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SEARCHING FOR PHENOTYPES OF SEPSIS: AN APPLICATION OF MACHINE LEARNING TO 

ELECTRONIC HEALTH RECORDS. Michael J. Boyle (Sponsored by R. Andrew Taylor). 

Department of Emergency Medicine, Yale University School of Medicine, New Haven, 

CT. 

Sepsis has historically been categorized into discrete subsets based on expert 

consensus-driven definitions, but there is evidence to suggest it would be better 

described as a continuum. The goal of this study was to perform an exhaustive search 

for distinct phenotypes of sepsis using various unsupervised machine learning 

techniques applied to the electronic health record (EHR) data of 41,843 Yale New Haven 

Health System emergency department patients with infection between 2013 and 2016. 

Specifically, the aims were to develop an autoencoder to reduce the high-dimensional 

EHR data to a latent representation amenable to clustering, and then to search for and 

assess the quality of clusters within that representation using various clustering 

methods (partitional, hierarchical, and density-based) and standard evaluation metrics. 

Autoencoder training was performed by minimizing the mean squared error of the 

reconstruction. With this exhaustive search, no convincing consistent clusters were 

found. Various clustering patterns were produced by the different methods but all had 

poor quality metrics, while evaluation metrics meant to find the ideal number of 

clusters did not agree on a consistent number but seemed to suggest fewer than two 

clusters. Inspection of one promising arrangement with eight clusters did not reveal a 

statistically significant difference in admission rate. While it is impossible to prove a 

negative, these results suggest there are not distinct phenotypic clusters of sepsis. 
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Introduction 

Sepsis, defined as “life-threatening organ dysfunction caused by a dysregulated host 

response to infection” (1), affects an estimated 30 million people worldwide every year, 

potentially resulting in 5.3 million deaths annually (2). In one 2017 study of 409 

hospitals encompassing 10% (2,901,019) of all hospital admissions in the United States, 

the incidence of sepsis was 6.0% with a mortality rate of 15% (3). Another study of two 

large cohorts including nearly 7 million adult hospitalizations in the United States 

between 2010 and 2012 found that sepsis contributed to between 34.7% and 55.9% of 

all inpatient deaths (4). According the Agency for Healthcare Research and Quality, in 

2013 sepsis was the most costly condition in the United States, responsible for 23.6 

billion dollars of healthcare expenditure that year alone. That expense amounts to 6.2% 

of national hospital costs resulting from nearly 1.3 million hospital stays (5). These 

staggering statistics are why in 2017 the WHA, the decision-making body of the WHO, 

adopted a resolution declaring the importance of improving diagnosis and management 

of sepsis (6), and why in 2018 there were more than 2,300 publications mentioning 

sepsis in the title when searched via PubMed. 

Sepsis Definitions 

Despite the interest in and impact of sepsis, it remains poorly understood. Its etiology is 

likely multifactorial, dependent upon both host and pathogenic factors, pro- and anti-

inflammatory mediators, and the coagulation and neuroendocrine systems (7). But 

lacking a precise understanding of its pathophysiological mechanism, the task of 
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defining the syndrome has been left to expert-led consensus groups which have 

reviewed and revised their recommendations three times since 1991 with no shortage 

of controversy (1, 8-11).  

While terms like “sepsis syndrome” were proposed earlier by researchers like Bone et 

al. in a 1989 trial of methylprednisolone for sepsis (12), the first consensus-based sepsis 

definitions were proposed at the 1991 American College of Chest Physicians/Society of 

Critical Care Medicine Sepsis Definitions Conference and published in 1992 (13, 14). 

Those definitions differentiated between infection, the invasion of host tissue by 

microorganisms, from sepsis, defined as the systemic host response to that infection as 

identified by having greater than one of the Systemic Inflammatory Response (SIRS) 

criteria (8). The SIRS criteria, which had been previously defined and which even then 

were acknowledged as not specific to sepsis, were composed of: 1) a temperature 

greater than 38°C or less than 36°C; 2) tachycardia greater than 90 beats per minute; 3) 

tachypnea greater than 20 breaths per minute or a PaCO2 of less than 32 mm Hg; and 4) 

a white blood cell count greater than 12,000/mm3 or less than 4,000/mm3, or the 

presence of more than 10 percent immature neutrophils. The experts proposed the 

term “severe sepsis” to define the pathological condition where the adaptive response 

known as sepsis became maladaptive by causing organ dysfunction, hypoperfusion 

(lactic acidosis, oliguria, or acutely altered mental status), or sepsis-induced 

hypotension. They further defined “septic shock” as a more extreme subset of “severe 

sepsis” where the maladaptive response produced fluid-unresponsive hypotension or 

tissue hypoperfusion. Although the consensus group explicitly acknowledged that 
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“sepsis and its sequelae represent a continuum of clinical and pathophysiologic 

severity”, they also defined transition points between these states which were 

subsequently used for nearly two decades to guide patient care and recruitment into 

clinical trials. Infection was differentiated from sepsis by two or more SIRS criteria; the 

adaptive host response (sepsis) became maladaptive (severe sepsis) with the presence 

of organ dysfunction, hypoperfusion, or hypotension; and fluid unresponsive 

hypotension marked the transition point between severe sepsis and septic shock. 

The 1992 definitions were criticized almost immediately. The use of the SIRS criteria was 

criticized for its rigid cutoffs that narrowly excluded potentially septic patients from 

clinical trials, its lack of specificity for sepsis and the consequent heterogeneity of the 

patients it captured (68% of one study group including ICU and general wards patients 

met SIRS criteria), its uselessness for guiding clinical care, and its superficial relationship 

with underlying pathophysiology (10, 15). 

In response to these criticisms, in 2001 a second sepsis definitions conference was held. 

However, citing a lack of new evidence, the expert consensus group merely reaffirmed 

the 1991 definitions with the additional acknowledgement that more clinical and 

laboratory variables could be used to identify systemic illness than just the four SIRS 

criteria. They did not provide specific guidance about how to use these additional 

variables to make the diagnosis (9).  

Over the subsequent decade, the same criticisms of the definitions persisted and new 

studies clarified existing shortcomings. More researchers pointed out the need for 
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objective principles and biomarkers (16), while others suggested that organ dysfunction 

become part of the criteria for sepsis to prevent confusion between the terms sepsis 

and severe sepsis (17). Significantly, in 2015 Kaukonen et al. showed that among more 

than 100,000 ICU patients with infection and organ failure, one in eight did not meet 

SIRS criteria and mortality increased in a linear stepwise fashion with each additional 

SIRS criterion. There was no transitional increase in mortality at the threshold of two 

SIRS criteria, challenging “the sensitivity, face validity, and construct validity of the rule 

regarding two or more SIRS criteria in diagnosing or defining severe sepsis in patients in 

the ICU” (18). 

Finally, in 2016 a group of critical care specialists met once more to develop the Third 

International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). The task force 

determined that limitations of previous definitions included “excessive focus on 

inflammation, the misleading model that sepsis follows a continuum through severe 

sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory 

response syndrome (SIRS) criteria” (1). They created the current definition for sepsis, 

“life-threatening organ dysfunction caused by a dysregulated host response to 

infection,” and operationalized this definition as the increase of two or more points in 

the ICU-centric Sequential Organ Failure Assessment (SOFA) score. Severe sepsis was 

discarded as a redundant term, and septic shock was defined as a higher-mortality 

subset of sepsis in requiring vasopressors to maintain a mean arterial pressure of 65 mm 

Hg or greater and a serum lactate level greater than 2 mmol/L (>18 mg/dL) in the 

absence of hypovolemia. The consensus article and two accompanying analyses 
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determined the in-hospital mortality rates of these new definitions to be greater than 

10% for sepsis and greater than 40% for septic shock (19, 20). The group also published 

a new scoring system, the quick Sequential Organ Failure Assessment (qSOFA) score, 

meant to be used to identify patients with a mortality equivalent to that of sepsis 

outside the ICU setting. 

While the most recent criteria were analyzed with data in the papers that accompanied 

their release, they were still expert consensus-based and not derived a priori from an 

understanding of the pathophysiology (21). The group did not delineate distinct 

phenotypes of patients within the heterogeneous group captured by the non-specific 

organ dysfunction criteria. Moreover, they retained a categorical distinction between 

normal physiology, sepsis, and septic shock with discrete laboratory and clinical cutoffs. 

This categorical approach has been criticized as far back as the early literature prior to 

the release of the first sepsis definitions. In their 1992 critique of Bone et al.’s proposed 

“sepsis syndrome” definition, Knaus and colleagues wrote of their own analysis: “these 

findings led us to our major conclusion that while categoric definitions of sepsis may be 

useful in selecting patients for entry into clinical trials, they may not be useful in 

characterizing individual, or perhaps even group, risks. What our results suggest rather 

is that the current clinical condition of sepsis, at least as it is applied to a subset of 

critically ill patients admitted to ICUs, is a continuous state with the prognosis 

determined, in large part, by the degree of physiologic imbalance at the time of 

admission” (22). 
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This debate over definitions has significant real-world implications for patients because 

definitions can drive management. One of the major turning points in the management 

of sepsis was the 2001 trial of early goal-directed therapy (EGDT) for severe sepsis and 

septic shock, frequently referred to as the Rivers trial after its first author (23).  The trial 

showed that when severe sepsis or septic shock were managed with specific goals for 

central venous oxygen saturation and pressure, hematocrit, and mean arterial pressure, 

mortality dropped from 46% to 30% compared to standard of care. The intervention 

was validated in a population of patients meeting severe sepsis and septic shock criteria 

as determined by the 1992 consensus definitions (two or more SIRS criteria with 

hypotension or elevated lactate). More contemporary trials of EGDT for septic shock 

have also used as entry criteria two SIRS criteria with refractory hypotension or elevated 

lactate (24). Since interventions validated in clinical trials are often applied only to the 

validated patient population, and in light of recent findings describing the stepwise 

linear increase in mortality with each additional SIRS criterion and the lack of a major 

transitional increase in mortality with two SIRS criteria, there may have been many 

patients that could have benefited from trial-validated interventions but did not receive 

them. 

Based on all this prior work and debate, it stands to reason that if smaller groups of 

distinct pathophysiological processes or phenotypes could be identified amongst the 

heterogeneous group captured by expert consensus-defined diagnostic criteria, we 

might better be able to discover and deliver effective interventions. That is the 

motivation of this thesis. 
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Machine Learning and Electronic Health Records 

The advent of widespread use of electronic medical records has created significant 

opportunities for large-scale data mining in healthcare (25). The sheer quantity of data 

available makes it amenable to analysis with a set of statistical inference algorithms 

known as machine learning. 

Machine learning techniques applied to electronic health record data provide a 

potential solution to the problem of sepsis categorization by enabling phenotype 

discovery without the manual selection of features. The realm of machine learning is 

generally divided into two types of learning algorithms: supervised and unsupervised. 

Supervised learning aims to make predictions from data with a model trained on 

examples where the predicted value is known. Data where the target variable is known 

is called labeled data. A well-known example of a supervised task is the identification of 

objects within an image. To make accurate predictions, these models are trained on 

images where the object within the image has already been labeled. 

On the other hand, unsupervised machine learning aims to discover patterns in data 

that has no labels (26). There are several types of unsupervised learning tasks, but one 

of the most common is called clustering, which is the attempt to separate unlabeled 

data into distinct clusters so that similar instances are grouped closely in space. 

Clustering techniques can be broadly be divided into hierarchical and partitional 

methods. Hierarchical methods function by creating a nested series of partitions, 

forming a dendrogram, whereas partitional methods only have one high-level partition 
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(27). Whatever the method, clustering applied to electronic medical record data 

provides an opportunity to discover distinctly different subsets of patients and disease 

states that are more similar to each other than they are to those in other clusters. This 

categorization can enable prediction and risk-stratification, can inform development of 

future therapies, and has even been used to discern subtypes of sepsis (28-32). 

One of the challenges of applying clustering techniques to EHRs is that the data is very 

high-dimensional, has frequently missing values, and is highly heterogeneous combining 

both continuous and categorical variables (33-35). Traditional clustering techniques, like 

the k-means algorithm, do not perform well on very high-dimensional data. Thus, prior 

to clustering, high-dimensional data is often reduced to fewer dimensions using 

techniques that try to preserve the high dimensional relationships in a lower-

dimensional latent space. Principle component analysis is an oft used method that 

attempts to find a transformation of the variable space that accounts for the variance 

within the distribution of data with the fewest possible orthogonal dimensions, known 

as principal components. More recently however, the development of a type of deep 

learning called the autoencoder has provided a more robust method for dimensionality 

reduction that is ideally suited for EHR data due to its ability to “learn” highly abstract 

features which can be represented in fewer dimensions (36). 

Deep learning is a relatively new field that loosely emulates the structure neurons in the 

human brain – an “artificial neural network” -- to create computational models that 

learn abstract representations of data (37). They offer multiple advantages over more 

traditional learning algorithms, one of which is their ability to model complex non-linear 
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functions. Deep learning is responsible for numerous breakthroughs in computer vision, 

speech-to-text transcription, and even self-driving cars. 

Invented by one of the fathers of artificial neural networks, Geoff Hinton, autoencoders 

are a type of deep learning where the input data is sequentially forced to be 

represented in fewer and fewer dimensions with each layer of the network before being 

allowed to expand again to the original number of dimensions with an architecture 

mirroring the reducing side. The network is then optimized so that the error between 

the input data and output data, known as the reconstruction error, is minimized. Once 

training is complete, new data can be fed through the first half of the network, the 

encoder, which outputs a latent representation that can subsequently be used for 

clustering. Essentially, the data is forced through a bottleneck that acts to compress the 

representation of the high dimensional data into fewer dimensions with minimal loss 

(38). Already, this technique has been applied to gain new insights from EHR data, 

including diagnosis prediction and the imputation of missing data (39, 40). These recent 

advances, from EHRs to machine learning and deep learning, provide researchers with 

powerful new tools to gain novel insights that could help patients. 

In this thesis, I perform an exhaustive search for distinct phenotypes of infection by 

applying various clustering techniques to the latent (i.e. low-dimensional) 

representation of EHR data. If clusters can be identified within the data and these 

clusters have distinct features and mortalities, they could enable more precise clinical 

management and inform future investigations into targeted therapeutic approaches. If, 

however, an exhaustive search fails to reveal clusters, it would support the notion that 
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sepsis exists as a continuum and thus ought to be treated as such in clinical 

management. For example, a computer model that could project likelihood of in-

hospital mortality might enable more precise clinical management than the current 

categorical classification of simply sepsis or septic shock. This effort is motivated by the 

aforementioned shortcomings of the expert-defined sepsis definitions, namely their use 

of cutoffs within continuous variables such as respiratory rate; their limitation to a small 

number of variables amenable to bedside rules; their muddied purpose of both clinical 

trial inclusion criteria and framework for clinical management; and ultimately their 

categorical classification of mortality despite the evidence for a continuum of disease 

severity (18, 22). 

Aims 

The purpose of this thesis is to perform an exhaustive search for clusters corresponding 

to distinct phenotypes of infection within the EHR data of patients in the emergency 

department with infection. I hypothesize that no clusters will be found. Because 

machine learning has a degree of art to it in addition to science, there is no way I can 

definitively prove that clusters do not exist; what I aim to do is to try multiple 

approaches to reasonably demonstrate that such clusters are unlikely. 

Thus, my specific aims are the following: 

1. Develop an autoencoder to reduce the high-dimensional EHR data to a latent 

space amenable to clustering while minimizing reconstruction error. 

2. Use multiple partitional and hierarchical clustering methods to cluster the data. 
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3. Evaluate the proposed clusters with a variety of cluster validity metrics. 

Methods 

Study Design 

This was a retrospective study of ED visits to three Yale-New Haven Health System 

(YNHHS) emergency departments between March 1, 2013 and May 1, 2016. The study 

was approved by the institutional review board. 

Study Setting and Population 

This study was performed across three sites: 1) the YNHHS York Street ED, 2) the YNHHS 

Saint Raphael ED, and 3) the YNHHS Shoreline ED. All hospitals used the Epic ASAP 

(Verona, WI) EHR. 

This study included all emergency department encounters with patients at least 18 

years old having a primary encounter diagnosis considered to be of infectious etiology, 

determined by ICD-10 code membership in a list of predetermined “infectious” ICD-10 

codes. In order to include all patient encounters that were potentially septic, I reviewed 

all ICD-10-CM codes and generated a list of codes corresponding to diagnoses that could 

elicit a host response to infection. The decision to include or exclude a certain diagnosis 

was made based on my thesis advisor’s and my clinical knowledge of the potential for 

that diagnosis to lead to sepsis. So, for example, “appendicitis” was included while 

“acute tubulo-interstitial nephritis” was not. Each included diagnosis was further 

categorized as one of the following types: “bacterial”, “viral”, 

“fungal/protozoal/parasitic”, or “unspecified”. The “unspecified” category was applied 
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when the diagnosis description was insufficient to determine the type of infectious 

process, e.g. “Pharyngitis”, or when the infection was specifically labeled as of 

unspecified origin, e.g. “Pneumonia, unspecified organism”. It was additionally found 

that because the study timeframe included the transition from the ICD-9 to the ICD-10 

standard, certain diagnoses within the Yale-New Haven Health System’s Epic 

deployment lacked an ICD-10 code but possessed an ICD-9 code. In order to capture 

patient encounters associated with these diagnoses, I broadened the inclusion list to 

include any diagnoses where there was both no ICD-10 code and one of the following 

conditions were met: 1) the ICD-9 code was explicitly for an infectious or parasitic 

disease (ICD-9 001-139) or 2) the diagnosis name (as listed in the Epic deployment’s 

table) contained one of several keywords I defined, e.g. “infectious” or “cellulitis”. These 

additional diagnoses were also further categorized as with the ICD-10 codes.  

I was motivated to cast a wide net with any potentially “infectious” ICD-10 codes rather 

than using physician-diagnosed sepsis in order to avoid biasing the included population 

towards those that met consensus-defined criteria. The objective was to capture all 

potential phenotypes of sepsis, including those that may have yet been unknown. 

Study Protocol 

An overview of the study protocol can be seen below in Fig. 1. Briefly, data was 

extracted from the EHR and reduced to one measurement per variable per encounter 

within a four-hour window starting with the first recorded measurement of any type for 

that patient. The data was then limited to only include variables not more than 50% 
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missing with the exception of a few that are part of the SOFA or septic shock criteria 

which I was motivated to retain due to prior work showing their importance in sepsis 

mortality prediction. Values were then imputed for all missing values. For each variable, 

an additional binary variable was added designating whether the value had been 

imputed or not. The now-complete dataset with 41,843 encounters and 290 

variables/dimensions was used to train an autoencoder that compressed the dataset to 

a latent space of 16 dimensions. This compressed dataset was then used as the input for 

various clustering techniques which were subsequently evaluated. With the exception of 

the initial SQL query, all data analysis and autoencoder training was performed with the 

Python programming language with Jupyter notebooks. The Python packages Pandas, 

Sci-kit Learn, Keras with Tensorflow were used extensively for the data processing, 

clustering, and deep learning respectively. A detailed explanation follows below. 
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Fig. 1: Overview of the study protocol. Starting in the top left: rows and columns of data with some missing values 
(black) are restricted to only include columns without overly-missing data. The remaining missing data is imputed 
(all white), and then is used to train the autoencoder. When the autoencoder is trained, the encoding layers are 
extracted and used to generate a compressed representation of the data that is amenable to clustering. 

Data Set Creation 

All data was extracted from the Clarity enterprise data warehouse (Epic) with Structured 

Query Language (SQL) queries. For each patient encounter, these queries extracted 

demographic information (age, sex, ethnicity), social history (smoking status, alcohol use 

status, illicit drug use status), vital signs and oxygen requirement while in the ED, labs 

obtained in the ED, home medications, and past medical history. 

Encounters missing disposition (1,146) were removed leaving a total of 41,843 

encounters. Ages above 115 were converted to missing (NA) because 116 is the age 

used in Epic for unidentified patients. 
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For social history, if more than one response was recorded for a patient (e.g., smoking 

list as never smoker and every day smoker), the more severe value was chosen because 

it is less likely that was entered in error. 

Past medical history for each patient was extracted in the form of ICD-10 code. In order 

to group the numerous possible diagnoses into meaningful and relevant abstract 

categories, each ICD-10 diagnosis was mapped to categories defined by the AHRQ 

Clinical Classification Software (CCS). For each encounter, this list of retained CCS codes 

was limited to those determined by my thesis advisor and me to affect the immune 

response. This determination was made by consulting various clinical scoring systems 

(SOFA, APACHE II/III, Charlson comorbidity score) and individual parameters used for 

sepsis criteria or sepsis mortality prediction (1, 19, 41-47). Finally, the list of CCS codes 

was condensed to form a more abstracted list of 17 classes of relevant past medical 

history (Error! Reference source not found.). Ultimately, each encounter was associated 

with 17 binary values, each indicating the presence of one of the types of relevant past 

medical history. 
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Similarly, patient home medications were grouped into categories based on the YNHHS 

medication type schema. There were a total of 48 types of medication classesError! 

Reference source not found., and as with past medical history, each patient encounter 

was associated with 48 binary values, each indicating whether the patient was using one 

or more medications of that class. An additional variable was added to each encounter 

which corresponded to the total number of home medications in order to add additional 

information to the otherwise binary encoding.  

In developing the “number of medications” variable, it became apparent that this 

section of the EHR may be particularly prone to user error or infrequent updating since 

many patients were using an inordinately large number of medications (Fig. 2). It is also 

possible that our SQL query failed to distinguish between active medications and ones 

that the patient was no longer using. Rather than decide upon an arbitrary cutoff for 

what a reasonable number of medications is, I decided to leave it as is with the 

understanding that if it is particularly noisy or meaningless, it will be deemphasized in 

the latent space representation after passing through the autoencoder.  

Table 1: Past medical history categories 

HIV infection Cancer 

Immunity disorders Maintenance chemotherapy or radiotherapy 

Asthma Chronic obstructive pulmonary disease and bronchiectasis 

Other Respiratory Liver disease (alcohol-related) 

Thyroid disorders Kidney disease 

Diabetes Other nutritional, endocrine, and metabolic disorders 

Arrhythmias FEN (electrolyte and nutritional disorders) 

CHF Hypertension with complications and secondary hypertension 

Heart Disease  
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Fig. 2: Distribution of number of home medications. Note the logarithmic scale. 

Laboratory values and vital sign measurements required a different approach. Whereas 

the other data, like demographics or medications, only had one allowable value per 

encounter, vital signs and laboratory values could be measured multiple times. With the 

motivation to try to capture phenotypes as they initially presented without the 

influence of therapeutic intervention, we chose to limit labs and vitals to those recorded 

within a few hours of arrival to the emergency department. On the one hand, if the time 

window was too short we risked losing valuable data that was reported later (e.g., a lab 

that was drawn early in the visit but had not been reported by the laboratory until 

several hours later). On the other hand, too long a window risked retrieving labs and 

vitals that had been influenced by therapeutic interventions. To determine an ideal time 

window, I examined the fraction of common labs and vitals missing as a function of time 

since arrival. The point at which the curve begins to flatten is the point at which 

extending the window does not provide substantially more data to warrant inclusion of 

biased values (Fig. 3). Ultimately, I decided that four hours produced a reasonable 

tradeoff since extending beyond that did not appreciably decrease the amount of 

missing data. 
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Fig. 3: Percentage of data missing as a function of time since first data point. This plot illustrates the effect of 
different time window cutoffs on the percentage of data available. Too short a cutoff results in a lot of missing 
data. 

 
Since vital sign observations are manually entered by nursing staff, one can expect 

aberrant values and nonsensical outliers. It becomes more difficult to discern real values 

from mistakes when the data entered is theoretically possible, but improbable (e.g. a 

systolic blood pressure of 300). To try to limit the effect of outliers on vital signs data, I 

tried a number of techniques commonly used for dealing with outliers. Limiting vitals to 

three standard deviations of the mean proved too restrictive; the distribution of healthy 

vital signs is so narrowly distributed that even aberrant values seen commonly in the 

emergency department (e.g., a heart rate of 144 beats per minute) would have been 

excluded. I then attempted to limit vitals to 1.5 and 3.0 times the interquartile range 

(IQR) above the third quartile and below the first quartile, which are common 

definitions of outliers and extreme outliers. This method also proved too limiting as it 

discarded values like a respiratory of 28 as an extreme outlier. Distributions of vital signs 

are shown as boxplots in Fig. 4. 
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Fig. 4: A boxplot of the distribution of vital signs. gcs = Glasgow Coma Score, hr = heart rate, o2_amount = oxygen 
requirement (L/min), o2_sat = SpO2,  rr = respiratory rate, temp = temperature (f), sbp = systolic BP (mm Hg), dbp = 
diastolic BP (mm Hg). 

 
Ultimately, the best solution was to limit the vital signs to estimated physiological limits 

based on the experience of my thesis advisor and an examination of the values listed 

(e.g., a respiratory rate above 70 is more likely to be a heart rate entered in the wrong 

field than a respiratory rate. Table 2 below shows the cutoffs that were used for each 

vital sign. Values greater than the maximum or less than the minimum were set as 

missing values (NA). 

After clipping vitals, most encounters had multiple values for each vital sign recorded 

during the four-hour time window. In order to reduce these observations to a single 

observation per encounter, vital summary statistics were creating. For each vital sign, a 

new variable was generated corresponding to the first, last, minimum, mean, and 

maximum values during the  
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Table 2: Cutoffs for vital signs 

Vital sign Min Max 
Glasgow coma scale 0 15 
Heart rate 30 300 
Respiratory rate 8 70 
Temperature (F) 80 110 
Systolic blood pressure (mm Hg) 30 300 
Diastolic blood pressure (mm Hg) 20 250 
Oxygen amount (L/min) 0 60 
Oxygen saturation (SpO2) 40 100 

 

time window. Another vital sign not shown in Fig. 4 or Table 2 is the oxygen dependency 

status. This was a categorical variable based upon a free-text field that required coercing 

into a limited number of possible options. These final categories, in order of increasing 

demand, were room air, other, nasal, mask, positive pressure, and mechanical 

ventilation. Since this variable was categorical instead of continuous, the mean 

summary statistic was replaced with the mode statistic. 

Laboratory values were extracted only if the result was posted within the four-hour time 

window. If more than one measurement was posted for a given lab within that 

timeframe, only the first value was extracted in accordance with the goal of having a 

snapshot of the patient before therapeutic interventions influenced measurements. Any 

laboratory tests that had not posted a result in the four-hour time window were marked 

as missing (NA). 

After windowing was complete, the degree of missing data was assessed. To avoid 

creating a dataset that was overall greater than 50% missing, I chose to retain only 

variables less than 50% missing with the exception of variables that feature prominently 

in the SOFA score or sepsis definitions (e.g., bilirubin and lactate). 
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The full list of labs that were retained and the percentage missing in the full dataset is 

listed in Table 6 in the appendix. 

Imputation 

After all the data was merged together and there was only one value per variable per 

encounter, missing data was addressed by imputing the column mode for each variable. 

Both mean and mode imputation were considered, but many of the variables, especially 

vitals and labs, were distributed in Poisson distribution with long tails towards abnormal 

values. Choosing mean imputation in these cases would have unreasonably skewed the 

imputation towards abnormal values. For example, lactate would have been imputed 

with a value greater than 2 mmol/L, which is greater than the threshold for inclusion in 

the septic shock criteria with the Sepsis-3 definitions. 

In addition to imputing the mode, for each variable an additional column was added to 

mark with it was missing or not. The intent was for the autoencoder to learn to 

associate the missing marker with the missing variable itself and thus learn to ignore or 

discount that imputed variable. 

Autoencoder Training 

To make the dataset amenable to consumption by a neural network, all variables had to 

become numeric. Any Boolean variables (e.g., “uses alcohol”) and categorical variables 

(e.g., “O2 dependency” which could be room, nasal, etc.) were one-hot encoded. One-

hot encoding transforms a single column of categorical values into a binary matrix 
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where each column corresponds to a single category and the binary value marks 

whether this category is present or not. 

The data was then randomly split into a training (90%) and validation set (10%). One of 

the risks of training a machine learning model is overfitting the training data so that the 

model “memorizes” the training data but generalizes to new data poorly. To evaluate 

the model’s generalizability, which is also a proxy for the degree to which it is learning a 

meaningful latent representation of the input data, the model is trained on one set of 

data but evaluated on another (48). 

After splitting, each variable was zero-centered and scaled to unit variance by 

subtracting the mean and dividing by the standard deviation. This is common practice 

because many machine learning estimators behave badly if individual features do not 

resemble normally distributed data. One can imagine that if one feature had 

significantly more variance than another, it would dominate training because it would 

have more proportional explanatory power of variance compared to other variables 

(48). 

With the data prepared ready for training, the next task was to find a combination of 

autoencoder parameters which, after training, would produce the lowest reconstruction 

error on the validation set. For this purpose, reconstruction error was measured as the 

mean squared error between the autoencoder input and output. A total of 16 encoding 

dimensions was chosen from the set of [2 8, 16, 32] because initial experiments training 

on a small subset of the data showed that 16 dimensions produced an acceptable 
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tradeoff between reconstruction error and a small enough number of dimensions to be 

easily amenable to clustering. A useful comparison is the dimensionality reduction from 

PCA. PCA applied to the dataset showed that 119 dimensions were required to explain 

95% of the variance, so the autoencoder should at least be able to reduce the number 

of dimensions to 119 without much loss. For further comparison, I took the first 2, 4, 8, 

16, and 32 principal components and projected the dataset into each and then reversed 

the transformation to create a lossy reconstruction from the compressed data. The 

reconstruction error from each of these compressed representations served as a useful 

benchmark for comparing to the autoencoder. If the autoencoder is “learning” an 

abstract representation of the data, it should outperform PCA when encoded with the 

same number of dimensions. I examined the difference in reconstruction error between 

PCA and a prototype of the autoencoder for the same number of compressed 

dimensions and observed where the difference between reconstruction errors began to 

stabilize (Fig. 5 and Fig. 6). This occurred around 16 dimensions, validating this choice. 
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Fig. 5: Reconstruction mean-squared error (mse) as a 
function of # compressed dimensions with a prototype 
autoencoder (AE) and PCA. 

 
Fig. 6: Difference in reconstruction mean-squared error 
between PCA and autoencoder (AE). The curve flattens 
between 8 and 16 dimensions, suggesting diminishing 
benefit of AE over PCA beyond 16 dimensions. 

After deciding on the number of encoding dimensions, I varied the network architecture 

(number of layers, number of neurons per layer), the optimizer and its learning rate 

(Adam and Adadelta), and various regularization parameters which serve to prevent 

overfitting (L2 normalization, batch normalization, and dropout)(48, 49). Ultimately, the 

combination that had the lowest reconstruction error on the validation set was an 

architecture with 2048-1024-512-16-512-1024-2048 neurons in each layer, with the 16-

neuron layer serving as the encoding layer. The ideal optimizer was the Adam optimizer 

with a learning rate of 0.0001, and the network was trained with a batch size of 4096 

training examples per batch. To prevent overfitting, the ideal input dropout rate was 5% 

with a dropout rate of 20% between hidden layers except between the encoding layer 

and the subsequent 512-neuron layer, along with batch normalization. After training for 

1700 epochs the validation loss began to climb signifying overfitting, so training was 

halted and the best scoring model was saved and used for all future work. When the full 

dataset was put through the autoencoder and compared to its reconstruction (this time 

without the effect of dropout), the network produced a reconstruction error of 0.118, 
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which compares very favorably to the PCA reconstruction mean-squared error for the 

same number of dimensions (a total of 16), which was 0.419. 

Clustering 

Once the autoencoder was trained, the entire original dataset was transformed via the 

encoder to its latent 16-dimensional representation. From this point, an exhaustive 

search was performed with various clustering algorithms. For each algorithm attempted, 

several cluster validation metrics were applied to analytically determine cluster fit, and 

the clustering results were visualized in 2-dimensional PCA and t-SNE transformations of 

the latent space to permit visual assessment of cluster fit. The t-SNE algorithm is a non-

parametric mapping algorithm used to project higher dimensional data into lower 

spaces while preserving higher-level relationships between points (50). The clustering 

methods attempted were k-means, agglomerative hierarchical clustering with multiple 

distance metrics (linkages), and the density-based DBSCAN algorithm. Prior to any 

clustering, the overall propensity for cluster-ability was assessed by projecting the 

original and latent data into 2 dimensions with PCA and t-SNE, as well as by calculating 

the Hopkins statistic (51) which returns values greater than 0.5 when the data is 

clumped. It does not differentiate between data that is in one big cluster versus several 

smaller clusters. 

After clustering, the fit of each cluster arrangement and number of clusters was 

assessed with the elbow method (52), silhouette score (53), gap statistic (54), Calinski 

and Harabasz score (55) where possible. 
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Results and Discussion 

Quality of dimensionality reduction and latent representation 

The PCA two-dimensional projection of the latent representation can be seen in Fig. 7. 

While the PCA projection of the latent features does not contain any visually discernable 

clusters, because it is such a compressed representation it may certainly have a 

structure that is just not captured in two dimensions. Another way to visually assess the 

presence of distributions amenable to clustering within data of greater than a few 

dimensions is to plot a histogram of the distributions along the primary principle 

components of the latent space (Fig. 9). With the exception of some secondary peaks in 

the third and fifth principal components, there are no obvious separate distributions 

outside the primary Poisson and Gaussian distributions. On the other hand, the t-SNE 

projection shows some very distinct clustering. It is important to note t-SNE does not 

have any linear relationship to the dimensions that it represents. Rather, it is a mapping 

that is learned from the higher dimensional space while optimizing for representing 

differences between groups of points in that space. 

 
Fig. 7: PCA projection of the first 2 principal components 
of the 16-dimensional latent space produced by the 
autoencoder. 

 
Fig. 8: t-SNE projection of the latent space. 
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Clustering 

Assessing clustering propensity 

Prior to clustering, the propensity for the data to form clusters was analyzed. This can 

be predicted with a Hopkins statistic (51, 52), which compares the distribution of the 

data to what one would expect from a uniformly distributed dataset within the feature 

space. Values closer to one indicate that the data is aggregated whereas a value of 0.5 

indicates the data is uniformly distributed. The Hopkins statistic for the latent feature 

space was 0.94 suggesting it is highly aggregated. The disadvantage of the Hopkins 

 
Fig. 9: PCA projection of the first 12 principal components of the latent representation, shown with a logarithmic 
scale to better visualize smaller groups. Together these components explain 91% of the variance in this space. 
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statistic is that aggregation does not imply useful clustering because one single large 

clump would also have a very high Hopkins statistic. 

Assessing ideal number of clusters 

To cluster with the k-means algorithm and other partitional clustering algorithms, one 

must know the desired number of clusters. A common technique used to provide a best-

guess is the so-called elbow method (52). The elbow method plots the sum of within-

cluster squared distances from each point in each cluster to its cluster centroid. When 

there are insufficient clusters, each additional cluster helps lower the sum of within-

cluster squared distances. But eventually with the addition of too many cluster centers, 

they begin to break up preexisting clusters into smaller clusters without a significant 

drop in the sum of within-cluster squared distances. The “elbow” in the graph marks this 

point of diminishing returns. The elbow method plot for k-means applied to the latent 

feature space can be seen in Fig. 10. No elbow is visible, indicating that with k-means 

there is not an obviously ideal number of clusters. 
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 The gap statistic is another widely used method for ascertaining the ideal number of 

clusters within a distribution of data (54). The ideal number of clusters is indicated by 

the point on the curve where the gap drops for the first time, which is located at 8 

clusters in the case of this data (Fig. 11). 

A third method for evaluating the proper number of clusters is provided by the Calinski 

and Harabasz score (55). This score measures the ratio of the between-cluster 

dispersion mean to the within-cluster dispersion, so a higher score identifies a model 

with better-defined clusters. The Calinski and Harabasz score is shown in Fig. 12 with a 

peak score at two clusters and diminishing from there. 

 
Fig. 10: The elbow method plots the within-cluster sum 
of squares against number of clusters. A marked bend 
in the curve would indicate a point of diminishing 
explanatory ability of additional clusters. No elbow is 
visible. 

 
Fig. 11: The gap statistic decreases with the addition of 
one more cluster to the ideal arrangement, signifying 
that the explanatory power of the model is decreasing. 
Here, the gap indicates that 8 clusters is ideal. 
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Table 3: Ideal number of clusters, by method 

Method (clustering) Ideal # of 
clusters 

Elbow method (k-means) N/A 
Gap statistic (k-means) 8 
Calinski and Harabasz (k-
means) 

2 

Silhouette score (k-means) 2 
 

 
Fig. 12: Calinski and Harabasz score as a function of 
number of k-means clusters. A higher score indicates a 
better-formed cluster. 

 

In summary, the elbow method did not provide any guidance; the gap statistic, 

considered a more standardized version of the elbow method, indicated that eight 

clusters would be ideal. On the other hand, the Calinski and Harabasz score indicated 

that two (or possibly one, though this is not calculable) is the ideal number of clusters. 

Both of these options are examined in the next section. A summary of ideal cluster 

number analysis is shown in Table 3. It is important to note that these methods of 

clustering propensity are based on clustering with k-means, which is ideally suited for 

convex (i.e. spherical) clusters. Thus, the value they provide in identifying ideal number 

of clusters is limited to these types of convex clusters. 

 

Partitional Methods 

K-means 

K-means clustering with anywhere from 2 to 16 clusters was performed and each 

arrangement was assessed for quality of fit with the silhouette score (52) which 
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measures intra-cluster cohesion against inter-cluster dispersion with a value near one 

indicating maximal clustering. The k-means algorithm was repeated for every number of 

clusters between two and 15 and the results of the silhouette score were plotted to 

assess quality (Fig. 13). Projections of two, five, and eight clusters (as suggested by the 

ideal cluster analysis, as well as an intermediate) into two dimensions via PCA and t-SNE 

are plotted in Fig. 14. The PCA projection does not provide any new insights; indeed, the 

pattern of separation of clusters looks similar to one would expect were one to attempt 

to cluster a spherical distribution of points. However, t-SNE projection does seem to 

mirror what one might anticipate, especially the 8-cluster arrangement, which nicely 

separates the three main groups (colored in red, green, and blue). It is difficult to 

reconcile the apparently nice clustering in the t-SNE projection with the lack of other 

quantitative evidence in the form of the silhouette score.  

 
Fig. 13: Silhouette score for k-means clustering. A higher 
score indicates better cluster separation. Here, the maximum 
score is at k=2.    
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.  

  

  

Fig. 14: K-means clustering results in PCA (left) and t-SNE (right) representations with 2 (top), 5 (middle), and 8 
(bottom) clusters. Cluster centers are displayed as small white circles in the PCA projections. 

 
However, that does not explain why k-means clustering did manage to align with 

splitting of clusters evident in the t-SNE projection. Another interesting observation is 

that when only two clusters are utilized, the second cluster is skewed significantly by the 
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outliers along the first principal component. This is even more evident in the t-SNE 

projection where one can see the second cluster constitutes a very small portion of the 

total data points. This could very well be a result of k-means sensitivity to outliers (52). 

To address this concern, I also conducted k-medoids clustering in the following section. 

K-medoids 

K-medoids (also known as Partitioning Around Medoids) is much like the k-means 

algorithm except that instead of allowing arbitrary points in space to be the cluster 

centers, only actual data points can serve as cluster centers. This mitigates the risk of an 

outlier dragging the mean of a cluster far out in one direction and placing a cluster 

center far away from most of its points (52). Like k-means, one must specify the number 

of clusters k, and it produces convex clusters amenable to analysis with the silhouette 

score. With the insight from initial k-means clustering that eight clusters produces nice 

separation of the groups in the t-SNE projection, I chose to try k-medoids with eight 

clusters. The projections and a silhouette plot are shown in Fig. 15. The mean silhouette 

score was 0.008, hardly an indication of good clustering where a score of one is idea. 

However, again on t-SNE one can see nice separation of cluster 0, 3, and 6 (red, yellow, 

blue) while on PCA it is impossible to discern. It is important to remember that a 

limitation of PCA in two dimensions is that much information is lost in the projection to 

two dimensions so one cannot say there are not viable clusters just because they are 

not appreciable in the projection; in fact, in this case two dimensions only accounts for 

41% of the variance. But it is also important to recognize the mapping of points in space 

in t-SNE can change based on the hyperparameters chosen for training (perplexity and 
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number of iterations). While I did do a search of the hyperparameter space to find the 

ideally separated groups, it is entirely possible that this mapping is truly representative 

of the data in 16 dimensions. I did not appreciate significant changes in the appearance 

of the plot as I changed the hyperparameters, but it is possible that another set of 

hyperparameters would have produced a mapping less convincing of clusters. In sum, 

the t-SNE projection must be taken with a grain of salt. The quantitative methods like 

the silhouette score should be trusted in the case where there are convex clusters, and 

it is clear that by that metric the ideal number of clusters is two or less. To search for 

non-convex clusters, I also tried hierarchical and density-based methods. 

Hierarchical Methods 

Agglomerative clustering with ward linkage 

Agglomerative hierarchical clustering is another approach to clustering altogether, 

where the process happens from the bottom up rather than top down. Agglomerative 

hierarchical clustering works by successively grouping groups points into a hierarchy of 

 
Fig. 15: K-medoids clustering silhouette plot, t-SNE projection, and PCA projection with 8 clusters. The silhouette plot shows the 
individual silhouette score of each point in each cluster. Scores closer to 1 indicate good clustering, whereas scores less than 0 
indicate poor clustering (i.e. the point does not have more affinity for neighbors in its own cluster than for neighbors in other 
clusters). The red vertical dotted line indicates the mean silhouette score (0.008). 
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trees. In this manner, it may be able to find non-convex shapes of clusters that would 

not be found by partitional methods (52). For this implementation, I chose ward linkage 

as the minimization objective, which equates to minimizing the variance of two clusters 

being merged. Like the other methods, the number of clusters must be specified 

beforehand. Results can be seen in Fig. 16. Again, eight clusters separate the t-SNE data 

nicely. The silhouette score is inapplicable in this case as it is not guaranteed to form 

convex clusters. 
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Agglomerative clustering with single and complete linkage 

There are other linkage metrics that can be used with hierarchical clustering, like single 

and complete. Single linkage allows merging of clusters based on the distance between 

their two closest points and tends to optimize clusters defined by local proximity, 

whereas complete linkage merges clusters based on the distance between their farthest 

points and tends to optimize clusters for global proximity (52). Outliers are harshly 

penalized in complete linkage. Both of these linkages were applied to the latent 

representation of the data, and both produced essentially one giant cluster 

encompassing all the data, with seven additional imperceptible clusters so small they 

were not visible in the projections. For brevity, these figures are not shown here. 

Density-Based Methods 

DBSCAN 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a clustering 

algorithm which, as its name suggests, clusters not by distance as k-means does, but by 

density. Briefly, it finds data points that meet a minimum threshold of having n 

 
Fig. 16: PCA and t-SNE projection of agglomerative hierarchical clustering with ward linkage. 
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neighbors within distance 𝜖, called core objects. It sequentially builds up clusters by 

joining core objects if one is within distance 𝜖  

of the other. The advantage of a density-based approach to clustering is that the 

clusters need not be convex (52). One disadvantage is that both n and 𝜖 are user-

defined, thus the potential search space is much greater than when searching for k 

clusters with k-means. An additional noteworthy feature of the algorithm is that any 

points outside a dense region will not become part of any cluster and will instead be 

marked as outliers. Several iterations of DBSCAN with multiple hyperparameter settings 

are shown in Fig. 17. The DBSCAN results interestingly bridge points across what seem 

to be different clusters from visual inspection, suggesting that these points are actually 

close by in the latent space. Not shown are the PCA projections, which 

demonstrate that in all of these arrangements, half if not most of the points are 

considered outliers. It demonstrates that the majority of the points in the latent space 

are clustered tightly together towards on side of the first principal component as seen in 

Fig. 9. 

 
Fig. 17: DBSCAN clustering with three hyperparameter settings. From left to right: E=5, min_samples=100; E=5, 
min_samples=1000; E=10, min_samples=1000. They arrived at 1 cluster, 2 clusters, and 1 cluster respectively. Black points are 
outliers. 
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Making Sense of the Clustering 

Overall, the general pattern was that quantitative methods and projection by PCA did 

not convincingly demonstrate distinct clusters. Interestingly, an eight-cluster 

arrangement brought about the same separation in the t-SNE projection with both k-

means, k-medoids, and agglomerative hierarchical clustering with ward linkage. But one 

must take the overall picture; if k-means and k-medoids clusters were high quality 

clusters as they appear to be in the t-SNE projection, one would expect that the 

quantitative methods, especially the silhouette score, would have shown more 

promising results. While the gap statistic did recommend eight clusters, there was not a 

significant drop in gap between eight and nine clusters, while the silhouette score 

showed very strikingly the drop in average score from two clusters onwards. The 

hypothesis that there are no clusters is also supported by the PCA projection along the 

12 principal components in Fig. 9. Likewise, the density-based clustering supports the 

notion that the t-SNE is misleading in that dense regions in a single cluster bridge the 

apparent “clusters” shown in that projection. The DBSCAN results very much mirror 

what one might expect looking at the PCA projection along the first 12 principal 

components. Moreover, both complete- and single-linkage metrics used for hierarchical 

agglomerative clustering created essentially one large cluster with seven imperceptible 

small clusters. 

To better illuminate possible differences in clusters, I examined the centroid example 

for each cluster in the k-medoids clustering. I examined the 20 columns with the 

greatest index of dispersion (𝜎#/𝜇), along with their final disposition, and compared 



 44 

them in Table 4. Clusters 0, 3, and 6 (corresponding approximately to clusters 5, 6, and 0 

in the k-means clustering with k=8; green, magenta, and blue in the agglomerative 

clustering with k=8) correspond roughly to the major groupings seen in the t-SNE 

projection. I was unable to discern salient differences except that all three are middle 

aged or older, have higher creatinine, take more medications, and cluster 0 is centered 

on an elderly person with a high white count with a neutrophilic predominance. The 

centroids of clusters 0 and 3 were admitted while the rest were discharged. In Table 5, I 

show the admission rates of these clusters. A chi-squared test did not find any 

statistically significant difference in admission rate between them, with a test-statistic of 

9.0 and a p=0.25. In summary, there is reasonable doubt as to whether these are, 

indeed, distinct clusters with distinct differences. They do not differ significantly by 

admission rate, although this may be because there are differences imperceptible to the 

physicians making those decisions. This explanation is less likely however. 
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Table 4: K-medoids centroids and variables with greatest dispersion. 

A=admit, D=discharge 

Variable Cluster centroid 

 0 1 2 3 4 5 6 7 

platelets 1118 207 278 229 207 348 226 207 

age 92 38 24 43 54 21 58 32 

num_meds 19 3 10 21 1 1 31 9 

creatinine 2.4 0.7 0.7 1.5 0.7 0.6 13.1 0.7 

bun 27 11 14 20 11 11 34 11 

vitals_dbp__min 57 93 109 77 95 55 78 81 

vitals_dbp__last 58 93 109 80 95 55 78 81 

lymphocytes 6 10 25 24 10 26 17 10 

anc 19.5 4.8 5.6 3.7 4.8 6.7 4.6 4.8 

vitals_dbp__mean 65.5 93 112.3 78.5 95 60.5 89 83.5 

vitals_hr__first 106 98 100 72 81 64 72 75 

vitals_dbp__first 76 93 114 77 95 66 106 86 

vitals_dbp__max 76 93 114 80 95 66 106 86 

vitals_sbp__last 123 135 159 154 155 105 128 132 

wbc 21.4 8.4 8.4 6.5 8.4 10.6 6.6 8.4 

vitals_hr__min 93 98 81 70 81 64 62 75 

vitals_sbp__min 123 135 154 131 155 105 128 129 

vitals_o2_amount__max 2 0 0 0 0 0 0 0 

vitals_o2_amount__last 2 0 0 0 0 0 0 0 

monocytes 3 7 6 16 7 7 11 7 

Disposition A D D A D D D D 
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Table 5: Admission rate by cluster 

Cluster Admit rate (%) 

0 42.43 

1 40.31 

2 39.92 

3 39.95 

4 39.61 

5 39.79 

6 39.89 

7 39.90 
 

 

In summary, based upon these data, it does not appear that there are salient clusters. 

Though this thesis has attempted to perform a thorough search with multiple 

techniques, many more remain to be tested. So, while I cannot conclusively determine 

that no clusters exist (with enough data and the right representation, they probably do), 

these results reasonably demonstrate that no obvious clusters exist. 

Limitations and Advantages 

There several key limitations to this study. First, the dataset is a highly heterogeneous 

clinical dataset with a significant amount of missing data (see Table 6 in Appendix A). 

While it is commonplace in real-world clinical datasets, missing data provides a serious 

challenge to machine learning algorithms that learn relationships between different 

variables because new relationships (i.e. bias) can be introduced through the process of 

imputation. In clinical data, missing data is usually not missing not at random. In other 

words, there is information in the fact that the data is missing; a physician might not 
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have ordered a laboratory test because she did not anticipate that the value would be 

abnormal. In this manner, physician insight leaks into the dataset. Then, one must 

decide how to impute the missing values. As discussed in the methods section, mean 

imputation introduces problems when the data do lie in a normal distribution. In this 

thesis, I tried to mitigate these influences by imputing the column mode for each value, 

and by introducing an “is missing” variable for each variable. The intention is that the 

autoencoder would come to learn the relationship between the mode of a variable and 

the presence of the missing flag, thus discounting its reliance on this value for 

prediction. There is evidence that the autoencoder did learn well considering the 

reconstruction error compared to PCA. State of the art imputation methods use other 

machine learning techniques, like a Random Forest classifier or regressor to impute 

missing values by learning from data where that value is not missing. Though this 

approach is vulnerable to data missing not at random, it may provide better 

performance for this model in the future. In this thesis, it could not be employed due to 

technical issues. 

 Another limitation of this thesis is the interpretability of the autoencoder latent 

representation. Because an autoencoder learns a non-linear mapping of the original 

data to the latent space, it is very difficult to discern the significance of the original 

variables in the latent representation as one could with PCA. Inspection of cluster 

differences based upon the medoids shows some differences, but despite this the 

overall admission rate was unchanged between clusters. Further analysis will be needed 

to understand any differences between these putative clusters. 
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A third limitation is the representation of the data for training by the autoencoder. 

Because binary and continuous variables were treated equivalently, with the training 

minimizing the mean squared error between the original data and its reconstruction, it 

is possible that the binary variables overwhelmingly dominated the loss function and the 

encoder was not forced to learn a good representation of the continuous variables. This 

could potentially be mitigated in future work by building an autoencoder with two 

output layers, one for continuous variables and one for binary variables, which are 

trained together but with different loss functions (mean squared error and cross-

entropy, respectively) which are then combined in a weighted sum to produce an 

overall loss function. 

Overall, there are several advantages of the approach taken in this thesis. By not 

including physician notes as other EHR deep learning has (39), this approach reduces the 

potential for physician bias to leak into the data. Moreover, the use of an autoencoder 

enables the discovery of highly abstract features and non-linear relationships that would 

not be apparent with the traditional regression techniques used in the seminal sepsis 

definition papers (19). It also obviates the need for feature selection, thereby enabling 

the discovery of new important features that may have previously been overlooked. 

Conclusions 

This thesis sought to characterize phenotypes of infection amongst potentially septic 

patients in the emergency department through a variety of unsupervised machine 

learning techniques. I created an autoencoder, a type of deep learning architecture, to 
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reduce the dimensionality of the electronic health record data. The reconstruction error 

of this reduction compared very favorably to PCA, suggesting the latent representation 

had captured salient abstract features of the dataset. When clustering, however, results 

were not as clear. The sum of evidence did not point to distinct clusters. If the 8 putative 

clusters identified by several methods are indeed real, there was no difference in 

admission rate amongst them suggesting any differences may not be salient enough to 

produce a clinical effect (or that physicians are not noticing the differences). The 

implication of this lack of clusters is significant for clinical care, and was articulated 

clearly by Knaus et al. in 1992 (22): 

“Sepsis is a complex clinical entity and could be viewed as a continuum 
with substantial variation in initial severity and risk of hospital death. One 
accurate description of sepsis is the continuous measure of hospital 
mortality risk estimated primarily from physiologic abnormalities… These 
findings led us to our major conclusion that while categoric definitions of 
sepsis may be useful in selecting patients for entry into clinical trials, they 
may not be useful in characterizing individual, or perhaps even group, risks. 
What our results suggest rather is that the current clinical condition of 
sepsis, at least as it is applied to a subset of critically ill patients admitted 
to ICUs, is a continuous state with the prognosis determined, in large part, 
by the degree of physiologic imbalance at the time of admission.” 

If potentially septic patients were scored directly with a continuous mortality 

prediction tool, that might better inform their management. Categorization by 

bedside rules is helpful when a clinical condition can be reduced to such a 

scoring system, but it is unreasonable to expect that something as complex as 

pathophysiology can always be summarized with an easily-memorized rule, 

despite what Vincent et al. have argued (10). With the advent of EHRs and 

increasing computing power, complex models can potentially be included in the 
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physician workflow without added effort. One can even imagine these prediction 

tools running on all patients and only alerting a physician when mortality 

prediction reaches a certain threshold. This would spare the debate over what 

category a patient falls into for the time being. In the future, a better 

pathophysiological understanding of sepsis may make this categorization 

possible, but for now it may be best for patients to wait until then to use 

categorical classification with sepsis.  
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Appendix 

Table 6: Retained variables and % missing 

Variable 
% 
missing Variable 

% 
missing 

ethnicity 0.0 medtype_BIOLOGICALS 19.2 

gender 0.0 medtype_PSYCHOTHERAPEUTIC 
DRUGS 

19.2 

age 0.0 medtype_PRE-NATAL VITAMINS 19.2 

vitals_hr__max 0.2 medtype_MUSCLE RELAXANTS 19.2 

vitals_hr__min 0.2 medtype_ANTIDOTES 19.2 

vitals_hr__mean 0.2 medtype_MISCELLANEOUS MEDICAL 
SUPPLIES, DEVICES, NON-DRUG 

19.2 

vitals_hr__last 0.2 medtype_INVESTIGATIONAL 19.2 

vitals_hr__first 0.2 medtype_IMMUNOSUPPRESANT 19.2 

vitals_sbp__first 0.3 medtype_HORMONES 19.2 

vitals_sbp__last 0.3 medtype_HERBALS 19.2 

vitals_sbp__mean 0.3 medtype_CARDIAC DRUGS 19.2 

vitals_sbp__min 0.3 medtype_CARDIOVASCULAR 19.2 

vitals_sbp__max 0.3 medtype_GASTROINTESTINAL 19.2 

vitals_dbp__last 0.3 medtype_ELECT/CALORIC/H2O 19.2 

vitals_dbp__mean 0.3 medtype_CNS DRUGS 19.2 

vitals_dbp__min 0.3 medtype_COLONY STIMULATING 
FACTORS 

19.2 

vitals_dbp__first 0.3 medtype_EENT PREPS 19.2 

vitals_dbp__max 0.3 medtype_DIURETICS 19.2 

vitals_o2_sat__first 0.4 medtype_DIAGNOSTIC 19.2 

vitals_o2_sat__max 0.4 medtype_BLOOD 19.2 

vitals_o2_sat__last 0.4 medtype_ANALGESICS 19.2 

vitals_o2_sat__mean 0.4 medtype_COUGH/COLD 
PREPARATIONS 

19.2 

vitals_o2_sat__min 0.4 medtype_ANTIHISTAMINE AND 
DECONGESTANT COMBINATION 

19.2 

vitals_rr__max 0.6 medtype_ANTIARTHRITICS 19.2 

vitals_rr__first 0.6 medtype_ANTIASTHMATICS 19.2 

vitals_rr__last 0.6 medtype_ANESTHETICS 19.2 

vitals_rr__min 0.6 medtype_ANTIBIOTICS 19.2 
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vitals_rr__mean 0.6 medtype_ANTIHYPERGLYCEMICS 19.2 

vitals_temp__max 1.5 medtype_ANTIINFECTIVES 19.2 

vitals_temp__first 1.5 medtype_ANTIHISTAMINES 19.2 

vitals_temp__last 1.5 medtype_ANTIINFECTIVES/MISCELLAN
EOUS 

19.2 

vitals_temp__min 1.5 medtype_CONTRACEPTIVES 19.2 

vitals_temp__mean 1.5 medtype_ANTIPARKINSON DRUGS 19.2 

altered 3.0 medtype_ANTIFUNGALS 19.2 

vitals_o2_dependency__mean 4.3 medtype_ANTIPLATELET DRUGS 19.2 

vitals_o2_dependency__max 4.3 medtype_ANTI-OBESITY DRUGS 19.2 

vitals_o2_dependency__first 4.3 medtype_ANTICOAGULANTS 19.2 

vitals_o2_dependency__last 4.3 medtype_ANTINEOPLASTICS 19.2 

vitals_o2_dependency__min 4.3 rdw 41.5 

vitals_o2_amount__max 5.0 wbc 41.5 

vitals_o2_amount__first 5.0 hematocrit 41.5 

vitals_o2_amount__last 5.0 mcv 41.5 

vitals_o2_amount__min 5.0 mpv 41.5 

vitals_o2_amount__mean 5.0 hemoglobin 41.5 

use_etoh 5.1 rbc 41.5 

use_illicit 5.1 platelets 41.5 

smoking 5.3 mchc 41.5 

pmh_arrhythmias 10.4 mch 41.5 

pmh_cancer 10.4 anc 41.8 

pmh_other_respiratory 10.4 lymphocytes 41.9 

pmh_diabetes 10.4 absolute lymphocyte count 41.9 

pmh_other_nutritional_endocrine_and_metab
olic_disorders 

10.4 neutrophils 41.9 

pmh_maintenance_chemotherapy_radiothera
py 

10.4 monocytes 42.0 

pmh_chf 10.4 eosinophils 42.0 

pmh_liver_disease_alcohol_related 10.4 basophils 42.0 

pmh_chronic_obstructive_pulmonary_disease
_and_bronchiectasis 

10.4 calcium 43.8 

pmh_immunity_disorders 10.4 chloride 43.8 

pmh_hypertension_with_complications_and_s
econdary_hypertension 

10.4 sodium 43.8 

pmh_hiv_infection 10.4 co2 43.8 
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pmh_heart_disease 10.4 anion gap 43.8 

pmh_fen 10.4 bun 43.8 

pmh_thyroid_disorders 10.4 creatinine 43.8 

pmh_kidney_disease 10.4 glucose 43.8 

pmh_asthma 10.4 potassium 44.8 

medtype_ANALGESIC AND ANTIHISTAMINE 
COMBINATION 

19.2 vitals_gcs__max 59.1 

num_meds 19.2 vitals_gcs__mean 59.1 

medtype_ANTIVIRALS 19.2 vitals_gcs__last 59.1 

medtype_VITAMINS 19.2 vitals_gcs__first 59.1 

medtype_UNCLASSIFIED DRUG 
PRODUCTS 

19.2 vitals_gcs__min 59.1 

medtype_THYROID PREPS 19.2 total bilirubin 72.0 

medtype_SMOKING DETERRENTS 19.2 lactate 81.7 

medtype_AUTONOMIC DRUGS 19.2   

medtype_SKIN PREPS 19.2 
  

medtype_SEDATIVE/HYPNOTICS 19.2 
  

 

Table 7: Medication Type Categories 

ANALGESIC AND ANTIHISTAMINE 
COMBINATION ANTIPARKINSON DRUGS GASTROINTESTINAL 
ANALGESICS ANTIPLATELET DRUGS HERBALS 
ANESTHETICS ANTIVIRALS HORMONES 
ANTI-OBESITY DRUGS AUTONOMIC DRUGS IMMUNOSUPPRESANT 
ANTIARTHRITICS BIOLOGICALS INVESTIGATIONAL 

ANTIASTHMATICS BLOOD 
MISCELLANEOUS MEDICAL 
SUPPLIES, DEVICES, NON-DRUG 

ANTIBIOTICS CARDIAC DRUGS MUSCLE RELAXANTS 
ANTICOAGULANTS CARDIOVASCULAR PRE-NATAL VITAMINS 

ANTIDOTES CNS DRUGS PSYCHOTHERAPEUTIC DRUGS 

ANTIFUNGALS COLONY STIMULATING FACTORS SEDATIVE/HYPNOTICS 
ANTIHISTAMINE AND DECONGESTANT 
COMBINATION CONTRACEPTIVES SKIN PREPS 
ANTIHISTAMINES COUGH/COLD PREPARATIONS SMOKING DETERRENTS 
ANTIHYPERGLYCEMICS DIAGNOSTIC THYROID PREPS 
ANTIINFECTIVES DIURETICS UNCLASSIFIED DRUG PRODUCTS 
ANTIINFECTIVES/MISCELLANEOUS EENT PREPS VITAMINS 
ANTINEOPLASTICS ELECT/CALORIC/H2O  
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