1,245 research outputs found

    Lombardi Drawings of Graphs

    Full text link
    We introduce the notion of Lombardi graph drawings, named after the American abstract artist Mark Lombardi. In these drawings, edges are represented as circular arcs rather than as line segments or polylines, and the vertices have perfect angular resolution: the edges are equally spaced around each vertex. We describe algorithms for finding Lombardi drawings of regular graphs, graphs of bounded degeneracy, and certain families of planar graphs.Comment: Expanded version of paper appearing in the 18th International Symposium on Graph Drawing (GD 2010). 13 pages, 7 figure

    Measuring and improving the readability of network visualizations

    Get PDF
    Network data structures have been used extensively for modeling entities and their ties across such diverse disciplines as Computer Science, Sociology, Bioinformatics, Urban Planning, and Archeology. Analyzing networks involves understanding the complex relationships between entities as well as any attributes, statistics, or groupings associated with them. The widely used node-link visualization excels at showing the topology, attributes, and groupings simultaneously. However, many existing node-link visualizations are difficult to extract meaning from because of (1) the inherent complexity of the relationships, (2) the number of items designers try to render in limited screen space, and (3) for every network there are many potential unintelligible or even misleading visualizations. Automated layout algorithms have helped, but frequently generate ineffective visualizations even when used by expert analysts. Past work, including my own described herein, have shown there can be vast improvements in network visualizations, but no one can yet produce readable and meaningful visualizations for all networks. Since there is no single way to visualize all networks effectively, in this dissertation I investigate three complimentary strategies. First, I introduce a technique called motif simplification that leverages the repeating patterns or motifs in a network to reduce visual complexity. I replace common, high-payoff motifs with easily understandable glyphs that require less screen space, can reveal otherwise hidden relationships, and improve user performance on many network analysis tasks. Next, I present new Group-in-a-Box layouts that subdivide large, dense networks using attribute- or topology-based groupings. These layouts take group membership into account to more clearly show the ties within groups as well as the aggregate relationships between groups. Finally, I develop a set of readability metrics to measure visualization effectiveness and localize areas needing improvement. I detail optimization recommendations for specific user tasks, in addition to leveraging the readability metrics in a user-assisted layout optimization technique. This dissertation contributes an understanding of why some node-link visualizations are difficult to read, what measures of readability could help guide designers and users, and several promising strategies for improving readability which demonstrate that progress is possible. This work also opens several avenues of research, both technical and in user education

    Dynamic visualization of geographic networks using surface deformations /

    Get PDF
    Visualization techniques for geographic data show vast variations which are well-developed over centuries. While most of the known techniques are sound for low dimensional data sets, few techniques exist for visualization of high dimensional data within the geographic framework. This thesis investigates visualization of temporal. high dimensional network data within the geographic context. The resulting visualization system employs network visualization techniques in conjunction with cartographic visualization methods for providing a qualitative feel for the data, while conventional methods are employed for detailed examination. In turn, the visualization facilitates comprehension of non-spatial variables with respect to the geographic context

    Urban Digital Twins for Smart Cities and Citizens:The Case Study of Herrenberg, Germany

    Get PDF
    Cities are complex systems connected to economic, ecological, and demographic conditions and change. They are also characterized by diverging perceptions and interests of citizens and stakeholders. Thus, in the arena of urban planning, we are in need of approaches that are able to cope not only with urban complexity but also allow for participatory and collaborative processes to empower citizens. This to create democratic cities. Connected to the field of smart cities and citizens, we present in this paper, the prototype of an urban digital twin for the 30,000-people town of Herrenberg in Germany. Urban digital twins are sophisticated data models allowing for collaborative processes. The herein presented prototype comprises (1) a 3D model of the built environment, (2) a street network model using the theory and method of space syntax, (3) an urban mobility simulation, (4) a wind flow simulation, and (5) a number of empirical quantitative and qualitative data using volunteered geographic information (VGI). In addition, the urban digital twin was implemented in a visualization platform for virtual reality and was presented to the general public during diverse public participatory processes, as well as in the framework of the "Morgenstadt Werkstatt" (Tomorrow's Cities Workshop). The results of a survey indicated that this method and technology could significantly aid in participatory and collaborative processes. Further understanding of how urban digital twins support urban planners, urban designers, and the general public as a collaboration and communication tool and for decision support allows us to be more intentional when creating smart cities and sustainable cities with the help of digital twins. We conclude the paper with a discussion of the presented results and further research directions

    How does the design of landmarks on a mobile map influence wayfinding experts’ spatial learning during a real-world navigation task?

    Full text link
    Humans increasingly rely on GPS-enabled mobile maps to navigate novel environments. However, this reliance can negatively affect spatial learning, which can be detrimental even for expert navigators such as search and rescue personnel. Landmark visualization has been shown to improve spatial learning in general populations by facilitating object identification between the map and the environment. How landmark visualization supports expert users’ spatial learning during map-assisted navigation is still an open research question. We thus conducted a real-world study with wayfinding experts in an unknown residential neighborhood. We aimed to assess how two different landmark visualization styles (abstract 2D vs. realistic 3D buildings) would affect experts’ spatial learning in a map-assisted navigation task during an emergency scenario. Using a between-subjects design, we asked Swiss military personnel to follow a given route using a mobile map, and to identify five task-relevant landmarks along the route. We recorded experts’ gaze behavior while navigating and examined their spatial learning after the navigation task. We found that experts’ spatial learning improved when they focused their visual attention on the environment, but the direction of attention between the map and the environment was not affected by the landmark visualization style. Further, there was no difference in spatial learning between the 2D and 3D groups. Contrary to previous research with general populations, this study suggests that the landmark visualization style does not enhance expert navigators’ navigation or spatial learning abilities, thus highlighting the need for population-specific mobile map design solutions

    Bringing Lunar LiDAR Back Down to Earth: Mapping Our Industrial Heritage through Deep Transfer Learning

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this recordThis article presents a novel deep learning method for semi-automated detection of historic mining pits using aerial LiDAR data. The recent emergence of national scale remotely sensed datasets has created the potential to greatly increase the rate of analysis and recording of cultural heritage sites. However, the time and resources required to process these datasets in traditional desktop surveys presents a near insurmountable challenge. The use of artificial intelligence to carry out preliminary processing of vast areas could enable experts to prioritize their prospection focus; however, success so far has been hindered by the lack of large training datasets in this field. This study develops an innovative transfer learning approach, utilizing a deep convolutional neural network initially trained on Lunar LiDAR datasets and reapplied here in an archaeological context. Recall rates of 80% and 83% were obtained on the 0.5 m and 0.25 m resolution datasets respectively, with false positive rates maintained below 20%. These results are state of the art and demonstrate that this model is an efficient, effective tool for semi-automated object detection for this type of archaeological objects. Further tests indicated strong potential for detection of other types of archaeological objects when trained accordingly

    Simultaneous Worlds: Supporting Fluid Exploration of Multiple Data Sets via Physical Models

    Get PDF
    We take the well-established use of physical scale models in architecture and identify new opportunities for using them to interactively visualize and examine multiple streams of geospatial data. Overlaying, comparing, or integrating visualizations of complementary data sets in the same physical space is often challenging given the constraints of various data types and the limited design space of possible visual encodings. Our vision of “simultaneous worlds” uses physical models as a substrate upon which visualizations of multiple data streams can be dynamically and concurrently integrated. To explore the potential of this concept, we created three design explorations that use an illuminated campus model to integrate visualizations about building energy use, climate, and movement paths on a university campus. We use a research through design approach, documenting how our interdisciplinary collaborations with domain experts, students, and architects informed our designs. Based on our observations, we characterize the benefits of models for 1) situating visualizations, 2) composing visualizations, and 3) manipulating and authoring visualizations. Our work highlights the potential of physical models to support embodied exploration of spatial and non-spatial visualizations through fluid interactions.Natural Sciences and Engineering Research Council (NSERC

    Embedding travel time cues in schematic maps

    Get PDF

    Hyperbolic tree visualization on mobile devices

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 200
    • …
    corecore