240 research outputs found

    Discrete logarithm computations over finite fields using Reed-Solomon codes

    Get PDF
    Cheng and Wan have related the decoding of Reed-Solomon codes to the computation of discrete logarithms over finite fields, with the aim of proving the hardness of their decoding. In this work, we experiment with solving the discrete logarithm over GF(q^h) using Reed-Solomon decoding. For fixed h and q going to infinity, we introduce an algorithm (RSDL) needing O (h! q^2) operations over GF(q), operating on a q x q matrix with (h+2) q non-zero coefficients. We give faster variants including an incremental version and another one that uses auxiliary finite fields that need not be subfields of GF(q^h); this variant is very practical for moderate values of q and h. We include some numerical results of our first implementations

    Security Estimates for Quadratic Field Based Cryptosystems

    Get PDF
    We describe implementations for solving the discrete logarithm problem in the class group of an imaginary quadratic field and in the infrastructure of a real quadratic field. The algorithms used incorporate improvements over previously-used algorithms, and extensive numerical results are presented demonstrating their efficiency. This data is used as the basis for extrapolations, used to provide recommendations for parameter sizes providing approximately the same level of security as block ciphers with 80,80, 112,112, 128,128, 192,192, and 256256-bit symmetric keys

    A kilobit hidden SNFS discrete logarithm computation

    Get PDF
    We perform a special number field sieve discrete logarithm computation in a 1024-bit prime field. To our knowledge, this is the first kilobit-sized discrete logarithm computation ever reported for prime fields. This computation took a little over two months of calendar time on an academic cluster using the open-source CADO-NFS software. Our chosen prime pp looks random, and p1p--1 has a 160-bit prime factor, in line with recommended parameters for the Digital Signature Algorithm. However, our p has been trapdoored in such a way that the special number field sieve can be used to compute discrete logarithms in F_p\mathbb{F}\_p^* , yet detecting that p has this trapdoor seems out of reach. Twenty-five years ago, there was considerable controversy around the possibility of back-doored parameters for DSA. Our computations show that trapdoored primes are entirely feasible with current computing technology. We also describe special number field sieve discrete log computations carried out for multiple weak primes found in use in the wild. As can be expected from a trapdoor mechanism which we say is hard to detect, our research did not reveal any trapdoored prime in wide use. The only way for a user to defend against a hypothetical trapdoor of this kind is to require verifiably random primes

    The Discrete Logarithm Problem in Finite Fields of Small Characteristic

    Get PDF
    Computing discrete logarithms is a long-standing algorithmic problem, whose hardness forms the basis for numerous current public-key cryptosystems. In the case of finite fields of small characteristic, however, there has been tremendous progress recently, by which the complexity of the discrete logarithm problem (DLP) is considerably reduced. This habilitation thesis on the DLP in such fields deals with two principal aspects. On one hand, we develop and investigate novel efficient algorithms for computing discrete logarithms, where the complexity analysis relies on heuristic assumptions. In particular, we show that logarithms of factor base elements can be computed in polynomial time, and we discuss practical impacts of the new methods on the security of pairing-based cryptosystems. While a heuristic running time analysis of algorithms is common practice for concrete security estimations, this approach is insufficient from a mathematical perspective. Therefore, on the other hand, we focus on provable complexity results, for which we modify the algorithms so that any heuristics are avoided and a rigorous analysis becomes possible. We prove that for any prime field there exist infinitely many extension fields in which the DLP can be solved in quasi-polynomial time. Despite the two aspects looking rather independent from each other, it turns out, as illustrated in this thesis, that progress regarding practical algorithms and record computations can lead to advances on the theoretical running time analysis -- and the other way around.Die Berechnung von diskreten Logarithmen ist ein eingehend untersuchtes algorithmisches Problem, dessen Schwierigkeit zahlreiche Anwendungen in der heutigen Public-Key-Kryptographie besitzt. Für endliche Körper kleiner Charakteristik sind jedoch kürzlich erhebliche Fortschritte erzielt worden, welche die Komplexität des diskreten Logarithmusproblems (DLP) in diesem Szenario drastisch reduzieren. Diese Habilitationsschrift erörtert zwei grundsätzliche Aspekte beim DLP in Körpern kleiner Charakteristik. Es werden einerseits neuartige, erheblich effizientere Algorithmen zur Berechnung von diskreten Logarithmen entwickelt und untersucht, wobei die Laufzeitanalyse auf heuristischen Annahmen beruht. Unter anderem wird gezeigt, dass Logarithmen von Elementen der Faktorbasis in polynomieller Zeit berechnet werden können, und welche praktischen Auswirkungen die neuen Verfahren auf die Sicherheit paarungsbasierter Kryptosysteme haben. Während heuristische Laufzeitabschätzungen von Algorithmen für die konkrete Sicherheitsanalyse üblich sind, so erscheint diese Vorgehensweise aus mathematischer Sicht unzulänglich. Der Aspekt der beweisbaren Komplexität für DLP-Algorithmen konzentriert sich deshalb darauf, modifizierte Algorithmen zu entwickeln, die jegliche heuristische Annahme vermeiden und dessen Laufzeit rigoros gezeigt werden kann. Es wird bewiesen, dass für jeden Primkörper unendlich viele Erweiterungskörper existieren, für die das DLP in quasi-polynomieller Zeit gelöst werden kann. Obwohl die beiden Aspekte weitgehend unabhängig voneinander erscheinen mögen, so zeigt sich, wie in dieser Schrift illustriert wird, dass Fortschritte bei praktischen Algorithmen und Rekordberechnungen auch zu Fortentwicklungen bei theoretischen Laufzeitabschätzungen führen -- und umgekehrt

    Computation of Discrete Logarithms in GF(2^607)

    No full text
    International audienceWe describe in this article how we have been able to extend the record for computations of discrete logarithms in characteristic 2 from the previous record over GF(2^503) to a newer mark of GF(2^607), using Coppersmith's algorithm. This has been made possible by several practical improvements to the algorithm. Although the computations have been carried out on fairly standard hardware, our opinion is that we are nearing the current limits of the manageable sizes for this algorithm, and that going substantially further will require deeper improvements to the method

    Faster individual discrete logarithms in finite fields of composite extension degree

    Get PDF
    International audienceComputing discrete logarithms in finite fields is a main concern in cryptography. The best algorithms in large and medium characteristic fields (e.g., {GF}(p2)(p^2), {GF}(p12)(p^{12})) are the Number Field Sieve and its variants (special, high-degree, tower). The best algorithms in small characteristic finite fields (e.g., {GF}(36509)(3^{6 \cdot 509})) are the Function Field Sieve, Joux's algorithm, and the quasipolynomial-time algorithm. The last step of this family of algorithms is the individual logarithm computation. It computes a smooth decomposition of a given target in two phases: an initial splitting, then a descent tree. While new improvements have been made to reduce the complexity of the dominating relation collection and linear algebra steps, resulting in a smaller factor basis (database of known logarithms of small elements), the last step remains at the same level of difficulty. Indeed, we have to find a smooth decomposition of a typically large element in the finite field. This work improves the initial splitting phase and applies to any nonprime finite field. It is very efficient when the extension degree is composite. It exploits the proper subfields, resulting in a much more smooth decomposition of the target. This leads to a new trade-off between the initial splitting step and the descent step in small characteristic. Moreover it reduces the width and the height of the subsequent descent tree

    Security Analysis of Pairing-based Cryptography

    Full text link
    Recent progress in number field sieve (NFS) has shaken the security of Pairing-based Cryptography. For the discrete logarithm problem (DLP) in finite field, we present the first systematic review of the NFS algorithms from three perspectives: the degree α\alpha, constant cc, and hidden constant o(1)o(1) in the asymptotic complexity LQ(α,c)L_Q\left(\alpha,c\right) and indicate that further research is required to optimize the hidden constant. Using the special extended tower NFS algorithm, we conduct a thorough security evaluation for all the existing standardized PF curves as well as several commonly utilized curves, which reveals that the BN256 curves recommended by the SM9 and the previous ISO/IEC standard exhibit only 99.92 bits of security, significantly lower than the intended 128-bit level. In addition, we comprehensively analyze the security and efficiency of BN, BLS, and KSS curves for different security levels. Our analysis suggests that the BN curve exhibits superior efficiency for security strength below approximately 105 bit. For a 128-bit security level, BLS12 and BLS24 curves are the optimal choices, while the BLS24 curve offers the best efficiency for security levels of 160bit, 192bit, and 256bit.Comment: 8 figures, 8 tables, 5121 word

    Quantum resource estimates for computing elliptic curve discrete logarithms

    Get PDF
    We give precise quantum resource estimates for Shor's algorithm to compute discrete logarithms on elliptic curves over prime fields. The estimates are derived from a simulation of a Toffoli gate network for controlled elliptic curve point addition, implemented within the framework of the quantum computing software tool suite LIQUiUi|\rangle. We determine circuit implementations for reversible modular arithmetic, including modular addition, multiplication and inversion, as well as reversible elliptic curve point addition. We conclude that elliptic curve discrete logarithms on an elliptic curve defined over an nn-bit prime field can be computed on a quantum computer with at most 9n+2log2(n)+109n + 2\lceil\log_2(n)\rceil+10 qubits using a quantum circuit of at most 448n3log2(n)+4090n3448 n^3 \log_2(n) + 4090 n^3 Toffoli gates. We are able to classically simulate the Toffoli networks corresponding to the controlled elliptic curve point addition as the core piece of Shor's algorithm for the NIST standard curves P-192, P-224, P-256, P-384 and P-521. Our approach allows gate-level comparisons to recent resource estimates for Shor's factoring algorithm. The results also support estimates given earlier by Proos and Zalka and indicate that, for current parameters at comparable classical security levels, the number of qubits required to tackle elliptic curves is less than for attacking RSA, suggesting that indeed ECC is an easier target than RSA.Comment: 24 pages, 2 tables, 11 figures. v2: typos fixed and reference added. ASIACRYPT 201

    Pairings in Cryptology: efficiency, security and applications

    Get PDF
    Abstract The study of pairings can be considered in so many di�erent ways that it may not be useless to state in a few words the plan which has been adopted, and the chief objects at which it has aimed. This is not an attempt to write the whole history of the pairings in cryptology, or to detail every discovery, but rather a general presentation motivated by the two main requirements in cryptology; e�ciency and security. Starting from the basic underlying mathematics, pairing maps are con- structed and a major security issue related to the question of the minimal embedding �eld [12]1 is resolved. This is followed by an exposition on how to compute e�ciently the �nal exponentiation occurring in the calculation of a pairing [124]2 and a thorough survey on the security of the discrete log- arithm problem from both theoretical and implementational perspectives. These two crucial cryptologic requirements being ful�lled an identity based encryption scheme taking advantage of pairings [24]3 is introduced. Then, perceiving the need to hash identities to points on a pairing-friendly elliptic curve in the more general context of identity based cryptography, a new technique to efficiently solve this practical issue is exhibited. Unveiling pairings in cryptology involves a good understanding of both mathematical and cryptologic principles. Therefore, although �rst pre- sented from an abstract mathematical viewpoint, pairings are then studied from a more practical perspective, slowly drifting away toward cryptologic applications
    corecore