technique, such as K-means [64] and Self-Organizing Map (SOM) [106] is

used to group the subsequences based on the similarities between their features. Finally, internal

and external anomalous sequences are detected. An internal anomalous sequence is a subsequence

that is distantly positioned within a cluster. An external anomalous sequence is a subsequence that

is positioned in the smallest cluster.

Distance-based clustering algorithms cannot derive relationships among multiple time series

features in their clusters [67]. Moreover, these techniques only detect anomalous sequences with-

out determining the records/attributes that are the major causes of invalidity in each sequence.

Autoencoder [77]. An autoencoder is a deep neural network that discovers constraints in the un-

labeled input data. An autoencoder is composed of an encoder and a decoder. The encoder com-

presses the data from the input layer into a short representation, which is a non-linear combination

of the input elements. The decoder decompresses this representation into a new representation

that closely matches the original data. The network is trained to minimize the reconstruction error

(RE), which is the average squared distance between the original data and its reconstruction [13].

The anomalous sequence detection techniques based on autoencoders (1) take a subsequence

(i.e., a matrix of m records and d attributes) as input, (2) use an autoencoder to reconstruct the sub-
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sequence, (3) assign an invalidity score based on the reconstruction error to the subsequence, and

(4) detect as anomalous those subsequences whose invalidity scores are greater than a threshold.

In an autoencoder network for anomalous sequence detection, the input (Ti) and output (T ′
i )

are fixed-size subsequences. Ti is the ith subsequence that contains w records, w is the window

size, and Xi,j = [x0
i,j, ..., x

d−1
i,j ] is the jth record in Ti with d attributes. The network output has

the same dimensionality as the network input. The encoder investigates the dependencies from the

input subsequence and produces a complex hidden context (i.e., d′ encoded features). The decoder

reconstructs the subsequence from the hidden context and returns a subsequence with shape (d∗w).

The reconstruction error for this network is defined as follows [13]:

RE =
1

m

m−1
∑

i=0

(T ′
i − Ti)

2 (2.14)

where Ti and T ′
i are the ith network input and output and m is the total number of subsequences.

These techniques can learn complex non-linear associations among data attributes in the time

series as a result of using a deep architecture with several layers of non-linearity. However, these

techniques are not able to model temporal dependencies among the data records in an input subse-

quence.

LSTM-Autoencoder [77]. An LSTM-Autoencoder is an extension of an autoencoder for time-

series data using an encoder-decoder LSTM architecture. As described in Section 2.6, an LSTM

network uses internal memory cells to remember information across long input sequences. As a

result, an LSTM-Autoencoder can capture the temporal dependencies among the input records by

using LSTM networks as the layers of the autoencoder network.

Figure 5.3 shows the LSTM-Autoencoder architecture. The input and output are fixed-size time

series matrices. Xi,j = [x0
i,j, ..., x

d−1
i,j ] is the jth record with d attributes, Ti is the ith time series that

contains w records, and w is the window size. The network output has the same dimensionality as

the network input. The network is composed of two hidden layers that are LSTMs with d′ units.

The first LSTM layer functions as an encoder that investigates the dependencies from the input
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Figure 2.8: An LSTM-Autoencoder Network

sequence and produces a complex hidden context (i.e., d′ encoded time series features, where the

value of d′ depends on the underlying encoding used by the autoencoder). The second LSTM layer

functions as a decoder that produces the output sequence, based on the learned complex context

and the previous output state. The TimeDistributed layer is used to process the output from the

LSTM hidden layer. This layer is a dense (fully-connected) wrapper layer that makes the network

return a sequence with shape (d ∗ w). The reconstruction error for this network is defined as

follows [13]:

RE =
1

m

m
∑

i=1

(T ′
i − Ti)

2 (2.15)

where Ti and T ′
i are the ith network input and output and m is the total number of subsequences.

These techniques can learn complex non-linear long-term associations among multiple data

records and attributes as a result of using a deep network and the memory cells in their architecture.

However, these associations are in the form of complex equations that are not human interpretable.

2.2.3 Summary

Table 2.5 summarizes different data quality test approaches for anomalous record and sequence

detection. The blank cells mean “not applicable to”. We have identified the following open prob-

lems in testing the time-series data.

Inapplicability to real-world time series. The stochastic time series analysis approaches only

analyze univariate time-series data. Moreover, they assume that the time series is linear and follows
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Table 2.5: Data Quality Test Approaches for Sequence Data

Approach Time

Series

Type

Anomaly

Type

Modeling

Non-linearity

Modeling

Seasonal-

ity

Modeling

Long-term

Dependen-

cies

AR Univariate Records

MA Univariate Records

ARIMA Univariate Records

SARIMA Univariate Records X

HW Univariate Records X

MLP Univariate Records X

SANN Univariate Records X X

LSTM Mulivariate Records X X X

SVM Mulivariate Records X

HTM Multivariate Records X X X

STL Univariate Records X X

Clustering Univariate Sequences X X

Autoencoder Multivariate Sequences X

LSTM-Autoencoder Multivariate Sequences X X X

a known statistical distribution. As a result, these classical time series modeling approaches do not

apply to real-world multivariate time-series data with non-linear associations among data records

and attributes. We propose to use a Machine Learning-based approach, which supports non-linear

modeling, with no assumption about the statistical distribution of the data.

Unable to detect both anomaly types. Most of the existing stochastic (AR, MA, ARIMA, and

SARIMA) and Machine learning-based approaches (MLP, SANN, LSTM, and SVM) can only

detect anomalous records in time-series data. The approaches that detect anomalous sequences

(clustering, autoencoder, and LSTM-Autoencoder) do not determine the anomalous records that

are the major causes of invalidity in each sequence. We propose to assign a suspiciousness score

to each record in an anomalous sequence to indicate the level of invalidity of the record in that

sequence.

Unable to model long-term dependencies among data records. Most of the existing stochas-

tic and Machine Learning-based approaches are unable to model long-term dependencies between
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data records. These approaches model the time series as a linear or non-linear function that asso-

ciates current value of a time series to a small number of its past values. We propose to use an

LSTM-based approach with memory cells in its structure that can model long-term dependencies

between the data records.

Potential to generate false alarms. The unsupervised learning approaches, such as Autoencoder

and LSTM-Autoencoder have the potential to learn incorrect constraints pertaining to the invalid

data records and sequences and generate false alarms. False alarms can make the anomaly inspec-

tion overwhelming for the domain experts [12]. We propose to use an interactive learning-based

LSTM-Autoencoder to minimize the false alarms.

Lacking a systematic approach to set input size. In the existing Anomalous sequence detection

approaches, constraints are discovered within an input subsequence, the size of which is typically

selected based on a fixed-sized window [107] or by using an exhaustive brute-force approach [108].

Since the window size can considerably affect the correctness of the discovered constraints, fixed-

sized windows are not appropriate. Brute-force window-size tuning can be expensive. We propose

a systematic autocorrelation-based windowing technique that automatically adjusts the input size

based on how far the records are related to their past values.

Lacking explanation. The existing data quality test approaches for sequence data do not explain

which constraints are violated by the anomalous sequences. Moreover, they do not determine the

records or attributes that are major causes of invalidity of the anomalous sequences. We generate

visualization diagrams of two types to describe the detected faults: (1) suspiciousness scores per

attribute and (2) decision tree.
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Chapter 3

ADQuaTe Framework

Section 3.1 presents examples datasets that are used to motivate the approach, describe the

components, and demonstrate the usefulness of the framework. Section 3.2 describes the compo-

nents in detail and Section 3.3 shows how parameters are tuned in ADQuaTe. Section 3.4 presents

the specifications of the ADQuaTe tool and Section 3.5 describes the infrastructure we designed

and implemented to run the evaluation experiments.

3.1 Running Examples

We use non-sequence data from health and plant diagnosis domains and sequence data from

Yahoo traffic servers and NASA Shuttle datasets to motivate why a systematic approach is required

for constraint discovery and anomaly detection. We show what happens when domain experts miss

important constraints that must be checked in these domains.

3.1.1 Non-sequence Data

Health Data Compass [22] integrates patient clinical data from hospitals into a single target data

warehouse to support research on diseases, drugs, and treatments. Table 3.1 shows the schema of

the Drug_exposure table. Table 3.2 shows some of the constraints defined by the Observational

Health Data Sciences and Informatics (OHDSI) [40] experts to check Drug_exposure data. Data

quality tests are then created by the OHDSI developers as queries that verify the constraints. Ta-

ble 3.3 shows examples of queries that check the constraints presented in Table 3.2. The data is

validated against these constraints by running the queries whenever new data is added or previous

data is modified. The results are IDs of the faulty records and the Error_messages that indicate a

high-level description of the violated constraints.
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Table 3.1: Schema of Drug_exposure Table

Attribute Name Data Type Description

ID Numeric Unique

Name Text Nullable

Unit Text Nullable

Route Text Nullable

Days supply Numeric Nullable

Dose Numeric Nullable

Quantity Numeric Nullable

Refills Numeric Nullable

Table 3.2: Constraints Defined for Drug_exposure Table

Constraint name Constraint

1 Implausible quantity Drug quantity must be less than 600

2 Too high number of refills Drug refills must be less than 10

3 Null concept Drug name must not be NULL

4 Invalid concept Drug name must be in predefined set of

concepts

Table 3.3: Data Quality Tests for Drug_exposure Table

Data Quality Test (Query)

1 Select ID, ‘Implausible quantity’ as Error_message from

Drug_exposure

where Quantity ≥ 600
2 Select ID, ‘Too high number of refills’ as Error_message from

Drug_exposure

where Refills ≥ 10

3 Select ID, ‘Null concept’ as Error_message from Drug_exposure

where Name is null

4 Select ID, ‘Invalid concept’ as Error_message from

Drug_exposure

where Name is not in (Select Concept_name from Concepts)

A data record may contain an incorrect value for the day’s supply of a specific drug. However,

no constraint is defined in Table 3.2 to restrict the values for different drugs. Incorrect values in

this attribute can have disastrous consequences for patients.

The Colorado State University Plant Diagnostic Clinic database [23] contains plant disease

information and provides recommendations to clients, such as commercial growers and crop con-

sultants. Table 3.4 shows the schema of the Plant_diagnosis table. A record may contain an
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incorrect value for the diagnosis of a specific plant category. Incorrect values in plant diagnosis

attributes have consequences for plant health and food security in the agricultural industry.

Table 3.4: Schema of Plant_diagnosis Table

Attribute Name Data Type Description

ID Numeric Unique

Host Text Nullable

Diagnosis ID Text Nullable

Genus Confirmation Text Nullable

Diagnosis Needed Text Nullable

Suspected Problem Text Nullable

Sample Category Text Nullable

3.1.2 Sequence Data

We use the Yahoo server traffic datasets in the Yahoo Webscore program [24], the NASA Shut-

tle dataset in the UCI ML repository [25], and a real-world Energy dataset from the CSU’s Smart

Village Microgrid Lab at the Energy Institute [26]. The Yahoo server traffic datasets contain real

and synthetic univariate time series, each of which contains 1,420 time ordered records with one

time-dependent attribute called traffic_value. These datasets contain time series with random sea-

sonality, trend and noise. Each data-point represents one hour’s worth of traffic data. Table 3.5

shows the schema of the Yahoo server traffic table. Anomalies in the Traffic_value indicate poten-

tial security threats to the Yahoo user’s data.

Table 3.5: Schema of Yahoo Server Traffic Table

Attribute Name Data Type Description

ID Numeric Unique

Time DateTime Nullable

Traffic_value Float Nullable

The NASA Shuttle multivariate dataset contains 58,000 time-ordered records with eight time-

dependent numerical attributes, namely, A1 to A8. Table 3.6 shows the schema of the NASA
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Shuttle table. Incorrect values in these attributes have negative consequences for the aerospace

industry that conducts research, designs, manufactures, operates, and maintains the spacecrafts.

Table 3.6: Schema of NASA Shuttle Table

Attribute Name Data Type Description

ID Numeric Unique

Time DateTime Nullable

A1 Float Nullable

A2 Float Nullable

A3 Float Nullable

A4 Float Nullable

A5 Float Nullable

A6 Float Nullable

A7 Float Nullable

A8 Float Nullable

The Energy multivariate dataset contains 1,048,575 time-ordered records with one categorical

(Classification) and one numeric (deliveredKWH) attribute. This dataset merges values of power

delivered by different residential and commercial premises in the city of Fort Collins, Colorado.

The classification attribute stores values of premise type, which are "Residential" and "Commer-

cial". The deliveredKWH attribute stores values of power in KWH for the premises. Table 3.7

shows the schema of the Energy table.

Table 3.7: Schema of Energy Table

Attribute Name Data Type Description

ID Numeric Unique

Time DateTime Nullable

Classification Text Nullable

deliveredKWH Numeric Nullable
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3.2 ADQuaTe Components

Figure 3.1 shows an overview of ADQuaTe. The input is in the form of data records and the

output consists of a report showing suspicious groups or sequences accompanied with an explana-

tion of the violated constraints. ADQuaTe uses data preparation, constraint discovery, anomaly

detection, anomaly interpretation, and anomaly inspection components with the following fea-

tures.

Figure 3.1: ADQuaTe Overview

3.2.1 Data preparation

This component automatically prepares the input data by transforming it from the raw format

into a form that is suitable for analysis. Data attributes need to be preprocessed based on their types

and values. We use the one-hot encoding [109] method for preprocessing the categorical attributes

and normalization [110] method for the numeric attributes in both non-sequence and sequence

datasets.

Categorical attributes. The attributes Name, Unit, and Route in Table 3.1 and Host, Diagnosis

ID, Genus Confirmation, Diagnosis Needed, Suspected Problem, and Sample Category in Table 3.4

are categorical. Such attributes typically have string values, which cannot be directly used by the

machine learning algorithms and must be converted to numeric values. Techniques that do not

use preprocessing typically convert numeric string values to their corresponding numeric values

and those that are not numeric to label-encoded numeric values. However, as a result, machine

learning algorithms will treat all the attributes as numeric and incorrectly assume a natural ordering

between the categories. For example, ordering should not be considered for the Name attribute
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in the Drug_exposure table. One-hot encoding [111] addresses this issue by transforming each

categorical attribute with n possible values into n binary attributes, with only one active value

for each record. Due to the large number of new binary attributes generated from the categorical

attributes, this component uses sparse matrices to store the values of the new attributes and to

manage column explosion.

Numeric attributes. The attributes Days Supply, Dose, Quantity, and Refills in Table 3.1, Traf-

fic_value in Table 3.5, and A1 to A8 in Table 3.6 are numeric. Numeric attributes typically vary in

magnitude and range. The attributes with high magnitudes or ranges may carry a lot more weight

in the learning calculations than the ones with low magnitudes or ranges [112]. To suppress this

effect, we need to re-scale all the attributes to the same level of magnitude and range. This can be

achieved by min-max scaling [110] that translates each attribute individually such that it is in the

given range. Consequently, the attributes that have larger values but are of lower significance will

not end up dominating the result. ADQuaTe scales each numeric attribute to a number between

−1 and 1.

The sequence data must be transformed into the right shape (i.e., input size) for input to the next

component. We instantiate this component for the sequence data using an autocorrelation-based

reshaping approach that we propose to improve the correctness and performance of constraint

discovery over manual approaches. This technique adjusts the input size based on how far the

records are related to their past values. Section 5.1.1 describes this instantiation in detail.

3.2.2 Constraint discovery

This component obtains a trained model that represents different types of constraints in the

unlabeled input data. The component uses unsupervised autoencoder-based deep learning tech-

niques to discover different types of complex constraints associated with the unlabeled records.

The unsupervised techniques remove the need for labels, which are typically unavailable for big

datasets. Moreover, even if labels are used, they can be assigned to the records only based on

known constraints.
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An autoencoder-based network is composed of an encoder and a decoder. The encoder com-

presses the data from the input layer into a short representation. An input data X is mapped into a

hidden representation Z with, which is non-linear combination of the input elements. The decoder

decompresses Z into a new representation X ′ that closely matches the original data. X ′ is called

a reconstruction of X . The network is trained to minimize the reconstruction error (RE), which is

the average squared distance between the original data and its reconstruction [13].

RE =
1

n

n−1
∑

i=0

(X ′
i −Xi)

2 (3.1)

where n is the total number of inputs, Xi is the ith network input, and X ′
i is the ith network

output.

The constraints discovered by the deep learning models are in the form of non-linear equations

that formulate the associations among data attributes and records and can be extracted from the

trained model. These constraints are not human-interpretable. Further steps are required to explain

the identified constraints to the domain experts.

This component uses unsupervised techniques that can potentially learn incorrect constraints

from invalid data and generate false alarms. We use an interactive learning approach that takes

the expert’s feedback to retrain the learning model and improve its accuracy. We extend the deep

network architecture by adding a label as a new input to the network structure. In Section 3.2.5,

we describe how this label (1: faulty, 0.5: suspicious, 0: unknown, and -1: valid) is updated using

domain expert feedback in every interaction. We redefine the reconstruction error of autoencoder-

based network based on the labels to minimize false alarms. The network is trained to minimize

both the difference between the input and its reconstruction, and the difference between the record

labels and the labels predicted by the network.

We instantiate this component using an autoencoder [13] for non-sequence data and an LSTM-

Autoencoder [20] for sequence data. An autonecoder uses a deep architecture that can model

constraints involving both linear and non-linear relationships among data attributes. An LSTM-

Autoencoder uses memory cells in its architecture that can discover constraints involving long-term
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non-linear associations among data records and attributes. Sections 4.1.2 and 5.1.2 describe these

instantiations in detail.

3.2.3 Anomaly detection

This component automatically detects suspicious records and sequences that do not conform

to the constraints represented by the trained model. Unlike typical data quality testing approaches,

anomaly classification in ADQuaTe is non-binary; each record or sequence is assigned a contin-

uous suspiciousness score (s-score) between zero and one instead of being classified as valid or

invalid. Records or sequences that do not conform to the discovered constraints (i.e., records or

sequences whose s-score is greater than a threshold) are flagged as suspicious.

Autoencoder-based learning models discover constraints as associations among a majority of

the data records. Anomalous records are usually in a minority in typical datasets [113] and are dif-

ficult to reconstruct by an autoencoder-based learning model that is trained using such datasets

(i.e., the reconstruction error of the anomalous records are greater than the ones of the valid

records) [113–116]. We had a similar experience with the health, plant, Yahoo server, NASA

Shuttle, and UCI datasets, where the anomalous records were in a minority; the percentage of

anomalous records was between 0.02% to 35.89%. As a result, we use the reconstruction error in

this component to identify suspicious records or sequences. The s-scores are defined based on the

reconstruction error and the record labels. Using labels in the definition of s-scores ensures that no

valid sequences or records are reported as suspicious in the retraining phase, thereby minimizing

false alarms.

The number of suspicious records may be too high for inspection by domain experts. ADQuaTe

organizes these records in suspicious sequences for time-series data and in clusters for non-

sequence data to make the anomaly inspection feasible. ADQuaTe uses a clustering technique

called Self Organizing Map (SOM) [106] to group the non-sequence suspicious records based on

their similarity (Section 4.1.3). This approach reduces the inspection time as the number of se-
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quences and groups is far smaller than the number of records. The records in one sequence or

group are likely to violate the same constraints.

3.2.4 Anomaly interpretation

The associations learned by the deep learning model are in the form of non-linear equations

that are not human interpretable. To address this problem, we display s-score_per_record for the

records in the suspicious group or sequence to highlight the contribution of each record to the in-

validity of the group or sequence. We also generate two types of visualization plots to describe

the constraints violated by the detected anomalies: (1) s-score_per_attribute and (2) decision trees

generated using a random forest classifier [14]. These plots help domain experts inspect the sus-

picious groups or sequences. Sections 4.1.4 and 5.1.4 describe how this component is instantiated

for non-sequence and sequence data respectively.

s-score_per_record. ADQuaTe uses the reconstruction error of the autoencoder-based network

to calculate the invalidity level of a record in a group or sequence detected as suspicious by our

approach. Sections 4.1.4 and 5.1.4 present how we calculate this value based on the reconstruc-

tion errors of the autoencoder and LSTM-Autoencoder for the non-sequence and sequence data

respectively.

s-scores_per_attribute plot. This plot displays the contribution of each attribute to the invalidity

of a group or sequence. The horizontal axis indicates the attribute names and the vertical axis

indicates their level of invalidity. The s-score of every attribute of a single record is extracted

from the trained autoencoder-based model. The higher the value of s-score for an attribute, the

more suspicious is the attribute, and as a result, the more likely is the attribute to contribute to the

invalidity of the group or sequence. For each group or sequence we generate a plot showing the

s-score values for all the attributes in the group or sequence.

Decision Tree. This display describes the constraints violated by each of the suspicious groups

or sequences. Decision trees are one of the easiest to understand models [48]. In a decision

tree structure, the non-leaf nodes correspond to variables (i.e., attributes of records or features
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of sequences), the edges correspond to the possible values of the variables, and every leaf node

contains the label of the path described by the variable values from the root to that leaf node.

A random forest [14] generates a number of trees on various subsets of a dataset, whereas

the basic decision tree classifier [48] generates only one tree. We use the random forest classifier

because it uses the average prediction obtained from the trees to improve the predictive accuracy

and to prevent overfitting [117] to the training dataset.

The random forest classifier is a supervised technique, which requires labeled data. ADQuaTe

labels the suspicious records or sequences as invalid and all the non-suspicious records or se-

quences as valid and uses this data to train the classifier. Among all the generated trees, the three

ones with the lowest classification error are displayed via the web interface of the ADQuaTe tool.

The decision trees represent a set of if-then-else decision rules. These rules describe the con-

straints that identify records or sequences as valid or invalid based on their variable values. The

random forest classifier uses decision tree algorithms, such as ID3 [118] and Classification And

Regression Trees (CART) [119]. ID3 builds a multi-way tree (i.e., a tree with nodes that can have

more than two edges) for categorical variables and CART builds a binary tree (i.e., a tree with

nodes that have exactly two outgoing edges) for both numeric and categorical variables. ADQuaTe

uses a random forest classifier in the H2O platform [120] (i.e., a fully open-source, distributed

in-memory machine learning platform) based on the CART algorithm to construct the trees. A

decision tree is built top-down from a root node to the leaf nodes and involves partitioning the data

into subsets that contain records or sequences with similar labels (i.e., homogeneous subsets). The

decision tree algorithms use an impurity criterion to calculate the homogeneity of a subset. If a

subset is completely homogeneous (i.e., all the records or sequences are either valid or invalid),

then the impurity is equal to zero. If the subset is equally divided (i.e., half of data records or

sequences in the subset is valid and the other half is invalid), then the impurity is equal to one.

Constructing a decision tree is based on finding the variables that result in the most homogeneous

subsets. At each level of the tree, the algorithm chooses a variable that results in subsets with the

lowest impurity and splits the dataset into subsets based on the values of that variable. The algo-
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rithm repeats the same process on every branch of the tree until reaching the homogeneous subsets

(i.e., leaf nodes with labels 0.0 or 1.0).

We tuned the maximum depth of the trees generated by the random forest to the value 5 based

on our trial experiments; it became too hard for the domain experts to understand the constraints

when we used values greater than 5. As we limited the maximum level of the decision tree, the

splitting of the subsets may stop before reaching to homogeneous subsets. As a result, there may

exist leaf nodes with labels between zero and one, which indicates the probability of being invalid

for the records or sequences described by the path from the root node to that leaf node. For

example, a label value equal to 0.6 indicates that in the resulting subset from the root node to that

leaf node, 60% of the records or sequences are invalid and 40% of the records or sequences are

valid. The probability for the records or sequences described by the values of variables in this path

of being invalid is equal to 0.6.

3.2.5 Anomaly inspection

The suspicious groups or sequences of records may contain false alarms as a result of the

unsupervised technique used by the constraint discovery component. Unsupervised techniques

do not distinguish between valid and invalid data in the training set. These techniques have the

potential to learn incorrect constraints from invalid data and generate false alarms.

ADQuaTe minimizes false alarms through an interactive learning process [15] that can in-

corporate domain expert feedback (when available) to improve the accuracy of the approach.

ADQuaTe allows domain experts to inspect the suspicious groups or sequences. Domain experts

use a web-based interface to flag as faulty those groups or sequences of records that are actually

faulty. The expert feedback is used by ADQuaTe to label the training data records as described

in Section 3.2.5.1. Sections 3.2.5.2 and 3.2.5.3 describe how the labels are used by the constraint

discovery and anomaly detection components to improve the accuracy of the approach.
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3.2.5.1 Update Training Dataset for Retraining

We add a label attribute with four possible values (1: faulty, 0.5: suspicious, 0: unknown,

and -1: valid) to each record in the input dataset. The label is initially 0 for every record. The

values of the label are updated based on the feedback. Records in a group or sequence marked

as suspicious by the anomaly detection component are labeled 0.5, out of which those marked as

actually anomalous by the domain expert are labeled 1, and those not marked are labeled -1. Labels

of records that are not reported suspicious by ADQuaTe remain 0. The updated dataset is used to

retrain the machine learning model. Figure 3.2 shows the process of updating the training set for

the retraining phase. The steps are as follows:

Figure 3.2: Process of Updating Training Dataset
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(a) The table in Figure 3.2 (a) shows the initial dataset for the training phase. In this dataset,

the labels are zero. The constraint discovery component uses this initial dataset to train the

learning model.

(b) The table in Figure 3.2 (b) shows how the anomaly detection component modified the labels

from 0 (unknown) to 0.5 (suspicious) based on the calculation of s-score by the anomaly

detection component (Section 3.2.5.3).

(c) Figure 3.2 (c) shows the web-based interface of the ADQuaTe tool that reports two groups

or sequences of suspicious records. In this example, the domain expert marked Group 2 as

faulty.

(d) The table in Figure 3.2 (d) shows how ADQuaTe updated the label values of the records in

the dataset based on the expert feedback. The labels of the marked and unmarked records are

updated to 1 and -1 respectively because the domain expert determines a group or sequence

as valid by not flagging that group. All the other record labels (i.e., labels of records that are

not reported by ADQuaTe as suspicious) remain 0.

3.2.5.2 Incorporate Expert Feedback into Constraint Discovery

We incorporate domain expert feedback into the constraint discovery component by (1) defin-

ing the reconstruction error of autoencoder-based network based on the label value and (2) initial-

izing the network parameters for the retraining phase.

Define reconstruction error based on label value. In addition to the existing inputs, we also

provide the label to the deep network. Unlike the other attributes, the labels are not preprocessed

as their values are already appropriately scaled between -1 and 1. The network is trained not only

to minimize the difference between the records and their reconstruction (the original reconstruction

error), but also to minimize the difference between the record labels and the labels predicted by

the network. Sections 4.1.2 and 5.1.2 describe how we define the reconstruction errors of the

autoencoder and LSTM-Autoencoder based on the label values for the non-sequence and sequence

data respectively.
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Initialize autoencoder parameters for retraining. The original autoencoder-based network uses

randomly initialized parameters, such as weight and bias values [97]. To improve the accuracy in

each retraining phase, we initialize the network parameters with the values learned in the previous

execution. The objective is to ensure that the network does not lose any information from the

previous execution and the network is at least as accurate as the previous trained network.

3.2.5.3 Incorporate Expert Feedback into Anomaly Detection

We incorporate domain expert feedback into the anomaly detection component by (1) defining

the s-score based on the label values and (2) tuning the threshold value.

Define s-score based on record labels. ADQuaTe calculates the s-score based the reconstruc-

tion error and the labels obtained using domain expert feedback. The objective is to ensure that

ADQuaTe will not report as suspicious any valid record (i.e., records that ADQuaTe flagged as

suspicious in previous executions but not flagged by the expert) in subsequent executions. More-

over, all the records marked as faulty by the domain expert in previous executions will be reported

as confirmed faulty in subsequent executions. These records are reported in a separate group from

the suspicious records and have higher s-score values.

Tune threshold. The threshold value (T) is tuned to reduce the false alarms over time. At the

beginning of the training phase, T is equal to the mean of s-scores of all the input records. T is

updated for the retraining phase.

Given the s-scores of unmarked (valid) records in the range [a,b] and the s-scores of marked

(faulty) records in the range [c,d], as b < c, there is no overlap between the s-scores of faulty and

valid records. Equation 3.2 describes how ADQuaTe tunes T for the retraining phase to make sure

that no valid records are displayed as suspicious in the next iteration.

T =















min(c, P ) if P > 0,

min(c, p(s-scores, 90)) otherwise

(3.2)
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where P is the percentage of previously known anomalies for the input dataset and p is the

percentile function. This function returns a value below which a given percentage of records in the

dataset falls. Based on this equation, if there is a set of previously known anomalies in the dataset,

ADQuaTe detects at least P% of records as suspicious to ensure that all the previously detected

anomalies are reported in the current iteration. We set the threshold at 10% for datasets with no

known anomalies because the average percentage of known anomalies in the datasets used by this

study as well as 26 other datasets [121] from the UCI repository is equal to 10%. Domain experts

can change this value based on the knowledge of the validity of their datasets.

3.3 Tune ADQuaTe Hyper-Parameters

ADQuaTe uses a grid search approach [122] to tune the parameters of the machine learning

models. Grid search is a brute force approach that scans the data to configure optimal hyper-

parameters for a given model. Hyper-parameters are parameters that are not automatically learned

within the learning process. The grid search technique builds a model for every combination of

various hyper-parameters and selects the model that gives the highest accuracy. The grid search

technique outperforms the random and optimization [123] techniques because it considers all pa-

rameter combinations in the model selection. However, this consideration can be problematic when

the number of hyper-parameters is large. In our approach the number of hyper-parameters is small.

They are the number of hidden layers, the number of neurons, and the number of epochs [13].

Thus, the number of parameter combinations is not a problem.

Grid search approaches used for autoencoder-based models select a model that minimizes the

reconstruction error [124]. However, this model may overfit on the training data and learn incorrect

constraints pertaining to the invalid data. In Section 4.2, we demonstrate that a model with the

lowest error is not necessarily the most effective model and has the potential to generate false

alarms. We propose to use ground truth knowledge (i.e., a set of known anomalies) to select a

model that maximizes the true positive rate as the percentage of the previously known anomalies

in the data. We use a wide range of values for the autoencoder hyper-parameters to form 300
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different models. In Section 4.2, we demonstrate that the selection of the best model is application

specific.

We also propose to use an early stopping [16] technique instead of training the network until

the error reaches its minimum value [97]. This technique sets the number of epochs for controlling

overfitting in machine learning models. By increasing the number of epochs (i.e., by over-training

the network), the reconstruction error decreases [97]. However, the network starts learning the

incorrect constraints from the anomalous data. As a result, the training process must be stopped

before the network is overfitted on the training data. On the other hand, stopping too early may

result in under-fitting [125] of the network, in which the model has not completely learned the

complex constraints from the data and as a result, is not capable of detecting complex constraint

violations. We propose to stop the training process at the point when the true positive rate starts

dropping after a certain number of epochs. In Section 4.2, we show how to use the true positive

rate to find the best stopping point and demonstrate that this stopping point is application specific.

3.4 ADQuaTe Tool

We implemented the components of ADQuaTe in an open-source web-based tool [21]. We

started the implementation of ADQuaTe with a concrete web application that only supported con-

straint discovery and anomaly detection in non-sequence data. Then we created a new version for

sequence data. The components of the two versions have some functionalities in common and

others unique to each version. We designed the ADQuaTe framework by grouping the common

functionalities and adding the ability to extend or modify the components.

In this section, we describe the design of the ADQuaTe tool. Figure 3.3 shows the logical

view of the tool architecture that contains UI, Domain, and Library layers. There are two web

pages in the UI layer, namely, Import and Validate. As shown in the Library layer, we used

H2O [126], TensorFlow [127], and Scikit-learn [128] open source libraries for the implementa-

tion of the machine learning algorithms used in the ConstraintDiscovery, AnomalyDetection, and

AnomalyInterpretation classes of the Domain layer. We used Pandas [129] library for connecting
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to the database server by the AnomalyInspection and DataPreparation classes. We used Statis-

tics [130], Graphviz [131], and CRAN [82] libraries to generate the visualization plots for the

AnomalyInterpretation class.

Figure 3.3: Logical View of ADQuaTe Tool Architecture

Figure 3.4: Deployment View of ADQuaTe Tool Architecture

Figure 3.4 shows the deployment view of the tool architecture. We used HTML to implement

the user interface. A Python-based web framework called Flask was used to develop the web server
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on (1) an Ubuntu virtual machine (2 vCPUs, 3.75 GB memory) on the Google Cloud Platform for

the health datasets, (2) a Fedora physical machine (4 GHz CPU, 32 GB memory) on the Depart-

ment of Computer Science at CSU for the UCI datasets, and (3) an Ubuntu virtual machine (2.20

GHz CPU, 8 GB memory) on an Energy Institute server at CSU for the energy datasets. We im-

plemented the tool using Python. We used SQLite as the database dialect to store the intermediate

data for the tool.

Figure 3.5 shows the class diagram for the domain layer of the ADQuaTe tool. Constraint-

Discovery and AnomalyInterpretation are interface classes and AnomalyDetection and AnomalyIn-

spection are abstract classes implemented by child classes, which use different machine learning

algorithms to implement their parent methods.
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Figure 3.5: Class Diagram for Domain Layer of ADQuaTe
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Table 3.8 describes the methods of these classes. The sequence diagrams in Figures 3.6 and 3.7

show how a domain expert interacts with the tool during the entire process. These diagrams depict

the interaction between the objects of classes through method calls in the order in which these

interactions take place.

As shown in the sequence diagram in Figure 3.6, the domain expert imports the data for analysis

and selects machine learning models for constraint discovery, clustering, and anomaly interpreta-

tion. The data records are preprocessed and stored in an intermediate data storage. The optional

(opt) fragment in the diagram checks whether or not the expert has imported a previously trained

model. The tuneAndTrain method is called only if the model is not previously trained. This feature

considerably reduces the testing time by allowing the domain expert to store and restore the trained

model for future use. The output of the tuneAndTrain method is a trained model that is passed to

the AnomalyDetection object for detecting the suspicious records or sequences and grouping the

suspicious records. The suspicious groups or sequences of records are passed to the next object for

interpretation. The anomaly interpretation object generates visualization plots.

The sequence diagram of Figure 3.7 shows that the expert inspects the suspicious groups or

sequences and marks the actual faults. The AnomalyInspection object updates the data records

in the intermediate storage by modifying the labels of anomalous records from valid to invalid.

The second sequence diagram is a loop describing the feedback loop that lets the expert repeat the

constraint discovery and anomaly detection processes with the updated data set.
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Table 3.8: Class Methods

Method Class Description

preprocess DataPreparation Normalizes the numeric attributes and

one-hot encodes the categorical at-

tributes.

write DataPreparation Imports the data records into the interme-

diate data storage.

tuneAndTrain
Autoencoder::

ConstraintDiscovery
Trains the best autoencoder model se-

lected by the grid search technique

against the data records.

assignSuspiciousnessScore Autoencoder::

AnomalyDetection

Assigns the autoencoder reconstruction

error to each data record.

IdentifyWindowSize LSTM-

Autoencoder::

AnomalyInspection

Identifies the input size for LSTM-

Autoencoder based on the autocorrelation

of the input records.

tuneAndTrain

LSTM-

Autoencoder::

ConstraintDiscovery

Trains the best LSTM-Autoencoder

model selected by the grid search

technique against the data records.

assignSuspiciousnessScore LSTM-

Autoencoder::

AnomalyDetection

Assigns suspiciousness score to each data

record, attribute, and subsequence.

detectSuspicious AnomalyDetection Flags as suspicious those

records/sequences whose suspicious-

nessScores are greater than a threshold.

cluster
SOM::

AnomalyDetection
Uses the best clustering model selected

by the grid search technique to group the

suspicious records based on their similar-

ity.

interpret RandomForest::

AnomalyInterpreta-

tion

Generates a decision tree model from the

suspicious group/sequence.

display Autoencoder::

AnomalyInspection

Displays the suspiciousnessScore per at-

tribute plot using the best autoencoder

model.

display LSTM-

Autoencoder::

AnomalyInspection

Displays the suspiciousnessScore per

attribute plot using the best LSTM-

Autoencoder model.

display RandomForest::

AnomalyInspection

Displays the best decision tree using the

decision tree model.

updateDataRecords AnomalyInspection Updates the data record labels based on

the actual anomalous records.
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Figure 3.6: Sequence Diagram for Domain Expert Interaction Involving Data Importation
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Figure 3.7: Sequence Diagram for Domain Expert Interaction Involving Anomaly Inspection
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ADQuaTe has the following characteristics.

Easy to use. ADQuaTe tool implements a user-friendly interface that allows the domain experts

who are not necessarily skilled in programming to use the tool to validate their data. Moreover,

the process of getting feedback from the domain expert simply involves clicking on the correctly

detected groups.

Easy to understand. To reduce the inspection time for domain experts, the ADQuaTe tool iden-

tifies groups of suspicious records and adds explanations to each group to make the tool output

understandable to the domain experts.

Fully automated. ADQuaTe tool supports fully automated data preparation, constraint discovery,

anomaly detection, and anomaly interpretations. The data attributes are automatically preprocessed

in the tool and all the machine learning parameters are automatically tuned.

Domain independent. ADQuaTe tool uses unsupervised learning that does not require prior

knowledge about the data in its first execution. As a result, this tool is applicable to input datasets

from any application domain. However, ADQuaTe uses domain knowledge to improve its results.

Moreover, the threshold tuning of ADQuaTe is domain dependent.

3.5 Test-Bed

We have designed and implemented a test-bed [21] that contains different scripts for automati-

cally evaluating the effectiveness and efficiency of ADQuaTe. These scripts are for (1) interactive

execution and evaluation of the tool, (2) evaluating the parameter tuning, (3) mutation analysis, (4)

comparing windowing approaches, and (5) comparing anomaly detection approaches.

Interactive execution and evaluation of the tool. The objective of this script is to automatically

evaluate the interactive process of ADQuaTe. This script automatically executes ADQuaTe against

an input dataset and detects suspicious groups/sequences. The script updates the label values from

0.5 to 1 for the suspicious records that are actually faulty (i.e., within the previously known faults)
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and from 0.5 to -1 for the ones that are valid. Next, the script retrains the constraint discovery

model and reruns the anomaly detection component (Section 3.2.5) and measures the accuracy and

performance of ADQuaTe based on the metrics we describe in Sections 4.2 and 5.2. The whole

process is performed t ≥ 1 times. If t = 1, the script evaluates the tool when expert feedback is

not used.

Evaluating parameter tuning. The objective of this script is to evaluate the parameter tuning

effectiveness of ADQuaTe for non-sequence data. The script calculates the accuracy of ADQuaTe

for 300 different models (i.e., 300 combination of hyperparameters) based on the metrics we define

in Section 4.2 to demonstrate that the original grid search approaches do not select the most effec-

tive model. The script also calculates the accuracy of ADQuaTe for different number of epochs

(i.e., complete passes through the training data) to demonstrate that we need to stop training based

on the true positive rate to avoid overfitting on training data.

Mutation analysis. The objective of this script is to automatically inject different types of anoma-

lies into a sequence dataset and evaluate ADQuaTe to demonstrate that the tool can effectively and

efficiently detect these anomalies. Section 5.2.1 describes how the script mutates an input dataset

based on different mutation operators that we define for the sequence data.

Comparing windowing approaches. The objective of this script is to compare our

autocorrelation-based windowing with a brute force windowing approach. This script takes the

mutated sequence dataset as input and executes the tool against a dataset multiple times (brute-

force approach) using a range of window sizes to pick the best window size that results in the

highest accuracy for the tool. The script also runs the tool using our autocorrelation-based win-

dowing. Finally, the script compares the accuracy and performance of the two approaches using

metrics we define in Section 5.2.

Comparing anomaly detection approaches. The objective of this script is to compare ADQuaTe

with existing anomaly detection approaches for sequence data. This script takes a dataset with a set

of known anomalies as input and executes the tool once against the dataset. The scripts calculates
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an accuracy measure called F1 score to compare the anomaly detection effectiveness of ADQuaTe

with existing approaches using the same score reported in two review papers [3, 4].
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Chapter 4

ADQuaTe2: An Instantiation of ADQuaTe for

Non-Sequence Data

In this chapter, we provide a detailed description of ADQuaTe2 [17, 18], which instanti-

ates ADQuaTe components for non-sequence data. Section 4.1 presents different components of

ADQuaTe2. Section 4.2 evaluates ADQuaTe2 and Section 4.3 summarizes the chapter.

4.1 Instantiated Components

In this section, we describe how ADQuaTe2 instantiates the data preparation, constraint discov-

ery, anomaly detection, anomaly interpretation, and anomaly inspection components of ADQuaTe

for non-sequence datasets.

4.1.1 Data Preparation

The data preparation component is not customized since ADQuaTe2 uses an approach that is

common to both non-sequence and sequence data for this component. This approach is described

in the framework components (Section 3.2.1).

4.1.2 Constraint Discovery

ADQuaTe2 instantiates this component using an autoencoder [13] that is known to be effective

for attribute representation learning [132] as a result of using a deep learning architecture, which

enables learning complex associations among attributes using several layers of non-linearity.

An input to the autoencoder is a record X with d attributes. This input is mapped into a hid-

den representation Z with d′ attributes, which are non-linear combinations of the input attributes.

The decoder decompresses Z into a new representation X ′ with d attributes that closely matches

the original data. X ′ is called a reconstruction of X . The network is trained to minimize the re-
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construction error (Equation 4.1), which is the average squared distance between the original data

record and its reconstruction [13].

RE =
1

n

n−1
∑

i=0

(X ′
i −Xi)

2 =
1

n

n−1
∑

i=0

d−1
∑

j=0

(a
′j
i − a

j
i )

2 (4.1)

where n is the total number of records, d is the number of attributes, Xi = (a0i , ..., a
d−1
i ) is the

ith network input, and X ′
i = (a

′0
i , ..., a

′d−1
i ) is the ith network output.

Figure 4.1: Constraints Discovered by Autoencoder

The green box in Figure 4.1 shows the format of the constraints as the outputs of the encoder.

The input is a record Xi with d attributes. Each layer generates a new representation as a non-

linear weighted combination of the attributes in its previous layer. The last layer of the encoder

is a vector of dk constraints (zkj ), each of which is a non-linear weighted sum (δ is a non-linear

activation function) of the attributes in the previous layers. Multiple hidden layers enable the

composition of attributes from lower layers, allowing the possibility for modeling more complex

constraints than a similar shallow network [133].

In addition to the existing inputs (i.e., the attributes a0i . . . a
d−1
i for record Xi), ADQuaTe2

also provides the new label (li) to the autoencoder. Unlike the other attributes, the labels are not
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preprocessed as their values are already appropriately scaled between -1 and 1. Figure 4.2 shows

the new attribute and its corresponding output in the autoencoder structure.

Figure 4.2: Interactive Autoencoder

The autoencoder is trained not only to minimize the difference between the record and its

reconstruction (the original reconstruction error), but also to minimize the difference between the

record label and the label predicted by the network.

RE =
1

n

n−1
∑

i=0

((l′i − li)
2 +

d−1
∑

j=0

(a
′j
i − a

j
i )

2) (4.2)

where li is the label of ith record and l′i is the label predicted by the network for this input, and

N is the number of records.

4.1.3 Anomaly Detection

For each record, ADQuaTe2 calculates the s-score based on the autoencoder reconstruction

error and the labels obtained using domain expert feedback. Records whose s-score is greater than

a threshold are flagged as suspicious.

s_score(X) = RE(X) + l(X) (4.3)

where RE(X) is the reconstruction error of record X (Equation 4.4) and l(X) is the label

assigned to record X after interacting with the domain expert. Since RE(X) is normalized into
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the range [0,1] and l(X) ∈ {−1, 0, 0.5, 1}, this new definition ensures that the s-scores of faulty,

valid, and unknown records are in the range [1, 2], [-1, 0], and [0, 1] respectively. Setting the

threshold to a value greater than zero ensures that ADQuaTe2 never reports as suspicious any

valid record in subsequent executions. Moreover, all the records marked as faulty by the expert in

previous executions are reported as suspicious in subsequent executions, but with a higher s-score

value (in the range [1,2]).

RE(X) = Normalized((X ′
i −Xi)

2) = Normalized(
d−1
∑

j=0

(a
′j
i − a

j
i )

2) (4.4)

where d is the number of attributes, Xi = (a0i , ..., a
d−1
i ) is the ith network input, and X ′

i =

(a
′0
i , ..., a

′d−1
i ) is the ith network output.

It can be too time-consuming for a domain expert to inspect a large number of suspicious

records. Thus, ADQuaTe2 instantiates this component by grouping the suspicious records based

on their similarity to make the anomaly validation and interpretation feasible. We used a clustering

approach called Self Organizing Map (SOM) [106], which preserves the relationships among data

attributes in its clusters [134]. Distance-based clustering algorithms, such as k-means [64] and k-

prototypes [135] can also be used for grouping but they do not preserve these relationships [67]. As

all data attributes are involved in computing the distance in these clustering techniques, insignif-

icant attributes (i.e., attributes that can be removed without having any impact on the constraint

discovery and anomaly detection results) contribute to the clustering result. Therefore, the tech-

niques occlude the relationships of significant attributes in their clusters. We also experienced this

issue; the records in a group were similar only with respect to their single attribute values and not

based on the relationships among the attribute values.

SOM is a type of unsupervised neural network that produces a low-dimensional representa-

tion of the input space. This method converts the complex, nonlinear relationships between data

attributes into simple geometric relationships on a low-dimensional map. The dimensionality re-

duction phase of SOM decreases the impact of insignificant attributes and, as a result, leads to a

better clustering based on significant attributes.
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The outputs of this component are groups of suspicious records. Tables 4.1 and 4.2 show two

groups of suspicious records in the Drug_exposure table. Tables 4.3 and 4.4 show two groups of

suspicious records in the Plant_diagnosis table. Each group contains multiple records and their

attribute values.

Table 4.1: Group 1 of Suspicious Records Detected From the Drug_exposure Table

ID Name Unit Route Days
Supply

Dose Quantity Refills s-score

0 Polyethylene
Glycol 3350
17000 MG

Standard accel-
eration of free
fall

Oral 850 66 850 0 0.35

1 Carbamazepine
100 MG

Tablet Topical 360 200 360 3 0.4

Table 4.2: Group 2 of Suspicious Records Detected from the Drug_exposure Table

ID Name Unit Route Days
Supply

Dose Quantity Refills s-score

2 Arginine HCL
100 MG/ML

Milliliter Gastro-
stomy

50000 191 50000 6 0.7

Table 4.3: Group 1 of Suspicious Records Detected From the Plant_diagnosis Table

ID Host Diagnosis ID Genus
Confirmation

Diagnosis
Needed

Suspected
Problem

Sample
Category

s-score

0 Tomato Chemical
injury

Suspected Disease
ID

None Vegetables 0.15

1 Silver
Maple

Heat stress Undetermined Disease
ID

None Woody 0.1

Table 4.4: Group 2 of Suspicious Records Detected From the Plant_diagnosis Table

ID Host Diagnosis ID Genus
Confirmation

Diagnosis
Needed

Suspected
Problem

Sample
Category

s-score

2 Tomato Fire blight Not Detected Disease
ID

Fireblight Vegetables 0.2

4.1.4 Anomaly Interpretation

ADQuaTe2 instantiates this component through displaying s-score per record in a suspicious

group and visualization plots of two types for that group: (1) s-score_per_attribute and (2) decision

trees.
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s-score_per_record. The s-score column in Tables 4.1, 4.2, 4.3, and 4.4 shows the value of s-score

per record (Equation 4.4) for the four suspicious groups in the Drug_exposure and Plant_diagnosis

tables.

(a) Group 1 (b) Group 2

Figure 4.3: s-score Per Attribute for Drug_exposure Table

(a) Group 1 (b) Group 2

Figure 4.4: s-score Per Attribute for Plant_diagnosis Table

s-scores_per_attribute plot. For each attribute a in a suspicious group, this instantiation calcu-

lates its s-score, Sa, where Sa is defined as the average of the s-scores of the same attribute, a, for

all the records in that group. Figure 4.4 shows these plots for the Plant_diagnosis table. Based on

these plots, the attributes Host, Diagnosis ID, and Suspected Problem are the major causes of in-

validity in Group 1, and the attribute Genus Confirmation is the major cause of invalidity in Group

2 of the suspicious records.
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(a) Group 1 (b) Group 2

Figure 4.5: Decision Trees for Drug_exposure Table

(a) Group 1 (b) Group 2

Figure 4.6: Decision Trees for Plant_diagnosis Table

Decision tree. For each suspicious group, this instantiation process labels the suspicious records

in that group as invalid and all the non-suspicious records as valid and uses this data to train the

classifier. Figures 4.5a and 4.5b show the trees generated for the two groups shown in Tables 4.1

and 4.2 for the Drug_exposure table. In the decision tree of Figure 4.5a, the Unit attribute is

selected by the ID3 algorithm [118] as the root node of the tree. Based on the values of this

attribute, two subsets of records are created in the two branches of the tree. The right subset has an

entropy equal to 0 as all the records in that subset are invalid (i.e., the label of the records in this

path from root to the leaf node is equal to 1.0). The left subset has an entropy value greater than

zero and requires more splitting of records based on another attribute. The algorithm selected the

Route attribute as the decision node for this branch, which results in two subsets, both of which
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have entropy equal to zero. The right subset contains records with all invalid values (i.e., records

labeled as 1.0) and the left subset include records with all valid values (i.e., records labeled as 0.0).

Each branch of the tree from the root to the leaf nodes indicates a specific constraint to be verified.

These constraints are in form of “If Pred then record is <valid|invalid>” rules, which de-

termine whether a record is valid or invalid based on its attribute values. Pred is in form of “(a1

ROP1 v1) LOP1 ... LOPd−1 (ad ROPd vd)”, where ai is an attribute, vi is the value of the attribute,

ROPi is a relational operator (=, ≥, >, <, ≤), and LOPi is a logical operator (and and or).

The trees in Figures 4.5 are used to generate the following constraints. In Figure 4.5a the path

from the root (Unit) to the leaf node labeled 0.0 represents the first constraint in the following list,

which states that if the drug Unit is ‘Tablet’ and the Route is ‘Oral’ , then the record is valid.

• If Unit=‘Tablet’ and Route=‘Topical’, then record is invalid.

• If Unit=‘Tablet’ and Route=‘Oral’, then record is valid.

• If Unit=‘Standard acceleration of free fall’, then record is invalid.

• If Days Supply > 26002, then record is invalid.

• If Days Supply <= 26002, then record is valid.

The trees in Figures 4.6 are used to generate the following constraints. In Figure 4.6a, the

path from the root (Diagnosis ID) to the leaf node labeled 1.0 represents the first constraint in the

following list, which states that if the plant Diagnosis ID is ‘Fire blight (Erwinia amylovora)’ and

the Host is ‘Tomato’, then the record is invalid.

• If Diagnosis ID=‘Fire blight’and Host=‘Tomato’, then record is invalid.

• If Diagnosis ID=‘Fire blight’and Host in (‘Apricot’, ‘Cherry’, ‘Apple’, ‘Nectarine’, ‘Peach’),

then record is valid.

• If Genus Confirmation in (‘Suspected’, ‘Undetermined’), then record is invalid.

• If Genus Confirmation=‘Confirmed’, then record is valid.
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4.1.5 Anomaly Inspection

The anomaly inspection component is not customized since ADQuaTe2 uses an approach that is

common between non-sequence and sequence data for this component. This approach is described

in the framework components (Section 3.2.5).

4.2 Evaluation

Table 4.5: Datasets from Real-world Health and Plant Domains and UCI ML Repository [2]

ID Name Domain #Records
#At-

tributes

Known

Anomalies

(%)

1 Plant_diagnosis Plant 313 18 0.00

2 Measurement JOIN Person Health 94,165 4 0.02

3 Drug_exposure JOIN Concept Health 100,000 20 5.65

4 Measurement JOIN Concept Health 100,000 19 4.81

5 Visit_occurrence JOIN Concept Health 100,000 9 0.00

6 Drug_exposure JOIN Observa-

tion_period JOIN Concept

Health 600,000 7 18.33

7 Procedure_occurrence JOIN Ob-

servation_period JOIN Concept

Health 600,000 5 41.00

8 Observation JOIN Observa-

tion_period JOIN Concept

Health 1,000,000 7 0.07

9 Wine Liquor 129 13 7.70

10 Lymphography Oncology 148 18 4.05

11 Glass_identification Criminology 214 10 4.20

12 Vertebral_column Biomedical 240 6 12.50

13 Heart_disease Health 267 75 20.60

14 Ecoli Biology 336 8 2.67

15 Ionosphere Radar 351 34 35.89

16 Breast_cancer Oncology 699 10 34.50

17 Satimage Satellite 5803 36 1.20

18 Satellite Satellite 6435 36 32

19 Shuttle Aerospace 49097 9 7.00

We evaluated the constraint discovery, anomaly detection, and anomaly interpretation effective-

ness of ADQuaTe2 using real-world data from health and plant domains. We used seven datasets

created using multiple table joins in the health data warehouse and one dataset from the plant diag-
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nosis database. Rows 1–8 in Table 4.5 show the characteristics of these datasets. We also evaluated

the improvements in the accuracy of the approach using datasets with ground truth data from the

UCI repository [2]. Rows 9–19 show the characteristics of these datasets. We also demonstrated

the parameter tuning effectiveness of ADQuaTe2 using the UCI datasets. Finally, we evaluated the

time it takes for the overall approach to execute.

4.2.1 Evaluation Goals

4.2.1.1 Goal 1: Evaluate the effectiveness of the constraint discovery and anomaly detec-

tion of ADQuaTe2 using real-world health and plant datasets without incorporating

expert feedback.

The success of the approach was measured along two dimensions: the anomaly detection abil-

ity and the identification of new constraints that were not previously specified by the experts. The

new constraints discovered by the approach should help us detect new anomalies in the data. For

this evaluation, we used domain expert feedback to validate the results. However, we did not incor-

porate this feedback to improve the approach. We evaluated these two components by answering

the following questions.

RQ1.a: Can ADQuaTe2 detect the anomalies in real-world health and plant data that were already

detected by existing tools that rely on manual specification of constraints by domain experts?

Given E, the set of anomalous records detected by an existing data quality test approach, and

A, the set of suspicious records detected by ADQuaTe2, we define the metrics Previously Detected

(PD), Suspicious Detected (SD), and UnDetected (UD).

PD: Percentage of anomalous records detected by an existing approach that could also be

detected by ADQuaTe2.

PD =
|E ∩ A|

|E|
(4.5)

SD: Percentage of suspicious records detected by ADQuaTe2 that were not previously detected.

71



SD =
|A− E|

|A|
(4.6)

UD: Percentage of anomalous records detected by an existing approach that could not be de-

tected by ADQuaTe2.

UD =
|E − A|

|E|
(4.7)

Table 4.6: Known Anomalies and Suspicious Records in Real-world Health and Plant Datasets Detected by

ADQuaTe2

Dataset ID |E| |A| PD SD UD

1 0 89 0.00 100.00 0.00

2 19 19 100.00 0.00 0.00

3 5650 6848 98.25 17.50 0.017

4 4810 5070 96.77 8.50 0.032

5 0 5026 0.00 100.00 0.00

6 109980 132174 99.99 16.75 0.01

7 246000 249724 97.21 4.24 2.79

8 700 753 96.14 10.63 3.86

Table 5.4 shows the values of PD, SD, and UD of ADQuaTe2 with respect to the known anoma-

lies in the real-world health and plant datasets. In this table, |E| is the number of known anomalies

and |A| is the total number of suspicious records detected by ADQuaTe2. There were no previously

known anomalies for dataset IDs 1 and 5 and every record reported for these two sets corresponded

to a suspicious record not previously detected. ADQuaTe2 detected between 96.14% and 100%

of anomalies that were previously detected by Achilles [39] and Murdock [136] testing tools for

the health datasets. In the worst case, ADQuaTe2 could not detect 3.86% of anomalies that were

previously detected by these tools, which indicates that the autoencoder could not discover all of

the associations among the attributes.

RQ1.b: Can ADQuaTe2 detect the anomalies in real-world health and plant data that were missed

by domain experts?
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In this evaluation, we asked experts to use domain knowledge to validate the detected suspi-

cious records. Given AF , the set of anomalous records that are flagged by the domain expert as

actually anomalous, we define the Newly Detected (ND) metric to evaluate the constraint discov-

ery effectiveness of ADQuaTe2.

ND: Percentage of suspicious records detected by ADQuaTe2 that are real anomalies not pre-

viously detected.

ND =
|AF − E|

|A|
(4.8)

Table 4.7 shows the values of ND of ADQuaTe2 for the datasets. ADQuaTe2 could detect

between 33.33% to 35.63% actual anomalies that were not previously detected. Domain experts

interpreted the remaining detected records as unusual but possible, suspicious if they needed more

investigations, and valid if they were not actually faulty. It took one hour for the plant domain

expert to inspect the 16 groups of 89 reported records. It also took one hour for the health domain

expert to inspect 23 groups of 6848 reported records.

Table 4.7: Newly Detected Anomalies by ADQuaTe2 for Plant and Health Datasets

Dataset ID Domain ND 100-ND

Unusual Suspicious Valid

1 Plant 35.63 22.99 13.79 27.59

3 Health 33.33 66.66 0.00 0.00

4.2.1.2 Goal 2: Evaluate the anomaly interpretation effectiveness.

By answering the following questions we demonstrated that ADQuaTe2 can effectively explain

the anomalies to the experts.

RQ2: To what extent do the generated visualization plots correctly explain the reason behind the

invalidity of anomalies?

73



We define the Visualization Efficiency (V E) metric based on the number of visualization plots

to evaluate the anomaly interpretability effectiveness of our approach.

VE: Percentage of plots that could correctly explain the reason behind the invalidity of the

suspicious groups.

Table 4.8 shows the visualization efficiency of ADQuaTe2 for two datasets. Between 53.33%

to 100.00% of the plots correctly explained the reasons behind invalidity of the records.

Table 4.8: Visualization Efficiency of ADQuaTe2 for Plant and Health Datasets

Dataset ID VE

s-score per attribute Decision tree

1 73.33 53.33

3 100.00 83.33

4.2.1.3 Goal 3: Evaluate the accuracy improvements using UCI datasets.

By answering the following questions we demonstrated that the anomaly detection effective-

ness of ADQuaTe2 improves after retraining the machine learning model.

RQ3.a: Does the number of correctly detected anomalies increase after retraining the machine

learning model with the help of feedback from the domain expert?

Given E, the set of anomalous records detected by an existing data quality test approach, A

the set of anomalous records detected by ADQuaTe2, and AF the set of anomalous records that

are flagged by domain expert as actually faulty, we use the True Positive Rate (TPR), Number of

Runs (NR), and True Positive Growth Rate (TPGR) to answer this question.

TPR: Percentage of actual faulty records that are correctly identified as anomalous.

TPR =
|AF |

|A|
(4.9)

NR: Total number of times a domain expert revalidates data until reaching the desired TPR.

TPGR: Percentage change of a TPR variable within the interactive learning period.
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TPGR = (
TPRNR

TPR1

)
1

NR − 1 (4.10)

where TPR1 is the true positive rate at the first run and TPRNR is the true positive rate at the

last run.

RQ3.b: Can the actual faults detected by ADQuaTe2 in the previous runs still be detected after

retraining the model?

To answer this question, we use the False Negative Rate (FNR) and False Negative Growth

Rate (FNGR) metrics.

FPR: Percentage of undetected anomalies (UD) plus percentage of actual faulty records de-

tected in previous runs that could not be detected in the current run.

FNR =
|AFold − AFnew|

|AFold|
+ UD (4.11)

where AFold is the set of actual faults detected in previous runs and AFnew is the one detected

in the current run.

FNGR: Percentage change of a FNR variable within the interactive learning period.

FNGR =

(

FNRNR

FNR1

)
1

NR

− 1 (4.12)

where FNR1 is the false negative rate at the first run and FNRNR is the false negative rate at

the last run.

Figure 4.7 shows how the true positive rate increases over time during the retraining process for

the datasets under test. Table 4.9 shows positive values for TPGR for all of these datasets, which

demonstrates that the anomaly detection effectiveness of ADQuaTe2 improves after retraining the

machine learning model. Figure 4.8 shows how the false negative rate decreases over time during

the retraining process for the datasets under test. Table 4.9 shows negative values for FNGR for

all of these datasets, which demonstrates that the anomaly detection effectiveness of ADQuaTe2

improves after retraining the machine learning model.
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Figure 4.7: Improvement in True Positive Rate for UCI Datasets

Figure 4.8: Improvement in False Negative Rate for UCI Datasets

Table 4.9: True Positive and False Negative Growth Rate for UCI Datasets for 10 Runs

Dataset ID TPGR FNGR

9 0.15 -1

10 0.127 -0.16

11 0.21 -0.17

12 0.13 -0.16

13 0.48 -0.27

14 0.22 -0.12

15 0.038 -0.26

16 0.01 -0.20

17 0.10 -0.27

18 0.069 -0.19

19 0.133 -0.25
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Based on Figures 4.7 and 4.8, ADQuaTe2 could detect on average 44% of the known anomalies

in the UCL datasets in its first execution. ADQuaTe2 can detect on average 95% of the known

anomalies from the UCI ML datasets after retraining the learning model ten times using ground

truth knowledge. The TPR and FNR values almost stabilized after four iterations. This shows

that the payoff is not worth the cost of running ADQuaTe2 after four iterations for these datasets.

4.2.1.4 Goal 4: Evaluate hyper-parameter tuning.

Table 4.10 shows the hyper-parameters and their range of values that form 300 different models

that we used for the grid search approach. There are 30 network architectures (i.e., hidden layers

and neurons in each layer) and 10 different values of epochs (i.e., complete passes through the

training data) for each architecture. ADQuaTe2 initializes the network hyper-parameters using

these values to select the best model.

Table 4.10: Hyper-parameters for Best Model Selection

Hyper-parameter Minimum Maximum Step size

#Hidden layers 1 3 1

#Hidden Nodes 10 100 10

#Epochs 10 100 10

We demonstrated that the original grid search approaches based on RE minimization do not se-

lect the most effective model by answering RQ4.a. We also demonstrated that the training process

must be stopped before the network is overfitted on the training data by answering RQ4.b.

RQ4.a: Does the model with the lowest RE maximize TPR?

We demonstrated that a model with the lowest RE has the potential to generate false alarms by

calculating RE and TPR for different autoencoder models. Figures 4.9 and 4.10 show examples

of RE (blue bars) and TPR (orange bars) for different autoencoder architectures for the Lymphog-

raphy and Ecoli datasets. In these figures, the horizontal axis indicates 30 different autoencoder

models in form of [n1, ..., nh], where ni is the number of neurons in the ith layer and h is the total

number of layers. For example, the first value in the horizontal axis is equal to [10, 10, 10], which
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Figure 4.9: RE and TPR per Autoencoder Architecture for Lymphography Dataset

Figure 4.10: RE and TPR per Autoencoder Architecture for Ecoli Dataset

indicates an autoencoder with three hidden layers and 10 neurons in each layer. The vertical bars

are values of TPR and RE in the range of [0, 1]. The plot for the Lymphography dataset shows the

values of TPR in the [0.40, 0.62] range and the values of RE in the [0.006, 0.09] range for the 30

network architectures. The plot for the Ecoli dataset shows the values of TPR in the [0.25, 0.51]

range and the values of RE in the [0.0, 0.03] for the 30 network architectures.

Based on these figures, the maximum value of TPR is not necessarily for the network archi-

tecture that minimizes the reconstruction error. The maximum TPR value for the Lymphography

dataset is for the [60] architecture, while the minimum RE value is for the [100] architecture. Sim-

ilarly, for the Ecoli dataset, the maximum TPR value is for the [10, 10, 10] architecture, while the
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minimum RE value is for the [100] architecture. These examples show that the most effective

network is not the one with the lowest RE. As a result, the current grid-search approaches for

autoencoder model selection do not select a model that maximizes the TPR and have potential to

generate false alarms.

RQ4.b: What are the best stopping points for different autoencoder architectures?

We demonstrated that we should use an early stopping technique [16] based on the TPR value

for an autoencoder architecture. We calculated TPR for different autoencoder models using the

UCI datasets. Figure 4.11 shows examples of the TPR values for the different numbers of epochs

used to train the autoencoder network against the Lymphography and Satimage datasets. The

horizontal axis indicates the number of epochs and the vertical bars indicate the TPR values for

these numbers of epochs. The plot for the Lymphography dataset shows the values of TPR that

varies between 0.34 and 0.67. The plot for the Satimage dataset shows the values of TPR that

varies between 0.48 and 0.88 for different numbers of epochs.

(a) Using Lymphography Dataset (b) Using Satimage Dataset

Figure 4.11: True Positive Rate for Different Number of Epochs

From Figure 4.11 we see that the value of the true positive rate is affected by the number of

epochs chosen for an autoencoder network. The bars in this figure also show that increasing the

number of epochs for a specific network architecture does not necessarily result in improvement in
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Figure 4.12: Stopping Points for Different Autoencoder Models for Heart_disease Dataset

the anomaly detection effectiveness of the approach (i.e., the value of TPR does not necessarily

increase by increasing the number of epochs).

In the proposed early stopping technique, we stop training at the number of epochs after which

the TPR value starts decreasing. The vertical bars in Figure 4.12 show the true positive rates for

some of the 300 models described in Table 4.10 using the Heart_disease dataset. The horizontal

axis indicates the autoencoder architectures in the form of [n1, ..., nh], where ni is the number of

neurons in the ith layer and h is the total number of layers. This axis also indicates the number

of epochs for each architecture. For example, the first part of the horizontal axis shows that there

are 10 different values for the number of epochs for an autoencoder in form of [10, 10, 10]. The

vertical bars indicate the TPR values for these autoencoder models. Figure 4.12 shows that the

appropriate stopping points (i.e., the number of epochs that results in the maximum value of TPR)

for the [100], [100, 100], and [100, 100, 100] architectures are 70, 30, and 20 respectively.

4.2.1.5 Goal 5: Evaluate the performance of the approach.

We demonstrated that ADQuaTe2 is performance efficient in constraint discovery and anomaly

detection by answering the following question.

RQ5: How long does it take to execute ADQuaTe2 against an input dataset?

We measure the Total Time (TT ) it takes to perform the automated steps of ADQuaTe2.
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Figure 4.13: Total Time (TT ) for Different Dataset Sizes

TT: Time to perform data preparation, constraint discovery, anomaly detection, and anomaly

interpretation. The time spent by domain experts is not included because different experts perform

the anomaly inspection in different ways, which affects the time measurement.

Figure 4.13 shows values of TT for all the datasets under test based on their sizes (equa-

tion 4.13) for one execution of ADQuaTe2. It took between 0.138 to 27 minutes to execute the

automated steps of ADQuaTe2 for these datasets. As the results show, TT is not necessarily

greater for the datasets with larger sizes. This shows that dataset characteristics other than size,

such as data types and data sparseness may have also affected the results. The analysis of these

other factors on the performance of ADQuaTe2 is the subject of our future work.

size = NRe ∗NAt (4.13)

where NRe is the number of records and NAt is the number of attributes in the input dataset.

4.2.2 Threats to Validity

Internal validity. Anomalies can only be validated by a domain expert at the group level. The ex-

pert cannot select individual records in a group that contains both valid and anomalous records. As

a result, some records may get incorrect labels while updating the dataset for the retraining phase.

However, based on our observations, most of the records in one cluster have similar levels of valid-
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ity. There is less than 1% of dissimilar records (i.e., valid in an anomalous group or anomalous in a

valid group). This few number of incorrectly labeled records do not affect the overall effectiveness

of the retraining process as the autoencoder discovers constraints from the majority of the data in

big datasets.

The decision trees describe the constraints violated by each suspicious group. These constraints

are expressed in terms of domain attributes and may not represent the constraints discovered by

the autoencoder. The constraints discovered by the autoencoder are used to detect the suspicious

groups. The reconstruction error of the autoencoder is used to label the data as valid/invalid for the

supervised random forest classifier. Thus, there is a connection between the constraints discovered

by the autoencoder and the ones described in the decision trees. The decision trees help express

constraint violations using domain attributes and make them comprehensible to the domain experts.

External validity. We used four as the number of iterations after which the accuracy of ADQuaTe2

is stabilized. This number was true for the UCI datasets that we used. However, we cannot gener-

alize the number to other datasets. We plan to investigate more datasets in the future.

Construct validity. We evaluated the anomaly detection effectiveness of the approach by measuring

the previously detected and newly detected anomalies as true positives and undetected anomalies

as false negatives. Using the current definition of undetected anomalies, we cannot measure the

false negatives for data sets with no previously known anomalies. Moreover, we cannot ensure

that ADQuaTe can detect all the anomalies in such data sets by measuring previously and newly

detected anomalies. We evaluated our approach using ground truth data (e.g., from UCI machine

learning repository [2]) that contain a set of known anomalies to measure the true positive and false

negative rates.

Another threat involves the use of visualization efficiency metric to evaluate the anomaly in-

terpretability effectiveness of ADQuaTe. This measure highly depends on the domain expert and

how well s/he can understand the explanations. In this research, we asked experts from plant and

health domains to validate the generated visualization plots.
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4.3 Summary

We proposed ADQuaTe2 as an instantiation of the ADQuaTe framework for constraint dis-

covery, anomaly detection, and explanation in non-sequence data. Without the intervention of a

domain expert, 33.33–35.63% of the suspicious records reported by ADQuaTe2 from two real-

world health and plant datasets in the first execution of the tool were actual faults, which were not

previously detected. Moreover, ADQuaTe2 could detect on average 98% of the known faults in all

the real-world health and plant datasets and 44% of the known faults in the UCL datasets in the first

execution. ADQuaTe2 detected on average 95% of the known faults from the UCI ML datasets

after retraining the learning model ten times using ground truth knowledge. Between 53.33% to

100.00% of the visualization plots for the plant science and the health datasets correctly explained

the reasons behind invalidity of the records.
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Chapter 5

IDEAL: An Instantiation of ADQuaTe for Sequence

Data

In this chapter, we describe IDEAL [19], which instantiates the ADQuaTe components for

sequence data. IDEAL is an automated approach for Interactive Detection and Explanation of

Anomalies using an LSTM-autoencoder for time-series data. Section 5.1 describes the components

of IDEAL and Section 5.2 presents its evaluation. Section 5.3 summarizes the chapter.

5.1 Instantiated Components

In this section, we describe how IDEAL instantiates the data preparation, constraint discovery,

anomaly detection, anomaly interpretation, and anomaly inspection components of ADQuaTe for

sequence datasets.

5.1.1 Data Preparation

IDEAL instantiates this component for sequence data to transform the data into the right shape

for input to the constraint discovery component. IDEAL extracts features as complex dependencies

among the input records and attributes, and discovers constraints as complex equations over those

features [137]. To transform the input dataset into a form suitable for analysis, we use one-hot

encoding [109] and normalization [112] for preprocessing the categorical and numeric attributes

respectively.

The LSTM-Autoencoder input is a matrix with three dimensions, namely, batch size, window

size, and attribute size. Batch size defines the number of subsequences that are utilized by LSTM-

Autoencoder in one epoch (i.e., one iteration of training). The window size is the number of con-

secutive records in each subsequence. The attribute size is the number of attributes of the records

in the subsequence. The number of units in the hidden layers of the LSTM-Autoencoder network

84



depends upon these three dimensions. Figure 5.3 shows the input to an LSTM-Autoencoder, where

the batch size is equal to one, window size is equal to w, and attribute size is equal to d + 1. To

transform the data obtained from the preparation step into the right shape for input to the LSTM-

Autoencoder sequential model, autocorrelation-based reshaping is proposed.

An LSTM network discovers long-term dependencies between consecutive records in subse-

quences of the input sequence. The length of the subsequence (window size) determines how

far back the network connects a data record to its past values, and affects the correctness of the

constraints discovered by the network [108]. For example, the current temperature value may be

related to the previous values during the day (window size = 24), but is less likely to be related to

the values during the previous week (window size = 168).

Existing reshaping techniques use a fixed window size [107]. A small window size can result

in missing constraints involving dependencies among the records, while a large window size can

result in a large increase in the computational complexity of the network. Increasing the size based

on an exhaustive brute-force approach until the network error is minimized can be impractical for

real-world big datasets [108].

We propose a systematic reshaping approach that uses autocorrelation of the time-series at-

tributes to enable the LSTM-Autoencoder network discover dependencies between highly corre-

lated records. Feeding the network highly correlated records prevents it from incorrectly discover-

ing associations among non-correlated records. The window size is adjusted based on how far the

records are related to their past values.

Autocorrelation is defined as the correlation of sequence data records with the records in

the previous time steps, called lags [138]. Given dataset d with R1, R2, ..., RN records at time

t1, t2, ..., tN , the Autocorrelation Function (ACF) at lag k for an attribute a in this dataset is calcu-

lated as follows.

ACF (a, k) =

∑N−k
i=1 (d[a](i)− d[a])(d[a](i+ k)− d[a])

∑N
i=1(d[a](i)− d[a])2

(5.1)
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Figure 5.1: ACF for A4 Attribute in NASA Shuttle for 20 lags

Figure 5.2: Use ACF to Select Window Size

where d(i) is the original dataset, d(i + k) is the same dataset shifted by k lags, and d[a] is the

average value of attribute a in the original dataset. The numerator is the covariance between the

data and the k-unit lagged data. The denominator is sum of the squared deviations of the original

dataset. An ACF (a, k) value that rises above or falls below a confidence interval is said to be

significantly autocorrelated. The shaded area in Figure 5.1 shows the confidence interval (CI)

calculated by Eq. 5.2 for attribute A4 in the NASA Shuttle dataset.

CI = ±Z1−α/2

√

√

√

√

1

N
(1 + 2

k
∑

i=1

d[A]
2
) (5.2)
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with lag k, sample size N , cumulative distribution function z of the standard normal distribution,

and significance level α. The confidence bands increase as the lag increases.

In Figure 5.1, the height of each spike shows the value of ACF for the corresponding lag.

Autocorrelation with a lag of zero (i.e., between each record an itself) is always equal to 1. A

spike being close to zero is evidence against autocorrelation. In this example, all the spikes are

statistically significant for all the 20 lags, indicating that the values of the A4 attribute are highly

correlated to its 20 past values.

The ACF is calculated for all the attributes. For each attribute ai, IDEAL selects the lag value

li after which ACF crosses the confidence interval (i.e., boundary of the shaded area) for the first

time. The window size is set to maximum(li), where 1 ≤ i ≤ size(A). Figure 5.2 demonstrates

the window size selection based on autocorrelation in a univariate Yahoo traffic dataset. In this

example, l27 is the lag after which the ACF function crosses the confidence interval for the first

time. Thus, the window size is set to 27.

5.1.2 Constraint Discovery

Figure 5.3: Extending LSTM-Autoencoder by Adding a Label Input

Although the deep architecture of an autoencoder can model complex constraints involving

non-linear dependencies among multiple data records and attributes, it cannot model the temporal

dependencies in the data. Thus, IDEAL instantiates this component for sequence data using an

LSTM-Autoencoder, which is a sequence-to-sequence modeling technique [137] used to learn

time series dependencies.
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We extend the LSTM-Autoencoder architecture by adding a label as an additional input to the

network structure. The shaded area in Figure 5.3 shows the extension. The input and output are

fixed-size time series matrices. Xi,j = [x0
i,j, ..., x

d
i,j, Li,j] is the jth record with d+1 attributes, Ti is

the ith time series that contains w records, and w is the window size. The network structure is de-

scribed in Section 2.2. This instantiation redefines the reconstruction error of LSTM-Autoencoder

based on the labels to minimize false alarms. The network is trained to minimize both the differ-

ence between the time series and its reconstruction, and the difference between the record labels

in a time series and the labels predicted by the network. Equation 5.3 shows the extended recon-

struction error.

RE =
1

m

m−1
∑

i=0

((T ′
i − Ti)

2 + (mean(L′
i)−mean(Li))

2) (5.3)

where mean(Li) is the arithmetic mean of the record labels in time series Ti, mean(L′
i) is

the mean of the reconstructed record labels in the reconstructed time series T ′
i , and m is the total

number of windows.

5.1.3 Anomaly Detection

IDEAL instantiates this component by calculating s-score_per_subsequence values to detect

suspicious subsequences that violate the constraints discovered by the LSTM-Autoencoder net-

work. Table 5.1 shows an example of a suspicious subequence detected from the NASA Shuttle

dataset. The s-scores are defined based on the reconstruction error and the record labels. Equa-

tion 5.4 shows how to calculate this value.

s_scorei = (
1

d

d−1
∑

j=0

s_score
j
i ) +max(Li) (5.4)

where s_scorei is the score assigned to the ith subsequence and s_score
j
i is the s-

score_per_attribute for that subsequence (Equation 5.5).
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Table 5.1: Suspicious Subequence Detected from the NASA Shuttle Dataset

Record Id A1 A2 A3 A4 A5 A6 A7 A8
s-score per

record
101 0 78 0 24 24 42 55 14 0.0305329
102 0 100 0 34 -23 64 67 4 0.0289624
103 0 79 0 28 10 42 50 8 0.00546589
104 1 83 0 36 0 45 46 2 0.00237685
105 0 77 0 6 -22 40 72 32 0.00771146
106 0 80 5 10 0 43 70 26 0.0037009
107 0 78 0 2 -10 41 75 34 0.00708929
108 0 77 0 8 11 40 69 30 0.0062236
109 0 107 0 30 3 70 76 6 0.0451583
110 0 77 7 20 -6 41 57 16 0.0032065

s_score_a
j
i = Normalized(

1

w

w−1
∑

k=0

(xj
(i+k) − x

′j
(i+k))

2) (5.5)

where s_score_a
j
i is the score assigned to the jth attribute in the ith subsequence and w is the

window size.

In Equation 5.4, (1
d

∑d
j=0 s_score

j
i ) is a value between zero and one and max(Li) is a value in

the {−1, 0, 0.5, 1} set and is equal to the maximum value of the record labels in the subsequence. In

the retraining phase, a subsequence with all valid records (i.e., all labeled -1) gets an s_score ≤ 0

and is not reported as suspicious. A subsequence with at least one invalid record (i.e., at least

one record labeled by 1) gets an s_score ≥ 1 and is reported as confirmed anomalous. These

subsequences are reported in a separate group from the suspicious subsequences and have higher

s-score values (in the range [1,2]).

The last column in Table 5.1 shows the s-score_per_record values for the suspicious subse-

quence from the NASA Shuttle Dataset. Equation 5.6 in Section 5.1.4 describes how these values

are calculated based on the LSTM-Autoencoder reconstruction error and the record labels. IDEAL

highlights the records that are major causes of invalidity in each suspicious sequence. In Table 5.1,

the highlited record has the largest value of s-score_per_record and is the major cause of the inva-

lidity of this subsequence.
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5.1.4 Anomaly Interpretation

IDEAL instantiates this component through displaying s-score per record in a suspicious sub-

sequence and visualization plots of two types for that subsequence: (1) s-score_per_attribute and

(2) decision trees.

s-score_per_record. IDEAL uses Equation 5.6 to calculate the invalidity level of the qth record

in the subsequence Ti detected as suspicious by our approach. The value of s-score_per_record

is calculated based on the LSTM-Autoencoder reconstruction error and the labels obtained using

domain expert feedback. This value lies between 0 and 1, and is assigned to each record of a subse-

quence to indicate the contribution of each record to the invalidity of the subsequence. Equation 5.6

shows how to calculate this value.

s_score_ri,q = Normalized(
1

d

d−1
∑

k=0

(x
′k
i,q − xk

i,q)
2 + (L′

i,q − Li,q)
2) (5.6)

where d is the number of attributes and s_score_ri,q is the score assigned to the qth record in the

ith subsequence. The anomalous records in each subsequence are identified based on a threshold

value calculated using Equation 3.2 described in Section 3.2.5.3.

s-scores_per_attribute plot. For each attribute a
j
i in a suspicious subsequence i, this instantiation

calculates its s-score s_score_a
j
i based on Equation 5.5. This value lies between 0 and 1, and

is assigned to each attribute of a subsequence. It indicates the contribution of each attribute to

the invalidity of the subsequence. Figure 5.4 shows an example of the s-score_per_attribute plot

for the suspicious subsequence from the NASA Shuttle dataset. Using a threshold value equal

to the average value of the s-score_per_attribute in the subsequence, the A2 and A6 attributes are

determined to be the major causes of invalidity for this subsequence. This plot is only applicable to

the multivariate time series in which more than one attributes are compared based on their values

of s-score_per_attribute.

Decision tree. For each attribute of the subsequence, the 18 time series features listed in Table 2.4

are extracted using Tsfeatures CRAN library [1]. Next, decision trees are generated through a
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Figure 5.4: s-score per Attribute Plot for Suspicious Subsequence Detected from NASA Shuttle Dataset

random forest classifier using the suspicious subsequences labeled as invalid and all the non-

suspicious sequences labeled as valid.

This plot is applicable to both univariate and multivariate time series. Using a univariant time

series as the input dataset, the decision trees identify the constraints violated over the features that

are extracted from the values of the only attribute in the dataset. Using a multivariate time series,

the decision trees identify the constraints violated over the features that are extracted from the

values of all attributes in the dataset.

(a) DT1 (b) DT2 (c) DT3

Figure 5.5: Decision Trees for Suspicious Sequence in NASA Shuttle Dataset
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Figure 5.5 shows examples of decision trees generated for a suspicious subsequence in the

NASA Shuttle dataset. The constraints over time series features that are violated by the suspi-

cious subsequence are as follows. These constraints are in form of “If Pred then sequence is

<valid|invalid>” rules, which determine whether a subsequence is valid or invalid based on its

features values. Pred is in form of “(f1(a1) ROP1 v1) LOP1 ... LOPd−1 (fd(ad) ROPd vd)”,

where ai is an attribute, fi is a function that extracts feature fi from the values of ai, vi is the value

of that feature, ROPi is a relational operator (=, ! =, ≥, >, <, ≤), and LOPi is a logical operator

(and and or).

First Decision Tree

• IF lumpiness(A2) < 8.08e−5, THEN sequence is invalid

• IF lumpiness(A2) ≥ 8.08e−5 AND vchange(A2) < 0.03, THEN sequence is invalid

Second Decision Tree

• IF spikiness(A6) < 3.58e−8, THEN sequence is invalid

Third Decision Tree

• IF vchange(A6) < 0.02, THEN sequence is invalid

The first decision tree shows constraint violations over the lumpiness and vchange features of

the time series for the A2 attribute. Based on this tree, the variance of the variances across multiple

blocks in the time series for the A2 attribute must be greater than or equal to 8.08e−5. Moreover,

the maximum difference in variance between consecutive blocks in time series for the A2 attribute

must be greater than or equal to 0.03.

The second decision tree shows a constraint violation over the spikiness feature of the time

series for the A6 attribute. This feature, which is calculated based on the size and location of the

peaks and troughs in time series for the A6 attribute must be greater than or equal to 3.58e−8.

The third decision tree shows a constraint violation over the vchange feature of the time series

for the A6 attribute. The maximum difference in variance between consecutive blocks in the time

series for the A6 attribute must be greater than or equal to 0.02.
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Decision trees apply to both types of time series. For a univariate time series, decision trees

identify violated constraints using features extracted from the values of only sole attribute in the

dataset. For a multivariate time series, the constraints are over features extracted from the values

of all the time-dependent attributes.

Domain experts analyze the constraints represented in the trees and inspect the values of the

time series features to determine whether a suspicious subsequence is actually anomalous.

5.1.5 Anomaly Inspection

The anomaly inspection component is not customized since this approach works as is with both

non-sequence and sequence data. This approach is described in the anomaly inspection component

of the framework (Section 3.2.5).

5.2 Evaluation

We evaluated the effectiveness of constraint discovery, anomaly detection, and anomaly expla-

nation of IDEAL using the Yahoo server traffic datasets, the NASA Shuttle dataset, and the Energy

datasets. We used a set of previously known anomalies in these datasets to evaluate IDEAL and

compare it to existing anomaly detection approaches. Due to the absence of complex anomalies

that violate constraints over multiple time series features in these datasets, we used a mutation

analysis technique to inject a set of complex anomalies into the data. In keeping with the spirit

of traditional mutation analysis used in software testing [139], we calculate the mutation score,

which is the ratio of the number of injected faults reported as anomalies by our approach and the

total number of injected faults.

5.2.1 Mutation Analysis

We defined domain-independent mutation operators, each of which changes certain records or

sequences in different ways with the goal of violating at least one constraint over the 18 time series

features. These operators result in mutants, which are faulty records or sequences that mimic typ-
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ical anomalies in the sequence data resulting from real-world events, such as sensor malfunctions

and malicious insider attacks. A mutant is defined to be killed when the suspicious subsequences

detected by IDEAL contain the mutant records or sequences. As a result of using the operators, all

the features get invalid values, which violate constraints over the features. Table 5.2 shows the mu-

tation operators, the fault types, and the features that must be reported in the constraint violations

caused by the operators for a mutant to be killed. We identified these features for each opera-

tor based on our observations when the operators were applied to the Yahoo and NASA Shuttle

datasets. We removed previously known anomalous records from these datasets before applying

the mutation operators.

Table 5.2: Injected Faults and Violated Features

Mutation Operator Fault Type Violated Features
M1: Add noise Anomalous record Mean, Variance, Lumpiness, Lshift, Vchange, Lin-

earity, Curvature, Spikiness, BurstinessFF, Minimum,
Maximum, Rmeaniqmean, Moment3, Highlowmu

M2: Horizontal shift Anomalous sequence Mean, Variance, Lumpiness, Lshift, Vchange, Linear-
ity, Spikiness, Seasonality, BurstinessFF, Minimum,
Maximum, Moment3, Highlowmu, Trend

M3: Vertical shift Anomalous sequence Mean, Linearity, Seasonality, Minimum, Maximum
M4: Re-scale Anomalous sequence Mean, Linearity, Curvature, Seasonality, Minimum,

Maximum, Moment3
M5: Add dense noise Anomalous sequence Mean, Variance, Lumpiness, Lshift, Vchange, Linear-

ity, Curvature, Spikiness, Seasonality, Peak, Trough,
BurstinessFF, Minimum, Maximum, Rmeaniqmean,
Moment3, Highlowmu, Trend

Our mutation engine takes each operator Mi, dataset D and attribute a as input to mutate

the attribute value based on that operator. For the multivariate datasets, we randomly selected k

attributes from the uniformly distributed attribute indexes. We used the same operator to mutate

all of the k selected attributes one at a time. We describe these operators below.

M1M1M1–Add noise. Noise can get added to real-world datasets because of sudden malfunctions, dis-

connections in the sensors or servers, or attackers inserting random values in sequence data. Noisy

data can violate constraints on various time series features shown in column 3 of Table 5.2. For

example, the mean value of delivered power to households during the day is between 0 and 20

kWh. A sudden change in this value to 100 kWh indicates a violation of this constraint. Mutation
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operator M1 adds random noise to the corresponding attribute of randomly selected records from

the entire dataset.

1. Select r ⊂ D as r = {Ri|i = random(1, size(D))}, where |r| = random(1, size(D))

2. For each Ri ∈ r, change Ri[a] to α× ai, where

ai = random(min(D[a]),max(D[a])) and 0 ≤ α ≤ 10

The maximum value of α is set to be 10 because the attributes of anomalous records in the

NASA Shuttle and Yahoo server datasets contain values that are up to 10 times that of the valid

attribute values.

Operators M2–M5 mutate a randomly selected subset of consecutive records containing be-

tween 5-10% of the records in the entire dataset, and create faulty subsequences.

Select s ⊂ D as s = {Ri|m ≤ i ≤ m+ r}, where

m = random(1, size(D)− 0.1× size(D)) and

r = random(0.05× size(D), 0.1× size(D)).

M2M2M2–Horizontal shift. A horizontal shift may occur in real-world datasets due to a temporary change

in the regular process of data collection. For example, consider a constraint over the trend of the

power usage in a school from 8 to 11 AM on weekdays. A shift in the school starting hour or

attacker manipulation can result in violation on this constraint. Operator M2 shifts attribute values

of the records in the selected subset along the time axis. Empty cells are filled with a constant

value equal to the first shifted value.

1. Shift {Ri[a]|m ≤ i ≤ m+ r} along the time axis.

2. Fill empty attributes with A = Rm[a].

M3M3M3–Vertical shift. A vertical shift can occur in real-world datasets as a result of a temporary

malfunction of the sensors that capture the data. For example, a manipulation or malfunction of a

temperature sensor may temporarily change the level of the value captured by the sensor. Operator
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M3 adds a random value between the min and the max values of the attribute to all attribute values

in the subset of records.

M4M4M4–Re-scale. Rescaling can occur in real-world datasets as a result of a temporary modification

of the sensors or servers that capture the data. For example, if the unit of a snow depth detector

sensor is temporarily changed from inches to centimeters, the values stored from the sensor will

be 2.54 times greater than the expected values. Operator M4 multiplies all the attribute values in

the subset of records with a random number between the min and max values of that attribute.

M5M5M5–Add dense noise. Dense noise can get added to real-world datasets through attacks on the

sensors or servers that capture the data. Operator M5 changes all the attribute values in the subset

of records to randomly selected values. For example, an attacker may modify the functionality of

a sensor to make it produce incorrect values to cause integrity violations.

5.2.2 Evaluation Goals

We evaluated three aspects of IDEAL: (1) constraint discovery and anomaly detection effective-

ness, (2) anomaly explanation effectiveness, and (3) performance. We calculated F1 scores [140]

to demonstrate the effectiveness of different aspects of our approach. Given the number of positive

samples, P , the number of true positives TP , the number of negative samples N , and the number

of false positives FP , in a dataset, the F1 score is calculated as follows [140].

F1 = 2×
(precision× recall)

(precision+ recall)
(5.7)

where precision = TP
(TP+FP )

and recall = TPR = TP
P

. For mutation analysis, TPR represents

the mutation score. TP is number of injected faulty subsequences reported as anomalies and P is

the total number of injected faulty subsequences.

5.2.2.1 Goal 1. Constraint discovery and anomaly detection effectiveness of IDEAL.

We demonstrate this in four parts.
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RQ1.a: How effective is IDEAL in the constraint discovery and anomaly detection on real-world

Energy datasets when expert feedback is not used?

Let Pt be the number of actual faulty subsequences (i.e., has at least one actual faulty record),

TPt be the number of actual faulty subsequences detected as suspicious by the tool, Nt be the num-

ber of actual valid subsequences (i.e., does not include any actual faulty record), FPt be the number

of valid subsequences incorrectly detected as suspicious by the tool. We calculated the F1 score

at the time-series level (F1t) to demonstrate the anomaly detection effectiveness of our approach.

We used three Energy datasets Premise_41191, Premise_825588, and Premises_Combined with

175,272, 175,296, and 1.048.575 number of records to evaluate this aspect of IDEAL. The first

two datasets store data of delivered power to two different Fort Collins premises in two years. The

third dataset combines data of 13 residential and commercial premises from year 2015 to 2019.

This dataset contains a set of previously known anomalies (0.05%) as a result of malfunctioned or

incorrect reading of sensors.

It took IDEAL 187, 245, and 8100 seconds to run once against each of the three datasets

respectively. There were two suspicious sequences detected for each of the Premise_41191 and

Premise_825588 datasets. The results were validated by a domain expert. All the suspicious

sequences for these two datasets were as a result of unusual but valid data. For example, a sub-

sequence with a half an hour peak in the delivered power at 3 PM was reported as suspicious.

The domain expert had knowledge about an electric car being charged during that time and thus

the subsequence was flagged as valid even though it was an unusual. All the actual anomalous

subsequences could be detected by IDEAL (TPRt = 1) from the last dataset. IDEAL detected 24

subsequences as suspicious, out of which 19 were actual faults and 5 were valid subsequences (i.e.,

subsequences that do not contain the previously known anomalies) incorrectly detected as faulty.

The F1t score for this dataset was equal to 0.88.

RQ1.b: How effective is IDEAL in comparison to existing anomaly detection approaches?

Let Pr be the number of actual faulty records, TPr be the number of actual faulty records

marked as suspicious by the tool, Nr be the number of actual valid records, and FPr be the number
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Table 5.3: F1r Scores of Different Approaches [3, 4] Using Yahoo Synthetic and NASA Shuttle Datasets

Dataset ID IDEAL ARIMA MA HTM HW OneClass
SVM

LOF IF EE SVM

Synthetic_1 1.00 0.66 0.73 1.00 1.00 - - - - -
Synthetic_2 1.00 1.00 1.00 0.80 1.00 - - - - -
Synthetic_3 1.00 0.50 0.40 1.00 1.00 - - - - -
Synthetic_4 1.00 0.57 0.50 1.00 1.00 - - - - -
Shuttle 0.96 - - - - 0.87 0.72 0.98 0.85 0.82

of valid records incorrectly marked as suspicious by IDEAL. We calculated the F1 score at the

record level (F1r) to demonstrate the anomalous record detection effectiveness of our approach in

comparison to existing approaches. IDEAL was executed only once without using expert feedback.

We compared IDEAL’s F1r score with those of ARIMA, MA, HTM, and HW for univariate

time series, which were evaluated by Hasani et al. [3] using the same univariate Yahoo synthetic

datasets containing known anomalous records. Table 5.3 shows that IDEAL detected all the exist-

ing anomalies and was at least as effective as the existing approaches.

We also compared IDEAL’s F1r score with those of the OneClass SVM, LOF, IF, EE, and SVM

for multivariate time series, which were evaluated by Shriram and Sivasankar [4] using the same

multivariate NASA Shuttle dataset containing known anomalous records. The last five columns of

Table 5.3 shows the results. With 96% effectiveness in detecting the anomalous records, IDEAL

was more effective than OneClass SVM, LOF, EE, and SVM. However, IDEAL’s F1r score was

2% less than that of the IF approach. The previously defined anomalies in this dataset were trivial

out-of-range outliers (i.e., records whose attributes have extremely large or small values in com-

parison with the majority of the records in the dataset). The IF approach effectively detected these

outliers for non-sequence data. This shows that out-of-range outliers can be effectively detected

from time-series data without considering the temporal dependencies between data records in the

dataset.

RQ1.c: How effective is our autocorrelation-based windowing approach compared to a brute-force

windowing approach?
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This evaluation was performed using mutated datasets described in Table 5.4. Synthetic_1 and

Synthetic_4 are univariate datasets that are mutated using the operators M1–M5. Column |M |

shows the number of mutants generated from each dataset. Column |A| shows the number of

attributes randomly selected from the NASA Shuttle dataset to apply the operators M1–M5.

Table 5.4: F1 Score Results for one execution of IDEAL

Dataset ID Operator |M ||M ||M | |A||A||A| F1tF1tF1t F1aF1aF1a F1fF1fF1f
Synthetic_1 M1 2 1 1.0 NA 0.6

Synthetic_1 M2 99 1 0.8 NA 0.45

Synthetic_1 M3 179 1 0.6 NA 0.49

Synthetic_1 M4 263 1 0.98 NA 0.62

Synthetic_1 M5 88 1 0.78 NA 0.56

Synthetic_4 M1 2 1 1.0 NA 0.6

Synthetic_4 M2 284 1 0.2 NA 0.45

Synthetic_4 M3 680 1 0.4 NA 0.49

Synthetic_4 M4 193 1 1.0 NA 0.69

Synthetic_4 M5 723 1 1.0 NA 0.57

Shuttle M1 21 4 0.23 0.86 0.45

Shuttle M2 1593 1 0.21 0.67 0.60

Shuttle M3 2123 6 0.88 0.58 0.28

Shuttle M4 1472 6 0.57 1.00 0.58

Shuttle M5 1561 5 0.6 0.57 0.8

We demonstrate the effectiveness of our windowing approach by comparing its F1t score with

that of a brute force-based windowing approach. The window size is configurable in IDEAL.

Using the mutated dataset as input, we executed IDEAL against the dataset multiple times using a

range of window sizes to select the best window size that results in the highest F1t score for the

brute-force approach. We also ran IDEAL using the autocorrelation-based windowing approach.

Figure 5.6 shows a comparison of the results of these two configurations. F1t scores for

autocorrelation-based windowing (orange line) and brute-force windowing (blue line) are shown

for 10 runs (i.e., interactions using the feedback loop). In each run, we used the knowledge about

the injected faults to automatically label the data and retrain the learning model. This labeling

process simulates the help of an expert to inspect the results of every run and mark the data for the

subsequent runs. The average of F1t scores are for the datasets in Table 5.4 that are mutated using

99



(a) F1tGR = 0.001 For M1 (b) F1tGR = 0.142 For M2 (c) F1tGR = 0.033 For M3

(d) F1tGR = 0.041 For M4 (e) F1tGR = 0.009 for M5

Figure 5.6: Average F1t for Mutated Datasets using Two Types of Windowing

different operators. For example, each data point in the first plot (Figure 5.6 (a)) shows the mean

value of F1t scores for the Synthetic_1, Synthetic_4, and Shuttle datasets that are mutated using

the M1 operator.

In 71% of the cases for all the datasets, the F1t score using autocorrelation based windowing is

close (i.e., within 0.04) to that using the brute force approach. On average, using autocorrelation-

based windowing, the mutation score (TPRt) for all the datasets is 0.60% and 0.94% for the first

and last runs respectively. Using the brute-force approach, the corresponding scores are 0.64% and

0.94%.

RQ1.d: Does the accuracy of the interactive constraint discovery approach improve after retrain-

ing the machine learning model with the help of feedback from domain expert?

Given NR, the total number of times an expert revalidates the data until the desired F1t is

reached, we measured the growth rate of F1t (F1tGR), defined as the percentage change of an
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F1t variable within the interactive learning period.

F1tGR = (
F1tNR

F1t1
)

1

NR − 1 (5.8)

where F1t1 is the F1t at the first run and F1tNR is the F1t at the last run. The plots in Figure 5.6

(a)–(e) show positive F1tGR scores between 0.001 and 0.142 for all the datasets, which indicates

that IDEAL’s accuracy improves after using ground truth knowledge to retrain the learning model.

5.2.2.2 Goal 2. Anomaly explanation effectiveness

We demonstrate explanation effectiveness in two parts.

RQ2.a: Are the attributes reported as major causes of invalidity of suspicious subsequences actu-

ally invalid?

Let Pa and Na be the numbers of actual invalid attributes that must and must not be reported

for constraint violations. TPa is the number of invalid attributes reported as valid by the decision

tree report. FPa is the number of valid attributes incorrectly reported as constraint violations. We

measure the F1 score at the attribute level (F1a).

RQ2.b: Are the time series features reported in the constraint violations represented by the decision

trees actually invalid?

Let Pf be the number of actually violated features (i.e., features that must be violated using

a mutation operator), Nf be the non-violated features, TPf be the number of actually violated

features the decision trees report as violated, and FPf be the number of non-violated features that

the decision trees incorrectly report as violated. We calculated the F1 score at the feature level

(F1f ) to answer this question.

Table 5.4 shows the F1 scores for one execution of IDEAL against the mutated datasets. The

F1a and F1f scores were calculated for the subsequences that were actually faulty (i.e., subse-

quences that included at least one actual faulty record). The F1a score is not applicable (NA) to

univariate datasets (Synthetic_1 and Synthetic_4). The F1a scores were between 0.57 to 1.0 for

the mutated Shuttle datasets. The F1f scores were between 0.28 to 0.8 for all the mutated datasets.
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The low values of F1f scores were as a result of displaying only three decision trees out of all

those generated by the random forest classifier, which report fewer features in comparison to all

the features identified as “must be reported" in Tables 5.2.

5.2.2.3 Goal 3: Performance of constraint discover and anomaly detection.

We answered the following question.

RQ3: Is our autocorrelation-based windowing more efficient than the brute force approach?

We measure the Total Time (TT ) it takes to perform the automated steps of data preparation,

constraint discovery, anomaly detection, and anomaly explanation. The time spent by domain

experts is not included because it may vary.

Figure 5.7: TT Box Plots for Datasets Mutated by M1–M5

Figure 5.7 shows the box plots for TT in seconds using brute-force and auto-correlation

based windowing for all the datasets based on a given mutation operator for one run of IDEAL.

Mi_Datasets in the horizontal axis indicates the datasets that are mutated using the Mi operator.

In four out of five cases, the medians of the boxes for the autocorrelation-based approach are lower

than the ones for the brute-force windowing approach. Moreover, the interquartile ranges of the
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boxes for the brute-force approach are considerably wider than the ones for the autocorrelation-

based approach, which shows that TT value of the brute-force approach is affected more by factors

such as the dataset size and its number and type of the attributes than the autocorreclation-based

approach. On average, it takes 152.90 and 593.53 seconds to run the autocorrelation based and

brute-force windowing approaches respectively. The autocorrelation-based approach is 3.88 times

faster than the brute-force windowing approach.

5.2.3 Threats to Validity

Internal validity. We used 18 time series features from the TSFreash CRAN library [82] to explain

the constraint violations. There are more features than the ones we used in this study to describe

a time series. For example, there are 300 features defined in the TSFresh Python library [141].

Using those features may result in reporting other constraint violations than the ones reported by

IDEAL. However, many of those features are not easily understandable by humans. Moreover, we

used a smaller set of features to decrease the computational complexity of the approach.

The decision trees express constraint violations using domain attributes, which may not repre-

sent the constraints discovered by the LSTM-Autoencoder, which were used to detect the sus-

picious sequences. However, there is a connection between the constraints discovered by the

LSTM-Autoencoder and the ones described in the decision trees. The reconstruction error of the

LSTM-Autoencoder is used to label the data as valid or invalid for the supervised random forest

classifier. The decision trees help express constraint violations using domain attributes and make

them comprehensible to the domain experts.

We assume that the mutated datasets have no other faults other than the seeded ones, and

that the other datasets only have known anomalies. The existence of other faults could affect the

evaluation results (i.e., lowering the calculated accuracy of IDEAL if the tool were to correctly

detect the unknown anomalies).

External validity. The features selected for reporting constraint violations during mutation analysis

were based on our observations when the Yahoo and NASA datasets were used. Different features
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may be affected in other datasets, which will affect the calculation of the F1f score. In future, we

will use data from other domains to evaluate IDEAL.

5.3 Summary

We instantiated the ADQuaTe framework for sequence data in an LSTM-Autoencoder-based

approach called IDEAL that finds and explains anomalies in multivariate time-series data. We

proposed an autocorrelation-based windowing technique to automatically identify the input size

of the LSTM-Autoencoder network. Decision trees were generated to explain the detected sus-

picious subsequences and records. Domain expert feedback was used to improve the accuracy

of the approach. We demonstrated that IDEAL can detect previously known anomalies in the

Energy dataset and also those which we created using mutation analysis injected in the Yahoo,

NASA Shuttle, and Energy datasets. We demonstrated that the autocorrelation-based splitting of

the input data is almost as effective but 3.88 times faster than the existing brute force window-size

tuning approaches. On average, it took IDEAL 91.52 seconds to run against the mutated univari-

ate datasets with 1,420 records, and 273.83 seconds against the mutated multivariate datasets with

58,000 records.

IDEAL was more effective in finding anomalies (i.e., killing the mutants) in the univariate time

series data. The average F1t score for the mutated univariate datasets was 0.77 and the one for the

mutated multivariate datasets was 0.35 for one execution of IDEAL. These F1t values indicate the

generation of false alarms by IDEAL as a result of using the unsupervised LSTM-Autoencoder.

However, the true positive and false negative rates improved (the growth rate of the F1t score

was positive and between 0.001 to 0.142) after incorporating ground truth knowledge about the

injected faults. The average F1t score after 10 executions of IDEAL was 0.99 for the mutated

univariate datasets and 0.84 for the mutated multivariate datasets. We demonstrated that the s-

score per attribute plots could identify the attributes that were major causes of invalidity in each

subsequence with an accuracy between 58 to 100 percent. Moreover, the decision tree plots could

identify the constraint violations over features in each subsequence with 28 to 80 percent accuracy.
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The low values of F1f scores were as a result of displaying only three decision trees out of all

those generated by the random forest classifier, which report fewer features in comparison to all

the features identified as “must be reported".
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Chapter 6

Conclusions and Future Work

This research proposes a framework called ADQuaTe that uses unsupervised machine learning

techniques to model constraints involving complex relationships among the records and attributes

of the data and detects suspicious records or sequences that do not satisfy the discovered con-

straints. ADQuaTe uses an explainable learning technique to interpret the constraints that are

violated by each group or sequence of suspicious records. ADQuaTe works in two modes: (i)

with domain expert feedback and (ii) without using domain expert feedback. It can be executed

in one iteration in an unsupervised manner without using the feedback loop. Moreover, ADQuaTe

allows domain experts to inspect the reported suspicious records. It feeds the constraint discovery

and fault detection components with the information received from the experts to minimize false

alarms.

ADQuaTe2 is an instantiation of ADQuaTe for non-sequence data using an autoencoder for

constraint discovery. We used non-sequence datasets from a health data warehouse from An-

schutz Medical School and a plant diagnosis database from Colorado State University to evaluate

ADQuaTe2. Our approach discovered new constraints in the attributes of these datasets that were

missed by domain experts and detected faults that were not previously detected by the existing

tools. We also used non-sequence data with ground truth knowledge from the UCI repository to

evaluate the interactive process in ADQuaTe2. We demonstrated that the true positive and false

negative rates of detected anomalies improved after incorporating the ground truth knowledge and

retraining the learning model. Using the same datasets, we demonstrated that the training process

must be stopped at the number of epochs after which the true positive rate starts decreasing for

controlling overfitting on the training data.

IDEAL is an instantiation of ADQuaTe for sequence data using an LSTM-Autoencoder for

constraint discovery. We demonstrated that IDEAL can detect previously known anomalies in the

Energy dataset and also those that we created using mutation analysis on the Yahoo and NASA
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Shuttle datasets. We demonstrated that the autocorrelation-based splitting of the input data is

almost as effective but faster than the existing brute force window-size tuning approaches. We

demonstrated that the true positive and false negative rates improved after incorporating ground

truth knowledge about the injected faults. Finally, we demonstrated that the visualization plots

could effectively explain the constraints violated by the suspicious subsequences.

In the future, we plan to evaluate ADQuaTe using other types of real-world non-sequence and

time-series data. We will improve the constraint discovery effectiveness of ADQuaTe for mixed

data types. We will improve the explainability effectiveness of ADQuaTe by directly extracting

interpretable information from the complex equations discovered by the autoencoder-based model.

We plan to extend ADQuaTe for text data type. We will also extend ADQuaTe to cleanse noise

from input data. We are going to instantiate ADQuaTe for streaming data. Finally, we will improve

the performance of ADQuaTe to reduce computational cost.

Improve the Constraint Discovery Effectiveness of ADQuaTe for Mixed Data Types.

ADQuaTe uses autoencoder-based networks to discover constraints in non-sequence and sequence

datasets. The loss function for these networks is called reconstruction error and is defined as the

mean square difference between the network input and output. The reconstruction error is the

average of the differences between the input attributes and their reconstructions regardless of the

attribute types. Using this definition, categorical attributes may carry more weight in the recon-

struction error calculation than numeric ones. For example, consider a dataset with one numeric

attribute (n) and one categorical attribute (c) with five possible values. The categorical attribute c

is converted to five binary attributes (c1, ..., c5) using the one-hot encoding technique. The recon-

struction error is calculated as follows for this dataset.

RE =
1

6
((n′ − n)2 +

5
∑

i=1

(c′i − ci)
2) (6.1)

where n′ is the reconstruction of the numeric attribute n and c′i is the reconstruction of the

categorical attribute ci for 1 ≤ i ≤ 5. This equation shows that the categorical attribute carries five
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times more weight in the RE calculation than the numeric attribute. This effect needs to be reduced

in the reconstruction error calculation. We propose to evaluate the use of another distance measure

used by k-prototype clustering techniques [135] to calculate the reconstruction error. Using this

definition, the dissimilarity between two values is calculated using the following equation.

RE = E(X,X ′) + C(X,X ′) (6.2)

where X is an input data record, X ′ is its reconstruction, RE is the dissimilarity mea-

sure between X and X ′, E(X,X ′) is the Euclidean distance between numeric attributes of

X and X ′, C(X,X ′) is the number of mismatched categorical attributes between X and X ′.

For the previous example, C(X,X ′) is equal to 0 if all the binary attribute values match (i.e.,

∀i ∈ {1, ..., 5}, ci = c′i), and 1 if at least one of the binary attribute values in the input and output

(i.e., ∃i ∈ {1, ..., 5}, ci! = c′i ) does not match. This definition does not put higher weight on the

categorical attributes. We will evaluate the effectiveness of this approach to determine whether the

accuracy of constraint discovery and anomaly detection improves by using this new calculation of

the reconstruction error.

Improve the Explainability Effectiveness of ADQuaTe. Our current anomaly interpretation ap-

proach is based on using an explainable machine learning technique in addition to the autoencoder-

based model to add explanations to the constraints discovered by that model. As described in

Section 4.2, the constraints expressed in terms of domain attributes may not be similar to the con-

straints discovered by the autoencoder-based model. We plan to improve the explainability effec-

tiveness of ADQuaTe by directly extracting interpretable information from the complex equations

discovered by the autoencoder-based model. Current approaches for the neural network interpre-

tation [142] only extract information about the role of an input attribute in the decision made by

the neural network. We also extracted the same information from the autoencoder-based network

through identifying the attributes that were major causes of the invalidity of the suspicious records

or sequences. We will extend the anomaly interpretation component by extracting other informa-
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tion from the trained network, such as the strength of correlations that the network discovers be-

tween multiple input attributes. Moreover, we will compare this information with the constraints

expressed by the decision trees to demonstrate that the decision trees can correctly describe the

constraints discovered by the autoencoder-based model.

Extend ADQuaTe for Textual Data Type. The ADQuaTe framework currently supports categor-

ical and numeric attributes in the input dataset and treats string attributes as categorical. However,

text attributes cannot always been described as a set of finite categories. For example, a health

dataset may have a Description attribute that contains doctor reports after each visit of the patients.

This attribute can contain one or more paragraphs of text explaining the patient’s status, which can-

not be treated as categorical. We plan to extend the data preparation component of ADQuaTe to

support textual attributes. We will use Natural Language Processing (NLP) [143] to extract lexical

features from the text and use those features as new attributes in the dataset. We will evaluate the

effectiveness and efficiency of ADQuaTe using real-world datasets with textual attributes, such as

heath data from Anschutz medical campus [22].

Extend ADQuaTe to Denoise Data. Real-world data collected from various sources contains

noise (i.e., meaningless data) as a result of hardware failures, programming errors, and gibberish

input from measurement tools, such as different types of sensors [144]. It is not trivial to precisely

classify an invalid data record as noise or anomaly. Noise is erroneous and perhaps random values

in data records, but are not necessarily unusual values [145]. While noise is not interesting for

domain experts, anomalies are interesting to investigate using data analysis techniques. Existing

noise cleansing techniques use the term weak anomaly (noise) and significant anomaly to distin-

guish between these two concepts [146]. Statistical and machine learning-based anomaly detection

techniques do not perform well in the presence of noise [147], leading to higher probabilities for

generating false alarms. We plan to extend ADQuaTe by incorporating an automatic noise cleans-

ing technique [147, 148] in the data preparation component. We will evaluate this extension using

both real-world noise as well as random noise that is injected into the input datasets to demonstrate

that ADQuaTe can effectively detect significant anomalies in the presence of noise in the data.
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Instantiate ADQuaTe for Streaming Data. Today, there is an enormous increase in the genera-

tion of streaming time-series data [149]. This data is typically collected from connected real-time

data sources, such as environmental sensors [150]. Anomaly detection in streaming data requires

processing data in real time and discovering constraints while simultaneously making predictions

about anomalous data. Existing anomaly detection approaches for non-streaming data are diffi-

cult to execute reliably for streaming data in practice [150]. We plan to extend ADQuaTe to find

anomalous records and sequences in multivariate streaming time-series data. We will instantiate

the constraint discovery component using a machine learning model, such as Hierarchical Tem-

poral Memory (HTM) [149] that can continuously discover constraints from data. HTM is a time

series modeling technique known for its fast and continuous learning, tolerance of noise, and gen-

eralization [101]. Moreover, it can deal with changing patterns of data over time. As a result, it is

more appropriate than the LSTM-based techniques for modeling streaming time-series data. We

will evaluate the effectiveness and efficiency of the approach using real-world data captured online

from IoT sensors and from medical records.

Improve ADQuaTe Performance. ADQuaTe uses deep learning along with other learning tech-

niques to effectively detect and explain anomalies in big datasets. This incorporation of several

techniques to increase the accuracy of anomaly detection and explanation can lead to increase in

computational cost [144], especially for high dimensional datasets with large number of records.

We plan to use big data and cloud technologies to reduce the computational cost. We will incorpo-

rate parallel and distributed processing to minimize the computational cost. We will use libraries

that work in cloud and multi-core environments. We will evaluate the performance of ADQuaTe

by processing huge volumes of data in real-time and measuring the reduction in the computational

cost.
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