Cheng and Wan have related the decoding of Reed-Solomon codes to the
computation of discrete logarithms over finite fields, with the aim of proving
the hardness of their decoding. In this work, we experiment with solving the
discrete logarithm over GF(q^h) using Reed-Solomon decoding. For fixed h and q
going to infinity, we introduce an algorithm (RSDL) needing O (h! q^2)
operations over GF(q), operating on a q x q matrix with (h+2) q non-zero
coefficients. We give faster variants including an incremental version and
another one that uses auxiliary finite fields that need not be subfields of
GF(q^h); this variant is very practical for moderate values of q and h. We
include some numerical results of our first implementations