
Pairings in cryptology: efficiency,

security, and applications.

M. Charlemagne

under the supervision of Professor M. Scott

School of Computing

Dublin City University

A thesis submitted for the degree of

PhilosophiæDoctor in Computer Science

December 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11309452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mcharlemagne@computing.dcu.ie
http://computing.dcu.ie
http://www.dcu.ie

Declaration

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of PhilosophiæDoctor in Com-

puter Science is entirely my own work, that I have exercised reasonable

care to ensure that the work is original, and does not to the best of my

knowledge breach any law of copyright, and has not been taken from the

work of others save and to the extent that such work has been cited and

acknowledged within the text of my work.

Signed: (Candidate) ID No.: Date:

To. . . nobody.

Acknowledgements

In order to do justice to the reader I would like to start by thanking him

for reading this thesis, as it also means that I did not write it in vain. Nev-

ertheless he should note that all this work would not have been possible

without the help of many others.

First and foremost I want to thank my supervisor Mike Scott, whose avail-

ability, enthusiasm and knowledge have been of a major help throughout

those three first years of research. His guidance together with the help and

comments from Robert Ganger, David Freeman, Jacques Patarin, Laura

Hitt, Alice Silverberg, Paulo Barreto, Kim Hyun Sung and Gary McGuire,

greatly helped me to overcome all the small mistakes and misunderstand-

ings that punctuate a learning process. Therefore to each one of them I

want to say thank you.

I would also like to thank François Morain, the algorithmic number theory

group in Bordeaux, especially Andreas Enge and Jean-Marc Couveignes,

and Matthieu Bontrond for their helpful insights on the variate areas that

I have investigated throughout my work.

Beyond the scope of this work, I also want to thank Naomi Benger, Luis

Dominguez, Ezechiel Kachisa, Yu Chen and Denis Butin for all the time we

spent together, and the chats we had over the years in the office.

A PhD features different stages including studying, understanding and dis-

covering new things, unfortunately it also implies the tedious task of writing

a thesis; and once it is written it has to be proof-read. . . In this regard I

really want to thank Peter and Summer for all the time and effort they put

in this even more boring task.

Finally, I would like to acknowledge the thousands of individuals who have

coded for the LATEXproject, allowing me to write this thesis and you to

hopefully enjoy it. . .

Contents

List of algorithms vii

List of Figures viii

List of Tables ix

Notations xi

Abstract xiii

1 Introduction 1

2 Mathematics and pairings 8

2.1 Rings and ideals . 8

2.2 Varieties and curves . 13

2.3 Pairings . 21

3 Pairings 24

3.1 Pairings over finite fields . 24

3.2 Pairing-friendly elliptic curves . 26

3.3 Computing pairings . 32

4 Pairings and the minimal embedding field 36

iv

CONTENTS

4.1 Framework . 37

4.2 Supersingular elliptic curves over extension fields 42

4.3 Higher-dimensional supersingular abelian varieties 46

4.4 Discussion . 48

5 Pairings and efficiency 50

5.1 The final exponentiation . 50

5.1.1 MNT curves . 52

5.1.2 BN curves . 52

5.1.3 Freeman Curves . 55

5.1.4 KSS Curves . 57

5.2 Discussion . 59

6 Pairings and the discrete logarithm problem 61

6.1 Theoretical view . 62

6.1.1 Pollard’s Rho algorithm . 62

6.1.2 Pohlig Hellman algorithm . 64

6.1.3 Index calculus algorithms . 65

6.1.3.1 Function field sieve algorithm 69

6.1.3.2 Number field sieve algorithm 73

6.2 Practical view . 81

6.2.1 FFS algorithm . 82

6.2.2 NFS algorithm . 83

6.3 Discussion . 87

7 Pairings and identity based cryptography 94

7.1 Cryptography . 96

7.2 A new identity based encryption scheme 100

v

CONTENTS

7.2.1 Framework . 100

7.2.2 A new scheme . 102

7.2.3 Considerations on the security of the new scheme 104

7.3 Discussion . 104

8 Pairings and fast hashing 108

8.1 Twist and number of points . 109

8.2 Framework . 111

8.3 Fast cofactor multiplication on G2 . 112

8.3.1 MNT curves . 115

8.3.2 BN curves . 117

8.3.3 Freeman Curves . 117

8.3.4 KSS Curves . 120

8.4 Discussion . 123

9 Conclusion 124

A Pairing-friendly elliptic curves 127

B Implementations 129

B.1 A linear sieve . 129

B.2 The number field sieve . 135

References 149

vi

List of Algorithms

3.1 Miller’s algorithm for Tate pairing. 34

5.1 Evaluation of expression 5.1.1 using only two temporary variables. . . . 56

6.1 Pollard’s Rho algorithm. 64

6.2 Pohlig Hellman algorithm. 66

8.1 Computation of #E(Fpm) . 110

8.2 Reduction of the cofactor c(x) to base ψ(·) 114

vii

List of Figures

1.1 Modern cryptology . 2

1.2 Security levels . 4

2.1 Geometrical interpretation of example 2.1.2. 12

2.2 One-dimensional noetherian integral domain. 14

2.3 Elliptic curve of equation y2 = x3 − 2x+ 1. 18

2.4 Geometrical representation of elliptic curve addition law. 20

4.1 Field diagram showing the minimal embedding field Fqk′ 38

6.1 Diagram showing the setup of the NFS over Fpk 75

6.2 Comparison of the ECDLP and the DLP showing optimal embedding

degree . 89

6.3 Security level of supersingular and ordinary curves 92

7.1 Identity based cryptography in practice 98

viii

List of Tables

2.1 Correspondence table between algebra and algebraic geometry 13

3.1 Classification of supersingular elliptic curves. 28

3.2 Classification of MNT curves (x ∈ Z). 29

4.1 Isogeny classes of simple supersingular abelian surfaces over Fq. 47

5.1 Olivos’ algorithm in the case of BN curves. 55

6.1 Algorithms to solve the DLP and the ECDLP 87

6.2 Comparison of the ECDLP and the DLP using appropriate embedding

degrees . 88

6.3 Comparison of the ECDLP and the DLP in finite fields of various char-

acteristic . 91

7.1 Efficiency comparison between several IBE-schemes 105

7.2 Comparison of our scheme and the BF-IBE 106

ix

x

LIST OF TABLES

Notation

[L : K] The degree of an extension L over a field K

(p) The ideal generated by (p)

C The field of complex numbers

D The CM discriminant of an ordinary pairing-friendly elliptic curve E/K

Div(R) The divisor group of R

div(·) The divisor of an element of a ring R

Deg(·) The degree of a divisor

deg(·) The degree of a polynomial

∆ The discriminant of a curve C

E/K The elliptic curve E defined over a field K

E(K) The group of points on the elliptic curve E/K

E′/K A twist of an elliptic curve E/K

e(·, ·) A pairing map

Fq A finite field, with q = pm, where p is prime and m is a positive integer

ϕ(·) The Euler totient function

Φk(·) The kth cyclotomic polynomial

φ∗(·) The dual isogeny of φ

Hom(G1,G2) The abelian group consisting of all group homomorphisms from G1 to G2

J(K) The Jacobian of a curve C

g The genus of a curve c

J(K)[r] The r-torsion subgroup of J(K)

xi

NOTATIONS

K The algebraic closure of a field K

K[x] The polynomial ring of a field K

K(x) The field of rational functions of a field K

k The embedding degree of a pairing-friendly elliptic curve E/Fq

Lq(·, ·) The L-notation to express subexponential complexity

µr The group of the rth roots of unity

N The set of natural numbers

O(·) The big O notation

O The point at infinity of an elliptic curve E

OK The ring of integers of a field K

P1 The projective line

P2 The projective plane

πp(·) The p-power Frobenius

Q The field of rational numbers

R The field of real numbers

R The integral closure of a ring R

ρ The ρ-value of a pairing-friendly elliptic curve E/Fq

Z The ring of integers

xii

Abstract

The study of pairings can be considered in so many different ways that it

may not be useless to state in a few words the plan which has been adopted,

and the chief objects at which it has aimed. This is not an attempt to write

the whole history of the pairings in cryptology, or to detail every discovery,

but rather a general presentation motivated by the two main requirements

in cryptology; efficiency and security.

Starting from the basic underlying mathematics, pairing maps are con-

structed and a major security issue related to the question of the minimal

embedding field [12]1 is resolved. This is followed by an exposition on how

to compute efficiently the final exponentiation occurring in the calculation

of a pairing [124]2 and a thorough survey on the security of the discrete log-

arithm problem from both theoretical and implementational perspectives.

These two crucial cryptologic requirements being fulfilled an identity based

encryption scheme taking advantage of pairings [24]3 is introduced. Then,

perceiving the need to hash identities to points on a pairing-friendly elliptic

curve in the more general context of identity based cryptography, a new

technique to efficiently solve this practical issue is exhibited [123]4.

1Joint work with N. Benger and D. Mandell Freeman.
2Joint work with M. Scott, N. Benger, L. Dominguez and E. Kachisa.
3Joint work with Y. Chen, Z. Guan, J. Hu and Z. Chen.
4Joint work with M. Scott, N. Benger, L. Dominguez and E. Kachisa.

Unveiling pairings in cryptology involves a good understanding of both

mathematical and cryptologic principles. Therefore, although first pre-

sented from an abstract mathematical viewpoint, pairings are then studied

from a more practical perspective, slowly drifting away toward cryptologic

applications.

1

Introduction

All things that are still to come lie in uncertainty; live

straightway!

L. Seneca

In his essay A mathematician’s apology [63], Hardy justifies that mathematics should

be pursued for its own sake, arguing that, due to its abstract nature, its very uselessness

means no potential misuse to cause harm. At the end of World War II, this view was

shared by other mathematicians, who did not want their work to lead to new destructive

weapons. Therefore, some researchers refocused their work on less applicable mathe-

matics like number theory or algebraic geometry. In a sense, they implicitly agreed

with Hartmanis’ observation that theoretical results that are hard to prove are useless

in practice [78]. In this regard number theory is a very interesting area to investigate,

although as one of its goals for some researchers in the 20th century was not to have

any application, it has become more than half a century later an integral part of our

lives through its use in cryptology.

The etymology of the word cryptology clearly relates to “the science of secrets”.

Hence, as a matter of fact it is not something new, but rather an ancient science, that

faced a real revolution only few decades ago, with the introduction of mathematics at

1

Cryptology

CryptanalysisCryptography

Authentication

Signature

A

MAC

S

Integrity

Hash

Confidentiality

Cypher

AS

Block CypherStream Cypher

Figure 1.1: Modern cryptology

its core.

Hiding information can be achieved by using a secret, that is only known to the

ones allowed to access some given data. This secret, or key, can be of two natures:

symmetric or asymmetric, depending on whether or not the secret used to hide, or

encrypt, the data is the same which must be used to reveal, or decrypt the information.

Denoting symmetric and asymmetric by the letter S and A, respectively, figure 1.1 gives

a picture of how cryptology splits into varied subfields.

The links between mathematics and cryptology appeared during the 1970s, with the

introduction of asymmetric cryptography. In fact, thanks to mathematical problems

hard to solve but that can easily be constructed in practice, it became possible for

anybody to encrypt a message using a public key, known to anyone, and such that only

the owner of the corresponding private key could decrypt it. One of the most important

and intensively studied such problem for the past twenty years is the Discrete Logarithm

Problem (DLP).

From a mathematical perspective it consists in finding the logarithm of a number

2

β, given a generator α of a finite field F. More formally this is stated in the problem

below:

Problem 1 (DLP). Let Fq be a finite field of characteristic p, with q = pn, p a prime

and n a positive integer. Let α be a generator of G, a subgroup of Fq. For a given

β ∈ G, find x such that β = αx mod q.

From a cryptographic point of view this problem gives rise to a one-way function,

a function easy to compute in one direction, the exponentiation side, but difficult to

compute in the opposite direction, the inverse of the exponentiation, the DLP.

Although the DLP is extensively used in cryptography we only present the Diffie-

Hellman key exchange protocol [31] as an example on how to take advantage of a

one-way function. If A and B want to start an encrypted discussion then, obviously

they need to share a secret, only known to them. Assuming that A and B agree on

a finite field Fq and a generator α of a subgroup G ⊂ Fq, and that they both possess

a secret xa and xb, respectively, Diffie and Hellman proposed the following solution to

solve their key exchange problem.

• Initial state:

A: Fq, α, xa B: Fq, α, xb

• A sends αxa to B and B sends αxb to A:

A: Fq, α, xa, αxb B: Fq, α, xb, αxa

• A and B compute (αxb)xa and (αxa)xb , respectively:

A: Fq, α, xa, αxb.xa B: Fq, α, xb, αxa.xb

• A and B have a common secret key αxa.xb :

A, B: Fq, α, αxa.xb

3

Very easy

248

Easy

256

Hard

264

Very hard

280

Secure

Figure 1.2: Security levels

In this protocol clearly A and B cannot recover any information relative to the

secret key of one another without solving the DLP. This small example steers our at-

tention to two main principals on which cryptography relies: security and efficiency.

Although obvious, the first one needs further refinements, while at first glance the

second one may not be important. In fact, security is totally relative to the importance

of the data. Clearly if A tells B in an encrypted conversation that he is leaving

tomorrow, there is no need for this message to be secure over a day. Therefore, when

using cryptography the first thing to know is why we do require cryptography, and

then assess which security level should be matched. Taking into account the best

actual computational power available, a hard problem is considered secure when the

best algorithm to solve it has complexity at least 280, or even 2128 as some argue [101].

Figure 1.2 clarifies how hard it is to solve a problem featuring a given complexity. In

the case mentioned above a security of 256 would be more than sufficient, however when

considering the general case we refer to 280 as the standard security level.

In the case of the Diffie Hellman key exchange protocol, it is required for the stan-

dard security level that Fq have a size expressed by a 1024 bit integer, which in turn,

implies dealing with very large numbers and thus a lower efficiency. In this regard

a breakthrough was made by Miller [94] and Koblitz [77] when they introduced the

Elliptic Curve Discrete Logarithm Problem (ECDLP), the equivalent of the DLP on

an elliptic curve.

Problem 2 (ECDLP). Let E be an elliptic curve over Fq, and let P be a generator of

a subgroup G of E(Fq). For a given point Q ∈ G, find the integer x such that [x]P = Q.

4

This new problem allows shorter keys in cryptographic protocols as the available algo-

rithms to solve the ECDLP are a lot slower than the one to solve the DLP. For instance,

to achieve the same standard security level the key is only required to be 160bits long

when elliptic curves are used, compared to the 1024bits required over a finite field.

From this observation, in 1993, Menezes, Okamoto, and Vanstone (MOV) [91] had

the idea to transform the ECDLP into the DLP using a map called pairing, weakening

protocols based on the hardness of the ECDLP. However this attack applied only to

elliptic curves that fail the MOV test, that is have a small embedding degree. Then,

at the end of the nineties two other main attacks were published. The first one, which

focuses on the use of Weil-Descent to map the ECDLP to the DLP on hyper-elliptic

curves, is due to Galbraith and Smart [50], while the second one, independently dis-

covered by Smart [128] and Satoh and Araki [117], targets elliptic curves of trace one.

A few years later, pairings have been looked at from a different angle. Instead of using

it destructively such as in the MOV case, one took advantage of some of its properties

in order to construct new protocols.

More formally, a pairing is a map, e from additive groups G1 and G2 into a multi-

plicative group GT , e : G1×G2 → GT . A pairing has three different variants depending

on the groups G1 and G2:

• Type I: G1 = G2

• Type II: G1 6= G2 and there exists an efficiently computable isomorphism from

G1 to G2

• Type III: G1 6= G2 and there exists no efficiently computable isomorphism from

G1 to G2

For some given P1, P2, P ∈ G1 and Q1, Q2, Q ∈ G2 a pairing has the following

properties:

5

• Bilinearity:

e(P,Q1 +Q2) = e(P,Q1)e(P,Q2)

e(P1 + P2, Q) = e(P1, Q)e(P2, Q),

• Non-degeneracy:

∀P ∈ G1, P 6=∞ ∃Q ∈ G2 such that e(P,Q) 6= 1

∀Q ∈ G2, Q 6=∞ ∃P ∈ G1 such that e(P,Q) 6= 1,

• e is efficiently computable.

The most useful property of a pairing is its bilinearity which allows some new

constructions as the one proposed by Joux [72] to handle a tripartite key exchange.

Assuming that A, B and C agreed on an elliptic curve over Fq, a generator P of a

subgroup of E(Fq), a type I pairing and that each one owns a private key xa, xb and

xc, respectively, it works as follows.

• Initial state:

A: E(Fq), P , xa B: E(Fq), P , xb C: E(Fq), P , xc

• A, B and C broadcast Qa = [xa]P , Qb = [xb]P and Qc = [xc]P , respectively:

A: e(Qb, Qc)
xa B: e(Qa, Qc)xb C: e(Qa, Qb)

xc

• A, B and C share the same secret key:

A, B, C: e([xa.xb.xc]P, P) = e(P, P)xaxbxc

As in many identity based encryption schemes [17], this protocol relies on the bi-

linear property of the pairing and the hardness of both the ECDLP and the DLP to

6

be solved. As such it is of a vital importance to consider, both the security and the

efficiency of the pairings in order to be able to safely use them in the field of pairing

based cryptography.

Our study starts with a high level overview of the mathematics involved so that

the reader can grasp the underlying theory in which algebra, number theory, and al-

gebraic geometry are tightly entangled (chapter 2). This includes many results that

were thought useless and completely abstract when discovered. However, with the in-

troduction of mathematics into the cryptographic world, they became very helpful in

the construction of new secure protocols and as such, are now used in day to day life,

for example in computers, cell phones, credit cards etc. . .

Next, we will survey curves suitable for a pairing, and give an algorithm to compute

the pairing of two given points on an elliptic curve (chapter 3). Then, we present some

criteria to ensure that pairings map to the expected field, i.e. not a subfield of the

targeted field (chapter 4).

The next stage, is to consider the two main requirements of cryptography, that are

the efficiency of the computation of the pairings (chapter 5) and their security (chapter

6). This permits the construction of a new identity based encryption scheme by taking

advantage of the bilinear property of the pairings (chapter 7), which in turn leads to

the more general question of knowing how to efficiently hash identities to points on a

curve (chapter 8).

7

2

Mathematics and pairings

If I didn’t understand anything to mathematics I would be

ashame to say it; letting others know that you are an idiot is not

the best way to present yourself.

B. Vian

Although pairings can be viewed from a simple angle as basic bilinear maps, a lot

more is involved when one wants to present them from a more mathematical perspective,

implying a good understanding of the underlying structures. Therefore, through this

chapter we will present some important results, on the cross roads of number theory,

algebra and algebraic geometry, always keeping in mind our initial target, pairings.

2.1 Rings and ideals

One of the main goal of mathematics is to classify objects which exhibit common

properties. When a common property is found among a few objects they form a set

called a class. However looking only at sets of objects does not allow for a satisfying

classification as for example the set of all sets cannot be defined. . . This leads to the

more general definition of category, giving rise to the notion of morphism or map.

8

2.1 Rings and ideals

Together with some maps, sets can take special algebraic structures. For example,

K = (Q,+, .) defines a field with integer ring OK = (Z,+, .). This ring has the

property of being a unique factorization domain. However, when looking at number

fields, extensions of Q, this property is often lost, as for instance in the case of K =

Q(
√
−5) and OK = Z+Z

√
−5 where 21 can de factorised into prime factors using the

two following decompositions:

21 = 7.3

21 = (1 + 2
√
−5)(1− 2

√
−5).

To overcome this failure, Kummer had the idea of finding a way to embed the

integers of K into a “larger domain” made of “ideal numbers” which would factorise

into primes. Following the preceding example, and using pi to denote those “ideal

numbers”, would lead to:

7 = p1p2, 3 = p3p4, (1 + 2
√
−5) = p1p3, (1− 2

√
−5) = p2p4.

And then the unique factorisation appears again as 21 = (p1p2)(p3p4) = (p1p3)(p2p4).

Later on, Dedekind [36] extended this idea by re-introducing the ideals in a way

that allowed him to define the division of a by b as the inclusion on b in the ideal

generated by a. Hence using this abstraction it was possible to reintroduce a unique

factorisation on the ring of integers of a number field. In fact this gave rise to the

notion of ideal factorisation. A ring such that every nonzero proper ideal factors into

a unique product of primes ideals is called a Dedekind domain. The following theorem

gives more details on the factorisation of ideals over such rings.

Theorem 2.1.1. ([116]) Let R be a Dedekind domain with quotient field K. Let L

be a finite extension of degree n of K and B the integral closure of R in L. Then B is

9

2.1 Rings and ideals

again a Dedekind domain and every non-zero prime ideal p of the ring R decomposes

in B in a unique way into a product of prime ideals:

pB =
∏
i

p
epi
i

The pi are precisely those prime ideals P of B such that p = P
⋂
R. epi is called the

ramification index in pi and the degree of the field extension fi = [B/pi : B/p] is called

the inertia degree of pi over p.

In the case of L being a separable extension,
∑
i

epifpi = n.

Example 2.1.2. ([103]) We want to study the ramification points in the following

case: let R = R[X], K = R(X), L = K[Y]/〈Y 2 −X〉.

First by remarking that R[X] is principal, as R is a field, we see that all the prime

ideals of R are either defined by polynomials of degree 1, or irreducible polynomials of

degree 2 with discriminant less than zero. Thus 4 different cases occur:

1. p = (X − λ), λ ∈ R∗+. In this case Y 2 − λ = (Y −
√
λ)(Y +

√
λ), and then both

(Y −
√
λ) and (Y +

√
λ) have ramification index and inertia degree equal to 1.

2. p = (X − λ), λ ∈ R∗−. As p cannot be factorised, so it has ramification index

equal to 1 and inertia degree equal to 2.

3. p = (X2 + aX + b), a, b ∈ R, with discriminant less than zero. By rewriting p =

(X− z)(X− z) = (Y 2− z)(Y 2− z), we get 4 complex points,
√
z,
√
z,−
√
z,−
√
z,

considered as only 2 real points, yielding, for each point, ramification index 1 and

inertia degree 1.

4. p = (Y 2). In this case the ramification index is 2 and the inertia degree is 1.

We note that, as L is a separable extension of degree 2, in each case there is
∑
i

epifpi =

2.

10

2.1 Rings and ideals

Ramification and algebraic structures can also be looked at from a geometrical

perspective, by seeing numbers as functions over a topological space. To do so, we

define the spectrum of a ring R, as X = Spec(R), to be the set of all maximal ideals

p in R, and we consider the sets V (b) = {p/p ⊇ b}, for b an ideal, to be closed.

X becomes a topological space, endowed with Zariski topology [37]. It can be made

slightly more general by extending the set of close sets to all prime ideals, not only the

maximal ones, and adding a generic point (0), which closure is the whole space X.

Example 2.1.3. ([103]) Looking at example 2.1.2 from a geometrical perspective, the

question is to know how the points of the curve Y 2 = X ramify over the R = R[X].

Using Zariski topology, the prime ideals of R are the closed points of Spec(R), and, as

such, are precisely the points defined by the 4 different types of ideals listed above. In

figure 2.1, the line represents A, and the curve has equation Y 2 = X. It becomes clear

that the fibers of the points in R, that is the spectrum of an algebra of dimension 2

over R, consist of 2 points, with residue field R, when λ > 0 and one point with residue

field C if λ < 0. When the fiber has only one point, i.e. λ = 0 here, the map Y 2 −X

is said to be ramified, and has ramification index equals 2. The special case of ideals

generated by an irreducible polynomial of degree 2 leads to 2 complex points z and z

considered as a unique real point (z, z), with residue field C.

Although Dedekind domains have a really nice structure, it may happen that the

rings we consider are not integrally closed and as such cannot be Dedekind domains

but only noetherian. When such rings have Krull dimension less or equal to 1, i.e.

such that the length of the longest, strictly increasing, chain of prime ideals of R is not

larger than 1, it is still possible to overcome the situation using the following result.

Theorem 2.1.4 (Krull-Akizuki [100, chapter 1, proposition 12.8]). Let R be

a noetherian integral domain of Krull dimension less or equal to 1, K its fraction field

and L an extension of finite degree. Then, every ring B such that R ⊂ B ⊂ L is

11

2.1 Rings and ideals

z

z

Oλ

Figure 2.1: Geometrical interpretation of example 2.1.2.

noetherian of dimension less or equal than 1.

By applying this theorem to K = L, we see that the integral closure of R is a

Dedekind domain. This means that given a noetherian integral domain it is possible to

benefit from the structure of a Dedekind domain by taking its integral closure. From a

geometrical point of view it means that given a singular curve it can be rendered smooth

by looking at its integral closure. This process is called resolution of singularities.

Until now we have only given a rough presentation of the links between algebra and

geometry, so we will now have a proper look at what is a curve, how it is defined and

how to classify them. Table 2.1 from [103] gives a correspondence between the most

common terms of algebra and algebraic geometry.

12

2.2 Varieties and curves

Algebra Algebraic geometry

Ring Affine scheme
R Spec(R)

Algebra over K Affine scheme over K
Finite algebra over K Algebraic variety over K

Noetherian over K and reduced Reduced algebraic variety over K
Prime ideal p Point P

Localisation in p Neighborhood of P
A unique minimal prime ideal Irreducible

Integral Reduced and irreducible
Localisation in each prime ideal Normal

is integrally closed
Integrally closed Reduced, irreducible and normal

Krull dimension 1 Algebraic variety of dimension 1

Table 2.1: Correspondence table between algebra and algebraic geometry

2.2 Varieties and curves

The main idea to link algebra and geometry is to find a one-to-one correspondences

between algebraic and geometrical structures. To do so, we start by defining an alge-

braic set, V (S), of a given finitely generated set S ⊂ K[x1, . . . , xn], as V (S) = {x/∀f ∈

S, f(x) = 0}. In the special case where V (S) cannot be written as a union of two

proper algebraic subsets it is called an algebraic variety [44].

Algebraic varieties are of major importance as they provide a one-to-one corre-

spondence between the prime ideals of a ring R and the irreducible closed elements of

Spec(R), endowed with Zariski topology, by associating V (p) to a prime ideal p.

When the algebraic set is generated by homogeneous polynomials, the variety is

said to be projective and affine otherwise. The projective closure W of an affine variety

V is defined by the homogenisation of each polynomial generating the corresponding

algebraic set. W − V defines a set of points called points at the infinity [127]. From a

practical point of view, the points at infinity are obtained by setting the homogenisation

variable to 0 and solving the resulting system.

The counterpart of the Krull dimension of an algebraic variety V , simply called

13

2.2 Varieties and curves

dimension of V , is given by the smallest m such that K(V) is an algebraic extension of

K[X1 . . . Xm]. If I(V) denotes the prime ideal generated by the polynomials vanishing

on V , then K[X1 . . . Xn]/I(V) is an integral domain of Krull dimension equal to the

dimension of the algebraic variety V . Hence, given an algebraic varieties V , I(V) is

noetherian and the Krull-Akizuki theorem (2.1.4) can be applied to the special case

of algebraic varieties of dimension 1. Such objects, called curves, give a geometrical

representation of one-dimensional noetherian domain.

N

C

Figure 2.2: One-dimensional noetherian integral domain.

A curve can be either singular, if there exists a point where all the partial derivative

vanish, or smooth, if no such point exists. Figure 2.2 gives a geometrical representation

of a one-dimensional noetherian domain, with two singular points, a node N and a cusp

C. Following the Krull-Akizuki theorem (2.1.4), those singularities on the curve can

be resolved by taking the integral closure of the corresponding ring. Such a process is

called normalisation.

In order to have a closer examination of curves, we need to consider further refine-

ments to the theory already presented. As we saw previously, in the general case of R

being a one-dimensional noetherian domain over a field K, the prime ideal decomposi-

tion is not unique, implying that the fractional ideals do not form a group any more.

However, restricting our attention to the invertible ideals of R, i.e. the fractional ideals

a for which there exists b such that ab = R, leads to a new group structure. And

then, the quotient group of the invertible ideals of R by its fractional principal ideals

14

2.2 Varieties and curves

can be defined. Such group is called the Picard group of the ring R and is denoted

Pic(R) [100, chapter 1, definition 12.5]. The side effect of this approach is that the

information conveyed by the non-invertible ideals is lost. Another solution is then to

reintroduce the group law using more abstract and artificial objects, called divisors.

The general idea used here, is to construct a group law from a simple collection of

objects having no special structure on them.

This formal group, called the divisor group of R, is defined as the direct sum of Zp

for all the prime ideals p of R. A divisor is an element of the divisor group of R, noted

Div(R). For f ∈ Div(R) it is written as a formal sum div(f) =
∑
p

npp. The degree of

this divisor is given by Deg(div(f)) =
∑
p

np. In order to mirror the construction of the

Picard group, we define a principal divisor, for each element of K, as the counterpart

of the principal ideal in the former case. Then, quotienting the divisor group of R by

its subgroup of principal divisors, leads to a new group called divisor class group [100,

chapter 1, definition 12.13].

In fact, when R is a Dedekind domain over K, the Picard group and the divisor

class group are isomorphic and as such, can be identified. It is also interesting to note

that, in this case, they are equal to the ideal class group [100, chapter 1, proposition

12.14], which gives a measure of how far R is from being a principal domain. The

cardinality of the group is called the class number of K.

The divisor theory can be transposed to curves by taking the spectrum of R en-

dowed with Zariski topology. As explained above, if R is a Dedekind domain, then the

corresponding curve C is smooth. Looking at the quotient of the divisors of degree 0

by the principal divisors, defines a subgroup of the Picard group, noted Pic0(C) and

called the Jacobian of C. From a topological point of view this group is a complete,

connected group variety, i.e. an abelian variety [95, chapter 1]. The dimension of the

Jacobian of C, as a variety, is given by the genus of the curve C.

15

2.2 Varieties and curves

Theorem 2.2.1 (Riemann-Roch [127, chapter II, §5]). Let C be a smooth curve

and c a canonical divisor on C [127, chapter II, §4]. There exists g ∈ N such that for

every divisor D, l(D)− l(c−D) = Deg(D)− g + 1, where l(d) is the dimension of the

vector space L(D)
⋃
{0} = {f ∈ C(K) / div(f) + D = 0}

⋃
{0}. g is called the genus

of C.

The genus of a curve is an important invariant which permits the classification of

curves. In the special case where C is a smooth plane projective curve of degree n, i.e. a

projective curve that can be embedded in the projective plane P2, its genus is given by

g(C) =
(n− 1)(n− 2)

2
. In particular it means that projective plane curves of certain

degree do not exist, for instance no such curve can have degree 2. The classification can

be improved by defining isogeny classes. Two abelian varieties are said to be isogenous

if there is a surjective morphism with finite kernel, called an isogeny, between them.

Any abelian variety which is not isogenous to a product of lower-dimensional abelian

varieties is said to be simple, and in the case where it is isogenous to the power of a

simple abelian variety it is called ordinary.

By applying the above equality in the case of C being a smooth projective and

plane curve of genus 0, we see that C has either degree 1, i.e. C is a copy of P1, or

degree 2, i.e. C is a conic in P2.

As curves of genus 1 are of more interest here, let C be a smooth projective curve

of genus 1 with a rational point at infinity O. For D ∈ Div(C) and f ∈ L(D),

0 = Deg(div(f)) ≥ Deg(−D) = −Deg(D), which implies Deg(D) ≥ 0.

Applying the Riemann-Roch theorem (2.2.1) to D = c, yields Deg(c) = 2g − 2.

Thus, L(c−D) = ∅ and l(c−D) = 0. But as C is a genus 1 curve l(D) = Deg(D).

16

2.2 Varieties and curves

Considering, D = Dn = n(O), and Ln = L(n(O)), for n ∈ N, yields

L1 = K,

L2 = K⊕Kx,

L3 = K⊕Kx⊕Ky,

L4 = K⊕Kx⊕Ky ⊕Kx2,

L5 = K⊕Kx⊕Ky ⊕Kx2 ⊕Kxy,

L6) VectK{1, x, x2, x3, y, xy, y2}

where x and y are two functions with only one pole of order 2 in O and one pole of

order 3 in O respectively. As L6 is of dimension 6 but contains seven elements, it leads

to the following equation, for some ai ∈ K:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.2.1)

Hence, genus one curves can be defined by equation 2.2.1, named the Weierstrass

equation. In fact, the curves it defines are not necessarily smooth, however the extra

condition on the discriminant ∆ of the equation not being zero leads to a proper

definition of the class of smooth projective curve of genus 1, whose objects are called

elliptic curves (figure 2.3).

A case of interest for elliptic curves is when an isogeny class is defined by an iso-

morphism over an algebraic closure K. In fact, if a curve E/K and a curve E′/K are

isomorphic over K, then E′ is said to be a twist of E. For a curve E defined by equation

17

2.2 Varieties and curves

2.2.1, the following variables can be defined [127, chapter III, §1]:

b2 = a21 − 4a2 c4 = b22 − 24b4

b4 = a1a3 + 2a4 c6 = −b32 + 36b2b4 − 216b6

b6 = a23 + 4a6 ∆ = −b22b8 + 9b2b4b6 − 8b34 − 27b26

b8 = a21a6 − a1a3a4 + a2a
2
3 + 4a2a6 − a24 j =

c34
∆

While ∆ 6= 0, the discriminant of the curve, depends on each curve, j is a constant

for all the curves inside an isomorphism class, and as such is called the j-invariant.

Figure 2.3: Elliptic curve of equation y2 = x3 − 2x+ 1.

One of the most important properties of smooth genus 1 curves is that they are the

18

2.2 Varieties and curves

only curves which are isomorphic to their Jacobian, and as such they inherit its group

law. To describe it geometrically we start by remarking that homogenising equation

2.2.1 leads to only one point at infinity O = [0 : 1 : 0]. Then, we state the following

important result.

Theorem 2.2.2 (Bezout[44, chapter 5, section 5.3]). Let C1 and C2 be two plane

projective curves over an algebraically closed field K, such that they are defined by

different irreducible polynomials. The total number of intersection points of C1 and

C2, counted with their multiplicity, is given by the product of their degrees.

As a consequence the number of intersection points of an elliptic curve and a line is

three, allowing us to properly define the addition law. Let P and Q be two points on

E, then the line connecting them will intersect E in a third point R. The same idea

can be used to define R′, the third intersection point of E and the line connection R

and O. R′ is defined as being P +Q (figure 2.4).

Considering the Weirstrass equation 2.2.1 for an elliptic curve E over a field K,

it is possible to state an analytic version of the sum of two points, P = (xP , yP) and

Q = (xQ, yQ), by studying the points of intersection of the two lines with the curve.

The first thing to remark is that the line connecting O and P intersects E in the point

−P = (xP ,−(yP + a1xP + a3)). This means that, the line connecting P and Q will

touch E in R = −(P +Q) and then applying the formula will lead to R′ = P +Q. Two

cases may arise depending whether or not P has intersection multiplicity 2. If P 6= Q,

then define

λ =
yQ − yP
xQ − xP

, µ =
yPxQ − yQxP
xQ − xP

,

and if P = Q, let

λ =
3x2P + 2a2xP + a4 − a1yP

2yP + a1xP + a3
, µ =

−x3P + a4xP + 2a6 − a3yP
2yP + a1xP + a3

.

19

2.2 Varieties and curves

Thus the line intersecting E in P and Q has equation y = λx+ µ, which yields

P +Q = (λ2 + a1λ− a2 − xP − xQ,−(λ+ a1)xP+Q − µ− a3).

-(P+Q)

P+Q

P

Q

x

y

Figure 2.4: Geometrical representation of elliptic curve addition law.

Although, we defined elliptic curves from an abstract point of view as abelian vari-

eties of dimension 1, it is possible to link this to their historical definition. Everything

started during the 18th century when the question of the arc length of an ellipse was

raised. This led to the study of integrals involving the square root of polynomials of

degree 3 or 4. It was quickly discovered that such integrals cannot be expressed using

familiar functions, which were named elliptic integrals.

Abel, then, had the idea of studying the inverse of these elliptic integrals , which

are now known as elliptic functions. It turned out that such functions are doubly

periodic, i.e. given an elliptic function f(x) ∃ ω1, ω2 ∈ C such that ω1
ω2
∈ R and

20

2.3 Pairings

f(x+ω1) = f(x+ω2) = f(x). This means that f(x) is isomorphic to the lattice Λ ⊂ C

generated by ω1, ω2. Then, considering C, the curve defined by f , and Ω(C), the space

of functions which are differentiable at every point in C, Hom(Ω(C), C)/Λ is, in fact,

the Jacobian of C [60].

Although higher genus curves are of great interest for number theory and solving

diophantine equations, we will only define an abelian surface as being a genus 2 abelian

variety, and instead will focus on maps from the Jacobian of a curve to its base field.

2.3 Pairings

Let J be the Jacobian variety of dimension g of a curve C over a field K. The group of

K-rational points of J is denoted by J(K), and then the r-torsion subgroup of J(K),

J(K)[r], containing the elements of order r, for r coprime to the characteristic of K,

is isomorphic to (Z/rZ)2g [68]. We define µr, as its counterpart over K, i.e. the set of

the rth-roots of unity. Given a divisor D on J(K), r∗JD is linearly equivalent to rD,

with rJ the following isogeny over J(K): x 7→ rx, and r∗J its dual [95, chapter I, section

8]. As rD is in J(K) it is a degree zero divisor and as such there exists two functions

(f1) = rD and (f2) = r∗JD. The object of interest here is div(f1 ◦ rJ).

div(f1 ◦ rJ) = r∗J(div(f1)) = r∗J(rD) = r(r∗JD) = r(div(f2)) = div(f r2)

This equality means that
f r2

f1 ◦ rJ
= c for c some constant function. Then for

P ∈ J(K)[r] and x ∈ J(K)

f2(x+ P)r = c.f1 ◦ rJ(x+ P) = c.f1(rx+ rP) = c.f1(rx) = f2(x)r

Therefore,

(
f2(x)

f2(x+ P)

)r
= 1. Hence, for Q ∈ J(K)[r] having divisor D we can

21

2.3 Pairings

define the following map:

er : J(K)[r] × J(K)[r] → µr

(P , Q) 7→ f2(Q)
f2(Q+P)

As expected, the map er, called the Weil pairing, maps two points on the Jacobian

of C to a point on its base field. The Weil pairing defined from two group G1 and G2

into a group GT has the following important properties:

Proposition 2.3.1 ([95, chapter 1, section 13]). The Weil pairing is

• non-degenerated:

– ∀P ∈ G1, P 6= 0 ∃Q ∈ G2 such that er(P,Q) 6= 1

– ∀Q ∈ G2, Q 6= 0 ∃P ∈ G1 such that er(P,Q) 6= 1

• bilinear: ∀P, P ′ ∈ G1 and ∀Q,Q′ ∈ G2

e(P + P ′, Q) = e(P,Q)e(P ′, Q) and e(P,Q+Q′) = e(P,Q)e(P,Q′)

• Galois-invariant: ∀σ ∈ Gal(K/K) er(σ(P), σ(Q)) = σ(er(P,Q))

Given an isogeny φ, er(φ(a1), a2) = er(a1, φ
∗(a2)).

An other important pairing is the Tate pairing. In the scope of an elliptic curve E,

it is defined as follows:

er : E(K)[r] × E(K)/rE(K) → K∗/(K∗)r

(P , Q) 7→ f(D)

where f is a function whose divisor is equivalent to r(P)− r(O), and D is a degree

0 divisor equivalent to (Q)− (O) and has support disjoint from that of f .

22

2.3 Pairings

The pairing er maps a pair of points on the elliptic curve to an equivalence class

of K∗/(K∗)r. However by pointing out the existence of an isomorphism between the

elements of order r in K and K∗/(K∗)r, it becomes possible to compute f(D) as f(Q).

In the simple case where K is algebraically closed µr is a subset of K implying that

K∗/(K∗)r is isomorphic to µr. More generally, K∗/(K∗)r is isomorphic to µd where d

divides r.

The Tate pairing satisfies the following properties.

Proposition 2.3.2 ([46]). The Tate pairing is bilinear, non-degenerated and Galois

invariant.

Throughout the next chapter, we will take a closer look at pairings over finite fields,

answering the question as to which curves are of interest in this context and how to

compute a pairing in practice.

23

3

Pairings

The world let by its own follows inevitable laws.

H. Bergson

3.1 Pairings over finite fields

The definition of pairings given in the preceding chapter is valid for any abelian variety

J over any field K. However, in order for the pairing to exist, if one wants to restrict

oneself to a finite field K, the first thing to do is to ensure that K contains the rth

roots of unity. Given a finite field Fq, this is done by adjoining a primitive rth-root

of unity ζr to Fq and considering the extension Fq(ζr) of Fq. The dimension of this

extension is called the embedding degree of the abelian variety J/Fq. From a practical

point of view, the embedding degree of J/Fq with respect to r, is the smallest integer

k such that r|qk − 1. This means that r - qi − 1 for all integers 1 ≤ i < k. This remark

links embedding degree and cyclotomic polynomials.

Although cyclotomic polynomials and cyclotomic fields are of great interest in

number theory we will focus only on a few properties, referring the reader to [138]

for more details on the topic. In our case we define the k-th cyclotomic polynomial

24

3.1 Pairings over finite fields

as the minimal polynomial of ζk, a primitive k-th root of unity in Q, and denote it

Φk(X) =
∏

gcd(k,j)=1

(X − ζjk). For all k the polynomial Φk(X) is defined over Z[X], and

has degree ϕ(k), where ϕ is Euler’s totient function. Another formulation of cylotomic

polynomials is recursively given as follows:

 Xk − 1 =
∏
d|k Φd(X)

Φ1 = (X − 1)

Example 3.1.1. Examples of cyclotomic polynomials are listed below:

Φ2 = X + 1

Φ3 = X2 +X + 1

Φ6 = X2 −X + 1

Φ12 = X4 −X2 + 1

For instance when k = 2 applying the above recursive definition yields:

X2 − 1 = Φ1(X) · Φ2(X)

Φ2 = (X2−1)
(X−1)

= X + 1

For k = 6, Φ6 = X6−1
Φ3Φ2Φ1

= X2 −X + 1.

The above remark, together with the following lemma [138, lemma 2.9] helps to view

the embedding degree from a new angle.

Lemma 3.1.2. Let k be an integer, and r a prime not dividing k, then r|Φk(q) is

equivalent to saying that k is the multiplicative order of q mod r.

Since the assertion “k is the smallest integer such that r|qk − 1” is equivalent to “k

is the multiplicative order of q mod r”, it follows that the definition of the embedding

25

3.2 Pairing-friendly elliptic curves

degree can be stated in terms of cyclotomic polynomials. The result contained in [42,

proposition 2.4] is fundamental to the understanding of pairings over finite fields:

Proposition 3.1.3. Let k be a positive integer, E/Fq a curve with hr points where r

is prime, and let t be the trace of E/Fq. If r - kq, then E has embedding degree k with

respect to r if and only if Φk(q) ≡ 0 mod r.

By looking at the definition of the embedding degree, clearly, taking r as a large

divisor of #J(Fq) ≈ qg [96] implies that most of the elements in Fr have large order, and

so will be the embedding degree k. This is a problem as it renders the computation of

the pairings too complex to be used in practice. This gives rise to the notion of pairing-

friendly abelian variety, i.e. an abelian variety appropriate for being used in the context

of pairings. When such varieties have genus 1 they are called pairing-friendly elliptic

curves.

One way to measure how efficient a pairing-friendly abelian variety is, is to define ρ,

the ratio of the size of J(Fq) to the size of the group of order r, onto which the pairing

maps:

ρ = g
log q

log r

For a pairing-friendly abelian variety to result in an efficient implementation it is ex-

pected to have a ρ-value close to 1.

Unless explicitly mentioned the abelian varieties now considered will be of genus 1,

i.e. elliptic curves.

3.2 Pairing-friendly elliptic curves

Let q = pm for p a prime and m a positive integer. Fq seen as an m-dimensional

vector space over Fp, allows the representation of any endomorphism f of Fq as a

matrix M . The sum of the eigenvalues of M is called the trace of the endomorphism

26

3.2 Pairing-friendly elliptic curves

f . When f is the Frobenius endomorphism, i.e. f(x) = πp(x) = xp, x ∈ Fq, its trace t

is linked to the number of Fq-rational points on an elliptic curve E/Fq by the relation

#E(Fq) = q + 1 − t. As a function t satisfies the Hasse bound [127, Theorem V.1.1]:

|t| ≤ 2
√
q.

The definition given for a pairing-friendly abelian variety being quite vague, we

start by defining it more formal in the context of elliptic curves.

Definition 3.2.1. ([43, definition 2.3]) Let E be an elliptic curve defined over Fq. E

is said to be pairing-friendly if there is a prime r ≥ √q dividing #E(Fq) and the

embedding degree of E with respect to r is less than log2(r)/8.

With this definition, pairing-friendly elliptic curves are rare [86] and as such hard

to find. However, it is still possible to exhibit a few of them using some special con-

structions based on the so-called Complex Multiplication (CM) method [98].

The first elliptic curves to be recognised as pairing-friendly, do not require any

specific construction as they are the elliptic curves satisfying gcd(t, q) > 1. Such curves,

discovered by Menezes, Okamoto and Vanstone [91], are called supersingular elliptic

curves. Another way to define them is to say that they do not have any p-torsion

points.

More generally, any abelian variety of higher dimension that is isogenous to a prod-

uct of supersingular elliptic curves is called a supersingular abelian variety. In the case

of supersingular elliptic curves it was shown that they can have five possible embed-

ding degrees k, corresponding to five possible absolute values of the trace of Frobenius

t (table 3.1) [91].

Since using only supersingular curves is a bit restrictive, new methods have been

developed to construct ordinary pairing-friendly, elliptic curves. One of the first sug-

gested was by Cocks and Pinch [46]. Using their method, it is easy to generate pairing-

friendly elliptic curves of arbitrary embedding degree. However a major drawback is

their ρ-value, close to 2, leads to “slow” implementations.

27

3.2 Pairing-friendly elliptic curves

k t #E(Fq) p,m

1 ±2
√
q q ∓ 2

√
q + 1 any p, m even

2 0 q + 1 any p, any m
3 ±√q q ∓√q + 1 p ≡ 2 mod 3, m even
4 ±

√
2q q ∓

√
2q + 1 p = 2, m odd

6 ±
√

3q q ∓
√

3q + 1 p = 3, m odd

Table 3.1: Classification of supersingular elliptic curves.

Leaving those curves aside, few families of pairing-friendly elliptic curves with ρ-

value close to 1 remain. They are constructed using the CM Method [15]. The idea

relies on the possibility to factor 4p− t2 into a square v2 multiplied by a small number

D, called the CM discriminant. Using the CM method with the parameters p and

n = p+1−t allows the constructions of curves with n points over Fp. In fact, all known

non-supersingular pairing-friendly elliptic curves are CM curves, which means that they

satisfy the CM equation Dv2 = 4p− t2 for some small discriminant D < 1014 [130]. Its

is interesting to note that the only reason to keep the discriminant D small is to render

the construction possible.

MNT curves: Miyaji, Nakabayashi and Takano [97], introduced the first ordinary

pairing-friendly elliptic curves. Their strategy consist in solving a generalised Pell

equation of the form X2 − SDV 2 = M for some small discriminants until the solution

provides suitable parameters to be used by the CM method. The major downside of

this construction relies on the fact that, given a discriminant D, it leads to very few

curves, even without any bound on the field size. Although they are rare, it happens

that they can be useful in practice and have ρ-value close to 1. Table 3.2 gives a

characterisation of a family of ordinary elliptic curves with embedding degree k = 3, 4

or 6, known as the MNT curves.

When k = 6, i.e. p = 4x2 + 1 and t = 1 ± 2x (table 3.2), and X is set to 6x ± 1 the

CM equation can be rewritten as the generalised Pell equation X2−3Dv2 = −8. Then

solving it, leads to the MNT family of elliptic curves with embedding degree 6 which

28

3.2 Pairing-friendly elliptic curves

k q = p t

3 12x2 − 1 −1± 6x
4 x2 + x+ 1 −x, x+ 1
6 4x2 + 1 1± 2x

Table 3.2: Classification of MNT curves (x ∈ Z).

can be described by the following three polynomials, t(x), r(x) and p(x) representing

the prime modulus p, the group order r and the trace t, respectively:

t(x) = x+ 1

r(x) = x2 − x+ 1

p(x) = x2 + 1.

Freeman curves: Similarly to MNT curves, Freeman curves [41] form a sparse

family. Since their discriminant must satisfy D ≡ 43 or 67 mod 120, it is usually very

large. If there exists D such that the Pell equation X − 15Dy2 = −20 has a solution,

then this yields a family of curves, having ρ-value 1 and embedding degree 10, defined

by the following polynomials:

t(x) = 10x2 + 5x+ 3

r(x) = 25x4 + 25x3 + 15x2 + 5x+ 1

p(x) = 25x4 + 25x3 + 25x2 + 10x+ 3.

BN curves: Barreto and Naehrig curves [9] are probably the most well known

pairing-friendly elliptic curves. While they also have ρ-value 1, BN curves, on the

contrary to the previously mentioned curves, are plentiful, easy to find and have a

constant discriminant D = 3. This family of curves having embedding degree k = 12

29

3.2 Pairing-friendly elliptic curves

can be defined using the following polynomials:

t(x) = 6x2 + 1

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1.

BW curves: Brezing and Weng [19], gave some more general constructions of

pairing-friendly elliptic curves, making heavy use of cyclotomic fields. Although their

construction produces curves having ρ-value slightly larger than 1, they cover almost

all possible embedding degrees. The two following families feature a discriminant of

D = 3.

For k = 8, ρ = 5/4, the family is defined as follows:

t(x) = x5 − x+ 1

r(x) = x8 − x4 + 1

p(x) =
1

3
(x10 − 2x9 + x8 − x6 + 3x5 − x4 + x2 − 2x+ 1).

For k = 32, ρ = 17/16, and the curves are defined by the polynomials:

t(x) = x17 − x+ 1

r(x) = x32 − x16 + 1

p(x) =
1

3
(x34 − x33 + x32 − x18 + 2x17 − x16 + x2 − 2x+ 1).

KSS curves: The KSS construction [76] is quite similar to the one used by Brezing

and Weng as it only differs on how to define the chosen cyclotomic field. This new

approach allowed improvements on some ρ-values of BW curves. Embedding degrees

k = 8, 16, 32, 36 and 40 can be achieved, with a special mention for curves of embedding

degree 18 having ρ-value 4/3. In the case of embedding degree k = 8, ρ = 3/2 and

30

3.2 Pairing-friendly elliptic curves

D = 1,

t(x) =
1

15
(2x3 − 11x+ 15)

r(x) =
1

450
(x4 − 8x2 + 25)

p(x) =
1

180
(x6 + 2x5 − 3x4 + 8x3 − 15x2 − 82x+ 125).

For embedding degree k = 18, ρ = 4/3, and D = 3,

t(x) =
1

7
(x4 + 16x+ 7)

r(x) =
1

343
(x6 + 37x3 + 343)

p(x) =
1

21
(x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x+ 2401).

In this case we note that t(x), r(x) and p(x) must evaluate as integers and so x ≡ 14

mod 42 [76].

Hence, two basic choices of pairing-friendly elliptic curves are available, the super-

singular curves over any finite field of characteristic 2 or 3, and ordinary pairing-friendly

elliptic curves over Fp. In the former case only curves with embedding degrees up to

k = 6, over fields of characteristic 3, are possible. Fortunately, ordinary pairing-friendly

elliptic curves also exist, allowing an unlimited choice of k. Given that, the construction

of pairing-friendly elliptic curves with any embedding degree becomes possible, mean-

ing long term viability of systems using them, as long as these curves remain efficient

enough.

It is also interesting to note that all elliptic curves over finite fields have a quadratic

twist, i.e. are isomorphic to a curve over Fq2 . However, under certain conditions [43,

section 7.3] it may happen that curves have higher order twist equal to 3, 4 or 6. In

fact only curves with CM discriminant D = 1, i.e. curves of the form y2 = x3 + ax,

have quartic twist, while the ones having a CM discriminant D = 3, that is the curves

31

3.3 Computing pairings

of equation y2 = x3 + b, can have cubic and sextic twists. Although the case of curves

over characteristic 2 or 3 is more complicated they still have the degree of their twists

dividing 6 [127].

In practice, when implementing pairings on ordinary pairing friendly curves, a pa-

rameter is taken on the curve defined over the base field Fp, while the other one is

picked on a twisted curve featuring a group of points of order r which are isomorphic

to a group of points on the curve defined over Fpk . This is very useful as the output

of the Tate pairing can then be taken as an element of Fqk/d if the degree d of the

twist divides the embedding degree k. This idea, known as “compression technique” as

dlog2 de bits of information are dropped, was first introduced by Scott and Barreto [122]

in the case of a quadratic twist before being extended to sextic twists [9].

Another important efficiency improvement in the computation of a pairing resulting

from the use of the twist is that the second parameter can be taken in E′(Fpk/d) instead

of E(Fpk). This clearly allows more efficient implementations. For example noting that

BN curves have a CM discriminant D = 3 and an embedding degree k = 12 implies

that they admit a sextic twist. Hence, the second parameter can be picked in E′(Fp2)

instead of E(Fp12), implying a lower computational cost.

For a more complete study of pairing-friendly elliptic curves the reader should refer

to Freeman, Scott and Teske taxonomy [43].

3.3 Computing pairings

Once the definition of a pairing has been given and some pairing-friendly elliptic curves

have been presented, the next stage clearly is to explain how to compute a pairing in

practice. Although the Weil and Tate pairings were introduced we will focus only on

the latter, the former being usually less efficiently implementable.

From the definition of the Tate pairing given at the end of chapter 2, it appears

32

3.3 Computing pairings

that the main question is how to find a function f having a divisor equivalent to

r(P)− r(O). In fact, Miller’s idea [93] to compute the Weil pairing, can be adapted to

the computation of the Tate pairing. The key point is the evaluation of f(R) for every

R in the support of D. Following Miller one can randomly pick R on the curve and for

all i ≤ r define fi such that div(fi) = i(P +R)− i(R)− ([i]P) + (O). By construction,

when i = r, rP = O, and fr = f .

For any 2 points A and B, denote by lA,B the line passing through A and B, and

vA the vertical line connecting A to O. Remarking the following two equalities,

div(li1P,i2P) = ([i1]P) + ([i2]P) + (−[i1 + i2]P)− 3(O)

div(v[i1+i2]P) = ([i1 + i2]P) + (−[i1 + i2]P)− 2(O)

leads to

div(fi1+i2) = div(fi1) + div(fi2) + div(li1P,i2P)− div(v[i1+i2]P).

Hence,
fi1+i2 =

fi1fi2 l[i1]P,[i2]P

v[i1+i2]P
,

f0 = 1,

f1 =
lP,R

vP+R

defines a recursive sequence of length r + 1, whose last element is f . This allows us to

derive Miller’s algorithm for Tate pairing as described in algorithm 3.1.

As explained above, the Miller loop computes the function f . However an extra

stage is required in order to ensure the uniqueness of the result. Since the output of

the loop does not necessarily have order r, an extra exponentiation of f to the power

(qk−1)/r must be performed. This results in log(r) squaring, H(r)−1 multiplications,

with H(r) the Hamming weight of r, i.e. the number of 1’s in the binary representation

33

3.3 Computing pairings

Algorithm 3.1 Miller’s algorithm for Tate pairing.

Input: P ∈ E(Fq)[r], Q ∈ E(Fq).
Output: e(P,Q).
1: T ← P
2: f ← 1
3: for i← blog(r)− 1c to 0 do

4: f ←
f2lT,T (Q)

v2T (Q)
5: T ← 2T
6: if ri = 1 then
7: f ← f

lT,P (Q)
vT+P (Q)

8: T ← T + P
9: end if

10: end for
11: f ← f (q

k−1)/r

12: return f

of r, and an exponentiation. As such, Miller’s algorithm is a polynomial time algorithm.

The version of Miller’s algorithm given here (algorithm 3.1) is basic and some more

sophisticated ones can be derived, [120, 66, 32]. Moreover, when dealing with an imple-

mentation of pairings, one should keep in mind Galbraith’s list of seven common strate-

gies that can be used in order to improve the efficiency of pairing computations [46,

chapter IX].

1. Pick an r having small hamming weight.

2. As much as possible work in Fq instead of Fqk .

3. Use efficient arithmetic over Fq and Fqk .

4. Avoid expensive calculation like division, use more squaring and less multiplica-

tions.

5. Find ways to improve the efficiency of the final exponentiation.

6. Note that whenever k > 1 and n is prime, n does not divide q − 1 implying that

the (qk − 1)/nth power of all elements of F∗q is 1. Therefore all terms in the

34

3.3 Computing pairings

algorithm leading to an element of F∗q can be ignored.

7. If P ∈ E(Fq)[r] and Q = (X,Y) ∈ E(Fqk) with X ∈ Fqk/2 , then the denominators

computation in the Miller loop can be discarded [10].

It is interesting to note that faster variants of the Tate pairing, like ate or R-ate

pairings, exist. Although we do not consider their specifics, as it is not the main topic

of interest here, the reader can refer to [39, 82], for more details on the subject. Instead,

we will present new results on the field into which the pairing maps.

35

4

Pairings and the minimal

embedding field

I revolt, therefore we are.

A. Camus

Following the definition of pairings (chapter 2) and its restriction to the case of

a finite field Fq (chapter 3), we see that the set of the rth roots of unity µr ⊂ Fq

must be contained in an extension field Fqk , where k is the embedding degree of the

pairing-friendly abelian variety used. In fact, Rubin and Silverberg [112] and Hitt [69]

observed that when the field size q is not prime, the rth roots of unity may be contained

in a proper subfield F ⊂ Fqk . This observation leads to the definition of the minimal

embedding field of a pairing-friendly abelian variety J over Fq, with respect to r, as the

smallest field F ⊂ Fqk containing µr. An obvious question is then to know when the

minimal embedding field is not a proper subfield of Fqk .

Rubin and Silverberg [113] have given an answer to this question in the case where

J is supersingular by demonstrating a lower bound on r that guarantees that the

minimal embedding field is Fqk . Their bound depends on q and on the dimension g of

36

4.1 Framework

the supersingular abelian variety, but does not depend on k. So, in order to generalise

their result we want to give explicit conditions on q, r, and k that guarantees that the

minimal embedding field of an abelian variety J/Fq, supersingular or not, is in fact Fqk .

4.1 Framework

For J an abelian variety over Fq with embedding degree k, we know that Fqk is the

smallest extension of Fq containing the rth roots of unity. Then, the Weil pairing [127,

§III.8] and [96, §16] and the Tate pairing [35] take values in a subgroup and a quotient

group of F∗
qk

, respectively. The key observation made by Rubin and Silverberg [112]

and Hitt [69] is that these pairings actually take values in the minimal embedding field

and that this field may be a proper subfield of Fqk . This observation, found in different

forms in each paper, is expressed by Hitt as follows:

Lemma 4.1.1 ([69, Lemma 1]). Let q = pm for some prime p and positive integer

m, let r 6= p be a prime, and let k be the smallest integer such that r divides qk − 1.

Then

k =
ordr(p)

gcd(ordr(p),m)
,

where ordr(p) is the order of p in (Z/rZ)∗.

The main consequence of the result is that the minimal embedding field of an abelian

variety J/Fq is Fqk′ , where k′ = ordr(p)/m ∈ Q, and as such, is not necessarily Fqk

(figure 4.1).

Indeed, Hitt gives examples of abelian varieties where k/k′ = m, which is the largest

possible ratio for these parameters [69, §4]. One important thing to note is that when

the abelian variety is defined over a prime field, i.e. m = 1, Hitt’s lemma has no

effect, as the minimal embedding field is always Fqk = Fpk . Thus, only the case of

pairing-friendly abelian varieties over extension fields needs to be considered.

37

4.1 Framework

Fp

Fq

Fqk

Fqk′m

k

≥ 1

ordr(p)

Figure 4.1: Field diagram showing the minimal embedding field Fqk′ .

In the case where J/Fq is supersingular and elementary, with embedding degree k,

and r - 2k, Rubin and Silverberg defined the exponent cJ as the smallest half-integer

such that r divides qcJ−1. Then, their theorem, phrased in terms of cJ , gives conditions

on q, r, and k for the minimal embedding field to be Fqk .

Theorem 4.1.2 ([112, Theorem 7] and [113, Theorem 6.3]). Suppose J is an

elementary supersingular abelian variety of dimension g over Fq, q = pm, r 6= p is a

prime divisor of #J(Fq), and s is the multiplicative order of p mod r. Let FJ(x) ∈ Z[x]

be the characteristic polynomial of the Frobenius for J , and let f be the unique integer

such that FJ(x)1/f is irreducible in Z[x]. If q is a square, assume r > (1 + p)mg/2f . If q

is not a square, assume r > (1 +
√
p)2mg/3f and r > 7. Then ps = qcJ,q , so FqcJ,q is the

smallest extension of Fp whose multiplicative group has a subgroup of order r.

In order to improve the bounds, and extend their validity to all abelian varieties, we

start by linking the minimal embedding field to cyclotomic polynomials, in the same

way as done to relate embedding degree and cyclotomic polynomials.

Lemma 4.1.3. Let q = pm be a prime power, and J/Fq be an abelian variety. Let

r 6= p be a prime dividing #J(Fq), and let k, s be integers not divisible by r. Then

1. J has embedding degree k with respect to r if and only if r | Φk(q).

2. The minimal embedding field of J with respect to r is Fps if and only if r | Φs(p).

38

4.1 Framework

Proof. The first statement appears e.g. as [43, Proposition 2.4]; we observe that the

same proof applies to the second statement. ut

Lemma 4.1.3 allows us to rephrase the question of knowing when the minimal

embedding field is not a proper subfield of Fqk into examining whether or not a given

r dividing Φk(p
m) does also divide Φkm(p). To answer the question in this form some

extra properties of cyclotomic polynomials are required.

Fact 4.1.4. Let Φk(x) denote the kth cyclotomic polynomial. Then

1. xk − 1 =
∏
d|k

Φd(x).

2. The degree of Φk(x) is ϕ(k) := #{e ∈ Z : 1 ≤ e ≤ k and gcd(e, k) = 1}.

3. If ` is a prime not dividing k, then Φk(x
`) = Φk`(x)Φk(x).

4. If ` is a prime dividing k, then Φk(x
`) = Φk`(x).

These properties either appear, or can be easily derived from the discussion of [81,

§VI.3], allowing us to prove the following lemma.

Lemma 4.1.5. If k and m are coprime, then

Φk(x
m) =

∏
d|m

Φkd(x). (4.1.1)

Proof. We first compare the degrees of the polynomials on each side of (4.1.1). Clearly

the left hand side has degree mϕ(k). Now for any coprime numbers x and y we have

ϕ(xy) = ϕ(x)ϕ(y). Since (k,m) = 1 by assumption it is also true that (k, d) = 1 for

all d | m. It follows that the degree of the right hand side of (4.1.1) is ϕ(k)
∑

d|m ϕ(d),

which by Fact 4.1.4 (1) and (2) is equal to mϕ(k).

We next compare the roots of the two polynomials. First, we observe that by Fact

4.1.4 (1) the right hand side divides xkm − 1 and thus has only simple roots. Now

39

4.1 Framework

suppose ζ is a root of Φkd(x) for some d | m. Since ζ is a primitive kdth root of unity,

ζd is a primitive kth root of unity. Write m = de. Since gcd(k, e) = 1, it follows that

(ζd)e = ζm is also a primitive kth root of unity, so ζ is also a root of Φk(x
m).

Since the two polynomials in (4.1.1) are both monic and have the same degree, and

furthermore all roots of the right hand side are simple and are also roots of the left

hand side, we conclude that the two polynomials are equal. ut

We will now present the main result of this chapter which, although stated in terms

of cylotomic polynomials, will allow us to give an answer to our main question.

Theorem 4.1.6. Let k be a positive integer, pm a prime power, and r a prime. Write

m = αβ, where every prime dividing α also divides k and gcd(k, β) = 1. (This factor-

ization is unique.) Denote by e the smallest prime factor of β. Suppose r | Φk(pm) and

that one of the following holds:

1. m = α (and β = 1);

2. β is prime and r > Φkα(p);

3. r > pkm/e; or

4. 4 | m or 2 | k, and r > pkm/2e + 1.

Then r | Φkm(p).

Proof. We first note that Fact 4.1.4 (4) implies

Φk(p
m) = Φkα(pβ). (4.1.2)

Since kα and β are coprime, Lemma 4.1.5 implies that Φk(p
m) has Φkm(p) as a factor.

Our strategy in each case is to show that the remaining factors of Φk(p
m) are all smaller

than r. Since r is prime, it then follows that if r divides Φk(p
m) then r divides Φkm(p).

We now consider each case separately:

40

4.1 Framework

1. Since m = α it follows immediately that Φk(p
m) = Φkm(p).

2. Since β is a prime not dividing kα, equation (4.1.2) and fact 4.1.4 (3) imply that

Φk(p
m) = Φkαβ(p)Φkα(p) = Φkm(p)Φkα(p).

Since r > Φkα(p), it follows that r | Φkm(p).

3. By equation (4.1.2) and Lemma 4.1.5 we have

Φk(p
m) =

∏
d|β

Φkdα(p) =
∏
d|β

Φkm/d(p). (4.1.3)

By assumption we have r > pkm/d for all d | β except for d = 1, and by Fact 4.1.4

(1) we have pkm/d > Φkm/d(p) for all such d. It follows that r | Φkm(p).

4. Given the factorization of Φk(p
m) as in (4.1.3), the same analysis as in Case 3

shows that r > Φkm/d(p) for all d | β with d ≥ 2e. Since e is the smallest

prime dividing β, if d | β and 1 < d < 2e then d is prime, so it suffices to show

that r > Φkm/d(p) for all primes d dividing β. Let d be such a prime. The

assumption 4 | m or 2 | k then implies that km/d is even. In this case we have

xkm/d − 1 = (xkm/2d + 1)(xkm/2d − 1), and Φkm/d(x) must divide the first factor

by Fact 4.1.4 (1). Since d ≥ e, if r > pkm/2e + 1 then r > Φkm/d(p). ut

In order to link this result on cyclotomic polynomials to abelian varieties, we use

lemma 4.1.3, leading to the following corollary:

Corollary 4.1.7. Let J be an abelian variety over Fq, where q = pm with p prime.

Let r 6= p be a prime dividing #J(Fq), and suppose J has embedding degree k with

respect to r. Assume that r - km. If q, k, and r satisfy any of the conditions (1)–(4)

of Theorem 4.1.6, then the minimal embedding field of J with respect to r is Fpkm.

41

4.2 Supersingular elliptic curves over extension fields

We note that if m is prime, usually r ≈ pmg, with g = dim J , and m� k, then case

(2) of Theorem 4.1.6 applies. Another situation of interest is when p is small, p = 2 or

p = 3 are common choices, then the bound on r given by the theorem is very weak, i.e.

J will have minimal embedding field Fqk with respect to any r used in practice.

It is interesting to note that, although the way theorem 4.1.6 is stated should allow

its application to abelian varieties over finite fields that are not pairing-friendly, some

cases remain unanswered. For instance, if k � m and the dimension g is small then

none of the conditions of theorem 4.1.6 can be expected to hold: condition (1) is very

unlikely and conditions (2)–(4) would require r � qg, which is impossible.

Moreover we remark that, if k is odd andm is even then Φk(x
m) = Φk(x

m/2)Φ2k(x
m/2).

Since ϕ(k) = ϕ(2k) for odd k, these two factors have the same degree and the above

techniques cannot be used to show that r divides Φkm(p) and does not divide Φkm/2(p).

Applying theorem 4.1.6 recursively to each factor allows us to determine conditions on

q, k, and r guaranteeing that r divides one of the two expressions Φkm(p) and Φkm/2(p),

but some additional information is required to determine which one.

In the context of pairing-friendly curves, this situation rarely occurs as even em-

bedding degrees and prime values for m are preferred in practice. However, when this

situation arise it has to be solved on a case by case basis, as done in propositions 4.2.4

and 4.2.5 below.

4.2 Supersingular elliptic curves over extension fields

Supersingular elliptic curves, are the most well known pairing-friendly abelian varieties

defined over non-prime fields, and as such are often used. Usually, in order to optimize

implementation, when using a supersingular curve, the curve is chosen to have the

maximal embedding degree, that is, a supersingular curve over F2m with embedding

degree k = 4 or over F3m with embedding degree k = 6. Such curves mostly have

42

4.2 Supersingular elliptic curves over extension fields

near-prime order, i.e. their order can be written as a product of a large prime and a

small factor, and, as defined over field of small characteristic, benefit from some curve

arithmetic optimization. This makes them a really good choice for efficient pairing

implementations, especially because their minimal embedding field is Fqk as stated in

the two following propositions.

Proposition 4.2.1 (k = 4). Let q = 2m with m odd, and let E be a supersingular

elliptic curve over Fq that has embedding degree 4 with respect to a prime r - 2m. If

either

• ρ < 3

2

(
1− 1

log2 r

)
, or

• m is prime and r > 5,

then E has minimal embedding field Fq4.

Proof. If we write m = αβ as in Theorem 4.1.6, then the smallest prime dividing β

must be at least 3. Thus if r > q2/3 +1 then condition (4) of Theorem 4.1.6 is satisfied.

If m is prime and r > 5 = Φ4(2) then condition (2) of Theorem 4.1.6 is satisfied. In

both cases, by Corollary 4.1.7 E has minimal embedding field Fq4 . An easy calculation

shows that if ρ < 3
2(1− 1

log2 r
) then r > q2/3 + 1. ut

Proposition 4.2.2 (k = 6). Let q = 3m with m odd, and let E be a supersingular

elliptic curve over Fq that has embedding degree 6 with respect to a prime r - 6m. If

either

• ρ < 5

3

(
1− 1

log2 r

)
, or

• m is prime and r > 7,

then E has minimal embedding field Fq6.

Proof. The proof is entirely analogous to that of Proposition 4.2.1. ut

43

4.2 Supersingular elliptic curves over extension fields

We remark that, in both of the above cases the exponent cJ defined by Rubin and

Silverberg is equal to k. Their result (Theorem 4.1.2) then implies that when k = 4,

the conclusion of proposition 4.2.1 holds whenever ρ < 3 log 2

2 log(1+
√
2)
≈ 1.18, and that

when k = 6, the conclusion of proposition 4.2.2 holds whenever ρ < 3 log 3

2 log(1+
√
3)
≈ 1.64.

Thus, in both cases our result is stronger, as it requires a weaker upper bound on ρ,

for sufficiently large r.

In some special cases one may wish to use supersingular elliptic curves with very

small embedding degrees for implemention. We thus continue our analysis by investi-

gating the cases 1 ≤ k ≤ 3. The case k = 2 is the most straightforward.

Proposition 4.2.3 (k = 2). Let q = pm, and let E be a supersingular elliptic curve

over Fq that has embedding degree 2 with respect to a prime r - 2m. If either

• ρ < 3

(
1− 1

log2 r

)
, or

• m is prime and r > p+ 1,

then E has minimal embedding field Fq2.

Proof. The proof is entirely analogous to that of Proposition 4.2.1. ut

Rubin and Silverberg’s result (theorem 4.1.2) says that the conclusion of Proposition

4.2.3 holds whenever ρ < 2− ε when m is even and whenever ρ < 3− ε when m is odd,

with ε→ 0 as p→∞. Thus our result is stronger when m is even.

The cases k = 1 and k = 3 are more subtle, as it is not really possible to avoid the

minimal embedding field to be Fqk/2 even when r is very large. However, if the sign of

the trace is known, then theorem 4.1.6 can be applied to determine when the minimal

embedding field is Fqk or Fqk/2 .

Proposition 4.2.4 (k = 1). Let q = pm with m even, and let E be a supersingular

elliptic curve over Fq that has embedding degree 1 with respect to a prime r - m. If E

44

4.2 Supersingular elliptic curves over extension fields

has trace −2pm/2 and ρ < 6(1 − 1
log2 r

), then E has minimal embedding field Fq. If E

has trace 2pm/2 and ρ < 4, then E has minimal embedding field Fq1/2.

Proof. Let m′ = m/2. Suppose E has trace −2pm
′
. Then #E(Fq) = (pm

′
+ 1)2, so r

divides Φ2(p
m′). We now apply Theorem 4.1.6 with k = 2 and m = m′. If we write

m′ = αβ as in the theorem, then the smallest prime dividing the β of theorem 4.1.6

must be at least 3. Thus if r > pm
′/3 + 1 = q1/6 + 1 then condition (4) of the theorem

is satisfied, so by corollary 4.1.7 E has minimal embedding field Fp2m′ = Fq. An easy

calculation shows that if ρ < 6(1− 1
log2 r

) then r > q1/6 + 1.

Now suppose E has trace 2pm
′
. Then #E(Fq) = (pm

′−1)2, so r divides Φ1(p
m′). We

now apply theorem 4.1.6 with k = 1 and m = m′. If r > pm
′/2 = q1/4 (or equivalently,

if ρ < 4) then condition (3) of the theorem is satisfied, so by corollary 4.1.7 E has

minimal embedding field Fpm′ = Fq1/2 . ut

When k = 1, Rubin and Silverberg’s exponent cJ is equal to 1 if E has negative

trace and 1/2 if E has positive trace. In both cases the integer f of theorem 4.1.2

is equal to 2. Thus theorem 4.1.2 says that the conclusion of proposition 4.2.4 holds

whenever ρ < 4− ε, with ε→ 0 as p→∞. Our result is then stronger for the first case

as well as for small p.

In fact, proposition 4.2.4 demonstrates the fact that the minimal embedding field of

an elliptic curve E can be smaller than its field of definition. One can construct such a

curve as follows: Let p > 3 be prime, and let E/Fp be a supersingular elliptic curve over

Fp. If we define E′/Fp2 as a quadratic twist of E over Fp2 , then #E′(Fp2) = (p − 1)2,

and the minimal embedding field of E′ with respect to any r | p− 1 is Fp.

Finally, we consider the case of embedding degree k = 3. As with k = 1, the

minimal embedding field can be determined from the sign of the trace.

Proposition 4.2.5 (k = 3). Let q = pm with m even, and let E be a supersingular

elliptic curve over Fq that has embedding degree 3 with respect to a prime r - 3m. If E

45

4.3 Higher-dimensional supersingular abelian varieties

has trace pm/2 and ρ < 10
3 (1 − 1

log2 r
), then E has minimal embedding field Fq3. If E

has trace −pm/2 and ρ < 4/3, then E has minimal embedding field Fq3/2.

Proof. The proof is entirely analogous to that of Proposition 4.2.4. ut

When k = 3, Rubin and Silverberg’s exponent cJ is equal to 3 if E has positive

trace and 3/2 if E has negative trace. Thus theorem 4.1.2 says that the conclusion

of proposition 4.2.5 holds whenever ρ < 2 − ε, with ε → 0 as p → ∞. Our result is

stronger for the first case.

4.3 Higher-dimensional supersingular abelian varieties

In this section we briefly sketch the application of the main result to supersingular

abelian varieties of dimension g ≥ 2 defined over non-prime fields.

We first consider simple supersingular abelian varieties of dimension g = 2. Such

varieties, known as abelian surfaces, can be described as Jacobians of genus 2 curves.

Cardona and Nart [22] give a detailed description of the possible group orders and

embedding degrees for simple supersingular abelian surfaces, analogous to the Menezes-

Okamoto-Vanstone classification for elliptic curves.

Table 4.1 lists the isogeny classes of simple supersingular abelian surfaces over

Fq and their respective embedding degree k, as determined by Cardona and Nart.

The isogeny classes are described by a pair of integers (s, t), which correspond to the

coefficients of the characteristic polynomial of Frobenius x4 + sx3 + tx2 + sqx+ q2. An

asterisk next to the embedding degree indicates that the minimal embedding field is

Fqk/2 , not Fqk .

When the extension degree m is prime, as is most often the case in practice, corollary

4.1.7 tells us that if r > Φk(p) then the minimal embedding field of a supersingular

abelian surface with respect to r is Fpk . For the cases of small characteristic, we have

the following result.

46

4.3 Higher-dimensional supersingular abelian varieties

Proposition 4.3.1. Let J be a simple supersingular abelian surface over Fq, where

q = pm, p ∈ {2, 3, 5}, and m is prime. Suppose J has embedding degree k with respect

to a prime r > m. If r > 781 then the minimal embedding field of J with respect to r

is Fqk .

For more general situations, table 4.1 gives two parameters for each isogeny class

that are related to the minimal embedding field. A value of a in the column “Cor. 4.1.7

max ρ” indicates that whenever r - km is prime and ρ < a, corollary 4.1.7 implies that

an abelian variety in the isogeny class has minimal embedding field equal to either Fqk

with respect to r, or Fqk/2 in the asterisked cases. When the value is a− ε one can take

ε = a/ log2 r.

A value of b in the column “RS max ρ” indicates that whenever r is prime and

ρ < b, Rubin and Silverberg’s result (theorem 4.1.2) implies that an abelian variety in

the isogeny class has minimal embedding field Fqk with respect to r (or Fqk/2 in the

asterisked cases). When p is not fixed, the values b are limits as p→∞.

(s, t) conditions on p and m k Cor. 4.1.7 max ρ RS max ρ

(0,−2q) m odd 1 6 6
(0, 2q) m even, p ≡ 1 (mod 4) 2 6− ε 4

(2
√
q, 3q) m even, p ≡ 1 (mod 3) 3* 8/3 4

(−2
√
q, 3q) m even, p ≡ 1 (mod 3) 3 20/3− ε 4

(0, 0) m odd, p 6= 2 4 3− ε 3
(0, 0) m even, p 6≡ 1 (mod 8) 4 3− ε 2
(0, q) m odd 3 10/3 3

(0,−q) m odd, p 6= 3 6 10/3− ε 3
(0,−q) m even, p 6≡ 1 (mod 12) 6 10/3− ε 2
(
√
q, q) m even, p 6≡ 1 (mod 5) 5* 8/5 2

(−√q, q) m even, p 6≡ 1 (mod 5) 5 12/5− ε 2
(±
√

5q, 3q) m odd, p = 5 5 6/5 2.06
(±
√

2q, q) m odd, p = 2 12 5/3− ε 1.18

Table 4.1: Isogeny classes of simple supersingular abelian surfaces over Fq.

An interesting situation to analyse is the case of supersingular abelian varieties of

47

4.4 Discussion

dimension g = 4. Rubin and Silverberg [112, §5.1] showed that if q = 3m and E is a

supersingular elliptic curve over Fq with embedding degree 6, then there is a simple

4-dimensional abelian variety J/Fq with embedding degree k = 30. This J can be

constructed as a subvariety of the restriction of scalars ResFq5/Fq
E.

Proposition 4.3.2. Let q = 3m with m odd, and let A be a simple supersingular 4-

dimensional abelian variety over Fq that has embedding degree 30 with respect to a prime

r - 30m. If either

• ρ < 28

15

(
1− 1

log2 r

)
, or

• m is prime and r > 8400,

then A has minimal embedding field Fq30.

Proof. The proof is entirely analogous to that of Proposition 4.2.1. ut

We note that if J is an abelian variety as in proposition 4.3.2, Rubin and Silverberg’s

result (pheorem 4.1.2) shows that the result holds whenever r > (1 +
√

3)8m/3, or

ρ / 1.64. Thus our result (ρ / 1.87) is stronger.

4.4 Discussion

For an abelian variety J defined over a finite field Fq such that J has embedding degree

k with respect to a subgroup of prime order r, the question of knowing whether or not

the minimal embedding field of J with respect to r is Fqk can be answered in terms of

q, r and k under certain conditions expressed in theorem 4.1.6 and corollary 4.1.7.

When theorem 4.1.6 is applied to supersingular elliptic curves (section 4.2) and to

supersingular genus 2 curves (section 4.3), by computing a maximum ρ-value for which

the minimal embedding field must be Fqk , it, most of the time, results in larger allowable

ρ-values than the corresponding result of Rubin and Silverberg (theorem 4.1.2).

48

4.4 Discussion

Another interesting result is that theorem 4.1.6 holds for general abelian vari-

eties, not only supersingular ones. Several results demonstrate the existence of non-

supersingular abelian varieties over extension fields with small embedding degree [48,

69], but at present only a single explicit construction of such varieties has been ex-

hibited. This construction, due to Hitt O’Connor, McGuire, Naehrig and Streng [70,

Algorithm 3], produces abelian surfaces over Fp2 with p-rank 1, i.e. neither ordinary

nor supersingular, and ρ ≈ 16. These ρ-values are far too large both for practical use

and for Corollary 4.1.7 to provide any useful result.

The construction of non-supersingular abelian varieties over non-prime fields with

small embedding degree and ρ < 16 is still an open-problem. Finding such varieties

would not only expand the library of pairing-friendly abelian varieties but could po-

tentially lead to different improvements in practice. In this case the results presented

in this chapter could be used in order to describe the minimal embedding field of these

varieties.

As efficiency is one of the major concerns when it comes to implementing and using

pairings we will now focus in the next chapter on how to improve their computational

speed.

49

5

Pairings and efficiency

In all affairs it’s a healthy thing now and then to hang a question

mark on the things you have long taken for granted.

B. Russell

Using the important techniques listed in chapter 3 (section 3.3), improves Miller’s

algorithm. We will now consider closely how to handle the fifth one, to efficiently

compute the final exponentiation.

5.1 The final exponentiation

After the Miller loop the Tate pairing carries out an extra step to ensure a unique result

of the pairing, as f must be raised to be power (pk − 1)/r. Since p, k and r are fixed

system parameters it is possible to optimise the so-called final exponentiation.

We start by restricting our attention to the case of even embedding degrees, which

are more useful and practical, as they support the important denominator elimination

optimization [8]. Thus the final exponent can be broken down into three components.

Let d = k/2. Then

50

5.1 The final exponentiation

(pk − 1)/r = (pd − 1) · [(pd + 1)/Φk(p)] · [Φk(p)/r].

The field characteristic being p, the first two parts of the exponentiation only con-

sists of applying the Frobenius operator [14] in order to raise to the power of p. This

results in an almost free computation, as such, the first two parts are called easy. More

than being cheap, although it requires an extension field division, the first part of

the exponentiation simplifies the rest of the final exponentiation. After raising to the

power of (pd− 1) the field element becomes unitary [122], i.e. an element α with norm

NF
pk
/F

pd
(α) = 1. This has important implications, as squaring of unitary elements is

significantly cheaper than squaring of non-unitary elements, and any future inversions

can be implemented by simple conjugation [129], [122], [61], [99].

Once the easy part is computed the hard part of the final exponentiation still re-

mains, that is, raising to the power of Φk(p)/r. This is usually done by expressing this

exponent to the base p as λn−1 · pn−1 + ... + λ1 · p + λ0, where n = ϕ(k). If the value

to be exponentiated is m, then we need to calculate

mλn−1·pn−1
....mλ1·p ·mλ0 ,

which can be rewritten

(mpn−1
)λn−1.....(mp)λ1 ·mλ0 .

The mpi can be calculated using the Frobenius, and the hard part of the final expo-

nentiation can be computed using a fast multi-exponentiation algorithm [66], [56], [92].

However, doing so does not take advantage of the form of the polynomial describing

p and r. We will now present, for some families of pairing-friendly elliptic curve having

ρ-value close to 1, a new method benefiting from the construction of the curves in order

to efficiently compute the hard part of the exponentiation.

51

5.1 The final exponentiation

5.1.1 MNT curves

As recalled in chapter 3, MNT pairing-friendly elliptic curves with embedding degree

k = 6 can be parameterised using the following polynomials:

t(x) = x+ 1

r(x) = x2 − x+ 1

p(x) = x2 + 1.

In this case the hard part of the final exponentiation is (p2 − p + 1)/r. Substituting

p and r by their respective corresponding polynomials from above leads to (x4 + x2 +

1)/(x2 − x + 1) = x2 + x + 1. By expressing it to the base p, it becomes (p + x) and

the hard part of the final exponentiation is mp.mx. This is done by only using an

application of the Frobenius and an exponentiation to the power of x. The advantage

of deriving the hard part of the exponentiation in terms of the family parameter x is

clearly illustrated in this simple case, as x is only half the size of p.

5.1.2 BN curves

Pairing-friendly elliptic curves from the BN family have embedding degree 12, and can

be parameterised as follows:

t(x) = 6x2 + 1

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1.

52

5.1 The final exponentiation

In this case the hard part of the final exponentiation is to the power of (p4− p2 + 1)/r.

After substituting the polynomials for p and r this can be expressed to the base p as

λ3.p
3 + λ2.p

2 + λ1.p+ λ0,

where

λ3(x) = 1;

λ2(x) = 6x2 + 1;

λ1(x) = −36x3 − 18x2 − 12x+ 1;

λ0(x) = −36x3 − 30x2 − 18x− 2.

Although this expression is more complex than in the case of MNT curves it is

still possible to handle it efficiently taking a new approach. BN curves being very

plentiful, it is possible to choose x with low Hamming weight. The resulting polynomial

r(x) then, has low Hamming weight, allowing a faster computation of the Miller loop.

The next stage is the computation of mx, mx2 = (mx)x and mx3 = (mx2)x. These

are simple exponentiations, and the low Hamming weight of x ensures that each one

of them requires a minimum number of multiplications when using a simple square-

and-multiply algorithm. Then computing mp, mp2 , mp3 , (mx)p, (mx2)p, (mx3)p and

(mx2)p
2

can be done efficiently by using the Frobenius. If we group the elements of the

exponentiation together, the expression becomes:

[mp ·mp2 ·mp3]·[1/m]2 ·[(mx2)p
2
]6 ·[(mx)p]12 ·[mx/((mx2)p)]18 ·[1/mx2]30 ·[mx3 ·(mx3)p]36.

Recalling that division costs the same as multiplication, as inversion is just a con-

jugation for unitary elements, the individual components between the square brackets

can be calculated using only four multiplications. This leaves us with a calculation of

53

5.1 The final exponentiation

the form:

y0 · y12 · y26 · y312 · y418 · y530 · y636. (5.1.1)

In fact, the exponents in this expression are simply the coefficients that arise in the λi

equations. Thus, the initial question, of knowing how to efficiently compute the hard

part of the exponentiation, boils down to how best to evaluate the above product.

The goal being the minimization of the number of multiplications, Olivos’ algo-

rithm [104] [7, Section 9.2] is perfectly suited to this case. Given a number n, we define

an addition chain as a set of integers such that each element can be written as the sum

of two previous elements, the first element of the chain being 1 and the last one being

n. When a set S is given, instead of a number, the resulting chain, including all the

elements of S, is called an addition sequence. The idea behind Olivos’s algorithm is

to consider all the exponents as a set and return the corresponding shortest addition

sequence. This results in an optimal decomposition of the exponentiations. When this

strategy is applied to equation 5.1.1, it leads to the following addition sequence:

{1, 2, 6, 12, 18, 30, 36} → {1, 2, 3, 6, 12, 18, 30, 36}.

To obtain a proper addition sequence we see that 3 must be added to the initial set.

This is the only element not belonging to the set of exponents, which means less work

to do the evaluation.

In our case Olivos’ algorithm consists in considering the vectors Yi = (0, · · · , 1, · · · , 0),

the i-th component of the vector being 1, and apply operations on the vectors such that

it yields the vector (36, 30, 18, 12, 6, 2, 1). This leads to the “vectorial addition chain”

given in table 5.1. In turn, it allows the evaluation of expression 5.1.1 using just two

temporary variables, T0 and T1, as described in algorithm 5.1. This part of the calcu-

lation requires only 9 multiplications and 4 squaring.

If we take the low hamming weight value x = −408000000000000116 suggested

54

5.1 The final exponentiation

(y6 y5 y4 y3 y2 y1 y0)

(1 0 0 0 0 0 0)
(0 1 0 0 0 0 0)
(0 0 1 0 0 0 0)
(0 0 0 1 0 0 0)
(0 0 0 0 1 0 0)
(0 0 0 0 0 1 0)
(0 0 0 0 0 0 1)
(2 0 0 0 0 0 0)
(2 0 1 0 0 0 0)
(2 1 1 0 0 0 0)
(0 1 0 1 0 0 0)
(2 2 1 1 0 0 0)
(2 1 1 0 1 0 0)
(4 4 2 2 0 0 0)
(6 5 3 2 1 0 0)

(12 10 6 4 2 0 0)
(12 10 6 4 2 1 0)
(12 10 6 4 2 0 1)
(24 20 12 8 4 2 0)
(36 30 18 12 6 2 1)

Table 5.1: Olivos’ algorithm in the case of BN curves.

by Nogami, Akane, Sakemi, Kato and Morikawa in [102], it lowers the number of

multiplications/squarings over Fp from 7426 to 7156, which, in practice, represents a 4%

speed increase. Hence, this new approach to the hard part of the final exponentiation

leads to significant efficiency improvement, in the case of BN curves, but not only those

as will see next.

5.1.3 Freeman Curves

Freeman suggested the construction of pairing-friendly elliptic curves of embedding

degree 10, using the following parameters to describe the family:

55

5.1 The final exponentiation

Algorithm 5.1 Evaluation of expression 5.1.1 using only two temporary variables.

Input: y0, y1, y2, y3, y4, y5, y6.
Output: y0 · y12 · y26 · y312 · y418 · y530 · y636.
1: T0 ← (y6)

2

2: T0 ← T0 · y4
3: T0 ← T0 · y5
4: T1 ← y3 · y5
5: T1 ← T1 · T0
6: T0 ← T0 · y2
7: T1 ← (T1)

2

8: T1 ← T1 · T0
9: T1 ← (T1)

2

10: T0 ← T1 · y1
11: T1 ← T1 · y0
12: T0 ← (T0)

2

13: T0 ← T0 · T1
14: return T0

t(x) = 10x2 + 5x+ 3

r(x) = 25x4 + 25x3 + 15x2 + 5x+ 1

p(x) = 25x4 + 25x3 + 25x2 + 10x+ 3.

These curves are much rarer than the BN curves, and unfortunately it is not feasible

to choose x to have a particularly small Hamming weight. Nevertheless proceeding as

above is still possible:

λ3(x) = 1;

λ2(x) = 10x2 + 5x+ 5;

λ1(x) = −5x2 − 5x− 3;

λ0(x) = −25x3 − 15x2 − 15x− 2.

56

5.1 The final exponentiation

In this case the coefficients form a perfect addition chain, i.e. no elements need to

be added:

{1, 2, 3, 5, 10, 15, 25}.

The optimal vectorial addition chain in this case requires 10 multiplications and 2

squarings.

5.1.4 KSS Curves

The Kachisa, Schaeffer and Scott method leads to few families with different embedding

degrees. We will consider the families with embedding degree k = 8 and k = 18.

KSS curves (k = 8): The parameters for this family are given by:

t(x) =
1

15
(2x3 − 11x+ 15)

r(x) =
1

450
(x4 − 8x2 + 25)

p(x) =
1

180
(x6 + 2x5 − 3x4 + 8x3 − 15x2 − 82x+ 125).

We note that, as BN curves, these curves are plentiful, and then x can be chosen

to have a low Hamming weight. The decomposition of the hard part to base p yields:

λ3(x) =
1

6
(15x2 + 30x+ 75)

λ2(x) =
1

6
(2x5 + 4x4 − x3 + 26x2 − 55x− 144)

λ1(x) =
1

6
(−5x4 − 10x3 − 5x2 − 80x+ 100)

λ0(x) =
1

6
(x5 + 2x4 + 7x3 + 28x2 + 10x+ 108).

The major difference compared to previous cases is in the common denominator 6

appearing for each λi. Since in practice r will be large and coprime to 6, this issue can

easily be overcome by evaluating the sixth power of the pairing instead of the pairing

57

5.1 The final exponentiation

itself. Thus the result of the exponentiation will still belong to a group of order r and it

suffices to simply ignore the denominator. It results in the following optimal addition

sequence which contains all the exponents in the above equations:

{1, 2, 4, 5, 7, 10, 15, 25, 26, 28, 30, 36, 50, 55, 75, 80, 100, 108, 144}.

The underlined numbers are the extra numbers added in order to complete the sequence.

Proceeding as in the BN case, the vectorial addition chain derived from this addition

sequence requires only 27 multiplications and 6 squarings to complete the calculation

of the hard part of the final exponentiation.

KSS curves (k = 18): This family is defined by the following polynomials:

t(x) =
1

7
(x4 + 16x+ 7)

r(x) =
1

343
(x6 + 37x3 + 343)

p(x) =
1

21
(x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x+ 2401).

Although, as recalled in chapter 3 section 3.2, t(x), r(x) and p(x) evaluate as

integers if x ≡ 14 mod 42, x can still be chosen with a low Hamming weight. Then by

proceeding as usual we find:

λ5(x) =
1

3
(49x2 + 245x+ 343)

λ4(x) =
1

3
(7x6 + 35x5 + 49x4 + 112x3 + 581x2 + 784x)

λ3(x) =
1

3
(−5x7 − 25x6 − 35x5 − 87x4 − 450x3 − 609x2 + 54)

λ2(x) =
1

3
(−49x5 − 245x4 − 343x3 − 931x2 − 4802x− 6517)

λ1(x) =
1

3
(14x6 + 70x5 + 98x4 + 273x3 + 1407x2 + 1911x)

λ0(x) =
1

3
(−3x7 − 15x6 − 21x5 − 62x4 − 319x3 − 434x2 + 3).

58

5.2 Discussion

Using the same argument as in the KSS k = 8 curves case, we evaluate the cube

of the pairing to remove the awkward denominator of 3. In this case the coefficients

again “nearly” form a natural addition sequence. A relatively short addition sequence

containing all of the exponents in the above λi, is:

{1, 2, 3, 4, 5, 7, 8, 14, 15, 16, 21, 25, 28, 35, 42, 49, 54, 62, 70, 87, 98, 112, 147, 245, 273, 294

319, 343, 392, 434, 450, 581, 609, 784, 931, 1162, 1407, 1862, 1911, 3724, 4655, 4802, 6517}.

It is interesting to note that, in this case, it is feasible to find a shorter addition

chain. However, if we take into consideration the fact that squaring is notably cheaper

than multiplication over an extension field, it may happen that a longer chain gives rise

to a more efficient computation. Here, it requires 56 multiplications and 14 squarings,

instead of 61 multiplications and only 7 squarings in order to complete the calculation

of the hard part of the final exponentiation. Hence, it can happen that slightly longer

sequences are preferable to shorter ones if it features more doubling and less additions

which, in turn, results in more squarings and less multiplications.

5.2 Discussion

One of the first remarks concerns the hardness of finding the shortest addition sequence.

In fact, it is an NP-complete problem [34], but since the values we obtained in each

set are relatively small, and the sets themselves already contained some addition “sub-

chains”, it is, in this context, not too difficult to generate, either with a computer or

manually, addition sequences containing the specific entries with length close to the

lower bound given for the length of addition chains [18]. Should a particular curve

result in larger or more numerous coefficients to be constructed into a sequence, Bos

and Coster suggest an algorithm for that scenario in [18].

59

5.2 Discussion

An other important remark is related to the length of the chain. In fact, since

squarings are significantly faster than multiplications over extension fields, it may, as

we have seen, be sometimes preferable to select a slightly longer addition sequence which

trades additions for doublings. From an efficiency point of view, the unitary property

implies that divisions are not more expensive that multiplications, rendering addition-

subtraction chains a good option for more complicated expressions. This would result

in “unordered” sequences.

On the sequences themselves, it is interesting to note their compactness, implying

that really few values need to be added to the coefficient in the λi. Those coefficients also

feature the special property of having relatively small factors, tending to be “smooth”

numbers. This seems to facilitate the construction of addition sequences. In some cases,

like the Freeman curves, the coefficient of the λi already form an addition sequence,

and if we extend the method to BW curves it often leads to addition sequences as easy

as:

{1, 2, 3}.

Other intriguing patterns emerge as in the case of the KSS k = 18 curves where the

three most significant coefficients of the λi are all in the same ratio 1:5:7. Coefficients

also appear to follow the same kind of distribution as numbers in a typical addition

chain.

One of the main benefits of this new method is that it allows the writing of com-

puter programs which automatically generate very efficient pairing code, given only

the polynomial equations defining a pairing-friendly family of elliptic curves [33]. This

is very much appreciated for practical use as implementing pairings is often hard and

requires a good knowledge of a wide range of primitives.

60

6

Pairings and the discrete

logarithm problem

Something convincing is not necessarily true, it is only convincing.

F. Nietzsche

As computing pairings can be done efficiently Menezes, Okamoto and Vanstone [91],

had the idea of using them to map a hard problem over an elliptic curve into an easier

problem over a finite field. In fact, although their initial aim targeted supersingular

elliptic curves, it extends by definition to all ordinary pairing-friendly elliptic curves.

The hard problem of concern, namely the Elliptic Curve Discrete Logarithm Prob-

lem (ECDLP), is defined for an elliptic curve E over Fq, P a generator of a subgroup

G of E(Fq), and Q ∈ G, as finding an x such that Q = [x]P . Using a pairing it is then

transformed into the Discrete Logarithm Problem (DLP), which is the equivalent of

the ECDLP over a finite field: given α a generator of a subgroup G of Fqk , and β ∈ G,

find x such αx = β.

We can immediately and easily note that for the ECDLP to be unsolvable, one

must ensure that the DLP is also intractable, if dealing with pairing-friendly elliptic

61

6.1 Theoretical view

curves. Indeed, let Q = [x]P , with P a point of order r on E(Fq) ∼= Z/rZ ⊕ Z/nZ,

where n|r and n|(q − 1) [91, section II]. If we take a point G on the curve such that

(P,G) generates E(Fq), and a point S = [s1]P + [s2]G, for some integers s1, s2, then

er(P, T)n = er(P, P)s1ner(P, [s2n]G)

= er(P,O)

= 1

Hence the order of er(P, T) divides n, and as n|(q − 1), er(P, T) ∈ Fq. We also have

er(Q,S) = er([x]P, S) = er(P, S)x.

Therefore if the pairing can be computed efficiently it is possible to solve the ECDLP,

by solving the DLP. Thus in order to clearly state which parameters should be used a

more advanced study of the best known algorithms to solve both the ECLP and the

DLP is required.

6.1 Theoretical view

From a theoretical point of view how an algorithm performs is based on its complexity.

Therefore, in order to know how easy it is to solve the ECDLP and the DLP we will

describe and analyse the most efficient algorithms known to date, for solving those two

problems.

6.1.1 Pollard’s Rho algorithm

Pollard’s Rho algorithm [110] is very interesting as it applies to any group, not depend-

ing on any specific structure. As such, it applies to elliptic curves, and is in fact the

best known general algorithm to solve the ECDLP.

The core idea of Pollard’s Rho algorithm relies on the birthday paradox, which states

62

6.1 Theoretical view

that in a random set of people, the probability to have two persons born on the same

date is over 50% as soon as the set contains more than 23 people and reaches 99% with

only 57. Adapted to the case of a cyclic group G of order n, it means that a collision

between two elements will occur in time
√
n.

In the case of G being a multiplicative group, the main goal is to obtain a collision

of two elements αa1βb1 ≡ αa2βb2 mod n, which yields

α
a2−a1
b1−b2 = β. (6.1.1)

This is achieved by first remarking that for α a generator, all the elements of G can be

written αaβb for β ∈ G. Then, if a collision occurs between two elements x and y it is

sufficient to know their decomposition into an α, β product, and apply the above idea

to find a similar equation to 6.1.1.

More formally, it is done by defining S1, S2 and S3, three subsets of G of approxi-

mately the same size, and three functions f, g and h on elements of G as follows:

h(b, x) =

b x ∈ S1

2b mod n x ∈ S2

b+ 1 mod n x ∈ S3

f(x) =

β x ∈ S1

αx x ∈ S2

x2 x ∈ S3

g(a, x) =

a+ 1 mod n x ∈ S1

2a mod n x ∈ S2

a x ∈ S3

This being set, it suffices to follow algorithm 6.1 in order to solve the DLP.

The running time is obviously the time required to get a collision, which is as stated

above, O(
√
n), for n the size of the group G.

63

6.1 Theoretical view

Algorithm 6.1 Pollard’s Rho algorithm.

Input: α a generator of G and β ∈ G, f(x), g(a, x) and h(b, x).
Output: logα β, or failure.
1: a0 ← 0
2: b0 ← 0
3: x0 ← 1
4: i← 1
5: repeat
6: xi ← f(xi−1)
7: ai ← g(ai−1, xi−1)
8: bi ← h(bi−1, xi−1)
9: x2i ← f(f(x2i−2))

10: a2i ← g(g(a2i−2, x2i−2), f(x2i−2))
11: b2i ← h(h(b2i−2, x2i−2), f(x2i−2))
12: i← i+ 1
13: until xi = x2i
14: r ← bi − b2i
15: if r 6= 0 then
16: return r−1(a2i − ai) mod n
17: else
18: return failed
19: end if

6.1.2 Pohlig Hellman algorithm

A less generic, but more efficient algorithm, relying on the use of the Chinese Remainder

Theorem (CRT), was discovered by Pohlig and Hellman [109]. In fact, they realised

that, when the order n of the group G can be factored into small primes it is easy to

derive a system of modular equations, which can be solved using the CRT.

More precisely, n is first decomposed into a product of primes
∏t
i=1 p

ei
i , then the

core idea is to see that since x = logα β is unique modulo n, knowing xi such that

xi ≡ x mod peii , allows to determine x by only solving a modular system of equations.

Another important point, is that, if xi is written to base p, xi = li,0+· · ·+li,ei−1pei−1,

and for each xi, x is viewed as x = xi + spei for some integer s, we can consider

64

6.1 Theoretical view

nx− nli,0
pi

:

n(xi + speii)

pi
− n.li,0

pi
≡ n

pi
(xi + speii − li,0) mod n

≡ n

pi
(

ei−1∑
j=0

li,jp
j
i + speii − li,0) mod n

≡ n

pi
(

ei−1∑
j=1

li,jp
j
i + speii) mod n

≡ n(

ei−1∑
j=1

li,jp
j−1
i + spei−1i) mod n

≡ 0 mod n

And, since βn/pi = αnx/pi , this means that

β
n
pi ≡ α

nli,0
pi mod pi.

In the case where pi is a small prime factor of n, li,0 can easily be worked out, for

example by using Pollard’s Rho algorithm and so can all the other li,j . In turn, it yields

the decomposition of xi to the base pi. By repeating this process for all the pi, this

leads to a system of r modular equations, which can be solved using the CRT.

This strategy is expressed, from a more formal viewpoint in algorithm 6.2, which

has complexity O(

t∑
i=1

ei(log n +
√
pi)). From this complexity we clearly understand

that unless n is smooth, the Pohlig Hellman algorithm will not perform well as in the

worst case, i.e. when n is prime, it has complexity
√
n.

6.1.3 Index calculus algorithms

The index calculus method designates a way to calculate the index, as called in the

18th century, of an integer modulo a prime p, relative to a primitive root. The index,

or discrete logarithm as it is now called, is best computed using this method which

65

6.1 Theoretical view

Algorithm 6.2 Pohlig Hellman algorithm.

Input: α a generator of G a group of order n, and β ∈ G.
Output: logα β.

1: Decompose n into prime factors: n =

t∏
i=1

peii , ei ≥ 1

2: for i← 1 to t do
3: l−1 ← 0
4: γ ← 1
5: α← αn/pi

6: for j ← 0 to ei − 1 do

7: γ ← γαlj−1p
j−1
i

8: β ← (βγ−1)n/p
j+1
i

9: lj ← logα β
10: end for

11: xi ←
ei−1∑
j=0

ljp
j
i

12: end for
13: solve the system:

x1 ≡ x mod pe11
...

...
xi ≡ x mod peii

...
...

xt ≡ x mod pett

14: return x

features a few different variants, all split into three phases. Note that this method only

applies to fields of the form Fpn , for p a prime and n a positive integer.

Given a group G ⊂ Fqk of order n, the first stage consists in taking two isomorphic

representations of Fqk and fixing a subset of elements in each of the representations.

Such a subset is called a factor base and is usually made of prime elements with norm

less than a fixed bound B. Then, the elements of the field are sieved in such a way

that only the smooth ones, i.e. the ones completely factorising over the factor base, are

kept.

Let F1 and F2 be two isomorphic representations of Fqk , α1 ∈ F1 and α2 ∈ F2. If

both α1 and α2 are smooth on their respective factor base F1 and F2 and α1
∼= α2,

66

6.1 Theoretical view

then by definition, we get the following equality:

α1 =
∏
γi∈F1

γ
a1,i
i
∼=
∏
γj∈F2

γ
a2,j
j = α2.

Once sufficiently many such relations have been collected, the logarithm of these

equations is taken, thus resulting in linear equations in the unknowns, the logarithms

of the elements of the factor bases. The second stage consists in solving this system of

equations in order to find the logarithm of the factor base elements.

Although the matrix of equations is originally sparse, after only a few operations it

becomes congested, rendering the solving of the linear system a non-trivial task, that

can only be achieved by using structured Gaussian elimination or more advanced algo-

rithms, like Lanczos or Wiedemann algorithms [80, 139]. It is interesting to note that

some derived algorithms can combine a few of these methods [79].

The last phase of an index calculus algorithm is computing the discrete logarithm

of arbitrary elements in G. This is achieved in ways varying with each individual

algorithm, usually using a variation of the special-q descent, which is defined as follows.

For some element q not in the factor base, sieve elements as in the first stage, searching

for an element d, such that q divides the ideal generated by d, and the norm of d factors

into primes smaller than some value D. Then, factor the ideal generated by d into a

product of ideals and repeat the process until the bound D becomes smaller than B,

meaning that all the factors are in the factor base. Finally, q is written as a product of

elements in the factor base, allowing us to easily find its logarithm.

All the difficulty of this method lies in the balance of the two first stages, which

are time consuming. In fact, if too many relations are collected, then the linear system

67

6.1 Theoretical view

becomes too huge to be solved in reasonable time, but on another hand, if it is consti-

tuted of too few relations, then it cannot be solved. A trade off must then be found

in order to have both phases to take roughly the same amount of time, the third stage

being negligible compared to them.

From a general point of view, the index calculus method has a sub-exponential

complexity, i.e. neither polynomial nor exponential, but “in between”. More formally

a sub-exponential complexity is expressed by the so called L-notation:

Lq(α, c) = exp
(
(c+ o(1))(log q)α(log log q)1−α

)
,

where c is a positive constant, and 0 ≤ α ≤ 1. We note that, α = 0 leads to a polynomial

complexity, while α = 1, implies it to be fully exponential. When c is unknown, the

L-notation is simply denoted Lq(α).

Before studying in more details two index calculus algorithms, we point out that

factorising qk − 1 can reduce the problem of finding discrete logarithms.

• For each small prime factor s of qk − 1, the discrete logarithm modulo s can be

computed using Pollard’s Rho method.

• For the larger prime factors l of qk− 1, the index calculus method can be used to

compute the discrete logarithm modulo l.

Although these results can be combined to compute the logarithm modulo qk−1 using

the CRT, this strategy also raise the question of knowing how to efficiently factorise

qk − 1. In fact, it is fairly easy if one consider the factorisation of

xk − 1 =
∏
l|k

Φl(x),

and then substitute q for x. It is also interesting to note that even if the use of

“heavy” algorithms like the number field sieve is required, this will not influence the

68

6.1 Theoretical view

overall complexity of the method, as they feature the same complexity, Lq(1/3), as the

algorithms mentioned below.

6.1.3.1 Function field sieve algorithm

The Function Field Sieve (FFS), due to Adleman [4], is an algorithm based on the index

calculus method which has the particularity of targeting fields of small characteristic.

As such it is especially suitable in the case of supersingular pairing-friendly elliptic

curves, defined over fields of characteristic 2 and 3, with maximal embedding degrees

k = 4 and k = 6 respectively. Thus, in this context, the pairings will map the ECDLP

over F2m to the DLP over F24m and the ECDLP over F3m to the DLP over F36m , for

m a prime, or a near prime.

The FFS, as for all index calculus algorithms, follows the main pattern mentioned

above, but has the special property of representing the elements of the field as poly-

nomial functions. Although a few variants exist, we will focus on the most efficient

version to date, which is due to Joux and Lercier [73].

Before going further into the details of the algorithm, we first define the field Fpkm

using an irreducible polynomial f(x) over Fp[x], and set a constant

d =

⌈√
km

(49)1/3(km)1/3 logp(km)2/3

⌋
.

In the original article presenting the FFS to solve the DLP, Adleman uses a general

bi-variate polynomial that must satisfy a list of eight conditions. However, Joux and

Lercier realised that, using a special class of bi-variate polynomials, called Cab curves,

only two of the eight original conditions needed to be satisfied. Reminding that a perfect

field is a field where every algebraic extension is separable, the following proposition

gives a definition of such Cab curves.

69

6.1 Theoretical view

Proposition 6.1.1 ([87]). Let K be a perfect field, K̄ the algebraic closure of K, χ ⊂

K̄2 be a possibly reducible, affine algebraic set defined over K, x, y be the coordinates of

the affine space and a, b relatively prime positive integers. Then the following conditions

are equivalent:

• χ is an absolutely irreducible affine algebraic curve with exactly one K-rational

place P at infinity and the pole divisors of x and y are aQ and bQ respectively.

• χ is defined by a bi-variate polynomial of form

H(x, y) = αb,0x
b + α0,ay

a +
∑

ia+jb<ab

αi,jx
iyj

where αi,j ∈ K for all i, j and αb,0, α0,a are nonzero, such a curve is called a Cab

curve.

The two remaining conditions, in order to be able to use H(x, y) in the FFS, are

stated as follows:

• H(x, χ(x)) is divisible by f , where χ(x) is some random polynomial of degree at

most bkm/dc.

• The order h of the Jacobian of the curve defined by H(x, y) is prime to (pkm −

1)/(p− 1).

These being set, we follow the strategy adopted by Joux and Lercier in [73]. At

first only pkm is fixed, then a Ca,b curve, defined by a bi-variate polynomial H(x, y) of

degree d is chosen. Note that no irreducible polynomial f(x) has been chosen at this

stage. To construct it, two polynomials χ1(x) and χ2(x) of degree at most bkm/dc are

picked randomly. If the polynomial defined by

χ2(x)dH(x,−χ1(x)/χ2(x))

70

6.1 Theoretical view

is irreducible and has degree km, then it defines the polynomial f(x). Otherwise, a

new pair of polynomials (χ1(x), χ2(x)), is selected until a suitable pair of polynomials

has been found.

When choosing H(x, y) and generating χ1 and χ2, two cases must be considered:

• if d|km, then degx(χ1) = km
d and d.degx(χ2) + degx(H(x, y)) < km

• if d 6 |k, then d.degx(χ2) + degx(H(x, y)) = km

Once H(x, y), χ1(x), χ2(x) and f(x) have been properly constructed the following

homomorphism can then be defined:

φ :
F2 = K[x, y]/(H(x, y)) −→ F1 = K[x]/(f(x))

y 7−→ −χ1

χ2

As described in section 6.1.3, the goal of the function field sieve is to find doubly

smooth elements. Therefore we define the first factor base, called the algebraic factor

base F2, as being composed of small prime divisors in the divisor group Div(F2), while

the second, called the rational factor base F1, consists of small degree, irreducible

polynomials in K[x]. Thus, F1 and F2 are defined by

F2 = {〈p(x), y − τ〉| deg p(x) ≤ B, p(x) irreducible and τ ≡ −χ1/χ2 mod p(x)}

F1 = {p(x)| deg p(x) ≤ B and p(x) irreducible} .

Let r(x) and s(x) be two coprime polynomials of degree B ≤ (49km)1/3logp(km)2/3.

Suppose that the divisor 〈s + r.y〉 can be factorised over F2 into a product of small

prime divisors 〈pi(x), y− τi〉. Recalling that we define h as the order of the Jacobian of

a Ca,b curve, each h〈pi(x), y − τi〉 is a principal divisor, and as φ is an homomorphism

71

6.1 Theoretical view

the following algebraic relation holds

(s+ r.y)h = u
∏
λi

λaii ,

where u is in K∗, λi are uniquely defined functions in F2 and ai are positive integers.

Applying φ results in an equality modulo a factor in K∗

(
s− r.χ1

χ2

)h
=
∏
λi

φ(λi)
ai .

As the above second condition must hold, h is coprime to (pkm − 1)/(p− 1), and thus,

the hth roots can be taken on both sides of the equation, yielding

(
s− r.χ1

χ2

)
≡
∏
λi

νaii ,

where νi = φ(λi)
1/h. Hence, if the polynomial sχ2 − rχ1 factorizes over F1 into small

degree irreducible polynomials pj(x), then the equation can be rewritten

1

χ2

∏
pj(x)

p(x)
bj
j ≡

∏
λi

νai .

The following relation between discrete logarithms is then obtained

∑
pi(x)

bj log pj(x)− log(χ2) =
∑
λi

ai log νi,

Once sufficiently many independent relations have been found, their discrete logarithms,

can be worked out using linear algebra techniques as briefly explained in section 6.1.3.

It is also interesting to note that, according to the work of Granger, Holt, Page,

Smart and Vercauteren [55], this technique can be adapted to use a superelliptic curve

instead of a normal Ca,b curve, to compute the discrete logarithm problem in a finite

72

6.1 Theoretical view

field of characteristic three. Using superelliptic curves makes algebraic computation

more efficient, but at the same time introduces three different cases, depending on

the gcd(km, d) being 1, d or another value. In fact they noted that, if three divides d,

then superelliptic curves cannot be used, and should instead be replaced by a Ca,b curve.

Once the discrete logarithm of the elements of the factor base is known, the next

stage is to compute the discrete logarithm of any given element e(t). In order to reach

this end, we follow the method proposed by Joux and Lercier [73].

Using an element of the factor base b(t), we generate a new polynomial a(t) =

b(t)ie(t), where i is a positive integer. As b(t) is in the factor base, the discrete logarithm

of e(t) can easily be recovered from a(t), and then, using the extended Euclidean

algorithm, a(t) can be written a1(t)/a2(t) with a1(t) and a2(t) two polynomials of degree

around km/2. If a1(t) or a2(t) is not smooth with respect to the bound Lpkm(2/3),

a special-q descent is used to compute their discrete logarithm. In turn, this strategy

leads to the discrete logarithm of a(t).

When the optimal value d defined above is used, the FFS results in a subexponential

algorithm of complexity

Lpkm(1/3, (32/9)1/3) = exp

(((
32

9

) 1
3

+ o(1)

)
log(pkm)

1
3 log(log(pkm))

2
3

)
, p = 2, 3.

6.1.3.2 Number field sieve algorithm

The FFS targets fields of small characteristic. It cannot be used to solve the DLP in

fields resulting from pairings over ordinary pairing-friendly elliptic curves. However

in this new context, another variant of the index calculus method, called the Number

Field Sieve (NFS), can be used.

As for any algorithm based on the index calculus method it features the three usual

steps: sieving, solving a linear system of equations, and extending the computation

73

6.1 Theoretical view

of discrete logarithms from the factor base to all the elements in the field. However,

instead of considering elements as functions as in the FFS case, they are now viewed

as numbers. To analyse this new approach we follow the improvements introduced by

Joux, Lercier, Smart and Vercauteren [75], to the original NFS algorithm [119].

The computation is performed in fields of the form K = Q[θ], for θ a root of an

irreducible polynomial over Z[x], denoted f(x). At this stage it is important to note

that, although the ring of integers of K, OK, may not be a unique factorisation domain

it still is a Dedekind domain, implying the existence of a unique factorisation over

ideals. Therefore, the NFS will not deal with the numbers themselves but rather, with

the ideals they generate, one of the aims being their factorisation.

Not forgetting that the primary goal is to give two isomorphic representations of

Fpk , we notice that, if f has degree k and p remains inert in OK, then OK/(p) is a

field isomorphic to Fpk . In some cases it may happen that f cannot be taken of degree

exactly k, but only of degree l > k. To overcome this issue we recall that prime ideals

can be factored over OK and as such, if (p) is not inert but splits, i.e.

(p) =
∏
i

peii ,

and is unramified in pj , with inertia degree fj = k, then it is sufficient to consider the

residue field Fpk ∼= OK/pj. We denote by ψI , the map from OK to Fpk , and x the

image of x.

In the basic variation of the NFS, when p ≈ Lpk(2/3, 2/31/3), the sieving occurs

over elements of the form a − bθ. However as in the context of pairings the prime p

is smaller and the embedding degree k is larger, the sieving space must be extended

in order to collect enough relations to be able to solve the final system of equations.

74

6.1 Theoretical view

Therefore, the sieving must go through elements written in the more general form

l∑
i=0

aiθ
i, l ≤ k.

The first step of the algorithm, consists in picking a polynomial f1(x) which is

irreducible over Fp[x], has degree k and preferably has small coefficients. Then, defining

f2(x) to be f1(x) + p, it is clear that f1(x) and f2(x) have all the same roots modulo p

as they are equal modulo p and as such, have a common root in Fpk .

We can then define F1 and F2, to be two algebraic number fields such that, F1 =

Q[θ1] and F2 = Q[θ2], for θ1 and θ2 zeros of f1 and f2 in C, respectively. This setup is

represented in diagram 6.1.

OF1/(p) = Fpk Fpk = OF2/(p)

F1 = Q[x]/f1 Q[x]/f2 = F2

Q[x]

Figure 6.1: Diagram showing the setup of the NFS over Fpk .

Once this fields are defined, the next stage consists in constructing the factor bases.

This is achieved using the following lemma [75].

Lemma 6.1.2. Let K = Q[θ] and (a0, . . . , al) be an (l + 1)-tuple of integers, with

gcd(a0, . . . , al) = 1, then a prime ideal p dividing the principal ideal generated by∑l
i=0 aiθ

i, either has norm dividing fθ = [OK : Z[θ]] or has degree ≤ l.

This allows us to set up the factor bases to be the set of prime ideals which either,

75

6.1 Theoretical view

have degree less than l, or divide the index fθ.

Fi = {prime ideals p of norm < Bi / deg p ≤ l or NFi/Q(p)|fθi},

for some l that will be determined later, and fθi = [OFi : Z[θi]], i = 1, 2. From the

above factor bases set up, it is clear that appropriate values for the smoothness and

sieving bounds, B1, B2 and S must be determined at some stage.

While sieving, elements represented as (l + 1)-tuples (a0, . . . , al), ai ∈ Z and satis-

fying the following properties are sought:

• gcd(a0, . . . , al) = 1,

• |ai| ≤ S

•
l∑

i=0

aiθ
i
j , for j = 1, 2, have B-smooth norms in F1 and F2 respectively.

The norms of these (l + 1)-tuples in F1 and F2 are given by the resultants of the

polynomials A(x) =
∑l

i=0 aix
i with f1(x) and f2(x) respectively, that is,

NFj/Q

(
l∑

i=0

aiθ
i
j

)
= Res(A(x), fj(x)), j = 1, 2.

Once sufficiently many smooth elements have been found, the ideal generated by∑l
i=0 aiθ

i
j , (j = 1, 2), is factored into a product of ideals from the respective factor

bases Fj , (j = 1, 2). As the norm of these elements has already been determined to be

Bj-smooth, they can be written

NFj/Q

(
l∑

i=0

aiθ
i
j

)
=
∏
t

pett , pt prime s.t. pt ≤ Bj , j = 1, 2. (6.1.2)

At this point, a bit more work is required in order to give the prime ideal factorisa-

tion of (A(θ)). Therefore, we introduce the following result, that can be found in [100,

chapter 1, proposition 8.3].

76

6.1 Theoretical view

Proposition 6.1.3. Let p be a prime ideal which does not divide the ideal F = {α ∈

O / αOK ⊆ OK[θ]}, and f(x) =
∏
i gi(x)ei mod p, the factorisation of f(x), the

minimal polynomial of θ, modulo p over the residue class field OK/p. Then,

pi = pOK + gi(θ)OK,

where the pi are some prime ideals above p. Moreover, each pi has inertia degree fi

equals to the degree of gi(x), and

p =
∏
i

peii .

Unfortunately, this result only helps to find the prime ideals occurring in the factorisa-

tion of (A(θ)), without giving any information on their valuations. Therefore we recall

a result stating that if p is a prime ideal in OK, then there exists a ∈ K\OK such that

ap ⊂ OK, and if p divides a given ideal I, then the ramification index of I in p is the

largest v such that avI ⊂ OK [26, section 4.8.3].

Once the practical principles underlying the prime factorisation of ideals have been

given, they can be applied to our case of concern, (A(x)). For each pt in equation 6.1.2,

not dividing the index fθ, (pt) can be factorised into a product of prime ideals

(pt) =
∏
i

p
et,i
ti
.

Then, each irreducible factor of gcd(A(x), f(X)) over Fpt , leads to an ideal pti lying

above pt. To find its valuation it suffices for us either to calculate k/ deg pti if the gcd

is irreducible, or apply algorithm 4.8.17 from [26]. It is interesting to note that this

algorithm also applies to the case where pt|fθ.

As the factorisation into prime ideals has been achieved it means that some relations

77

6.1 Theoretical view

over the ideals have been found. However, in order to find the discrete logarithm of

elements in Fqk , we need the relations to be over the numbers. Therefore, we now

discuss the conversion of relations over ideals into relations over the field elements.

At this stage two situations may arise, depending on the class number of K, and the

existence of a computable unit group.

We start by studying the easiest case, that is, when the class number of K is 1,

implying that OK is a principal domain. Thus, for all ideals pj = (pj , θ − cpj) there

exists an element γj ∈ K such that pj = (γj). In this case, any ideal (a − bθ) can be

written as a product of these elements: (a − bθ) = u
∏
j γ

ej
j where u is a unit in OK.

Let (r1, r2) be the signature of K and define r = r1 + r2 − 1, then the unit group of

K is denoted UK = O∗K
∼= ν(K) × Zr, where ν(K) is a finite cyclic group of order ω,

ν(K) = 〈u0〉. By assuming that K has a computable unit group, it becomes possible

to compute the r fundamental units: u1, . . . , ur, and u can be written as a product of

these fundamental units and the generator of ν(K), u = un0
0 . . . unr

r .

Using this decomposition into a product of fundamental units, r logarithmic maps

Λi, for i = 1, 2, . . . , r are defined:

Λi : UK −→ Z

u 7→ ni.

Similarly, the logarithmic map Λ0 is defined:

Λ0 : UK −→ Z

u 7→ n0.

Thus, the final decomposition of a− bθ is given by:

a− bθ =

r∏
i=0

u
Λi(u)
i

∏
i

γeii .

78

6.1 Theoretical view

The next step is then to apply the map ψI to each side of the equation and take the

logarithms, resulting in:

log(a− bθ) =
r∑
i=1

Λi(u) log ūi +
∑
i

ei log γ̄i mod pn − 1.

Note that log ūi, and log γ̄i introduce new unknowns to the system of equations,

implying that at least r + |F| linear independent equations need to be found, in order

to be able to solve the final linear system.

When dealing with the general case, one must be careful as the large subgroup in

which the computation is performed should have order not dividing the class number

of K denoted h. In fact, this is only a minor restriction as remarked in [75].

We recall that the ideal decomposition has already been obtained as

(a− bθ) =
∏
j

p
ej
j .

Then, raising both sides of the equation to the power h, yields

(a− bθ)h = u
∏
j

δ
ej
j , δ

ej
j ∈ OK s.t. (δj) = phj .

At this stage, a second difficulty is encountered as the most straight forward idea

would be to take the logarithms on both sides. However since there is no assump-

tion of a computable unit group, a basis of fundamental units for the factorisation of

u can not necessarily be computed. Each equation is likely to have a different u, so

taking the logarithms at this stage would introduce too many new unknowns and thus

drastically increase the number of equations needed and the time to solve for the un-

knowns. The solution to overcome this issue relies on the fact that as the logarithms

are being computed modulo l it is sufficient to work with the unit group modulo the

79

6.1 Theoretical view

lth powers of units, for if u ∈ (UK)l, then log ū ≡ 0 mod l. Joux, Lercier, Smart and

Vercauteren showed that the problem can be completely solved by using an adaptation

of the Schirokauer algorithm [118]. However, this being mostly a technical issue we

refer the reader to [75] for more details on the topic.

Assuming that the logarithms of the elements in the factor bases have been calcu-

lated, the next step is to calculate the discrete logarithm of any arbitrary element.

Following the method used in [75] for finding the discrete logarithm of an individual

element x, we start by representing Fpk as the field Fp[t]/(f1(t)) and find an element

y ∈ Fp[t]/(f1(t)), y = xitj for some non negative integers i and j such that:

• y ∈ F1 is B1 smooth,

• The factorisation of NF1/Q(x) contains prime powers ≤ l.

After finding such an element y, the principal ideal generated by y should factor

over F1. If there are some factors of (y) not in F1, then the logarithms of these elements

are computed using special-q descent as described in section 6.1.3.

The above investigation points out the complexity and flexibility of the NFS algo-

rithm, which lead to different variations with several subcases. The main drawback is

that no fixed complexity can be expressed. However it is obvious that it depends on

the size of the sieving space, given by the bounds S and B, and the degree l of the

elements over which the sieving is performed. Again, the value for l varies depending

on the ratio of the values of p and k, being given by the real zero of the polynomial

3c3l(l + 1)2 − 32 = 0, where

c =
1

k
(

log q

log log q
)1/3 = log p(log2 q log log q)−1/3.

Given that l can vary, so does the size of the sieving space and hence the com-

80

6.2 Practical view

plexity of the whole algorithm. The bounds are given by S = Lpk(1/3, c′) and B =

Lpk(1/3, 2c′/(l + 1)), where

c′ =
1

3

(
2

(l + 1)c
+

√
4

(l + 1)2c2
+ 3lc

)
.

For this given size of sieving space and taking into account the probability of smooth-

ness [75] the overall complexity of the algorithm is given by Lpk(1/3, 2c′).

6.2 Practical view

One of the main issues faced by the theoretical view is that it leads to asymptotic

complexities, not necessarily reflecting the real world. Therefore, having efficient im-

plementations of the different algorithms presented in the previous section would be of

a great help in our investigation.

Regarding Pollard’s Rho algorithm, there exists a lot of small improvements [133],

including parallelized implementations [137], however it is clear that its complexity will

remain exponential. Knowing the exact cost of the ECDLP is of a major importance

in the context of pairings as for families of curves having a ρ-value close to 1 the DLP,

solved using sub-exponential algorithms, must cost the same as solving the ECDLP

using Pollard’s Rho algorithm.

As for Pohlig Hellman algorithm, it is very efficient in certain rare cases that are

easily avoided, by picking a prime p such that the order of the large subgroup, in which

the DLP lies, is not smooth. Hence, implementing it in order to break the DLP in

general cases would result in a totally inefficient solution. Therefore, we now focus on

the two algorithms based on the index calculus method, namely the FFS and the NFS.

Note that Magma [3] does not implement either of these two algorithms. Instead a

version of the Coppersmith algorithm [27] by Thome [135] is used in characteristic 2,

while for extension fields of characteristic p > 2 the Pohlig Hellman algorithm is the

81

6.2 Practical view

best available.

6.2.1 FFS algorithm

Although really few implementations of the FFS exist, it is interesting to note that the

last to date exactly targets the context of pairings. More precisely, Hayashi, Shinohara,

Wang, Matsuo, Shirase, and Takagi implemented the FFS over fields of the form F36m

and were able to solve the DLP over F36.71 [65].

More than a simple implementation of the FFS, their article compares two versions

of the algorithm, both due to Joux and Lercier. The first variant is the one presented

above, targeting primarily fields of characteristic 2 or 3, while the second one is sup-

posed to fit fields of medium characteristic [74]. Surprisingly, the second one appears

to perform better in practice, featuring a more efficient sieving stage, based on a poly-

nomial sieve instead of a lattice sieve. Also note that this second variation of the FFS

has a worse asymptotic complexity.

The particularity of this version of the FFS is that it has a noticeably smaller sieving

space, still containing enough smooth elements, hence largely improving the probability

for an element to be smooth. Recalling that the goal is to find pairs of polynomials

(r(x), s(x)) which are doubly smooth, and that the homomorphism φ maps an element

y ∈ K[x, y]/(H(x, y)) to M ∈ K(x)/(f(x)), they fixed s(x) and tried to find r(x)

such that r(x)M + s(x) is divisible by an irreducible polynomial p(x) belonging to

the factor base. Then, remarking that r(x)M + s(x) + k(x)p(x), k(x) ∈ Fpk [x], is

also divisible by p(x), it is fairly easy to obtain all the polynomials r(x) of degree

less than a bound B such that r(x)M + s(x) is divisible by p(x). Therefore, when all

r(x) have been computed for each p(x), it suffices to check whether or not the degree

of r(x)M + s(x) is equal to the sum of the degrees of all the p(x) dividing it. If so,

considering gcd(r(x), s(x)) will lead to a new relation as soon as it is equal to 1.

82

6.2 Practical view

Together with this sieving technique they used a parallelized implementation of the

Lanczos method to solve the linear algebra part. By the end they were able to solve the

DLP in F3426 , a field containing a subgroup of order a 112 bit prime. The computation

was completed within 33 days, using a cluster with four nodes, each consisting of Intel

Quad-Core Xeon E5440 (2.83 GHz) 2 CPUs with 16-GB RAM, and three clusters with

four nodes, each consisting of Intel Quad-Core Xeon L5420 (2.33 GHz) 1 CPU with

4-GB RAM.

This new record is quite interesting as it is the first attempt at targeting supersin-

gular curves over ternary fields. Until now mostly fields of characteristic 2 were studied,

the last record to date being the resolution of the DLP by Joux [71] over F2613 . Once

the case of supersingular elliptic curves has been examined in practice the next stage

consists in solving the DLP in the context of ordinary pairing-friendly elliptic curves,

using the NFS algorithm.

6.2.2 NFS algorithm

Implementing the NFS is not an easy task, in fact there is no record of any general

implementation. According to the authors, the code used in [75] targets some specific

“easy” cases under which the DLP in the context of pairings does not fall. Thus, there

was no other choice than implementing the NFS from scratch.

In order to run some toy examples, we decided to start by implementing a linear

sieve, whose code, based on the GMP [2] and NTL [126] libraries, is given in appendix B.

Once it was running accurately and efficiently, it was possible to test our fast Gaussian

matrix reduction implemented using the MIRACL library [121].

One of the main issues, when implementing the NFS, is the hardness of some under-

lying problems. The first one to mention, is the determination of the class number. As

83

6.2 Practical view

explained in the previous section, the main idea of the index calculus method is to define

two isomorphic representations of a given finite field, which from a theoretical point of

view is easy to achieve. However, when looking at the construction of the polynomials

f1(x) and f2(x), one realises that although f1(x) is sparse and has small coefficients

f2(x) = f1(x) + p has a very large coefficient in its degree 0 monomial. In turn, the

presence of this large coefficient renders the class number of the field Q[x]/f2(x) hard

to compute [134]. Note that the closely related question of determining the unit group

is also hard to solve [20, 5], although certain cases in the NFS algorithm assume it is

known.

At this stage one of the most important things to realise is that even though these

parameters are required by the algorithm and are hard to figure out, they can be

precomputed and as such, will not influence the overall time needed to complete the

calculation of the discrete logarithm of a given element. Therefore one should focus on

the sieving stage.

In the context of pairings, the sieving must occur over a higher dimensional space

in order to get enough smooth relations to solve the linear system of equations. The

main problem arising here is that increasing the dimension of the sieving space results

in a large increase of the size of the norm of the ideals. Recalling that the main goal

of the sieving stage is to find smooth elements, it becomes evident that a huge amount

of factorisations of very large integers will be involved. Therefore some very efficient

smoothness test must be used.

The solution we adopted tries to take advantage of the best known algorithms for

factorising. We first start by removing all the small prime factors under ≈ 50000 using

trial division, then the Pollard’s Rho algorithm for factoring allows to find more small

factors, larger than 50000. Next, the elliptic curve method for factorising is used to find

medium size factors, while a quadratic sieve finds factors of the remaining composite

84

6.2 Practical view

part. Note that when a composite number is found, the Pollard’s Rho algorithm and

the elliptic curve method are performed recursively in order to work out its factorisation

into primes. Although efficient, this approach requires some refinements in order to fit

to the context of a smooth test.

In fact, if one realises that having too many large factors, i.e. factors beyond the

smoothness bound, is useless, then it becomes clear that when more than one “too

large” factor is found in a relation it does not give any useful information and as such

can be dropped. We decided to only keep relations including at most one large factor,

expecting some collisions between large factors, potentially leading to new relations.

If for a given large factor, no collision is found, then the relation in which it appears

is useless and can be forgotten. Note that, although some variants allow two large

primes, they in turn, result in a need for more collisions and a lot more complex

implementations [135] involving the use of graphs.

In practice this implementation performs well, as on average it takes only ≈ 0.35s,

on an Intel Core2 Duo CPU @3.00GHz, using only one thread, in order to run a

smoothness test on a ≈ 400 bit integer, while Magma [3] needs over a second. The fac-

torisation and smoothness test code, taking advantage of the GMP [2], GMP-ECM [1]

and FLINT [64] libraries, are given in appendix B.

The problem of fast smoothness testing being solved, the next issue to address is

how to handle the sieving space. Recalling that smooth relations must be found in two

different fields isomorphic to Fqk , it means that the norms of the elements have to be

computed in both representations. As the norm of an element
∑l

i=0 aiθ
i in a field Q[θ],

for some algebraic integer θ with minimal polynomial f(x), is given by the resultant of

the element considered as a polynomial in x with f(x), it is clear that its size greatly

depends on the size of the coefficients of f(x). In the case of f1(x), it results in small

norms easy to factor and which most of time, are smooth, while on the other side,

85

6.2 Practical view

the constant terms in f2(x) renders the resultant about pl times larger. Therefore,

in practice finding doubly smooth elements is very hard, even using the usual trick

consisting of unbalancing the coefficients of the elements sieved, i.e. taking the ai of

completely different sizes.

In fact there is not best way to generate the polynomials f1(x) and f2(x). At

the moment the best that can be done is to balance the difficulty of the factorisation

between the two sides by taking both f1(x) and f2(x) with coefficients of the same size

as the square root of p. For a 55 bits MNT prime, that is a prime of the form x2 + 1

with x ∈ Z, this technique leads to a significant improvement as in practice the norms

on both sides are of size about 190 to 210 bits, compared to the initial 400 bits on the

f2(x) side.

However, in this case another problem appears as k remains fixed while p is a lot

smaller than in the normal MNT setup where p is about 160 bits (discussed in the next

section). This implies a larger value for l which depends on the ratio of p to k (end

of section 6.1.3.2). In this context the sieving space has an extra dimension leading to

results not mirroring the difficulty of the problem as it arises in practice.

Note that the technique proposed in [75] for p larger than Lp(2/3), can be adapted

to our case but will not give any improvement as either f2(x) is taken of degree not

much larger than the degree of f1(x) and then the norm will remain larger than when

f1(x) and f2(x) have coefficients of order
√
p or the norm will blow up because of the

degree of f2(x) being too large.

It is important to note that, although the NFS has an asymptotic subexponential

complexity, it features many hard underlying problems which render it really difficult

to implement, the main problem relying on the choice of the polynomials. In fact, in

the set up f1(x) and f2(x) must be two irreducible polynomials of the same degree and

sharing a common root in C, which is highly restrictive. Therefore, unless a new set

up or a new algorithm, is discovered, it is quite unlikely that the DLP can be solved

86

6.3 Discussion

efficiently in the context of ordinary pairing-friendly elliptic curves at the parameters

sizes of current cryptographic interest as we will now discuss.

6.3 Discussion

Among the four algorithms investigated, only two are really suitable to break the DLP

or the ECDLP in the context of pairings. In fact, although Pollard’s Rho algorithm

benefited from a lot of improvements [133, 137] it still remains exponential, rendering

it useless over the finite fields resulting from the pairings. However note that it is still

useful in order to determine the hardness of the ECDLP. At first glance, the Pohlig

Hellman algorithm has the advantage of being very efficient, however it is sufficient for

the field Fq to have a subgroup of order a large prime to render it completely ineffective.

In this regard, note that in the context of pairings the DLP must be solved in a large

subgroup of size r, r|Φk(p). Therefore, the best to date are the two algorithms based

on the index calculus method, namely the FFS and the NFS. Table 6.1 summaries the

main characteristics of these four algorithms.

Algorithm Problem Complexity Remark

Pollard’s Rho (EC)DLP Exponential No special structure required
Pohlig Hellamn DLP Polynomial pk − 1 must be smooth

FFS DLP Subexponential Characteristic 2 or 3
NFS DLP Subexponential Characteristic p > 3

Table 6.1: Algorithms to solve the DLP and the ECDLP

In order for the ECDLP to be unsolvable in the context of pairings, one should

ensure the hardness of the DLP, being aware that the efficiency of the algorithms used

for the ECDLP and the DLP is not necessarily equivalent. To make it more concrete,

we introduce the notion of security level, based on complexity. In fact, one assumes

that a problem cannot “possibly” be solved, in a reasonable amount of time and using

the best available technology if it has complexity larger than a given bound. Today

87

6.3 Discussion

the most common one is 280, but it is slowly steering toward the more secure level of

2128 [101]. Note that often a security level of 2n, is said to be n bit secure in reference

to the level of security provided by the Advanced Encryption Standard (AES) [83].

Hence, in order to make sure that both the ECDLP and the DLP are hard enough

not to be solved, it suffices us to chose some parameters such that, the best algorithm to

solve those problems have complexity, for instance, larger than 280. In this case, on the

elliptic curve side the best algorithm available being the Pollard’s Rho algorithm, the

elliptic curve should have a subgroup such that the size of its order is approximatively

160 bits, while on the finite field side it should be of size about 1024 bits to be secure

against attacks taking advantage of index calculus methods.

Recalling that a pairing maps a subgroup of an elliptic curve over Fq, to a subgroup

of Fqk , with k the embedding degree, it becomes clear that the embedding degree must

be chosen carefully, in order not to map into a “weak” subgroup of the finite field.

Assuming that a pairing-friendly elliptic curve with ρ-value close to 1 has been picked,

the appropriate embedding degree is determined simply by dividing the size of the field

by the corresponding size of the elliptic curve group, for a given security level. For

example, at the 80 bit security level, 1024
160 ≈ 6, so at this level, k = 6 would be an

appropriate embedding degree. Table 6.2 shows the approximate equivalence of the

efficiency of the current algorithms for both the ECDLP and the DLP [43].

Security level ECDLP DLP Embedding degree
(in bits) group size (in bits) group size (in bits) (ρ = 1)

80 160 960 - 1280 6-8
128 256 3000 - 5000 12-20
256 512 14000 - 18000 28-36

Table 6.2: Comparison of the ECDLP and the DLP using appropriate embedding degrees

Considering fixed optimal embedding degree, table 6.2 can be reinterpreted as a

diagram (figure 6.2) using a logarithmic scale. Note that the gap between the two curves

88

6.3 Discussion

DLP
ECDLP

Security level (bits)
80 100 120 140 160 180 200 220 240

Group size
 (bits)

1000

2000

3000

4000

5000

6000

7000

8000
9000

11000

13000

16000

12

32

10

6

Figure 6.2: Comparison of the ECDLP and the DLP showing optimal embedding degree

widens as the security level and the corresponding embedding degree increase. Since the

field into which the pairings map becomes bigger, this may introduce some efficiency

issues, especially if no curve with ρ-value close to 1 is found for larger embedding

degrees. Regarding the shape of the curve note that the logarithmic scale applies to

the ordinate axis only. This explains why the evolution of the group size on the elliptic

curve is following a bent curve and not a straight line.

At this stage, we should have grasped the importance of appropriate choices, in

order for both the ECDLP and the DLP to be hard, however this may not be enough

if one review the results presented in chapter 4 from a new perspective. In fact, this

chapter can be reread with security in mind and as such, it presents some major results

89

6.3 Discussion

on the security of pairings over elliptic curves and more generally over abelian varieties.

Considering Hitt’s result [69] not from a mathematical point of view, but from a

security perspective, it points out a potential, but crucial, security issue as the minimal

embedding field may be a lot smaller than initially thought. In this regard, the new

result presented in chapter 4, is of value as it gives some easy conditions to satisfy, in

order for the minimal embedding field to be Fqk , ensuring the security of the pairings.

An especially interesting case is when the supersingular curve has embedding de-

gree k = 4. In fact, since ρ ≈ 3/2 is recommended for these curves to achieve an

80bits security level, our result (chapter 4) shows that supersingular k = 4 curves are

appropriate for this security level for any extension degree m.

We remark that the same consideration also applies to supersingular elliptic curves

with embedding degree 6, that is there is no collapse of the minimal embedding field.

This implying that Hitt’s results does not apply to the curves best fitting the standard

80 bit security level, i.e. the most used in practice.

Once the security of the ECDLP and the DLP have been assessed, the next stage

is to clearly express what parameters should be used in order to securely implement

pairings. In this regard table 6.3 gives a correspondence between the security level to be

achieved and the curve to be used. The first column of the table describes the security

level. The second and third columns give the ECDLP group size and the DLP finite field

size with corresponding security levels respectively. The fourth and fifth column show

the necessary sizes of the fields for corresponding security levels of the DLP in binary

and ternary fields respectively. The last column gives the non-supersingular pairing-

friendly elliptic curve and finite field with equivalent ECDLP and DLP security.

Analysing more attentively table 6.3 leads to following important remarks:

• It is not possible to balance the security of the ECDLP over Fpm and the DLP

90

6.3 Discussion

Security level ECDLP DLP p > 3 DLP DLP Ordinary

(in bits) size of r (in bits) size of pk (in bits) p = 2 p = 3 curves (ρ ≈ 1)

80 160 960 (6× 160) F24×367 F36×163 Fp6 (MNT)

96 192 1920 (10× 192) F24×613 F36×313 Fp10 (Freeman)

128 256 3072 (12× 256) F24×1223 F36×509 Fp12 (BN)

192 384 7680 (20× 384) F24×2837 F36×1193 -
256 512 16384 (32× 512) F24×6367 F36×2971 -

Table 6.3: Comparison of the ECDLP and the DLP in finite fields of various characteristic

over Fpkm , p = 2, 3, because of the lower embedding degree and the specialised

algorithms for the DLP in fields of low characteristic. For example, over F2163 ,

the optimal embedding degree being 4, one would expect the pairing to map

the ECDLP to the DLP in F2652 . However, as the current record for computing

discrete logarithms in finite fields of characteristic 2 held by Joux is over F2613 [71]

and was set some years ago, it is safe to conjecture that with the general advances

in computing, the DLP over F2652 is no longer secure. Using supersingular curves,

however, does have other advantages and the specific needs for the performance

should also be taken into account. This discussion being beyond the scope of this

chapter, for more information of this nature, the reader is referred to [57].

• Due to the lower density of prime numbers, it becomes more difficult to find

supersingular curves as the security level increases. As shown on figure 6.3, rep-

resenting the group size as a function of the security level, supersingular curves

on characteristic two or three need a much larger group size than ordinary curves

on characteristic p to achieve the same security level.

• There is as yet no known construction method for pairing-friendly elliptic curves

with ρ ≈ 1 and k > 12. Therefore, the table contains a dash for the 256 and

192 bit security levels as in these cases, the appropriate embedding degrees is

required to be larger than 12. However note that the KSS curves with embedding

91

6.3 Discussion

DLP (p=2,3)
DLP (p>3)

Security level (bits)
80 100 120 140 160 180 200 220 240

Field size
 (bits)

5,000

10,000

15,000

20,000

Figure 6.3: Security level of supersingular and ordinary curves

degree k = 18 have a ρ-value close to 4/3, rendering them suitable for the 192 bit

security level.

It is interesting to note that, as a pairing maps the ECDLP over Fq into the DLP

over a subgroup of Fqk of order r, namely the group of rth roots of unity in Fqk , it has

been possible to show [59] that it is more efficient to solve the DLP in the cyclotomic

subgroup of order ϕk(q) of the extension field, rather than in the extension field itself.

In fact, the algorithm proposed in [59] is another variation of the index calculus method,

which at first glance may seem to improve on the running times of the FFS. However,

the cases considered in [59] did not exactly mirror the situation addressed here, as only

extension fields having small primes characteristic, larger than 2 or 3, are targeted.

92

6.3 Discussion

The case of DLP in a subgroup over characteristic 2 or 3 is quickly mentioned, as

when m grows, so does the complexity, given by O((2m)! ·q(212m+32m log(q))+m3q2),

thus surpassing the complexity of the FFS algorithm. For example, in the case p = 3,

the complexity is ea, where a ≈ 57 and the complexity of the algorithm given in [59] is

approximately eb, where b ≈ 2921.

One of the major lessons learnt in the examination of the most efficient known

algorithms to solve the ECDLP and the DLP, is that those two problems are very hard

to solve, the available algorithms having either exponential, or at best, subexponential

asymptotic complexity. However as viewed through the implementation of the FFS, a

worse asymptotic complexity can result in a more efficient implementation in practice,

raising the question of knowing whether it is possible to adapt the FFS [74] to perform

better than the NFS, which is burdensome to implement, in the case of ordinary pairing-

friendly elliptic curves.

93

7

Pairings and identity based

cryptography

Why is there Being at all, and not much rather Nothing? That is

the question.

M. Heidegger

When using cryptography primitives two main requirements must be met: efficiency

and security. As we have seen pairings can be computed very efficiently and are really

easy to use in practice as it is possible to automatically generate efficient code [33] to

compute them. From a security perspective, if the parameters are properly chosen,

both the ECDLP and the DLP are hard to solve, implying the possibility to construct

protocols relying on those two similar hard problems. One of the areas benefiting most

is Identity Based Cryptography (IBC), first introduced by Shamir [125] in 1984, which

aims at simplifying certificate management in conventional public key cryptography.

In IBC, the public key is derived from an identifier, such as an email address or a

phone number, while the corresponding private key is created by a private key extrac-

tion algorithm which takes the identifier and a master secret as inputs. From 1984 to

the beginning of the XXIth century, several Identity Based Encryption (IBE) schemes

94

were proposed [131, 136, 89], however none of them were fully satisfactory, as most of

the solutions proposed were unsafe, requiring the users not to collude. It is only in

2001 that Boneh and Franklin [17], Cocks [25] and Sakai, Ohgishi, and Kasahara [115]

presented three revolutionary IBE solutions.

Cocks’ scheme is based on the difficulty of distinguishing quadratic residues from

non-residues in the ring Zn where n is an RSA modulus, and although encryption and

decryption are reasonably fast compared to RSA, there exists significant message ex-

pansion, which makes it somewhat harder to use in practice. Both Boneh and Franklin

(BF-IBE) and Sakai, Ohgishi and Kasahara solutions take advantage of the bilinear

property of pairings [108], but the Boneh and Franklin method also has the advantage

of defining a well-formulated security model for IBE. As we will see later, their model

takes into account the need to be secure against collusion attacks, and as they proved

their scheme secure in this new model their IBE scheme received much attention and

benefited from some improvements.

One of the main drawback of most such IBE schemes is that, although pairings can

be computed efficiently, it still remains slower than traditional public key cryptosystems

requiring only multiplications and exponentiations over finite fields. As such, the idea

is to lower the number of pairing computations, while keeping the system secure.

Following this idea Callas [21], described a generic framework for constructing an

identity-based encryption scheme using a conventional public-key infrastructure. The

main idea was to use an identity in order to randomize a key pair generator, such

that the Public Key Generator (PKG) could generate conventional key pairs for cryp-

tosystems like RSA [111] or ElGamal [38]. In fact, Callas’s scheme is not anymore

identity-based in a strict sense, as in his framework, the user can only obtain a public

key by accessing the on-line PKG and not by deriving it off-line from a given identifier

and some public parameters.

Another idea, due to Tang, Nan and Chen [132], was to combined IBE and some

95

7.1 Cryptography

ElGamal like primitive. Unfortunately, it resulted in an insecure scheme, vulnerable to

collusion attacks, as the key generation structure was linear. In this chapter we will

present a way to overcome this issue using few pairing computations, but first we start

by presenting more formally the cryptographic primitives involved.

7.1 Cryptography

Although coarse, the presentation of cryptology proposed in chapter 1, gives a good

idea of what is cryptography about, and what are the main hard problems over which

it relies when used with pairings. Therefore we will, in this section, focus only on a few

more primitives.

Diffie Hellman Problems: The security of cryptosystems usually relies on hard

problems, among which the DLP is probably one of the most well known. The first

interesting variant is called the Computational Diffie-Hellman Problem (CDH), and

consists in computing αab, given αa and αb, for α a generator of a group G.

An other remarkable hard problem, in the Diffie-Hellman class of problems, is given

by the Decisional Diffie-Hellman Problem (DDH), which states that given a tuples

〈α, αa, αb, β〉, one should be able to state whether β is equal to αab or is a random

value.

The last version we consider here is the Gap Diffie-Hellman Problem (GDH). The

goal is to compute αab, given α, αa and αb, using a DDH oracle returning 0 if a given

tuple has a random element and 1 otherwise.

Multivariate Quadratic Problem: First introduced in 1988 by Matsumoto and

Imai [88] and later developed by Patarin [106], the MQ problem relies on the difficulty

of solving multivariate systems of equations. Let P1, · · · , Pm ∈ Fq[x1, · · · , xn], be m

polynomials of n variables over Fq, such that each of them can be written in the

96

7.1 Cryptography

following form:

Pt(x1, . . . , xn) =

n∑
i,j=1

β
(t)
ij xixj +

n∑
i=1

δ
(t)
i xi + γ(t), with β

(t)
ij , δ

(t)
i , γ(t) ∈ Fq

Solving a system made of m ≈ n such multivariate quadratic equations is proved to be

NP-complete even over a field of small characteristic [52, 107].

Symmetric key encryption: When it comes to security it is important to be

able to formalise the notion in terms mirroring the real world. For the CCA security,

it is done as follows.

Definition 7.1.1. A symmetric key encryption scheme is secure in the IND-CCA sense

if no probabilistic polynomial time (PPT) adversary A has a non negligible advantage

in the following game:

1. In the setup stage, the challenger randomly chooses a symmetric key sk.

2. In Phase 1, A starts probing the scheme by querying the encryption oracle E(sk, ·)

and the decryption oracle D(sk, ·).

3. In the challenge stage, A outputs two equal length messages (M0,M1) and gets

C = E(sk,Mβ) for a random bit β ∈ {0, 1}.

4. In Phase 2, A issues new queries as in Phase 1 but is disallowed to ask for the

decryption of C.

5. In the guess stage, A eventually outputs a guess β′ for β.

A’s advantage is defined by AdvA(k) = |Pr[β′ = β]− 1/2|.

When the size of an encrypted message is the same as the size of the original

message, the scheme is said to be length preserving.

Identity Based Encryption: From a structural point of view IBC can be repre-

sented by the diagram given in figure 7.1. The PKG has its own public/private key-pair,

97

7.1 Cryptography

that is used to generate the private key of each user of the system. Using some public

parameters and a given identity B, A can generate the public key of B, and conversely

B can do the same, allowing A and B to start an encrypted communication without

the need for any public directory.

Private Key Generator (PKG)

ID B.ID A.

Public key
Master

Private key Private key

Encrypted communication

Figure 7.1: Identity based cryptography in practice

This can be formalised in an IBE scheme defined by four algorithms: Setup, Extract,

Encrypt, and Decrypt, that can be described as follows:

• Setup: takes a security parameter s as input and returns params and master-key.

From a practical viewpoint, params represents the publicly known system param-

eters, while the master-key is only known by the PKG. M is the message space,

and C the ciphertext space.

• Extract : takes as input params, master-key, and an arbitrary ID ∈ {0, 1}∗, to

return the associated private key sk.

• Encrypt : takes as input params, ID, and M ∈M. It returns a ciphertext C ∈ C.

• Decrypt : takes as input params, C ∈ C, and a private key sk. It returns M ∈M

or a reject symbol ⊥ if C is not a valid ciphertext.

As the users’ private key is derived in part from the PKG key-pair, if some users

98

7.1 Cryptography

collude together and are able to recover the PKG’s secret key, then the whole system

collapses. In the case of an IBE scheme, the IND-CCA security notion cannot fit as it

does not involve any security requirement against collusion attack. Therefore, Boneh

and Franklin [17] introduced the following definition:

Definition 7.1.2. An IBE scheme is said to be (t, qE , ε)-IND-ID-CCA secure if no t-

time adversary making at most qE private key queries has a non-negligible advantage

ε in the following game.

1. In the setup stage, the challenger runs the Setup algorithm and sends the resulting

public parameters to a CCA-adversary A.

2. During phase 1, A sends queries to two oracles answering as follows:

• Key extraction oracle: given an extraction query 〈IDi〉, it returns the private

key associated to it.

• Decryption oracle: given a decryption query 〈IDi, Ci〉, it generates the private

key di associated to IDi. It then runs algorithm Decrypt to decrypt the

ciphertext Ci using di. It returns a plaintext M ∈ M or a reject symbol ⊥

indicating an invalid ciphertext.

3. During the challenge stage, A produces two equal-length messages M0,M1 ∈ M

and a target identity ID on which it wishes to be challenged. The only constraint

is that ID did not appear in any private key extraction query in Phase 1. The

challenger picks a random bit β ∈ {0, 1} and sets C = Encrypt(params,Mβ, ID).

It sends C as the challenge to the adversary.

4. In Phase 2, A issues new queries as in Phase 1 but is restricted not to issue a key

extraction query on the target identity ID and cannot submit C to the decryption

oracle for the identity ID.

99

7.2 A new identity based encryption scheme

5. During the guess stage, A eventually outputs a bit β′ and wins if β′ = β.

The advantage of A against the scheme is given by AdvA(k) = |Pr[β′ = β]− 1/2|.

We note that the main difference between IND-CCA and IND-ID-CCA relies on the

availability of a key extraction oracle in the case of IND-ID-CCA security. This models

the possibility that users have to share their secret key during an attack, on a IBE

scheme, in the real world.

Random oracle model: The random oracle model was first introduced by Bellare

and Rogaway [11], as an idealised security model used to analyse the security of certain

cryptographic constructions. It can be seen as a function mapping each input to a

random output, in a deterministic way, i.e. if the same input is given twice, then the

output will remain the same. Although the security in this model does not necessarily

implies security in the real world, it can be used to validate natural cryptographic

constructions, or model cryptographic hash functions.

7.2 A new identity based encryption scheme

Using the above primitives we construct a new IBE scheme and discuss its security.

But first, we start by explaining the main idea, showing how from ElGamal encryption

it is possible to derive an IBE scheme.

7.2.1 Framework

An ElGamal key-pair is defined by (sk = x, pk = (G, α, y = αx)). Given l such key-

pairs (sk1, pk1), · · · , (skl, pkl), we can construct a new key-pair (SK =
∑l

i=1 δixi, PK =∑l
i=1 δiyi), for some δi. However, this new secret key is vulnerable to collusion attacks,

as the master key can be efficiently determined by solving a linear system of equa-

tions [85]. Introducing non-linear terms into the structure would solve this problem,

but at the same time it would render the public key computation infeasible in poly-

100

7.2 A new identity based encryption scheme

nomial time as it would imply finding a solution the CDH problem. To overcome this

issue, we proceed as follows:

• Pick a pairing-friendly elliptic curve [43] E over Fq. The pairing is defined by the

following map e : G1 ×G1 → GT . Let P be a generator of G1 and α a generator

of GT .

• Pick l random numbers d1, . . . , dl.

• Compute U1 = d1P, . . . , Ul = dlP

If we define the secret key as D =

l∑
i=1

δidi +

l∑
i,j=1

βijdidj for some δi, βi,j ∈ Fq, then we

can efficiently compute the corresponding public key using a pairing:

Q =

l∏
i=1

e(Ui, P)δi
l∏

i,j=1

e(Ui, Uj)
βij

=

l∏
i=1

e(diP, P)δi
l∏

i,j=1

e(diP, djP)βij

= e(P, P)
∑l

i=1 δidie(P, P)
∑h

i,j=1βijdidj

= αD

With this setup the secret key is protected by the elliptic curve version of the DLP

(ECDLP) [94] and the MQ problem. If an adversary wants to recover the di from the

Ui he has to solve the ECDLP. If t adversaries collude and get s private keys Di, they

can construct the following system of equations:

∑l
i=1 δ1id1i +

∑l
i,j=1 β1ijd1id1j ≡ D1 mod q∑l

i=1 δ2id2i +
∑l

i,j=1 β2ijd2id2j ≡ D2 mod q

...
. . .

... ≡
...∑l

i=1 δtidti +
∑l

i,j=1 βtijdtidtj ≡ Dt mod q

101

7.2 A new identity based encryption scheme

As all the δi and βi are chosen randomly this is a system of t multivariate quadratic

equations. Solving it would mean solving the MQ problem.

We now describe how to derive a new IBE scheme from these ideas.

7.2.2 A new scheme

The above ideas can be formalised into the four algorithms defining an IBE scheme:

Setup: Given the security parameter s and a parameter l ∈ Z+, the algorithm works

as follows:

1. Choose the pairings parameters, depending on the security level s to match, and

define the pairing e : G1 ×G1 → GT . Let α = er(P, P) be a generator of GT .

2. Generate an l-dimensional secret vector SV = (d1, . . . , dl), where di is randomly

chosen in F∗q .

3. Generate the corresponding l-dimensional public vector PV = SV ·P = (U1, . . . , Ul),

where Ui = diP .

4. Choose an IND-CCA secure symmetric encryption algorithm SE of key length λ.

Encryption is denoted E(key, plaintext) and decryption D(key, ciphertext).

5. Let H0: {0, 1}∗ → {s1, . . . , st} ⊆ {1, . . . , l} be an identity mapping function,

which maps an arbitrary identity string to a t-size subset of {1, . . . , l}. Con-

struct a function H1 : {0, 1}∗ → GT based on H0, as described below. Choose a

cryptographic hash function H2 : GT ×GT ×GT → {0, 1}λ.

Thus, the system features the following specifics:

• A master secret key is SV , only known by the PKG.

• Some public parameters params = 〈q,G1,G1,GT , P, α, e, PV,H1, H2, SE〉.

• The message space M = {0, 1}n and the ciphertext space C = G1 × {0, 1}n.

102

7.2 A new identity based encryption scheme

The H1 function takes a string as input and relies on the H0 hash function to

generate a subset {s1, · · · , st} ⊂ {1, · · · , l} of the indexes of PV . Then using these

indexes a product of pairings is computed so that H1(ID) defines the public key.

Extract: For a given identity ID ∈ {0, 1}∗, the algorithm works as follows:

1. H0(ID)→ {s1, . . . , st}, where si ∈ {1, . . . , l}.

2. Extract the private key:

xID =
t∑
1

dsi +
t∑

i,j=1

dsidsj .

3. Compute the corresponding public key:

yID = H1(ID) =

t∏
i=1

e(Usi , P) ·
t∏

i,j=1

e(Usi , Usj).

Encrypt: To encrypt M ∈M under the public key ID, do the following:

1. Compute yID = H1(ID).

2. Choose a random r from F∗q .

3. Compute a symmetric key sk = H2(yID, α
r, (yID)r), and set the ciphertext to

C = 〈U, V 〉 = 〈αr,E(sk,M)〉.

Decrypt: Upon receiving a ciphertext C = 〈U, V 〉 ∈ GT ×{0, 1}n, decrypt it using the

private key xID ∈ F∗q do:

1. Derive the symmetric key sk = H2(yID, U, U
xID).

2. Recover the plaintext M = D(sk, V).

103

7.3 Discussion

7.2.3 Considerations on the security of the new scheme

Although a security proof of the new scheme is provided in [24] two major problems

occur resulting in an incorrect proof. Indeed the first thing to note is that H1(ID) =∏t
i=1 e(Usi , P) ·

∏t
i,j=1 e(Usi , Usj) cannot be modeled by a random oracle as its output

is not completely random. This issue could easy be solved by modeling H0 instead and

use its output to get H1(ID). However, the second problem is more complex to sort out

as the number of queries to the random oracles should be bounded in order to avoid

collusion attacks.

In fact, the MQ problem is NP-complete when the number of equations m is

roughly equal to the number of unknowns n. However when the number of equations

is about n2/2 polynomial time re-linearisation techniques apply [29]. Moreover note

that although there has not been any precise theoretical analysis for the cost of solving

the MQ problem over a large field it seems that the MQ problem is not easier in this

case [13]. Therefore taking m ≈ 0.1n2 as suggested in [16] will prevent from polynomial

attack.

In the case of our new IBE scheme this means that the number of users handled

by the PKG must not exceed 0.1l2. For instance if l is taken to be 256 then the new

scheme would be safe for a small structure not containing more than 6500 users.

7.3 Discussion

The next stage is to test how efficient this new IBE scheme is in practice. From a

theoretical point of view it compares favorably to other IBE schemes proven secure in

the random oracle model. Table 7.1 gives a comparison in terms of tightness of the

reduction, ciphertext length and, number of operations. The usual notations qH , qE ,

qD are used for the numbers of hash, extraction and decryption queries, respectively.

P denotes a pairing operation, while E denotes an exponentiation in GT . In order to

104

7.3 Discussion

achieve a security level of s bits, the group on the elliptic curve must be of size 2s and

the group resulting from the pairing of size 2ks, with k the embedding degree of the

elliptic curve. The message length is noted n and the tightness of the reduction is given

by the complexity of the reduction.

Scheme Assumption Reduction Ciphertext Encryption Decryption

BF01 [17] CBDH O(1/(qEqH) 2s+ 2n 1P+2E 1P+1E
Galindo [51] CBDH O(1/qH

2) 2s+ n+ 80 1P+2E 1P+ 1E
LQ05 [84] GBDH O(1/qE) 2ks+ n 1P+2E 1P+1E

TightIBE [6] CBDH O(1) 2ks+ n+ 160 2P+4E 1P+1E
Coron [28] DSBDH O(1) 6ks+ 2n 1P+3E 1P+3E

New scheme - - 2ks+ n 2E 1E

- As the original proof of BF-IBE [17] has a flaw, the fixed reduction [114] is men-
tioned.
- Although, this can be done quite efficiently, LQ05 [84], TightIBE [6] and new scheme,
feature an extra computational cost due to the use of an extra symmetric encryption.

Table 7.1: Efficiency comparison between several IBE-schemes

In order to test the efficiency of the scheme from a practical angle, we first need to

define more precisely the hash function H0, which is used to map an arbitrary identity

ID to a t-size subset of {1, . . . , l}. This can be done as follows:

• Choose t cryptographic hash functions h1, . . . , ht.

• Take an arbitrary ID as input, compute si = hi(ID) mod l, output {s1, . . . , st} ⊆

{1, . . . , l}

As explained previously H0 maps a string to a subset {s1, · · · , st} of the indexes of

the public vector. Then using this subset, a product of pairing involving only the Usi

and P is computed. This defines the H1 hash function.

The next stage is the choice of the security level. Referring to chapter 6, to achieve

an 80 bit security level the group on the elliptic curve should be of size 160. Then,

using a supersingular curve with embedding degree 6 allows to match the 80 bit security

level on the finite field side. At this stage, being able to rely on an efficient and secure

105

7.3 Discussion

implementation of pairings [33] is very helpful. It would suffice to check on chapter 6,

in order to choose the best fitting curve to reach the expected security level, and then

input its parameters and used the efficient implementation returned by the program.

One of the main drawback of the new scheme is the number of pairings that need

to be computed during the extraction stage and during the derivation of the public

key from the identity. However, as only the product of all the pairings is required, not

the computation of each individual pairing, this can be done efficiently, by applying a

method proposed by Granger and Smart [58], instead of naively computing each one

independently and then multiplying them together. Furthermore note that t cannot

be chosen to be too small without compromising the security of the scheme, the MQ

problem becoming easier. In our experiments we picked t equal to 24, and l equal to

256. This allows the computation of the pairings to be not too time consuming while

preventing attacks targeting sparse systems, i.e. systems such that the probability for a

randomly picked variable to appear in an equation is a lot smaller than 1/2, in practice

about 1/100 [45].

Table 7.2 give a comparison of BF-IBE and the new scheme. The same IDs and

messages were used for the benchmarks, operated on a desktop computer running

GNU/Linux with Intel(R) Pentium(R) 4 CPU 3.00GHz processor, 1 GB RAM. In both

cases the MIRACL Library [121] was used in order to achieve efficient implementations.

We observe that, although the extraction from the new scheme is slower, encryption,

and decryption are significantly faster. Once the extraction is done, the key can be

stored and then reused later on, leading to a non-negligible gain of time.

Scheme Extraction Encryption Decryption

New Scheme 318.06ms 4.12ms 2.25ms
BF-IBE 30.21ms 34.67ms 31.93ms

Table 7.2: Comparison of our scheme and the BF-IBE

106

7.3 Discussion

Another important remark concerns the number of pairings used. In fact, Sakai and

Kasahara’s scheme [23] does not require any pairing computation during the encryption

phase, which was a great improvement compared to initial IBE schemes. However, in

this chapter we go one step further by not requiring any pairing computation for both

encryption and decryption.

107

8

Pairings and fast hashing

Nothing is more dangerous than an idea, when you only have one.

Alain

Although the new identity based encryption scheme presented in chapter 7 does not

require any hash computation into one or both of the two elliptic curve groups involved

in the pairing, it is often the case in general [17]. For ordinary curves, the first group,

denoted G1, consists of points on a pairing-friendly elliptic curve E that are defined

over the base field Fp, while the second group, denoted G2, is instantiated as a group of

points on a twisted curve E′ that have coordinates in some extension field Fpd , where

d divides the embedding degree k.

Whereas for the Weil pairing, both input points must have prime order, the Tate

pairing and its variants only require one of the input points to be of prime order, as

it is sufficient for the other argument to be a coset representative. In fact, the most

efficient pairings to date, the ate [67] and R-ate [82] pairings, both variants of the Tate

pairing, have the special property of requiring the point of prime order to be in G2.

Hashing to a point of prime order in G1 is relatively easy, however, hashing to a

prime order point in G2 requires an additional multiplication by a large cofactor. In

this chapter we consider the problem of reducing the cost of hashing to a point of

108

8.1 Twist and number of points

prime order in G2. This step may be necessary to ensure efficient implementations of

protocols using the Weil, ate or R-ate pairings.

Although points in the group G2, defined over an extension field may appear cum-

bersome to handle, Galbraith and Scott [49] observed that arithmetic in G2 is simpler

than it might be thought, as an efficient homomorphism can be exploited. In this chap-

ter we extend their ideas to the related problem of cofactor multiplication in E′(Fpd),

which is required to hash an identity to a point of prime order in G2.

8.1 Twist and number of points

Let E be an elliptic curve defined over a finite field Fp that has embedding degree

k > 1, with respect to a prime r, and E′ be a twist of E such that r divides #E′(Fpd)

for some d | k. If d < k we define G2 to be the unique subgroup of order r on E′(Fpd)

[67]. If d = k, that is E ∼= E′, we define G2 to be the cyclic subgroup of E[r] on which

the p-power Frobenius of E acts as multiplication by p.

As the 2 | k case enables the important denominator elimination optimisation in

the pairing calculation [8], we choose k to be even, and as such we can take d, the

degree of the extension field, to be k/2. Furthermore if the elliptic curve has a CM

discriminant of −3 and 6 | k, then we can choose d = k/6. Similarly, if the curve has a

CM discrimant of −4, and 4 | k, then we can choose d = k/4. Clearly the smaller the

degree of the extension field Fpd , the easier it will be to manipulate points on G2.

As recalled in section 3.2, the number of point on an elliptic curve E/Fp is given

by #E(Fp) = p + 1 − t, with t the trace of the Frobenius and satisfies | t |≤ 2
√
p. If

we now consider points whose coordinates are defined over an extension field Fpm , then

109

8.1 Twist and number of points

the number of such points on the same elliptic curve [90] is, for instance, given by:

#E(Fp2) = p2 + 1− (t2 − 2p)

#E(Fp3) = p3 + 1− (t3 − 3tp).

In the general case the number of points can be calculated using algorithm 8.1 [90].

Algorithm 8.1 Computation of #E(Fpm)

Input: m, p, t: m a positive integer, p a prime, t the trace of Frobenius of an elliptic
curve E defined over Fp.

Output: #E(Fpm).
1: τ0 ← 2
2: τ1 ← t
3: for i← 1 to m− 1 do
4: τi+1 ← t · τi − p · τi−1
5: end for
6: q ← pm

7: τ ← τm
8: return q + 1− τ

A good way to represent the group G2, is to use an isomorphic group on a twisted

curve over the smallest possible extension field. The number of points on the twisted

curve can then easily be determined using algorithm 8.1. In the cases of quadratic,

quartic and sextic twists, it respectively leads to:

quadratic: #E′(Fq) = q + 1 + τ

quartic: #E′(Fq) = q + 1− f1 where f1 =
√

4q − τ2

sextic: #E′(Fq) = q + 1− (3f2 + τ)/2 where f2 =
√

(4q − τ2)/3,

where q = pm and τ is the trace of the q-power Frobenius on E as calculated in

algorithm 8.1. See [67] for more details.

To hash to a point in G2, the standard idea suggests to first hash to a general point

on E′(Fpd) and then multiply by the cofactor c = #E′(Fpd)/r. However, when consid-

110

8.2 Framework

ering, for example, a pairing-friendly curve with k = 10, d = 5 and r ≈ p, this approach

becomes prohibitively slow, as using the quadratic twist implies for the cofactor c, to

be of a length, in bits, approximately equivalent to the size of p4. Therefore, we will

now investigate a new way to handle this hashing which will result in a work equivalent

to a multiplication by a value less than p, and even in some cases, much less than p.

8.2 Framework

Galbraith and Scott [49, Section 8] have already briefly considered the issue of fast

cofactor multiplication of points on E′(Fpd) in the case of BN curves [9]. The idea here,

is to generalise and extend their techniques, using the homomorphism ψ = φ−1πpφ,

with φ : E′ → E the isomorphism which takes us from the twisted curve E′(Fpd) to

the isomorphic group on E(Fpk), and πp the p-power Frobenius map on E. A major

remark is to see that ψ(P) can be calculated very quickly.

According to the Galbraith and Scott paper [47, Theorem 1] general points on

E′(Fpd) obey the following identity:

ψ2(P)− [t]ψ(P) + [p]P = 0.

Applying the usual idea consisting in expressing the cofactor c to the base p we get:

c = c0 + c1 · p+ c2 · p2...

and then using, repeatedly if necessary, the identity

[p]P = [t]ψ(P)− ψ2(P) (8.2.1)

111

8.3 Fast cofactor multiplication on G2

it yields the following equation:

[c0 + p(c1 + p(c2 + · · ·))]P = [g0]P + [g1]ψ(P) + [g2]ψ
2(P) + · · · , gi < p

Applying equation 8.2.1 to [c1 · p]P we get [c1 · t]ψ(P) − [c1]ψ
2(P). We note that,

t being up to half the size of p (Hasse bound), c1 · t may be of a size in bits 50%

larger than p. Further applications of the homomorphism may therefore be necessary

to achieve a complete reduction. Hence, the final result is a recoding of c from a base

p representation to a base ψ(·) representation, with all coefficients less than p. The

number of terms in the representation increasing with each application of identity 8.2.1,

the following identity involving the kth cyclotomic polynomial, Φk, may be very useful:

Φk(ψ(P)) = 0. (8.2.2)

This allows terms of degree greater than or equal to ϕ(k), the Euler totient function,

to be replaced with terms of lower degree.

When k = de, and gcd(d, e) = 1, the twisting isomorphism φ, defining a twist of

degree e, can be chosen such that the twisted curve E′ is actually defined over Fp, in

which case φ is defined over Fpe . The cofactor c can then be factored into h · c1, where

c1 = #E′(Fp), and the endomorphism π′p − 1, where π′p is the p-power Frobenius map

on E′, projects into the subgroup of #E′(Fpd) of order h · r. In terms, it means that

a point of order r can be obtained at the cost of just one multiplication by h, and as

such, the above technique only needs to be applied to the smaller factor, h.

8.3 Fast cofactor multiplication on G2

Although the basic idea, with minor modifications, can also apply to non-parameterised

curves like Cocks-Pinch curves, it benefits from better optimisation when the family of

112

8.3 Fast cofactor multiplication on G2

pairing-friendly elliptic curves can be expressed by three polynomials t(x), r(x) and p(x)

representing the prime modulus p, the group order r and the trace t, respectively. Our

aim is to exploit this simple form in a systematic way to further speed up the cofactor

multiplication required for hashing to G2. In fact, expressing p as a polynomial p(x),

allows both the coefficients and the cofactor c, to be represented and calculated as

polynomials in x which in turn leads to further optimisations.

Before proceeding with a few examples we start by formally describing the previous

method as an algorithm for reducing the cofactor multiplication to the evaluation of a

polynomial of the powers ψi(P), with coefficients less than p (algorithm 8.2).

It takes the integer k, and the polynomials p(x), t(x) and c(x), where p(x) and t(x)

parameterise the field size of definition and trace respectively of the pairing-friendly

curve with embedding degree k. The polynomial c(x) parameterises the hard part of

the multiplication to be performed to obtain a point of order r on the twist of the

elliptic curve. The first step is to recode c(x) to the base p(x) (lines 3–6) then using

this representation of c(x), recode c(x) to the base ψ(·) (lines 8–13). The coefficients

of the base ψ(·) representation are computed using the coefficients of the base p(x)

representation and the appropriate coefficients of the equation

[pl]P =
l∑

i=0

(
l
i

)
t(x)l−i(−1)iψl+i(P),

obtained by recursively applying equation (8.2.1). Once c(x) has been written to base

ψ(·), the coefficients gi(x) are checked, such that, if deg gi(x) ≥ deg p(x), then the

identity [p]P = [t]ψ(P)− ψ2(P) is reapplied (lines 15–20). Finally the relation (8.2.2)

is exploited to obtain a base ψ(·) representation of c(x) of degree < ϕ(k) (lines 22–27).

We now apply this algorithm to certain selected popular families of pairing-friendly

elliptic curves, in order to improve the performs of the cofactor multiplication required

to hash to a point of order r in G2.

113

8.3 Fast cofactor multiplication on G2

Algorithm 8.2 Reduction of the cofactor c(x) to base ψ(·)
Input: k, p(x), t(x), and c(x) : embedding degree k and polynomials p(x), t(x), c(x)

parameterising the field size, trace, and G2 cofactor of a pairing-friendly elliptic
curve, respectively.

Output: g0(x), g1(x).....gϕ(k)−1(x): deg gi(x) < deg p(x) will be coefficients of a base
ψ(·) representation of the cofactor c(x).

1: f ← bdeg(c(x))/ deg(p(x))c
2: 3 First express c(x) to the base p
3: for i← 0 to f do
4: ci(x)← c(x) mod p(x)
5: c(x)← c(x) div p(x)
6: end for
7: 3 Make first pass to determine the coefficients gi of c(x) to the base ψ(·), using

equation (8.2.1).
8: for j ← 0 to f do
9: g2j ← 0, g2j+1 ← 0

10: for i← 0 to 1 do
11: gj+i ← gj+i +

(
j
i

)
t(x)j−i(−1)icj(x)

12: end for
13: end for
14: 3 Make a second pass to finally force all coefficients to have degree < deg p
15: g2f+1 ← 0, g2f+2 ← 0
16: for j ← 1 to 2f do
17: w(x)← gj(x) div p(x)
18: gj(x)← gj(x) mod p(x)
19: gj+1(x)← gj+1(x) + t(x)w(x)
20: gj+2(x)← gj+2(x)− w(x)
21: end for
22: 3 Finally exploit equation (8.2.2); ai is the coefficient of xi in Φk(x)
23: for j ← 2f + 2 downto ϕ(k) do
24: for i← 1 to ϕ(k) do
25: gj−i(x)← gj−i(x)− aϕ(k)−i · gj(x)
26: end for
27: gj(x)← 0
28: end for

114

8.3 Fast cofactor multiplication on G2

8.3.1 MNT curves

MNT pairing-friendly elliptic curves can feature embedding degrees 3, 4 or 6 with ρ

value 1. The case of interest for pairing based cryptography, when the ECDLP and the

DLP are balanced and secure, is achieved for k = 6 (chapter 6). In this case the prime

p, the group order r and the trace of Frobenius t parameters are expressed as:

t(x) = x+ 1

r(x) = x2 − x+ 1

p(x) = x2 + 1.

There exists no x such that the curve generated using these parameters has a CM

discriminant of −3, so only a quadratic twist is possible. Here G2 is a group of points

of order r on E′(Fp3). The cofactor is

c(x) =
p(x)3 + 1 + t(x)3 − 3t(x)p(x)

r(x)
,

which in this case works out to be

c(x) = x4 + x3 + 3x2.

Applying algorithm 8.2 step-by-step we first represent c(x) to the base p(x) (lines 3–6):

c(x) = p2(x) + (x+ 1)p(x) + (−x− 2).

Now applying equation (8.2.1) to each term involving a power of p(x), and using it to

express [c(x)]P in base ψ(·) form gives (lines 8–13):

[−x− 2]P + [x2 + 2x+ 1]ψ(P) + [x2 + x]ψ2(P) + [−2x− 2]ψ3(P) + ψ4(P).

115

8.3 Fast cofactor multiplication on G2

One can see that some of the coefficients are still of the same degree as p(x), so one

applies equation (8.2.1) again to get (lines 15–20):

[−x− 2]P + [2x]ψ(P) + [2x]ψ2(P) + [−x− 2]ψ3(P).

All of the polynomial coefficients are now fully reduced modulo p(x). From equa-

tion (8.2.2) we know that ψ2(P) = ψ(P) − P , and by substituting this identity twice

for ψ2(P) into the above (lines 22–27), we find that multiplication of a general point

P by c(x) can be completed by calculating the point

ψ(4xP)− 2xP.

This means that the expensive initial multiplication of P by c(x) can be achieved using

only one multiplication by x, two point doublings, one application of the homomorphism

and a further point addition.

In fact, it can be done even slightly more efficiently. As discussed in section 8.2, since

k = 2 · 3 and gcd(2, 3) = 1, it is possible to choose the quadratic twist E′ to be defined

over Fp. As such, there must be a subgroup of points of E′(Fp3) which are defined over

Fp, that is, the points of E′(Fp). The number of points on E′(Fp3) must, therefore,

have as a factor p(x)+1+ t(x), and indeed, in this case c(x) = (p(x)+1+ t(x)) ·x2. As

explained in section 8.2, the first part of the cofactor multiplication by p(x) + 1 + t(x)

can be performed by using the Frobenius endomorphism on the twisted curve

P ← π′(P)− P,

leaving only a further multiplication by x2. Then, using algorithm 8.2, it is evaluated

to simply be ψ(xP).

116

8.3 Fast cofactor multiplication on G2

8.3.2 BN curves

The BN family of pairing-friendly curves [9] has embedding degree 12, and is parame-

terised as follows:

t(x) = 6x2 + 1

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1.

In this case the cofactor multiplication can be done as [49]

ψ(6x2P) + 6x2P + ψ(P)− ψ2(P).

The major work here is the point multiplication by 6x2. As already mentioned, BN

curves being plentiful, a usual choice for x is a value having low Hamming weight, which

allows to speed up the computation of the pairing using Miller’s algorithm. In fact using

such a value for x will also speed up the calculation, as the point multiplication will

consist largely of point doublings, which are significantly faster than point additions in

most curve and point representations.

8.3.3 Freeman Curves

Freeman suggested a construction for pairing-friendly elliptic curves of embedding de-

gree 10 [40].

t(x) = 10x2 + 5x+ 3

r(x) = 25x4 + 25x3 + 15x2 + 5x+ 1

p(x) = 25x4 + 25x3 + 25x2 + 10x+ 3.

117

8.3 Fast cofactor multiplication on G2

These curves are much rarer than the BN curves, and unfortunately it is not feasible

to choose x to have a particularly small Hamming weight. Furthermore, since the

embedding degree is 10, the best that can be done for G2 is to represent it as a group

of points on E′(Fp5). This is a particularly large extension, increasing the chances for

the cofactor to be large. In fact c(x), in this case, works out as this polynomial:

c(x) = 390625x16 + 1562500x15 + 4062500x14 + 7421875x13 + 10750000x12

+ 12593750x11 + 12356250x10 + 10203125x9 + 7178125x8 + 4284375x7

+ 2171000x6 + 920250x5 + 322400x4 + 89875x3 + 19120x2 + 2740x+ 217.

Fortunately, it also has p(x)+1+t(x) as a factor, allowing us to apply again the idea in

section 8.2. We start by choosing the quadratic twist E′ to be defined over Fp, then the

multiplication by p(x)+1+ t(x) can be handled by the transformation P ← π′(P)−P ,

and so the “hard-part” of the cofactor can be reduced to:

h(x) = 15625x12 + 46875x11 + 93750x10 + 128125x9 + 138125x8 + 116875x7

+ 80875x6 + 44875x5 + 20225x4 + 7075x3 + 1880x2 + 325x+ 31.

Applying our algorithm we find that multiplying P by h(x) can be expressed as:

[g0(x)]P + [g1(x)]ψ(P) + [g2(x)]ψ2(P) + [g3(x)]ψ3(P), (8.3.1)

118

8.3 Fast cofactor multiplication on G2

where

g0(x) = −5x2 − 10x− 2;

g1(x) = −25x3 − 20x2 − 10x− 4;

g2(x) = 3;

g3(x) = −25x3 − 10x2 − 5x.

At this stage we could substitute for x and use a simultaneous multiple point mul-

tiplication algorithm [62]. However, equation 8.3.1, together with the gi, remind us of

the problem faced to compute efficiently the final exponentiation in Miller’s algorithm

(chapter 5), and the solution adopted, which consisted of using Olivos’ algorithm, to

find the optimal sequence of operations to perform. Therefore, we apply the same

strategy here, by calculating xP , x2P = x ·xP , x3P = x ·x2P , ψi(P), ψi(xP), ψi(x2P)

and ψi(x3P) for i = 1 to 3, and then find the shortest addition sequence including all

the coefficients of the gi. Thus, the calculation first becomes

[25](−ψ3(x3P)− ψ(x3P)) + [20](−ψ(x2P)) + [10](−ψ3(x2P)− ψ(xP)− xP)

+[5](−ψ3(xP)− x2P) + [4](−ψ(P)) + [3]ψ2(P) + [2](−P),

that we consider as

25A+ 20B + 10C + 5D + 4E + 3F + 2G.

While A,B,C,D,E, F and G are calculated using just 4 extra point additions, the

optimal way to proceed with the coefficients is to rearrange them such that they form

the shortest addition sequence:

{1, 2, 3, 4, 5, 10, 20, 25}.

119

8.3 Fast cofactor multiplication on G2

In this case, it is easily done by only adding 1 to the start. Now, we apply Olivos’

algorithm [104], [7, Section 9.2] to find the optimal sequence of point additions and

doublings to finally proceed to the cofactor multiplication.

T0 ← A+B

T1 ← A+D

T0 ← 2 · T0

T0 ← T0 + C

T0 ← 2 · T0

T1 ← T0 + T1

T0 ← T1 + E

T0 ← 2 · T0

T0 ← T0 +G

T0 ← T0 + F

T1 ← T1 + F

T0 ← 2 · T0

T0 ← T0 + T1.

The final result is in T0. This part of the calculation requires only 9 extra point

additions and 4 point doublings.

8.3.4 KSS Curves

Kachisa, Schaeffer and Scott [76] described a new method for generating pairing-friendly

elliptic curves.

120

8.3 Fast cofactor multiplication on G2

KSS curves (k = 8): The family of k = 8 KSS curves is parameterised as follows:

t(x) =
2x3 − 11x+ 15

15

r(x) =
x4 − 8x2 + 25

450

p(x) =
x6 + 2x5 − 3x4 + 8x3 − 15x2 − 82x+ 125

180
.

For these curves ρ = 3/2. As for BN curves, x can be chosen to have a low Hamming

weight. Proceeding as above we find

g0(x) =
2x5 + 4x4 − x3 + 50x2 + 65x− 36

6

g1(x) =
2x5 + 4x4 − x3 − 7x2 − 25x+ 75

6

g2(x) =
−15x2 − 30x− 75

6
.

A minor difficulty arises due to the common denominator of 6 which occurs here.

However, as noted in chapter 5, in practice r is chosen to be a large prime, implying that

gcd(6, r) = 1. Thus, we can complete the hashing to G2 with the point multiplication

[6 · c(x)]P , which is also a point of order r. As the denominator can be ignored, we now

only need an addition sequence which includes all of the integer coefficients that arise

in the numerator of the gi, in order the complete the calculation:

{1, 2, 4, 5, 6, 7, 10, 15, 25, 30, 36, 50, 65, 75},

Proceeding as for the Freeman curve case, the computation using this addition sequence

can be completed with 18 point additions and 5 point doublings.

KSS curves (k = 18): The family of k = 18 KSS curves can be described by the

121

8.3 Fast cofactor multiplication on G2

following polynomials:

t(x) =
x4 + 16x+ 7

7

r(x) =
x6 + 37x3 + 343

343

p(x) =
x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x+ 2401

21
.

For these curves ρ = 4/3 and as for the BN curves x can, in practice, be chosen with a

low Hamming weight. Proceeding again as above yields:

g0(x) =
−5x7 − 26x6 − 98x5 − 381x4 − 867x3 − 1911x2 − 5145x− 5774

3

g1(x) =
−5x7 − 18x6 − 38x4 − 323x3 − 28x2 + 784x

3

g2(x) =
−5x7 − 18x6 − 38x4 − 323x3 + 1029x+ 343

3

g3(x) =
−11x6 − 70x5 − 98x4 − 176x3 − 1218x2 − 2058x− 686

3

g4(x) =
28x2 + 245x+ 343

3
.

Using the same reasoning as in the KSS k = 8 case, we evaluate [3·c(x)]P to remove the

denominator of 3. In this case the best addition sequence we could find that includes

all of the coefficients was:

{1, 2, 3, 5, 7, 8, 11, 18, 26, 28, 31, 38, 45, 69, 70, 78, 98, 176, 245, 253, 323, 343,

381, 389, 686, 784, 829, 867, 1029, 1218, 1658, 1911, 2058, 4116, 5145, 5774}.

This allows the completion of the calculation using only 51 point additions and 5 point

doublings.

122

8.4 Discussion

8.4 Discussion

The solution to the problem of multiplying a point P by a large cofactor c mainly relies

on the existence of a homomorphism ψ(·) that can be computed efficiently. Thus, it is

possible to express c to the base ψ(P), and the initial problem boils down to finding

a short addition sequence, as in chapter 5. However, in this case it is slightly more

complex as the operations do not occur on a subgroup of Fqk , but on a subgroup of

an elliptic curve. As such, the representation of the curve plays an important role: for

instance, if doubling or adding a point on E′(Fp5) it is likely that affine coordinates

will in fact be faster than any kind of projective coordinates, in which case using

the standard short Weierstrass representation, additions may actually be faster than

doublings [62]. Hence the remarks from chapter 5, on the use of addition-substraction

chains, and on preferring doubling to addition still apply, suggesting that special care

must be taken when choosing how to represent the curve. One should then solve the

problem of the cofactor multiplication, accordingly to the curve representation initially

chosen.

Given an initial hashing to a general point on E′(Fpd), the twist of an ordinary

pairing-friendly elliptic curve E/Fq, this new method for deriving a point of prime

order r in G2 = E′(Fpd), is significantly faster than the naive approach which would

require multiplication by a very large cofactor c = #E′(Fpd)/r. As such, it becomes

really useful in identity based cryptography where schemes often require the hashing

of identities to points on a curve.

123

9

Conclusion

A scientific observation always leads to a polemic.

G. Bachelard

Throughout this thesis we have been able to link abstract mathematical results

on number theory to applied cryptography. This involved the presentation of pairings

as mathematical maps and their study from both efficiency and security perspectives.

This allowed the construction of a new IBE scheme taking advantage of pairings, and

eventually it was shown that more advanced operations required by their cryptographic

use can be achieved efficiently.

Although first used following a destructive strategy, pairings are really helpful in

the construction of cryptographic protocols, as one can take advantage of their bilinear

property. However, when it comes to implementation, the choice of the parameters is of

a major concern in order to ensure both security and efficiency. In fact, since the speed

of computations on J(Fq) is, to an extent, determined by #J(Fq) ≈ qg and security is

determined by the size of r, for fast implementations one usually wishes to choose J

with r as close to #J(Fq) as possible, i.e with a ρ-value as close to 1 as possible. In

practice one must also take into account the required balance of security for a fixed

124

k as well as the cost of arithmetic and pairing operations on the elliptic curves under

consideration.

The case of supersingular abelian varieties of dimension g ≥ 2 defined over non-

prime fields is interesting, as they have been proposed for use in pairing-based cryptog-

raphy for being potentially more efficient than supersingular elliptic curves. Further-

more, note that due to index calculus attacks [53, 54] abelian varieties of dimension

g > 4 are only practical in the context of pairing-based cryptography.

From an application point of view, one of the major implications of the work pre-

sented in this thesis is the possibility of automatically generating efficient pairing code,

given a single number: the security level. For instance, in the case of a pairing cryp-

tographic protocol, one would only be required to input a security level to be matched

and then use the efficient code returned to compute the pairings without any need to

understand the hard underlying problems, or any of their related security and efficiency

issues. This will surely result in more secure implementations as most of the time se-

curity troubles arise from a misunderstanding of the primitives, implying unwanted

weaknesses.

Nevertheless, a few areas can still be explored, especially concerning the security of

the DLP. As a matter of fact, implementing the NFS seems very challenging, due to the

low density of smooth numbers in the sieving space. Thus, as explained previously, a

strategy could be to test how the FFS targeting field of medium characteristic, performs

in practice.

Another idea could also be to take advantage of the special structures of the field

Fqk . Since for the implementation of pairing cryptographic protocols, it is desired that

the embedding degree of the curve is of the form k = 2i3j for some small i and j, it

would be interesting to study how the composite nature of the extensions can effect the

125

security.

As suggested by Schirokauer [119], the very specific structure of the polynomials

defining the families of pairing-friendly elliptic curves may also allow some variations of

the special number field sieve to perform more efficiently in practice than the cumber-

some NFS. However, these techniques would probably imply using more sophisticated

ideas than the ones presently known.

126

Appendix A

Pairing-friendly elliptic curves

We give a few examples or pairing-friendly elliptic curves matching the usual security

levels.

Supersingular curves:

An example of supersingular elliptic curve over F2m , where m is an odd integer,

with embedding degree k = 4 is given by E : y2 + y = x3 + x. The complexity of the

FFS for this curve is given by L24m(1/3, (32/9)1/3). The optimal d and B values to be

used are

d =

⌈
2

√
m

(4/9)1/3(2 + log2(m))2/3

⌋
, and B =

(
16m

9

)1/3

(2 + log2(m))2/3.

MNT curves:

An example of an MNT curve with embedding degree 6 is given in [105]. It is

defined by

p = 801819385093403524905014779542892948310645897957,

r = 801819385093403524905015674986573529844218487823

and the elliptic curve has equation E : y2 = x3 − 3x+ b, where

127

b = 237567233982590907166836683655522398804119025399. This curve is suitable for

the standard 80 bit security level, also noted AES-80, as log p ≈ 160.

Freeman curves:

Taking p = 61099963271083128746073769567944870354270161646150914794603 and

r = 61099963271083128746073769567450502219087145916434839626301 leads to the

following Freeman curve E : y2 = x3 − 3x+ b, where

b = 1112775869471458154129950648198203893613615552476491488167. In this case

log p ≈ 196, which implies matching an AES-98 security level.

BN curves:

BN curves being plentiful it is easy to find an x with low Hamming weight such

that p and r are both prime. For example x = 7530900000000019237 can be picked.

The values obtained are

p = 115795057838240340066805193894358654649784083976814007840610649712610075073583

and

r = 115795057838240340066805193894358654649443797247954006102147570112607854700569.

This prime p satisfies the congruences p ≡ 7 mod 8, p ≡ 4 mod 9 and p ≡ 1 mod 6,

hence by [30], these parameters give a curve E : y2 = x3 + 3. Both p and r have ≈ 256

bits, implying an AES-128 security level.

128

Appendix B

Implementations

B.1 A linear sieve

Based on the GMP [2] and NTL [126] libraries, the following simple linear sieve, together

with an implementation of the fast Gaussian elimination algorithm, allow to efficiently

solve the DLP over prime fields of size p, with p ≈ 70bits.

#include <iostream>

#include <fstream>

#include <vector>

#include <map>

#include <NTL/ZZ.h>

#include <NTL/ZZ_p.h>

#include <NTL/RR.h>

#include "msv.h"

NTL_CLIENT

Miracl precision(2,0);

#define PRECISION 20

#define LOG2(x) log(x)/log(2)

129

B.1 A linear sieve

typedef struct {

vector<int> index;

vector<int> multiplicity;

ZZ rem;

} smooth_dec;

void read_fb(vector<long unsigned> *fctb, string filename);

void sieve_Fp(ZZ p, vector<long unsigned> *fctb, long unsigned clim, long unsigned qlim);

void SmoothTest(smooth_dec *s, ZZ n, vector<long unsigned> *fctb);

int main() {

int i;

ZZ p=to_ZZ("100000000000000000763");

vector<long unsigned> *fctb=new vector<long unsigned>;

read_fb(fctb, "input.txt");

sieve_Fp(p,fctb,800, 2200);

delete fctb;

}

void read_fb(vector<long unsigned> *fctb, string filename) {

/* rem: elements in the factor base are long unsigned int */

long unsigned int tmp;

ifstream in(filename.c_str());

if(!in) cout << "Cannot open file.\n";

while(in >> tmp) fctb->push_back(tmp);

in.close();

130

B.1 A linear sieve

}

void sieve_Fp(ZZ p, vector<long unsigned> *fctb, long unsigned clim, long unsigned qlim) {

modulo((Big)(char*)"100000000000000000763");

long unsigned i, k;

long unsigned c1, c2;

long unsigned q, qpow, nextqpow, nextp;

long unsigned row=0;

long unsigned d1, d2;

double logq;

ZZ prod;

ZZ rel, relinc, n;

ZZ den, denm, num;

std::map<ZZ,int> *extfctb=new std::map<ZZ, int>;

pair<map<ZZ,int>::iterator,bool> ret;

MSM A;

ZZ H=SqrRoot(p)+1;

ZZ J=sqr(H) - p;

/* Get logs of all factor basis primes. */

double *log_fb=new double[sizeof(double)*fctb->size()];

for(i=0; i<fctb->size(); i++) log_fb[i]=LOG2((*fctb)[i]);

/* initialize extended factor base to factor base */

for(k=0;k<fctb->size();k++) extfctb->insert(pair<ZZ,int>(to_ZZ((*fctb)[k]),k));

/* sieving */

for(c1=1;c1<=clim;c1++) {

131

B.1 A linear sieve

double *sieve=new double[sizeof(double)*clim];

if((double)row/(extfctb->size()) >= 1.1) { delete sieve; break; }

/* denominator and numerator of relations */

den=H+c1;

num=-(J + c1*H);

for(i=0;i<fctb->size();i++) {

q=(*fctb)[i];

logq=log_fb[i];

qpow=q;

while(qpow<=qlim) {

denm=den % qpow;

if(denm == 0) break;

/* InvMod requiers den < qpow */

c2=num*InvMod(denm, to_ZZ(qpow)) % qpow;

if(c2==0) c2=qpow;

nextqpow=qpow*q;

/* Ensure c2 >= c1 to remove redundant relations */

while(c2 < c1) c2 += qpow;

while(c2 <= clim) {

/* Add logq into sieve for c2 */

sieve[c2] += logq;

/* Test higher powers of q if nextqpow is too large */

if(nextqpow > qlim) {

prod = (J + (c1 + c2)*H + c1*c2) % p;

132

B.1 A linear sieve

nextp = nextqpow;

while(prod % nextp == 0) {

sieve[c2] += logq;

nextp *= q;

}

}

c2 += qpow;

}

qpow = nextqpow;

}

}

rel = den*(H+1); // the relation

relinc = H+c1; // add to relation to get next relation

for(c2=1;c2<=clim;c2++) {

n = rel % p;

smooth_dec *s=new smooth_dec;

if(abs(sieve[c2] - floor(LOG2(n))) < 1) { SmoothTest(s, n, fctb); }

if(s->rem==1) {

/* Include each H + c_i in extended factor basis */

ret=extfctb->insert(pair<ZZ,int>(H+c1, extfctb->size()));

if(ret.second==false) d1=ret.first->second;

else d1=extfctb->size()-1;

ret=extfctb->insert(pair<ZZ,int>(H+c2, extfctb->size()));

if(ret.second==false) d2=ret.first->second;

else d2=extfctb->size()-1;

/* Include relation (H + c1)*(H + c2) = fact */

133

B.1 A linear sieve

row++;

for(k=0; k<s->index.size(); k++) A[row][s->index[k]]=s->multiplicity[k];

if(c1==c2) A[row][d1]=-2;

else {

A[row][d1]=-1;

A[row][d2]=-1;

}

}

rel+=relinc;

delete s;

}

if(c1==clim) delete sieve;

}

/* display matrix */

for(i=1;i<=row;i++) {

for (long unsigned j=0; j<extfctb->size(); j++) cout << A[i](j) <<" ";

cout << endl;

}

delete log_fb;

delete extfctb;

}

void SmoothTest(smooth_dec *s, ZZ a, vector<long unsigned> *fctb) {

long unsigned i, j=0;

134

B.2 The number field sieve

for(i=0;i<fctb->size();i++) {

if(divide(s->rem, a, (*fctb)[i])) {

s->index.push_back(i);

s->multiplicity.push_back(1);

a=s->rem;

/* count multiplicity */

while(divide(s->rem, a, (*fctb)[i])) {

s->multiplicity[j]++;

a=s->rem;

}

j++;

}

}

/* s->rem == 0 <=> no factor */

if(s->rem==0) s->rem=a;

}

This code collects the relations and takes the logarithm of the equations resulting

in a large sparse matrix of equations that can be solved using structured Gaussian

elimination.

B.2 The number field sieve

One of the most time consuming stage in the NFS is the factorisation of the norms of

the ideals. Therefore, we efficiently implemented the smooth tests by taking advantage

of the GMP [2], GMP-ECM [1] and FLINT [64] libraries.

First, we defined two main structures, allowing to represent the decomposition of a

given integer and to set which factorisation method should be used.

/* factorization structure */

/* fact -> factors (1st element = the number to be factorized) *

135

B.2 The number field sieve

* val -> valuation of the corresponding factor *

* num -> number of factors */

typedef struct nfs_mpz_fact_s {

mpz_t *fact;

int *val;

int num;

} nfs_mpz_fact_t;

/* factorizing methode structure */

/* td, rho, ecm, mpqs = 0 => disable the method */

typedef struct nfs_fact_mth_s {

int td;

int prho;

int ecm;

int mpqs;

} nfs_fact_mth_t;

Then we fixed the number of iterations used when factorising with the Pollard’s

Rho method to 5000, and set a table containing all the prime integers 2 ≤ p ≤ 5133,

to be parsed during the trial division process. The factorisation stage is implemented

as follows.

#include <stdlib.h>

#include <stdio.h>

#include <gmp.h>

#include <ecm.h>

#include <flintlib/mpQS/mpQS.h>

#include <flintlib/F_mpz.h>

#include "factorize.h"

//#define VERBOSE

/* trial division */

void factorize_td(nfs_mpz_fact_t *f, mpz_t n) {

#ifdef VERBOSE

136

B.2 The number field sieve

printf("Trial division: in\n");

#endif

int i;

for(i=0;i<PRIME_LIST_SIZE;i++) {

if(mpz_divisible_ui_p(n,prime_list[i])) {

mpz_init_set_ui(f->fact[f->num],prime_list[i]);

f->val[f->num]=mpz_remove(n,n,f->fact[f->num]);

f->num++;

}

}

#ifdef VERBOSE

printf("Trial division: out\n");

#endif

}

/* definition of f(x) for pollard rho */

void prho_fct(mpz_t x, mpz_t n, int a) {

mpz_mul (x, x, x);

mpz_add_ui (x, x, a);

mpz_mod (x, x, n);

}

/*pollard rho */

void factorize_prho(mpz_t f, mpz_t n) {

#ifdef VERBOSE

printf("Pollar rho: in\n");

gmp_printf("n=%Zd\n",n);

137

B.2 The number field sieve

#endif

int i, a=0;

mpz_t x, y, t1, t2;

mp_limb_t a_limb;

/* define fct(x)=x^2+a (a random) */

while (a == -2 || a == 0) {

mpn_random (&a_limb, (mp_size_t) 1);

a = (int) a_limb;

}

mpz_init_set_si (x, 2);

mpz_init_set_si (y, 2);

mpz_init(t1);

mpz_init_set_si(t2,1);

for(i=0; i<RHO_ITERATIONS && !mpz_cmp_ui(f,1) ;i++) {

prho_fct(x, n, a);

prho_fct(y, n, a); prho_fct(y, n, a);

mpz_sub(t1,x,y);

if(i%50) {

mpz_mul(t2,t2,t1);

mpz_mod(t2,t2,n);

}

else mpz_gcd(f,t2,n);

}

mpz_clear(x);

mpz_clear(y);

mpz_clear(t1);

mpz_clear(t2);

#ifdef VERBOSE

138

B.2 The number field sieve

printf("Pollar rho: out\n");

gmp_printf("n=%Zd, f=%Zd\n",n,f);

#endif

}

/* ecm (ecm.h) */

void factorize_ecm(mpz_t f, mpz_t n, long int B1) {

#ifdef VERBOSE

printf("Ecm: in \n");

gmp_printf("n=%Zd\n",n);

#endif

ecm_params param;

do {

ecm_init(param);

ecm_factor(f,n,B1,param);

B1+=5000;

ecm_clear(param);

}

while(!mpz_cmp_ui(f,1) && B1<=50000);

#ifdef VERBOSE

printf("Ecm: out\n");

gmp_printf("n=%Zd, f=%Zd\n",n,f);

#endif

}

/* pollard p-1 (ecm.h) */

void factorize_pm1(mpz_t f, mpz_t n, long int B) {

ecm_params param;

ecm_init(param);

139

B.2 The number field sieve

param->method=ECM_PM1;

ecm_factor(f,n,B,param);

ecm_clear(param);

}

/* william p+1 (ecm.h) */

void factorize_pp1(mpz_t f, mpz_t n, long int B) {

ecm_params param;

ecm_init(param);

param->method=ECM_PP1;

ecm_factor(f,n,B,param);

ecm_clear(param);

}

/* if n is a perfect power try from 2 to 3 */

int factorize_power(mpz_t f, int *val, mpz_t n) {

int ret=0;

mpz_t rem, t1;

mpz_init(rem);

mpz_init(t1);

while(mpz_perfect_square_p(n)) {

mpz_sqrt(n,n);

*val+=2;

}

while(mpz_perfect_power_p(n)) {

140

B.2 The number field sieve

mpz_rootrem(t1,rem,n,3);

if(!mpz_cmp_ui(rem,0)) {

mpz_set(n,t1);

*val+=3;

}

else {

ret=1;

break;

}

}

mpz_clear(rem);

mpz_clear(t1);

return(ret);

}

/* quadratic sieve (flintlib QS as library) (mpQS.h) */

void factorize_mpqs(F_mpz_factor_t *f, mpz_t n) {

F_mpz_factor_mpQS(f, n);

}

/* add factor to the factorization */

/* pr: 0-> factor to add is not prime, 1-> factor to add is prime */

void factorize_add_factor(nfs_mpz_fact_t *f, mpz_t c, mpz_t n, int pr) {

nfs_fact_mth_t methode={0,1,1,1};

switch (pr) {

case 0:

if(mpz_probab_prime_p(c,10)) {

mpz_init_set(f->fact[f->num],c);

141

B.2 The number field sieve

f->val[f->num]=mpz_remove(n,n,c);

f->num++;

}

else {

mpz_divexact(n,n,c);

factorize(f,c,methode);

}

break;

case 1:

mpz_init_set(f->fact[f->num],n);

f->val[f->num]=1;

f->num++;

break;

}

}

/* main factorization */

/* td: 0-> disable trial division, 1-> enable trial division */

/* 0-> f contains n factorization, 1-> n is prime, 2-> factorization not found */

int factorize(nfs_mpz_fact_t *f, mpz_t n, nfs_fact_mth_t methode) {

int i, ret;

mpz_t c;

mpz_init_set_si(c,1);

/* trial division (only if enabled -> no need during recursion) */

if(methode.td) {

mpz_init_set(f->fact[0],n);

f->val[0]=1;

f->num=1;

if(!mpz_probab_prime_p(n,10)) factorize_td(f,n);

else {

ret=1;

goto CLEAN;

142

B.2 The number field sieve

}

}

/* pollard rho */

if(methode.prho) {

if(mpz_probab_prime_p(n,10)) {

factorize_add_factor(f,c,n,1);

ret=0;

goto CLEAN;

}

else {

do {

mpz_set_si(c,1);

factorize_prho(c,n);

if(mpz_cmp_ui(c,1)) factorize_add_factor(f,c,n,0);

// gmp_printf("rho: c=%Zd n=%Zd\n",c,n);

if(mpz_probab_prime_p(n,10)) {

factorize_add_factor(f,c,n,1);

ret=0;

goto CLEAN;

}

} while(mpz_cmp_ui(c,1));

}

}

// factorize_pp1(factors,tt);

// factorize_pm1(factors,tt);

/* ecm */

if(methode.ecm) {

do {

factorize_ecm(c,n,5000);

if(mpz_cmp_ui(c,1)) factorize_add_factor(f,c,n,0);

if(mpz_probab_prime_p(n,10)) {

factorize_add_factor(f,c,n,1);

ret=0;

goto CLEAN;

}

143

B.2 The number field sieve

if(!mpz_cmp_ui(n,1)) {

ret=0;

goto CLEAN;

}

} while(mpz_cmp_ui(c,1) || mpz_sizeinbase(n,10) <= 28);

}

/* mqfs if size(n)<65digits */

if(methode.mpqs) {

if(mpz_sizeinbase(n,10) <= 65 && mpz_sizeinbase(n,10) > 28) {

F_mpz_factor_t *factors;

factors=malloc(sizeof(F_mpz_factor_t));

factors->fact = malloc(MAX_MPQS_FACTORS*sizeof(mpz_t));

factors->num=0;

for(i=0;i<MAX_MPQS_FACTORS;i++) mpz_init(factors->fact[i]);

factorize_mpqs(factors,n);

for(i=0;i<factors->num;i++) {

mpz_init_set(f->fact[f->num],factors->fact[i]);

f->val[f->num]=mpz_remove(n,n,factors->fact[i]);

f->num++;

mpz_clear(factors->fact[i]);

}

free(factors->fact);

free(factors);

ret=0;

goto CLEAN;

}

/* n is too large */

else {

ret=2;

goto CLEAN;

144

B.2 The number field sieve

}

}

CLEAN:

mpz_clear(c);

return(ret);

}

int smooth(nfs_mpz_fact_t *f, mpz_t n, long signed int B, nfs_fact_mth_t methode) {

int i, ret, big=0;

mpz_t c;

mpz_init_set_si(c,1);

mpz_init_set(f->fact[0],n);

f->val[0]=1;

f->num=1;

/* trial division (only if enabled -> no need during recursion) */

if(methode.td) {

if(!mpz_probab_prime_p(n,10)) factorize_td(f,n);

else {

ret=1;

goto CLEAN;

}

}

/* pollard rho */

if(methode.prho) {

if(mpz_probab_prime_p(n,10) || mpz_cmp_ui(n,1)==0) {

if(mpz_cmp_ui(n,1)) factorize_add_factor(f,c,n,1);

ret=0;

goto CLEAN;

}

else {

do {

145

B.2 The number field sieve

mpz_set_si(c,1);

factorize_prho(c,n);

if(mpz_cmp_ui(c,1)) {

factorize_add_factor(f,c,n,0);

if(mpz_cmp_si(c,B) > 0) big++;

if(big > 1) {

ret=2;

goto CLEAN;

}

// gmp_printf("rho: c=%Zd n=%Zd\n",c,n);

if(mpz_probab_prime_p(n,10) || mpz_cmp_ui(n,1)==0) {

if(mpz_cmp_ui(n,1)) factorize_add_factor(f,c,n,1);

// printf("pollard rho: ");

ret=0;

goto CLEAN;

}

}

} while(mpz_cmp_ui(c,1));

}

}

// factorize_pp1(factors,tt);

// factorize_pm1(factors,tt);

/* ecm */

if(methode.ecm) {

do {

factorize_ecm(c,n,5000);

if(mpz_cmp_ui(c,1)) {

factorize_add_factor(f,c,n,0);

if(mpz_cmp_si(c,B) > 0) big++;

if(big > 1) {

ret=2;

goto CLEAN;

}

if(mpz_probab_prime_p(n,10)) {

factorize_add_factor(f,c,n,1);

ret=0;

146

B.2 The number field sieve

// printf("ecm1: ");

goto CLEAN;

}

if(!mpz_cmp_ui(n,1)) {

ret=0;

// gmp_printf("ecm2: ");

goto CLEAN;

}

}

} while(mpz_cmp_ui(c,1) || mpz_sizeinbase(n,10) <= 28);

}

/* mqfs if size(n)<65digits */

if(methode.mpqs) {

if(mpz_sizeinbase(n,10) <= 65 && mpz_sizeinbase(n,10) > 28) {

F_mpz_factor_t *factors;

factors=malloc(sizeof(F_mpz_factor_t));

factors->fact = malloc(MAX_MPQS_FACTORS*sizeof(mpz_t));

factors->num=0;

for(i=0;i<MAX_MPQS_FACTORS;i++) mpz_init(factors->fact[i]);

factorize_mpqs(factors,n);

for(i=0;i<factors->num;i++) {

mpz_init_set(f->fact[f->num],factors->fact[i]);

f->val[f->num]=mpz_remove(n,n,factors->fact[i]);

f->num++;

mpz_clear(factors->fact[i]);

}

// printf("mpqs: ");

free(factors->fact);

free(factors);

ret=0;

goto CLEAN;

147

B.2 The number field sieve

}

/* n is too large */

else {

ret=2;

goto CLEAN;

}

}

ret=2;

CLEAN:

mpz_clear(c);

return(ret);

}

This code allows the decomposition into smooth elements of a given integer. It re-

turns 0 if a complete decomposition is found (even if the integer is not smooth), 1 if the

integer is prime and 2 if not all the factors have been found, in particular when more

than 1 large factor is found and the remaining factor is composite. For each integer

it also generates a structure nfs mpz fact t containing the factors, their valuation, and

their number. These will then be used to complete the decomposition into prime ideal.

Note that FLINT ships a Multi Precision Quadratic Sieve (MPQS) which is initially

compiled as a binary and returns large factors, including duplicates and composites.

We adapted this MPQS such that it returns prime factors only, without any duplicates.

Nevertheless, in the smoothness test function, MPQS is disabled by default as it targets

large composite numbers. All the small factors having been removed using the Pollard’s

Rho method and the ECM factorisation it means that the factors found by the MPQS

will be larger than the smoothness bound, i.e. useless.

148

References

[1] GMP-ECM Elliptic Curve Method for Integer Factorization. Available from https:

//gforge.inria.fr/projects/ecm/. 85, 135

[2] GNU Multiple Precision Arithmetic Library (GMP). Available from http://gmplib.org.

83, 85, 129, 135

[3] MAGMA Computational Algebra System. Website: http://magma.maths.usyd.edu.

au/magma/. 81, 85

[4] L. Adleman. The function field sieve. In ANTS I, volume 877 of Lecture Notes in

Computer Science, pages 108–121. Springer, 1994. 69

[5] V. Arvind and P. Kurur. On the complexity of computing units in a number field. In

ANTS I, volume 877 of Lecture Notes in Computer Science, pages 72–86. Springer, 2004.

84

[6] N. Attrapadung, J. Furukawa, T. Gomi, G. Hanaoka, H. Imai, and R. Zhang. Efficient

identity-based encryption with tight security reduction. In Cryptology and Network Se-

curity, volume 4301 of Lecture Notes in Computer Science, pages 19–36. Springer, 2006.

105

[7] R. Avanzi, H. Cohen, D. Doche, G. Frey, T. Lange, K. Nguyen, and F. Vercauteren.

Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman and Hall/CRC,

2006. 54, 120

[8] P. Barreto, H. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based cryp-

149

https://gforge.inria.fr/projects/ecm/
https://gforge.inria.fr/projects/ecm/
http://gmplib.org
http://magma.maths.usyd.edu.au/magma/
http://magma.maths.usyd.edu.au/magma/

REFERENCES

tosystems. In Advances in Cryptology – Crypto’2002, volume 2442 of Lecture Notes in

Computer Science, pages 354–368. Springer, 2002. 50, 109

[9] P. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In Selected

Areas in Cryptography – SAC’2005, volume 3897 of Lecture Notes in Computer Science,

pages 319–331. Springer, 2006. 29, 32, 111, 117

[10] P. S. L. M. Barreto, B. Lynn, and M. Scott. On the selection of pairing-friendly groups. In

Selected Areas in Cryptography – SAC’2003, volume 3006 of Lecture Notes in Computer

Science, pages 17–25. Springer, 2003. 35

[11] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing

efficient protocols. In CCS ’93, pages 62–73. ACM, 1993. 100

[12] N. Benger, M. Charlemagne, and D. Mandell Freeman. On the security of pairing-friendly

abelian varieties over non-prime fields. In Pairing, volume 5671 of Lecture Notes in

Computer Science, pages 52–65. Springer, 2009. xiii

[13] L. Bettale, J-C. Faugre, and L. Perret. Hybrid approach for solving multivariate systems

over finite fields. 3:177–197, 2010. 104

[14] J-L. Beuchat, N. Brisebarre, J. Detrey, and E. Okamoto. Arithmetic operators for pairing-

based cryptography, 2007. Available from http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.73.9782&rep=rep1&type=pdf. 51

[15] I. Blake, G. Seroussi, and N. Smart. Elliptic curves in cryptography, volume London

Mathematical Society Lecture Note Series. Cambridge University Press, 1999. 28

[16] Bo-Yin Yang, Jiun-Ming Chen. Theoretical analysis of xl over small fields. ACISP,

3108:277–288, 2004. 104

[17] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In Advances

in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages

213–229. Springer, 2001. 6, 95, 99, 105, 108

[18] J. Bos and M. Coster. Addition chain heuristics. In Advances in cryptology -

CRYPTO ’89, volume 435, pages 400–407. Springer, 1989. 59

150

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.9782&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.9782&rep=rep1&type=pdf

REFERENCES

[19] F. Brezing and A. Weng. Elliptic curves suitable for pairing based cryptography. Designs,

Codes and Cryptology, 37:133–141, 2005. 30

[20] J. Buchman. A subexponential algorithm for the determination of class groups and

regulators of algebraic number fields. In Séminaire de Thorie des Nombres, pages 27–41,

1990. 84

[21] J. Callas. Identity-based encryption with conventional public-key infrastructure. In 4th

Annual PKI Research and Develop Workshop, number 7224 in Interagency Reports, pages

102–115, 2005. 95

[22] G. Cardona and E. Nart. Zeta function and cryptographic exponent of supersingular

curves of genus 2. In Pairing-Based Cryptography — Pairing 2007, volume 4575 of

Springer Lecture Notes in Computer Science, pages 132–151, 2007. 46

[23] L. Chen and Z. Cheng. Security proof of sakai-kasahara’s identity-based encryption

scheme. In Proceedings of Cryptography and Coding 2005, volume 3706 of Lecture Notes

in Computer Science, pages 442–459, 2005. 107

[24] Y. Chen, M. Charlemagne, Z. Guan, J. Hu, and Z. Chen. Identity-based encryption based

on DHIES. In ASIACCS, pages 82–88. ACM, 2010. xiii, 104

[25] C. Cocks. An identity based encryption scheme based on quadratic residues. In Pro-

ceedings of the 8th IMA International Conference on Cryptography and Coding, pages

360–363. Springer, 2001. 95

[26] H. Cohen. A Course in Computational Algebraic Number Theory, volume 138 of Graduate

Texts in Mathematics. Springer, 1993. 77

[27] D. Coppersmith. Fast evaluation of logarithms in fields of characteristic two. IEEE

Transactions on Information Theory, 30:587–594, 1984. 81

[28] J-S. Coron. A variant of boneh-franklin IBE with a tight reduction in the random oracle

model. Designes, Codes and Cryptography, 50:115–133, 2009. 105

151

REFERENCES

[29] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for solving

overdefined systems of multivariate polynomial equations. In Advances in cryptology –

EUROCRYPT ’2000, volume 1807, pages 392–407, 2000. 104

[30] A. Devegili, M. Scott, and R. Dahab. Implementing cryptographic pairings over Barreto-

Naehrig curves. In Pairing 2007, volume 4575 of Lecture Notes in Computer Science,

pages 197–2007. Springer, 2007. 128

[31] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on

Information Theory, 22:644–654, November 1976. Also available from http://www.cs.

purdue.edu/homes/ninghui/courses/Fall04/lectures/diffie-hellman.pdf. 3

[32] C. Doche and T. Lange. Arithmetic of elliptic curves. In Handbook of Elliptic and

Hyperelliptic Curve Cryptography, pages 267–302. Chapman & Hall/CRC, Boca Raton,

FL, 2006. 34

[33] L. Dominguez and M. Scott. Automatic generation of optimised cryptographic pairing

functions. In SPEED-CC 2009, 2009. Also available from http://www.hyperelliptic.

org/SPEED/record09.pdf. 60, 94, 106

[34] L. Downey and Sethi. Computing sequences with addition chains. Siam Journal of

Computing, 3:638–696, 1981. 59

[35] S. Duquesne and G. Frey. Background on pairings. In Handbook of Elliptic and Hyper-

elliptic Curve Cryptography, pages 115–124. Chapman & Hall/CRC, Boca Raton, FL,

2006. 37

[36] H. Edwards. Dedekind’s invention of ideals. Journal of the London Mathematical Society,

15:8–17, 1983. 9

[37] D. Eisenbud and J. Harris. The geometry of schemes, volume 197 of Graduate Texts in

Mathematics. Springer, 1999. 11

[38] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete loga-

rithms. In Proceedings of CRYPTO ’84 on Advances in cryptology, pages 10–18. Springer,

1985. 95

152

http://www.cs.purdue.edu/homes/ninghui/courses/Fall04/lectures/diffie-hellman.pdf
http://www.cs.purdue.edu/homes/ninghui/courses/Fall04/lectures/diffie-hellman.pdf
http://www.hyperelliptic.org/SPEED/record09.pdf
http://www.hyperelliptic.org/SPEED/record09.pdf

REFERENCES

[39] F. Vercauteren F. Hess, N. Smart. The eta pairing revisited. IEEE Transactions on

Information Theory, 52(10), October 2006. Also available from http://eprint.iacr.

org/2006/110.pdf. 35

[40] D. Freeman. Constructing pairing-friendly elliptic curves with embedding degree 10. In

ANTS VII, volume 4076 of Lecture Notes in Computer Science, pages 452–465. Springer,

2006. 117

[41] D. Freeman. Constructing pairing-friendly elliptic curves with embedding degree

10. Algebraic Number Theory Symposium ANTS-VII, Lecture Notes in Computer

Science(4575):152–176, 2007. 29

[42] D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing friendly elliptic curves.

Cryptology ePrint Archive, Report 2006/372, 2006. http://eprint.iacr.org. 26

[43] D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly elliptic curves.

Journal of Cryptology, 23(2):224–280, 2010. Also available from http://eprint.iacr.

org/2006/372. 27, 31, 32, 39, 88, 101

[44] W. Fulton. Algebraic curves, An Introduction to Algebraic Geometry. Available from

http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf. 13, 19

[45] C. Jefferson G. Bard, N. Courtois. Efficient methods for conversion and solution of sparse

systems of low-degree multivariate polynomials, 2007. Availbale from http://eprint.

iacr.org/2007/024. 106

[46] S. Galbraith. Advances in elliptic curve cryptography - Pairings. 2005. 23, 27, 34

[47] S. Galbraith, X. Lin, and M. Scott. Endomorphisms for faster elliptic curve cryptography

on a large class of curves. In Advances in Cryptology - EUROCRYPT ’09, Lecture Notes

in Computer Science, pages 518–535. Springer, 2009. 111

[48] S. Galbraith, J. McKee, and P. Valencia. Ordinary abelian varieties having small embed-

ding degree. Finite Fields and their Applications, 13:800–814, 2007. Also availbale from

http://eprint.iacr.org/2004/365.pdf. 49

153

http://eprint.iacr.org/2006/110.pdf
http://eprint.iacr.org/2006/110.pdf
http://eprint.iacr.org/2006/372
http://eprint.iacr.org/2006/372
http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf
http://eprint.iacr.org/2007/024
http://eprint.iacr.org/2007/024
http://eprint.iacr.org/2004/365.pdf

REFERENCES

[49] S. Galbraith and M. Scott. Exponentiation in pairing-friendly groups using homomor-

phisms. In Pairing 2008, volume 5209 of Lecture Notes in Computer Science, pages

211–224. Springer, 2008. 109, 111, 117

[50] S. Galbraith and N. Smart. A cryptographic application of Weil descent. In Proceedings

of the 7th IMA International Conference on Cryptography and Coding, pages 191–200,

London, UK, 1999. Springer. 5

[51] D. Galindo. Boneh-franklin identity based encryption revisited. In Proceedings of the

32nd International Colloquium on Automata, Languages and Programming, volume 3580

of Lecture Notes in Computer Science, pages 791–802. Springer, 2005. 105

[52] M. Garey and D. Johnson. Computers and Intractability - A Guide to the Theory of

NP-Completeness. W.H. Freeman and Company, 1979. 97

[53] P. Gaudry. Index calculus for abelian varieties and the elliptic curve discrete logarithm

problem. To appear in J. Symbolic Computation. Also available from http://eprint.

iacr.org/2004/073. 125

[54] P. Gaudry, F. Hess, and N. P. Smart. Constructive and destructive facets of Weil descent

on elliptic curves. J. Cryptology, 15(1):19–46, 2002. 125

[55] R. Granger, A. Holt, D. Page, N. Smart, and F. Vercauteren. Function field sieve in

characteristic three. In ANTS V, volume 3076 of Lecture Notes in Computer Science,

pages 223–234. Springer, 2004. 72

[56] R. Granger, D. Page, and N. Smart. High security pairing-based cryptography revis-

ited. In ANTS VII, volume 4076 of Lecture Notes in Computer Science, pages 480–494.

Springer, 2006. 51

[57] R. Granger, D. Page, and M. Stam. On small characteristic algebraic tori in pairing-based

cryptography. LMS Journal of Computation and Mathematics, 9:64–85, March 2006. Also

available from http://eprint.iacr.org/2004/132.pdf. 91

[58] R. Granger and N. Smart. On computing products of pairings. Available from http:

//eprint.iacr.org/2006/172. 106

154

http://eprint.iacr.org/2004/073
http://eprint.iacr.org/2004/073
http:// eprint.iacr.org/2004/132.pdf
http://eprint.iacr.org/2006/172
http://eprint.iacr.org/2006/172

REFERENCES

[59] R. Granger and F. Vercauteren. On the discrete logarithm problem on algebraic tori. In

Advances in Cryptology – CRYPTO 2005, volume Lecture Notes in Computer Science,

pages 66–85. Springer, 2005. 92, 93

[60] L. Gruson. Surfaces de riemann. Cours de master 1, UVSQ. 21

[61] D. Hankerson, A. Menezes, and M. Scott. Software implementation of pairings. CACR

Technical Report, 2008. http://www.cacr.math.uwaterloo.ca/. 51

[62] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curves Cryptography.

Springer, 2004. 119, 123

[63] G. Hardy. A mathematician’s apology. Cambridge: University Press, 1940. 1

[64] W. Hart. FLINT: Fast Library for Number Theory. Available from http://www.

flintlib.org/. 85, 135

[65] T. Hayashi, N.Shinohara, L.Wang, S. Matsuo, M.Shirase, and T.Takagi. Solving a 676-bit

discrete logarithm problem in F36n . In PKC 2010, Lecture Notes in Computer Science,

pages 351–367. Springer, 2010. Also available from http://eprint.iacr.org/2010/090.

pdf. 82

[66] L. Hei, J. Dong, and D. Pei. Implementation of cryptosystems based on Tate pairing.

Journal of Computer Science & Technolgy, 20(2):264–269, 2005. 34, 51

[67] F. Hess, N. Smart, and F. Vercauteren. The eta pairing revisited. IEEE Transactions on

Information Theory, 52(10):4595–4602, 2006. 108, 109, 110

[68] M. Hindry. Introduction to abelian varieties and Mordell-Lang conjecture, 1997. Available

from http://www.math.jussieu.fr/~hindry/abvarmodel.pdf. 21

[69] L. Hitt. On the minimal embedding field. In Pairing-Based Cryptography — Pairing 2007,

volume 4575 of Springer Lecture Notes in Computer Science, pages 294–301. Springer,

2007. 36, 37, 49, 90

[70] L. Hitt O’Connor, G. McGuire, M. Naehrig, and M. Streng. CM construction of genus 2

curves with p-rank 1. Available from http://eprint.iacr.org/2008/491. 49

155

http://www.cacr.math.uwaterloo.ca/
http://www.flintlib.org/
http://www.flintlib.org/
http://eprint.iacr.org/2010/090.pdf
http://eprint.iacr.org/2010/090.pdf
http://www.math.jussieu.fr/~hindry/abvarmodel.pdf
http://eprint.iacr.org/2008/491

REFERENCES

[71] A. Joux. Discrete logarithms in F2607 and F2613 . From the number theory list archives

(September 2005) http://listserv.nodak.edu/archives/nmbrthry.html. 83, 91

[72] A. Joux. A one round protocol for tripartite Diffie-Hellman. Journal of Cryptology,

17(4):263–276, 2004. 6

[73] A. Joux and R. Lercier. The function field sieve is quite special. In ANTS V, Lecture

Notes in Computer Science, pages 431–445. Springer, 2002. 69, 70, 73

[74] A. Joux and R. Lercier. The function field sieve in the medium prime case. In Adavances

in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science,

pages 254–270. Springer, 2006. 82, 93

[75] A. Joux, R. Lercier, N. Smart, and F. Vercauteren. The number field sieve in the medium

prime case. In Advances in Cryptology - CRYPTO 2006, volume 4117 of Lecture Notes

in Computer Science, pages 323–341, 2006. 74, 75, 79, 80, 81, 83, 86

[76] E. Kachisa, E. Schaefer, and M. Scott. Constructing Brezing-Weng pairing-friendly el-

liptic curves using elements in the cyclotomic field. In Pairing 2008, volume 5209 of

Lecture Notes in Computer Science, pages 126–135. Springer, 2008. Also available from

http://eprint.iacr.org. 30, 31, 120

[77] Neal Koblitz. Elliptic curves cryptosystems. Math. Comp., 48(5):203–209, 1987. 4

[78] V. Kreinovich and L. Longpré. How important is theory for practical problems? A partial

explanation of Hartmanis’ observation. Bulletin of the EATCS, 71:160–164, 2000. 1

[79] B. LaMacchia and A. Odlyzko. Solving large sparse linear systems over finite fields.

volume 537 of Lecture Notes in Computer Science, pages 109–133. Springer, 1991. 67

[80] C. Lanczos. Solution of systems of linear equations by minimized iterations. Journal of

Research of the National Bureau Standards, 49:33–53, 1952. 67

[81] S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer, New York,

revised third edition, 2002. 39

156

http://listserv.nodak.edu/archives/nmbrthry.html
http://eprint.iacr.org

REFERENCES

[82] E. Lee, H-S. Lee, and C-M. Park. Efficient and generalized pairing computation on abelian

varieties. IEEE Transactions on Information Theory, 55:1793–1803, 2009. Also available

from http://eprint.iacr.org/2008/040. 35, 108

[83] A. Lenstra. Unbelievable security: Matching AES security using public key systems. In

Proceedings Asiacrypt 2001, LNCS 2248, Springer-Verlag 2001, 6786, volume 2248 of

Lecture Notes in Computer Science, pages 67–86. Springer, 2001. 88

[84] B. Libert and J-J. Quisquater. Identity based encryption without redundancy. In Applied

Cryptography and Network Security, volume 3531 of Lecture Notes in Computer Science,

pages 285–300. Springer, 2005. 105

[85] T. Lickteig. Gaussian elimination is optimal for solving linear equations in dimension

two. Information Processing Letters, 22(6):277–279, 1986. 100

[86] F. Luca, A. México, and I. Shparlinski. Elliptic curves with low embedding degree.

Journal of Cryptology, 19:553–562, October 2006. 27

[87] R. Matsumoto. Using Cab curves in the function field sieve. IEICE - Transactions on

Fundamentals of Electronics, Communications and Computer Sciences, E82-A:551–552,

1999. 70

[88] T. Matsumoto and H. Imai. Public quadratic polynomial-tuples for efficient signature-

verification and message-encryption. In Advances in Cryptology – EUROCRYPT’ 88,

volume 330 of Lecture Notes in Computer Science, pages 419–453. Springer, 1988. 96

[89] U. Maurer and Y. Yacobi. Non-interactive public-key cryptography. In Advances in

Cryptology – EUROCRYPT ’91, volume 1751 of Lectures in Computer Science, pages

498–507. Springer, 1991. 95

[90] A. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers,

1993. 110

[91] A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms to loga-

rithms in a finite field. IEEE Transactions on Information Theory, 39:1639–1646, 1993.

5, 27, 61, 62

157

http://eprint.iacr.org/2008/040

REFERENCES

[92] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of applied cryptography. CRC

Press, 1996. 51

[93] V. Miller. Short programs for functions on curves, 1986. 33

[94] V. Miller. Use of elliptic curves in cryptography. In Advances in cryptology –

CRYPTO ’85, volume 263 of Lecture notes in computer sciences, pages 417–426. Springer,

1986. 4, 101

[95] J. Milne. Abelian varieties. Course notes, available from http://www.jmilne.org/math/

CourseNotes/AV.pdf. 15, 21, 22

[96] J. Milne. Abelian varieties. In Arithmetic Geometry, pages 103–150. Springer, 1986. 26,

37

[97] A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve traces

for FR-reduction. IEICE - Transactions on Fundamentals of Electronics, Communica-

tions and Computer Sciences, E84-A:1234–1243, 2001. 28

[98] F. Morain. Building cyclic elliptic curves modulo large primes. In Advances in cryptology

– EUROCRYPT ’91, volume 547 of Lecture Notes in Computer Science, pages 328–336.

Springer, 1991. 27

[99] M. Naehrig, P. Barreto, and P. Schwabe. On compressible pairings and their computation.

In Progress in Cryptology - AFRICACRYPT 2008, volume 5023 of Lecture Notes in

Computer Science, pages 371–388. Springer, 2008. 51

[100] J. Neukrich. Algebraic Number Theory, volume 322 of Grundlehren der mathematischen

Wissenschaften. Springer, 1999. 11, 15, 76

[101] NIST. Computer security. Available from http://csrc.nist.gov/publications/

nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf. 4, 88

[102] Y. Nogami, M. Akane, Y. Sakemi, H. Kato, and Y. Morikawa. Integer variable X-based

ate pairing. In Pairing 2008, volume 5209 of Lecture Notes in Computer Science, pages

178–191. Springer, 2008. 55

158

http://www.jmilne.org/math/CourseNotes/AV.pdf
http://www.jmilne.org/math/CourseNotes/AV.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf

REFERENCES

[103] J. Oesterlé. Introduction à la théorie des nombres. Cours de master 2, Paris VI. 10, 11,

12

[104] J. Olivos. On vectorial addition chains. Journal of Algorithms, 2:13–21, 1981. 54, 120

[105] D. Page, N. Smart, and F. Vercauteren. A comparison of MNT curves and supersingular

curves. Applicable Algebra in Engineering, Communication and Computing, 17:379–392,

2006. Also available from http://eprint.iacr.org/2004/165.pdf. 127

[106] J. Patarin. Hidden field equations and isomorphisms of polynomials: two new families of

asymmetric algorithms. In Advances in Cryptology – EUROCRYPT’ 96, volume 1070 of

Lecture Notes in Computer Science, pages 33–48. Springer, 1996. 96

[107] J. Patarin and L. Goubin. Trapdoor one-way permutations and multivariate polynom-

inals. In ICICS ’97: Proceedings of the First International Conference on Information

and Communication Security, volume 1334 of Lecture Notes in Computer Science, pages

356–368. Springer, 1997. 97

[108] K. Paterson. Advances in elliptic curve cryptography - Cryptography from pairings. 2005.

95

[109] S. Pohlig and M. Hellman. An improved algorithm for computing logarithms over Fp and

its cryptographic significance. IEEE Transactions on Information Theory, 24:106–110,

January 1978. 64

[110] J. Pollard. Monte Carlo methods for index computation mod p. Mathematics of Compu-

tation, 32:918–924, 1978. 62

[111] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and

public key cryptosystems. Communications of the ACM, 21(2):120–126, 1978. 95

[112] K. Rubin and A. Silverberg. Supersingular abelian varieties in cryptology. In Advances

in Cryptology — CRYPTO 2002, volume 2442 of Springer Lecture Notes in Computer

Science, pages 336–353, 2002. 36, 37, 38, 48

[113] K. Rubin and A. Silverberg. Using abelian varieties to improve pairing-based cryptogra-

phy. To appear in Journal of Cryptology, 2009. 36, 38

159

http://eprint.iacr.org/2004/165.pdf

REFERENCES

[114] Z. Rui and H. Imai. Improvements on security proofs of some identity based encryp-

tion schemes. In Information Security and Cryptology, volume 3822 of Lecture Notes in

Computer Science, pages 28–41, 2005. 105

[115] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing over elliptic

curves. The 2001 Symposium on Cryptography and Information Security, Japan, 45:26–

28, 2001. 95

[116] P. Samuel. Théorie algébrique des nombres. Hermann, 1971. 9

[117] T. Satoh and K. Araki. fermat quotients and the poynomial time discrete logarithm for

anomalous elliptic curves, 1997. 5

[118] O. Schirokauer. Discrete logarithms and local units. Philosophical Transactions: Physical

Sciences and Engineering, 345:409–423, 1993. 80

[119] O. Schirokauer. Using number fields to compute logarithms in finite fields. Mathematics

of Computation, 231:1267–1283, 2000. 74, 126

[120] M. Scott. Implementing cryptographic pairings. Available from ftp://ftp.computing.

dcu.ie/pub/resources/crypto/pairings.pdf. 34

[121] M. Scott. Multiprecision Integer and Rational Arithmetic C/C++ Library (MIRACL).

Available from http://www.shamus.ie/. 83, 106

[122] M. Scott and P. Barreto. Compressed pairings. In Advances in Cryptology – Crypto’

2004, volume 3152 of Lecture Notes in Computer Science, pages 140–156. Springer, 2004.

Also available from http://eprint.iacr.org/2004/032/. 32, 51

[123] M. Scott, N. Benger, M. Charlemagne, L. Dominguez Perez, and E. Kachisa. Fast hashing

to G2 on pairing-friendly curves. In Pairing, volume 5671 of Lecture Notes in Computer

Science, pages 102–113. Springer, 2009. xiii

[124] M. Scott, N. Benger, M. Charlemagne, L. Dominguez Perez, and E. Kachisa. On the final

exponentiation for calculating pairings on ordinary elliptic curves. In Pairing, volume

5671 of Lecture Notes in Computer Science, pages 78–88. Springer, 2009. xiii

160

ftp://ftp.computing.dcu.ie/pub/resources/crypto/pairings.pdf
ftp://ftp.computing.dcu.ie/pub/resources/crypto/pairings.pdf
http://www.shamus.ie/
http://eprint.iacr.org/2004/032/

REFERENCES

[125] A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in cryp-

tology – CRYPTO ’84, volume 196 of Lecture Notes in Computer Science, pages 47–53.

Springer, 1984. 94

[126] V. Shoup. NTL: A Library for doing Number Theory. Available from http://www.

shoup.net/ntl/. 83, 129

[127] J. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate Texts in Math-

ematics. Springer, 1986. 13, 16, 18, 27, 32, 37

[128] N. Smart. The discrete logarithm problem on elliptic curves of trace one. Journal of

Cryptology, 12:193–196, 1999. 5

[129] M. Stam and A. Lenstra. Efficient subgroup exponentiation in quadratic and sixth degree

extensions. In CHES 2002, volume 2523 of Lecture Notes in Computer Science, pages

318–332. Springer, 2002. 51

[130] A. Sutherland. Computing Hilbert class polynomials with the Chinese remainder theorem,

2009. Available from http://arxiv.org/pdf/0903.2785v3. 28

[131] H. Tanaka. A realization scheme for the identity-based cryptosystem. In Advances in

cryptology – CRYPTO ’87, volume 293 of Lecture Notes in Computer Science, pages

340–349. Springer, 1988. 95

[132] W. Tang, X. Nan, and Z. Chen. Combined public key cryptosystem. In Proceedings

of IEEE 12th International Conference on Software, Telecommunications and Computer

Networks – SoftCOM ’04, 2004. 95

[133] E. Teske. Speeding up pollard’s rho method for computing discrete logarithms. In ANTS

III, Lecture Notes in Computer Science, pages 541–554. Springer, 1998. 81, 87

[134] C. Thiel. Under the assumption of the Generalized Riemann Hypothesis verifying the

class number belongs to NP
⋂
co − NP. In ANTS I, volume 877 of Lecture Notes in

Computer Science, pages 234–247. Springer, 1994. 84

161

http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
http://arxiv.org/pdf/0903.2785v3

REFERENCES

[135] E. Thome. Computation of discrete logorithms in F2607 . From the number theory list

archives (February 2002) http://listserv.nodak.edu/archives/nmbrthry.html. 81,

85

[136] S. Tsujii, T. Itoh, and K. Kurosawa. ID-based cryptosystem using discrete logarithm

problem. Electronics Letters, 23:1318–1320, 1987. 95

[137] P. van Oorschot and M. Wiener. Parallel collision search with cryptanalytic applications.

Journal of Cryptology, 12:1–28, 1999. 81, 87

[138] L. Washington. Introduction to Cyclotomic Fields, volume 83 of Graduate Texts in Math-

ematics. Springer, 1997. 24, 25

[139] D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions on

Information Theory, 32:54–62, 1986. 67

162

http://listserv.nodak.edu/archives/nmbrthry.html

	List of algorithms
	List of Figures
	List of Tables
	Notations
	Abstract
	1 Introduction
	2 Mathematics and pairings
	2.1 Rings and ideals
	2.2 Varieties and curves
	2.3 Pairings

	3 Pairings
	3.1 Pairings over finite fields
	3.2 Pairing-friendly elliptic curves
	3.3 Computing pairings

	4 Pairings and the minimal embedding field
	4.1 Framework
	4.2 Supersingular elliptic curves over extension fields
	4.3 Higher-dimensional supersingular abelian varieties
	4.4 Discussion

	5 Pairings and efficiency
	5.1 The final exponentiation
	5.1.1 MNT curves
	5.1.2 BN curves
	5.1.3 Freeman Curves
	5.1.4 KSS Curves

	5.2 Discussion

	6 Pairings and the discrete logarithm problem
	6.1 Theoretical view
	6.1.1 Pollard's Rho algorithm
	6.1.2 Pohlig Hellman algorithm
	6.1.3 Index calculus algorithms
	6.1.3.1 Function field sieve algorithm
	6.1.3.2 Number field sieve algorithm

	6.2 Practical view
	6.2.1 FFS algorithm
	6.2.2 NFS algorithm

	6.3 Discussion

	7 Pairings and identity based cryptography
	7.1 Cryptography
	7.2 A new identity based encryption scheme
	7.2.1 Framework
	7.2.2 A new scheme
	7.2.3 Considerations on the security of the new scheme

	7.3 Discussion

	8 Pairings and fast hashing
	8.1 Twist and number of points
	8.2 Framework
	8.3 Fast cofactor multiplication on G2
	8.3.1 MNT curves
	8.3.2 BN curves
	8.3.3 Freeman Curves
	8.3.4 KSS Curves

	8.4 Discussion

	9 Conclusion
	A Pairing-friendly elliptic curves
	B Implementations
	B.1 A linear sieve
	B.2 The number field sieve

	References

